• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006, 2007, 2008, 2009, 2010 Apple Inc. All rights reserved.
3  *
4  * Redistribution and use in source and binary forms, with or without
5  * modification, are permitted provided that the following conditions
6  * are met:
7  * 1. Redistributions of source code must retain the above copyright
8  *    notice, this list of conditions and the following disclaimer.
9  * 2. Redistributions in binary form must reproduce the above copyright
10  *    notice, this list of conditions and the following disclaimer in the
11  *    documentation and/or other materials provided with the distribution.
12  *
13  * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY
14  * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
15  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
16  * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL APPLE COMPUTER, INC. OR
17  * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
18  * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
19  * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
20  * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
21  * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
22  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
23  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
24  */
25 
26 #ifndef WTF_MathExtras_h
27 #define WTF_MathExtras_h
28 
29 #include "wtf/CPU.h"
30 #include <cmath>
31 #include <limits>
32 
33 #if COMPILER(MSVC)
34 #include "wtf/Assertions.h"
35 #include <stdint.h>
36 #endif
37 
38 #if OS(OPENBSD)
39 #include <sys/types.h>
40 #include <machine/ieee.h>
41 #endif
42 
43 const double piDouble = M_PI;
44 const float piFloat = static_cast<float>(M_PI);
45 
46 const double piOverTwoDouble = M_PI_2;
47 const float piOverTwoFloat = static_cast<float>(M_PI_2);
48 
49 const double piOverFourDouble = M_PI_4;
50 const float piOverFourFloat = static_cast<float>(M_PI_4);
51 
52 #if OS(MACOSX)
53 
54 // Work around a bug in the Mac OS X libc where ceil(-0.1) return +0.
wtf_ceil(double x)55 inline double wtf_ceil(double x) { return copysign(ceil(x), x); }
56 
57 #define ceil(x) wtf_ceil(x)
58 
59 #endif
60 
61 #if OS(OPENBSD)
62 
63 namespace std {
64 
65 #ifndef isfinite
isfinite(double x)66 inline bool isfinite(double x) { return finite(x); }
67 #endif
68 #ifndef signbit
signbit(double x)69 inline bool signbit(double x) { struct ieee_double *p = (struct ieee_double *)&x; return p->dbl_sign; }
70 #endif
71 
72 } // namespace std
73 
74 #endif
75 
76 #if COMPILER(MSVC) && (_MSC_VER < 1800)
77 
78 // We must not do 'num + 0.5' or 'num - 0.5' because they can cause precision loss.
round(double num)79 static double round(double num)
80 {
81     double integer = ceil(num);
82     if (num > 0)
83         return integer - num > 0.5 ? integer - 1.0 : integer;
84     return integer - num >= 0.5 ? integer - 1.0 : integer;
85 }
roundf(float num)86 static float roundf(float num)
87 {
88     float integer = ceilf(num);
89     if (num > 0)
90         return integer - num > 0.5f ? integer - 1.0f : integer;
91     return integer - num >= 0.5f ? integer - 1.0f : integer;
92 }
llround(double num)93 inline long long llround(double num) { return static_cast<long long>(round(num)); }
llroundf(float num)94 inline long long llroundf(float num) { return static_cast<long long>(roundf(num)); }
lround(double num)95 inline long lround(double num) { return static_cast<long>(round(num)); }
lroundf(float num)96 inline long lroundf(float num) { return static_cast<long>(roundf(num)); }
trunc(double num)97 inline double trunc(double num) { return num > 0 ? floor(num) : ceil(num); }
98 
99 #endif
100 
101 #if OS(ANDROID) || COMPILER(MSVC)
102 // ANDROID and MSVC's math.h does not currently supply log2 or log2f.
log2(double num)103 inline double log2(double num)
104 {
105     // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
106     return log(num) / 0.693147180559945309417232121458176568;
107 }
108 
log2f(float num)109 inline float log2f(float num)
110 {
111     // This constant is roughly M_LN2, which is not provided by default on Windows and Android.
