• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1#!/usr/bin/env python
2#coding:utf-8
3# Author:  Mozman
4# Purpose: treemixin provides top level functions for binary trees
5# Created: 03.05.2010
6# Copyright (c) 2010-2013 by Manfred Moitzi
7# License: MIT License
8
9from __future__ import absolute_import
10
11from .walker import Walker
12from .treeslice import TreeSlice
13
14class TreeMixin(object):
15    """
16    Abstract-Base-Class for the pure Python Trees: BinaryTree, AVLTree and RBTree
17    Mixin-Class for the Cython based Trees: FastBinaryTree, FastAVLTree, FastRBTree
18
19    The TreeMixin Class
20    ===================
21
22    T has to implement following properties
23    ---------------------------------------
24
25    count -- get node count
26
27    T has to implement following methods
28    ------------------------------------
29
30    get_walker(...)
31        get a tree walker object, provides methods to traverse the tree see walker.py
32
33    insert(...)
34        insert(key, value) <==> T[key] = value, insert key into T
35
36    remove(...)
37        remove(key) <==> del T[key], remove key from T
38
39    clear(...)
40        T.clear() -> None.  Remove all items from T.
41
42    Methods defined here
43    --------------------
44
45    * __contains__(k) -> True if T has a key k, else False, O(log(n))
46    * __delitem__(y) <==> del T[y], del T[s:e], O(log(n))
47    * __getitem__(y) <==> T[y], T[s:e], O(log(n))
48    * __iter__() <==> iter(T)
49    * __len__() <==> len(T), O(1)
50    * __max__() <==> max(T), get max item (k,v) of T, O(log(n))
51    * __min__() <==> min(T), get min item (k,v) of T, O(log(n))
52    * __and__(other) <==> T & other, intersection
53    * __or__(other) <==> T | other, union
54    * __sub__(other) <==> T - other, difference
55    * __xor__(other) <==> T ^ other, symmetric_difference
56    * __repr__() <==> repr(T)
57    * __setitem__(k, v) <==> T[k] = v, O(log(n))
58    * clear() -> None, Remove all items from T, , O(n)
59    * copy() -> a shallow copy of T, O(n*log(n))
60    * discard(k) -> None, remove k from T, if k is present, O(log(n))
61    * get(k[,d]) -> T[k] if k in T, else d, O(log(n))
62    * is_empty() -> True if len(T) == 0, O(1)
63    * items([reverse]) -> generator for (k, v) items of T, O(n)
64    * keys([reverse]) -> generator for keys of T, O(n)
65    * values([reverse]) -> generator for values of  T, O(n)
66    * pop(k[,d]) -> v, remove specified key and return the corresponding value, O(log(n))
67    * popitem() -> (k, v), remove and return some (key, value) pair as a 2-tuple, O(log(n))
68    * setdefault(k[,d]) -> T.get(k, d), also set T[k]=d if k not in T, O(log(n))
69    * update(E) -> None.  Update T from dict/iterable E, O(E*log(n))
70    * foreach(f, [order]) -> visit all nodes of tree and call f(k, v) for each node, O(n)
71
72    slicing by keys
73
74    * itemslice(s, e) -> generator for (k, v) items of T for s <= key < e, O(n)
75    * keyslice(s, e) -> generator for keys of T for s <= key < e, O(n)
76    * valueslice(s, e) -> generator for values of T for s <= key < e, O(n)
77    * T[s:e] -> TreeSlice object, with keys in range s <= key < e, O(n)
78    * del T[s:e] -> remove items by key slicing, for s <= key < e, O(n)
79
80    if 's' is None or T[:e] TreeSlice/iterator starts with value of min_key()
81    if 'e' is None or T[s:] TreeSlice/iterator ends with value of max_key()
82    T[:] is a TreeSlice which represents the whole tree.
83
84    TreeSlice is a tree wrapper with range check, and contains no references
85    to objects, deleting objects in the associated tree also deletes the object
86    in the TreeSlice.
87
88    * TreeSlice[k] -> get value for key k, raises KeyError if k not exists in range s:e
89    * TreeSlice[s1:e1] -> TreeSlice object, with keys in range s1 <= key < e1
90
91      * new lower bound is max(s, s1)
92      * new upper bound is min(e, e1)
93
94    TreeSlice methods:
95
96    * items() -> generator for (k, v) items of T, O(n)
97    * keys() -> generator for keys of T, O(n)
98    * values() -> generator for values of  T, O(n)
99    * __iter__ <==> keys()
100    * __repr__ <==> repr(T)
101    * __contains__(key)-> True if TreeSlice has a key k, else False, O(log(n))
102
103    prev/succ operations
104
105    * prev_item(key) -> get (k, v) pair, where k is predecessor to key, O(log(n))
106    * prev_key(key) -> k, get the predecessor of key, O(log(n))
107    * succ_item(key) -> get (k,v) pair as a 2-tuple, where k is successor to key, O(log(n))
108    * succ_key(key) -> k, get the successor of key, O(log(n))
109    * floor_item(key) -> get (k, v) pair, where k is the greatest key less than or equal to key, O(log(n))
110    * floor_key(key) -> k, get the greatest key less than or equal to key, O(log(n))
111    * ceiling_item(key) -> get (k, v) pair, where k is the smallest key greater than or equal to key, O(log(n))
112    * ceiling_key(key) -> k, get the smallest key greater than or equal to key, O(log(n))
113
114    Heap methods
115
116    * max_item() -> get largest (key, value) pair of T, O(log(n))
117    * max_key() -> get largest key of T, O(log(n))
118    * min_item() -> get smallest (key, value) pair of T, O(log(n))
119    * min_key() -> get smallest key of T, O(log(n))
120    * pop_min() -> (k, v), remove item with minimum key, O(log(n))
121    * pop_max() -> (k, v), remove item with maximum key, O(log(n))
122    * nlargest(i[,pop]) -> get list of i largest items (k, v), O(i*log(n))
123    * nsmallest(i[,pop]) -> get list of i smallest items (k, v), O(i*log(n))
124
125    Set methods (using frozenset)
126
127    * intersection(t1, t2, ...) -> Tree with keys *common* to all trees
128    * union(t1, t2, ...) -> Tree with keys from *either* trees
129    * difference(t1, t2, ...) -> Tree with keys in T but not any of t1, t2, ...
130    * symmetric_difference(t1) -> Tree with keys in either T and t1  but not both
131    * issubset(S) -> True if every element in T is in S
132    * issuperset(S) -> True if every element in S is in T
133    * isdisjoint(S) ->  True if T has a null intersection with S
134
135    Classmethods
136
137    * fromkeys(S[,v]) -> New tree with keys from S and values equal to v.
138
139    """
140    def get_walker(self):
141        return Walker(self)
142
143    def __repr__(self):
144        """ x.__repr__(...) <==> repr(x) """
145        tpl = "%s({%s})" % (self.__class__.__name__, '%s')
146        return tpl % ", ".join( ("%r: %r" % item for item in self.items()) )
147
148    def copy(self):
149        """ T.copy() -> get a shallow copy of T. """
150        tree = self.__class__()
151        self.foreach(tree.insert, order=-1)
152        return tree
153    __copy__ = copy
154
155    def __contains__(self, key):
156        """ k in T -> True if T has a key k, else False """
157        try:
158            self.get_value(key)
159            return True
160        except KeyError:
161            return False
162
163    def __len__(self):
164        """ x.__len__() <==> len(x) """
165        return self.count
166
167    def __min__(self):
168        """ x.__min__() <==> min(x) """
169        return self.min_item()
170
171    def __max__(self):
172        """ x.__max__() <==> max(x) """
173        return self.max_item()
174
175    def __and__(self, other):
176        """ x.__and__(other) <==> self & other """
177        return self.intersection(other)
178
179    def __or__(self, other):
180        """ x.__or__(other) <==> self | other """
181        return self.union(other)
182
183    def __sub__(self, other):
184        """ x.__sub__(other) <==> self - other """
185        return self.difference(other)
186
187    def __xor__(self, other):
188        """ x.__xor__(other) <==> self ^ other """
189        return self.symmetric_difference(other)
190
191    def discard(self, key):
192        """ x.discard(k) -> None, remove k from T, if k is present """
193        try:
194            self.remove(key)
195        except KeyError:
196            pass
197
198    def __del__(self):
199        self.clear()
200
201    def is_empty(self):
202        """ x.is_empty() -> False if T contains any items else True"""
203        return self.count == 0
204
205    def keys(self, reverse=False):
206        """ T.iterkeys([reverse]) -> an iterator over the keys of T, in ascending
207        order if reverse is True, iterate in descending order, reverse defaults
208        to False
209        """
210        return ( item[0] for item in self.items(reverse) )
211    __iter__ = keys
212
213    def __reversed__(self):
214        return self.keys(reverse=True)
215
216    def values(self, reverse=False):
217        """ T.values([reverse]) -> an iterator over the values of T, in ascending order
218        if reverse is True, iterate in descending order, reverse defaults to False
219        """
220        return ( item[1] for item in self.items(reverse) )
221
222    def items(self, reverse=False):