112     return logf(num) / 0.693147180559945309417232121458176568f;
113 }
114 #endif
115 
116 #if COMPILER(MSVC) && (_MSC_VER < 1800)
117 
118 namespace std {
119 
isinf(double num)120 inline bool isinf(double num) { return !_finite(num) && !_isnan(num); }
isnan(double num)121 inline bool isnan(double num) { return !!_isnan(num); }
isfinite(double x)122 inline bool isfinite(double x) { return _finite(x); }
signbit(double num)123 inline bool signbit(double num) { return _copysign(1.0, num) < 0; }
124 
125 } // namespace std
126 
nextafter(double x,double y)127 inline double nextafter(double x, double y) { return _nextafter(x, y); }
nextafterf(float x,float y)128 inline float nextafterf(float x, float y) { return x > y ? x - FLT_EPSILON : x + FLT_EPSILON; }
129 
copysign(double x,double y)130 inline double copysign(double x, double y) { return _copysign(x, y); }
131 
132 // Work around a bug in Win, where atan2(+-infinity, +-infinity) yields NaN instead of specific values.
wtf_atan2(double x,double y)133 inline double wtf_atan2(double x, double y)
134 {
135     double posInf = std::numeric_limits<double>::infinity();
136     double negInf = -std::numeric_limits<double>::infinity();
137     double nan = std::numeric_limits<double>::quiet_NaN();
138 
139     double result = nan;
140 
141     if (x == posInf && y == posInf)
142         result = piOverFourDouble;
143     else if (x == posInf && y == negInf)
144         result = 3 * piOverFourDouble;
145     else if (x == negInf && y == posInf)
146         result = -piOverFourDouble;
147     else if (x == negInf && y == negInf)
148         result = -3 * piOverFourDouble;
149     else
150         result = ::atan2(x, y);
151 
152     return result;
153 }
154 
155 // Work around a bug in the Microsoft CRT, where fmod(x, +-infinity) yields NaN instead of x.
wtf_fmod(double x,double y)156 inline double wtf_fmod(double x, double y) { return (!std::isinf(x) && std::isinf(y)) ? x : fmod(x, y); }
157 
158 // Work around a bug in the Microsoft CRT, where pow(NaN, 0) yields NaN instead of 1.
wtf_pow(double x,double y)159 inline double wtf_pow(double x, double y) { return y == 0 ? 1 : pow(x, y); }
160 
161 #define atan2(x, y) wtf_atan2(x, y)
162 #define fmod(x, y) wtf_fmod(x, y)
163 #define pow(x, y) wtf_pow(x, y)
164 
165 // MSVC's math functions do not bring lrint.
lrint(double flt)166 inline long int lrint(double flt)
167 {
168     int64_t intgr;
169 #if CPU(X86)
170     __asm {
171         fld flt
172         fistp intgr
173     };
174 #else
175     ASSERT(std::isfinite(flt));
176     double rounded = round(flt);
177     intgr = static_cast<int64_t>(rounded);
178     // If the fractional part is exactly 0.5, we need to check whether
179     // the rounded result is even. If it is not we need to add 1 to
180     // negative values and subtract one from positive values.
181     if ((fabs(intgr - flt) == 0.5) & intgr)
182         intgr -= ((intgr >> 62) | 1); // 1 with the sign of result, i.e. -1 or 1.
183 #endif
184     return static_cast<long int>(intgr);
185 }
186 
187 #endif // COMPILER(MSVC)
188 
deg2rad(double d)189 inline double deg2rad(double d)  { return d * piDouble / 180.0; }
rad2deg(double r)190 inline double rad2deg(double r)  { return r * 180.0 / piDouble; }
deg2grad(double d)191 inline double deg2grad(double d) { return d * 400.0 / 360.0; }
grad2deg(double g)192 inline double grad2deg(double g) { return g * 360.0 / 400.0; }
turn2deg(double t)193 inline double turn2deg(double t) { return t * 360.0; }
deg2turn(double d)194 inline double deg2turn(double d) { return d / 360.0; }
rad2grad(double r)195 inline double rad2grad(double r) { return r * 200.0 / piDouble; }
grad2rad(double g)196 inline double grad2rad(double g) { return g * piDouble / 200.0; }
197 
deg2rad(float d)198 inline float deg2rad(float d)  { return d * piFloat / 180.0f; }
rad2deg(float r)199 inline float rad2deg(float r)  { return r * 180.0f / piFloat; }
deg2grad(float d)200 inline float deg2grad(float d) { return d * 400.0f / 360.0f; }
grad2deg(float g)201 inline float grad2deg(float g) { return g * 360.0f / 400.0f; }
turn2deg(float t)202 inline float turn2deg(float t) { return t * 360.0f; }
deg2turn(float d)203 inline float deg2turn(float d) { return d / 360.0f; }
rad2grad(float r)204 inline float rad2grad(float r) { return r * 200.0f / piFloat; }
grad2rad(float g)205 inline float grad2rad(float g) { return g * piFloat / 200.0f; }
206 
207 // std::numeric_limits<T>::min() returns the smallest positive value for floating point types
defaultMinimumForClamp()208 template<typename T> inline T defaultMinimumForClamp() { return std::numeric_limits<T>::min(); }
defaultMinimumForClamp()209 template<> inline float defaultMinimumForClamp() { return -std::numeric_limits<float>::max(); }
defaultMinimumForClamp()210 template<> inline double defaultMinimumForClamp() { return -std::numeric_limits<double>::max(); }
defaultMaximumForClamp()211 template<typename T> inline T defaultMaximumForClamp() { return std::numeric_limits<T>::max(); }
212 
213 template<typename T> inline T clampTo(double value, T min = defaultMinimumForClamp<T>(), T max = defaultMaximumForClamp<T>())
214 {
215     if (value >= static_cast<double>(max))
216         return max;
217     if (value <= static_cast<double>(min))
218         return min;
219     return static_cast<T>(value);
220 }
221 template<> inline long long int clampTo(double, long long int, long long int); // clampTo does not support long long ints.