223        """ T.items([reverse]) -> an iterator over the (key, value) items of T,
224        in ascending order if reverse is True, iterate in descending order,
225        reverse defaults to False
226        """
227        if self.is_empty():
228            return []
229
230        def default_iterator(node):
231            direction = 1 if reverse else 0
232            other = 1 - direction
233            go_down = True
234            while True:
235                if node.has_child(direction) and go_down:
236                    node.push()
237                    node.down(direction)
238                else:
239                    yield node.item
240                    if node.has_child(other):
241                        node.down(other)
242                        go_down = True
243                    else:
244                        if node.stack_is_empty():
245                            return  # all done
246                        node.pop()
247                        go_down = False
248
249        treewalker = self.get_walker()
250        try:  # specialized iterators
251            if reverse:
252                return treewalker.iter_items_backward()
253            else:
254                return treewalker.iter_items_forward()
255        except AttributeError:
256            return default_iterator(treewalker)
257
258    def __getitem__(self, key):
259        """ x.__getitem__(y) <==> x[y] """
260        if isinstance(key, slice):
261            return TreeSlice(self, key.start, key.stop)
262        else:
263            return self.get_value(key)
264
265    def __setitem__(self, key, value):
266        """ x.__setitem__(i, y) <==> x[i]=y """
267        if isinstance(key, slice):
268            raise ValueError('setslice is not supported')
269        self.insert(key, value)
270
271    def __delitem__(self, key):
272        """ x.__delitem__(y) <==> del x[y] """
273        if isinstance(key, slice):
274            self.delitems(self.keyslice(key.start, key.stop))
275        else:
276            self.remove(key)
277
278    def delitems(self, keys):
279        """ T.delitems(keys) -> remove all items by keys
280        """
281        # convert generator to a set, because the content of the
282        # tree will be modified!
283        for key in frozenset(keys):
284            self.remove(key)
285
286    def keyslice(self, startkey, endkey):
287        """ T.keyslice(startkey, endkey) -> key iterator:
288        startkey <= key < endkey.
289        """
290        return ( item[0] for item in self.itemslice(startkey, endkey) )
291
292    def itemslice(self, startkey, endkey):
293        """ T.itemslice(s, e) -> item iterator: s <= key < e.
294
295        if s is None: start with min element -> T[:e]
296        if e is None: end with max element -> T[s:]
297        T[:] -> all items
298
299        """
300        if self.is_empty():
301            return
302
303        if startkey is None:
304            # no lower bound
305            can_go_left = lambda: node.has_left() and visit_left
306        else:
307            # don't visit subtrees without keys in search range
308            can_go_left = lambda: node.key > startkey and node.has_left() and visit_left
309
310        if endkey is None:
311            # no upper bound
312            can_go_right = lambda: node.has_right()
313        else:
314            # don't visit subtrees without keys in search range
315            can_go_right = lambda: node.key < endkey and node.has_right()
316
317        if (startkey, endkey) == (None, None):
318            key_in_range = lambda: True
319        elif startkey is None:
320            key_in_range = lambda: node.key < endkey
321        elif endkey is None:
322            key_in_range = lambda: node.key >= startkey
323        else:
324            key_in_range = lambda: startkey <= node.key < endkey
325
326        node = self.get_walker()
327        visit_left = True
328        while True:
329            if can_go_left():
330                node.push()
331                node.go_left()
332            else:
333                if key_in_range():
334                    yield node.item
335                if can_go_right():
336                    node.go_right()
337                    visit_left = True
338                else:
339                    if node.stack_is_empty():
340                        return
341                    node.pop()
342                    # left side is already done
343                    visit_left = False
344
345    def valueslice(self, startkey, endkey):
346        """ T.valueslice(startkey, endkey) -> value iterator:
347        startkey <= key < endkey.
348        """
349        return ( item[1] for item in self.itemslice(startkey, endkey) )
350
351    def get_value(self, key):
352        node = self.root
353        while node is not None:
354            if key == node.key:
355                return node.value
356            elif key < node.key:
357                node = node.left
358            else:
359                node = node.right
360        raise KeyError(str(key))
361
362    def __getstate__(self):
363        return dict(self.items())
364
365    def __setstate__(self, state):
366        # note for myself: this is called like __init__, so don't use clear()
367        # to remove existing data!
368        self._root = None
369        self._count = 0
370        self.update(state)
371
372    def setdefault(self, key, default=None):
373        """ T.setdefault(k[,d]) -> T.get(k,d), also set T[k]=d if k not in T """
374        try:
375            return self.get_value(key)
376        except KeyError:
377            self.insert(key, default)
378            return default
379
380    def update(self, *args):
381        """ T.update(E) -> None. Update T from E : for (k, v) in E: T[k] = v """
382        for items in args:
383            try:
384                generator = items.items()
385            except AttributeError:
386                generator = iter(items)
387
388            for key, value in generator:
389                self.insert(key, value)
390
391    @classmethod
392    def fromkeys(cls, iterable, value=None):
393        """ T.fromkeys(S[,v]) -> New tree with keys from S and values equal to v.
394
395        v defaults to None.
396        """
397        tree = cls()
398        for key in iterable:
399            tree.insert(key, value)
400        return tree
401
402    def get(self, key, default=None):
403        """ T.get(k[,d]) -> T[k] if k in T, else d.  d defaults to None. """
404        try:
405            return self.get_value(key)
406        except KeyError:
407            return default
408
409    def pop(self, key, *args):
410        """ T.pop(k[,d]) -> v, remove specified key and return the corresponding value
411        If key is not found, d is returned if given, otherwise KeyError is raised
412        """
413        if len(args) > 1:
414            raise TypeError("pop expected at most 2 arguments, got %d" % (1 + len(args)))
415        try:
416            value = self.get_value(key)
417            self.remove(key)
418            return value
419        except KeyError:
420            if len(args) == 0:
421                raise
422            else:
423                return args[0]
424
425    def popitem(self):
426        """ T.popitem() -> (k, v), remove and return some (key, value) pair as a
427        2-tuple; but raise KeyError if T is empty
428        """
429        if self.is_empty():
430            raise KeyError("popitem(): tree is empty")
431        walker = self.get_walker()
432        walker.goto_leaf()
433        result = walker.item
434        self.remove(walker.key)
435        return result
436
437    def foreach(self, func, order=0):
438        """ Visit all tree nodes and process key, value.
439
440        parm func: function(key, value)
441        param int order: inorder = 0, preorder = -1, postorder = +1
442
443        """
444        def _traverse():
445            if order == -1:
446                func(node.key, node.value)
447            if node.has_left():
448                node.push()
449                node.go_left()
450                _traverse()
451                node.pop()
452            if order == 0:
453                func(node.key, node.value)
454            if node.has_right():
455                node.push()
456                node.go_right()
457                _traverse()
458                node.pop()
459            if order == +1:
460                func(node.key, node.value)
461
462        node = self.get_walker()
463        _traverse()
464
465    def min_item(self):
466        """ Get item with min key of tree, raises ValueError if tree is empty. """
467        if self.count == 0:
468            raise ValueError("Tree is empty")
469        node = self._root
470        while node.left is not None:
471            node = node.left
472        return (node.key, node.value)
473
474    def pop_min(self):
475        """ T.pop_min() -> (k, v), remove item with minimum key, raise ValueError
476        if T is empty.
477        """
478        item = self.min_item()
479        self.remove(item[0])
480        return item
481
482    def min_key(self):
483        """ Get min key of tree, raises ValueError if tree is empty. """
484        key, value = self.min_item()
485        return key
486
487    def prev_item(self, key):
488        """ Get predecessor (k,v) pair of key, raises KeyError if key is min key
489        or key does not exist.
490        """
491        if self.count == 0:
492            raise KeyError("Tree is empty")
493        walker = self.get_walker()
494        return walker.prev_item(key)
495
496    def succ_item(self, key):
497        """ Get successor (k,v) pair of key, raises KeyError if key is max key
498        or key does not exist.
499        """
500        if self.count == 0:
501            raise KeyError("Tree is empty")
502        walker = self.get_walker()
503        return walker.succ_item(key)
504
505    def prev_key(self, key):
506        """ Get predecessor to key, raises KeyError if key is min key
507        or key does not exist.
508        """
509        key, value = self.prev_item(key)
510        return key
511
512    def succ_key(self, key):
513        """ Get successor to key, raises KeyError if key is max key
514        or key does not exist.
515        """
516        key, value = self.succ_item(key)
517        return key
518
519    def floor_item(self, key):
520        """ Get the element (k,v) pair associated with the greatest key less
521        than or equal to the given key, raises KeyError if there is no such key.