222 
clampToInteger(double value)223 inline int clampToInteger(double value)
224 {
225     return clampTo<int>(value);
226 }
227 
clampToUnsigned(double value)228 inline unsigned clampToUnsigned(double value)
229 {
230     return clampTo<unsigned>(value);
231 }
232 
clampToFloat(double value)233 inline float clampToFloat(double value)
234 {
235     return clampTo<float>(value);
236 }
237 
clampToPositiveInteger(double value)238 inline int clampToPositiveInteger(double value)
239 {
240     return clampTo<int>(value, 0);
241 }
242 
clampToInteger(float value)243 inline int clampToInteger(float value)
244 {
245     return clampTo<int>(value);
246 }
247 
clampToInteger(unsigned x)248 inline int clampToInteger(unsigned x)
249 {
250     const unsigned intMax = static_cast<unsigned>(std::numeric_limits<int>::max());
251 
252     if (x >= intMax)
253         return std::numeric_limits<int>::max();
254     return static_cast<int>(x);
255 }
256 
isWithinIntRange(float x)257 inline bool isWithinIntRange(float x)
258 {
259     return x > static_cast<float>(std::numeric_limits<int>::min()) && x < static_cast<float>(std::numeric_limits<int>::max());
260 }
261 
262 #ifndef UINT64_C
263 #if COMPILER(MSVC)
264 #define UINT64_C(c) c ## ui64
265 #else
266 #define UINT64_C(c) c ## ull
267 #endif
268 #endif
269 
270 // Calculate d % 2^{64}.
doubleToInteger(double d,unsigned long long & value)271 inline void doubleToInteger(double d, unsigned long long& value)
272 {
273     if (std::isnan(d) || std::isinf(d))
274         value = 0;
275     else {
276         // -2^{64} < fmodValue < 2^{64}.
277         double fmodValue = fmod(trunc(d), std::numeric_limits<unsigned long long>::max() + 1.0);
278         if (fmodValue >= 0) {
279             // 0 <= fmodValue < 2^{64}.
280             // 0 <= value < 2^{64}. This cast causes no loss.
281             value = static_cast<unsigned long long>(fmodValue);
282         } else {
283             // -2^{64} < fmodValue < 0.
284             // 0 < fmodValueInUnsignedLongLong < 2^{64}. This cast causes no loss.
285             unsigned long long fmodValueInUnsignedLongLong = static_cast<unsigned long long>(-fmodValue);
286             // -1 < (std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong) < 2^{64} - 1.
287             // 0 < value < 2^{64}.
288             value = std::numeric_limits<unsigned long long>::max() - fmodValueInUnsignedLongLong + 1;
289         }
290     }
291 }
292 
293 namespace WTF {
294 
fastLog2(unsigned i)295 inline unsigned fastLog2(unsigned i)
296 {
297     unsigned log2 = 0;
298     if (i & (i - 1))
299         log2 += 1;
300     if (i >> 16)
301         log2 += 16, i >>= 16;
302     if (i >> 8)
303         log2 += 8, i >>= 8;
304     if (i >> 4)
305         log2 += 4, i >>= 4;
306     if (i >> 2)
307         log2 += 2, i >>= 2;
308     if (i >> 1)
309         log2 += 1;
310     return log2;
311 }
312 
313 } // namespace WTF
314 
315 #endif // #ifndef WTF_MathExtras_h
316