522        """
523        if self.count == 0:
524            raise KeyError("Tree is empty")
525        walker = self.get_walker()
526        return walker.floor_item(key)
527
528    def floor_key(self, key):
529        """ Get the greatest key less than or equal to the given key, raises
530        KeyError if there is no such key.
531        """
532        key, value = self.floor_item(key)
533        return key
534
535    def ceiling_item(self, key):
536        """ Get the element (k,v) pair associated with the smallest key greater
537        than or equal to the given key, raises KeyError if there is no such key.
538        """
539        if self.count == 0:
540            raise KeyError("Tree is empty")
541        walker = self.get_walker()
542        return walker.ceiling_item(key)
543
544    def ceiling_key(self, key):
545        """ Get the smallest key greater than or equal to the given key, raises
546        KeyError if there is no such key.
547        """
548        key, value = self.ceiling_item(key)
549        return key
550
551    def max_item(self):
552        """ Get item with max key of tree, raises ValueError if tree is empty. """
553        if self.count == 0:
554            raise ValueError("Tree is empty")
555        node = self._root
556        while node.right is not None:
557            node = node.right
558        return (node.key, node.value)
559
560    def pop_max(self):
561        """ T.pop_max() -> (k, v), remove item with maximum key, raise ValueError
562        if T is empty.
563        """
564        item = self.max_item()
565        self.remove(item[0])
566        return item
567
568    def max_key(self):
569        """ Get max key of tree, raises ValueError if tree is empty. """
570        key, value = self.max_item()
571        return key
572
573    def nsmallest(self, n, pop=False):
574        """ T.nsmallest(n) -> get list of n smallest items (k, v).
575        If pop is True, remove items from T.
576        """
577        if pop:
578            return [self.pop_min() for _ in range(min(len(self), n))]
579        else:
580            items = self.items()
581            return  [ next(items) for _ in range(min(len(self), n)) ]
582
583    def nlargest(self, n, pop=False):
584        """ T.nlargest(n) -> get list of n largest items (k, v).
585        If pop is True remove items from T.
586        """
587        if pop:
588            return [self.pop_max() for _ in range(min(len(self), n))]
589        else:
590            items = self.items(reverse=True)
591            return [ next(items) for _ in range(min(len(self), n)) ]
592
593    def intersection(self, *trees):
594        """ x.intersection(t1, t2, ...) -> Tree, with keys *common* to all trees
595        """
596        thiskeys = frozenset(self.keys())
597        sets = _build_sets(trees)
598        rkeys = thiskeys.intersection(*sets)
599        return self.__class__( ((key, self.get(key)) for key in rkeys) )
600
601    def union(self, *trees):
602        """ x.union(t1, t2, ...) -> Tree with keys from *either* trees
603        """
604        thiskeys = frozenset(self.keys())
605        rkeys = thiskeys.union(*_build_sets(trees))
606        return self.__class__( ((key, self.get(key)) for key in rkeys) )
607
608    def difference(self, *trees):
609        """ x.difference(t1, t2, ...) -> Tree with keys in T but not any of t1,
610        t2, ...
611        """
612        thiskeys = frozenset(self.keys())
613        rkeys = thiskeys.difference(*_build_sets(trees))
614        return self.__class__( ((key, self.get(key)) for key in rkeys) )
615
616    def symmetric_difference(self, tree):
617        """ x.symmetric_difference(t1) -> Tree with keys in either T and t1  but
618        not both
619        """
620        thiskeys = frozenset(self.keys())
621        rkeys = thiskeys.symmetric_difference(frozenset(tree.keys()))
622        return self.__class__( ((key, self.get(key)) for key in rkeys) )
623
624    def issubset(self, tree):
625        """ x.issubset(tree) -> True if every element in x is in tree """
626        thiskeys = frozenset(self.keys())
627        return thiskeys.issubset(frozenset(tree.keys()))
628
629    def issuperset(self, tree):
630        """ x.issubset(tree) -> True if every element in tree is in x """
631        thiskeys = frozenset(self.keys())
632        return thiskeys.issuperset(frozenset(tree.keys()))
633
634    def isdisjoint(self, tree):
635        """ x.isdisjoint(S) ->  True if x has a null intersection with tree """
636        thiskeys = frozenset(self.keys())
637        return thiskeys.isdisjoint(frozenset(tree.keys()))
638
639
640def _build_sets(trees):
641    return [ frozenset(tree.keys()) for tree in trees ]
642
643