• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright 2012 the V8 project authors. All rights reserved.
2 // Redistribution and use in source and binary forms, with or without
3 // modification, are permitted provided that the following conditions are
4 // met:
5 //
6 //     * Redistributions of source code must retain the above copyright
7 //       notice, this list of conditions and the following disclaimer.
8 //     * Redistributions in binary form must reproduce the above
9 //       copyright notice, this list of conditions and the following
10 //       disclaimer in the documentation and/or other materials provided
11 //       with the distribution.
12 //     * Neither the name of Google Inc. nor the names of its
13 //       contributors may be used to endorse or promote products derived
14 //       from this software without specific prior written permission.
15 //
16 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
17 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
18 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
19 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
20 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
21 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
22 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
23 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
24 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
25 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
26 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
27 
28 /** \mainpage V8 API Reference Guide
29  *
30  * V8 is Google's open source JavaScript engine.
31  *
32  * This set of documents provides reference material generated from the
33  * V8 header file, include/v8.h.
34  *
35  * For other documentation see http://code.google.com/apis/v8/
36  */
37 
38 #ifndef V8_H_
39 #define V8_H_
40 
41 #include "v8stdint.h"
42 
43 // We reserve the V8_* prefix for macros defined in V8 public API and
44 // assume there are no name conflicts with the embedder's code.
45 
46 #ifdef V8_OS_WIN
47 
48 // Setup for Windows DLL export/import. When building the V8 DLL the
49 // BUILDING_V8_SHARED needs to be defined. When building a program which uses
50 // the V8 DLL USING_V8_SHARED needs to be defined. When either building the V8
51 // static library or building a program which uses the V8 static library neither
52 // BUILDING_V8_SHARED nor USING_V8_SHARED should be defined.
53 #if defined(BUILDING_V8_SHARED) && defined(USING_V8_SHARED)
54 #error both BUILDING_V8_SHARED and USING_V8_SHARED are set - please check the\
55   build configuration to ensure that at most one of these is set
56 #endif
57 
58 #ifdef BUILDING_V8_SHARED
59 # define V8_EXPORT __declspec(dllexport)
60 #elif USING_V8_SHARED
61 # define V8_EXPORT __declspec(dllimport)
62 #else
63 # define V8_EXPORT
64 #endif  // BUILDING_V8_SHARED
65 
66 #else  // V8_OS_WIN
67 
68 // Setup for Linux shared library export.
69 #if V8_HAS_ATTRIBUTE_VISIBILITY && defined(V8_SHARED)
70 # ifdef BUILDING_V8_SHARED
71 #  define V8_EXPORT __attribute__ ((visibility("default")))
72 # else
73 #  define V8_EXPORT
74 # endif
75 #else
76 # define V8_EXPORT
77 #endif
78 
79 #endif  // V8_OS_WIN
80 
81 /**
82  * The v8 JavaScript engine.
83  */
84 namespace v8 {
85 
86 class AccessorSignature;
87 class Array;
88 class Boolean;
89 class BooleanObject;
90 class Context;
91 class CpuProfiler;
92 class Data;
93 class Date;
94 class DeclaredAccessorDescriptor;
95 class External;
96 class Function;
97 class FunctionTemplate;
98 class HeapProfiler;
99 class ImplementationUtilities;
100 class Int32;
101 class Integer;
102 class Isolate;
103 class Number;
104 class NumberObject;
105 class Object;
106 class ObjectOperationDescriptor;
107 class ObjectTemplate;
108 class Platform;
109 class Primitive;
110 class RawOperationDescriptor;
111 class Signature;
112 class StackFrame;
113 class StackTrace;
114 class String;
115 class StringObject;
116 class Symbol;
117 class SymbolObject;
118 class Private;
119 class Uint32;
120 class Utils;
121 class Value;
122 template <class T> class Handle;
123 template <class T> class Local;
124 template <class T> class Eternal;
125 template<class T> class NonCopyablePersistentTraits;
126 template<class T> class PersistentBase;
127 template<class T,
128          class M = NonCopyablePersistentTraits<T> > class Persistent;
129 template<class T> class UniquePersistent;
130 template<class T, class P> class WeakCallbackObject;
131 class FunctionTemplate;
132 class ObjectTemplate;
133 class Data;
134 template<typename T> class PropertyCallbackInfo;
135 class StackTrace;
136 class StackFrame;
137 class Isolate;
138 class DeclaredAccessorDescriptor;
139 class ObjectOperationDescriptor;
140 class RawOperationDescriptor;
141 class CallHandlerHelper;
142 class EscapableHandleScope;
143 
144 namespace internal {
145 class Arguments;
146 class Heap;
147 class HeapObject;
148 class Isolate;
149 class Object;
150 template<typename T> class CustomArguments;
151 class PropertyCallbackArguments;
152 class FunctionCallbackArguments;
153 class GlobalHandles;
154 }
155 
156 
157 /**
158  * General purpose unique identifier.
159  */
160 class UniqueId {
161  public:
UniqueId(intptr_t data)162   explicit UniqueId(intptr_t data)
163       : data_(data) {}
164 
165   bool operator==(const UniqueId& other) const {
166     return data_ == other.data_;
167   }
168 
169   bool operator!=(const UniqueId& other) const {
170     return data_ != other.data_;
171   }
172 
173   bool operator<(const UniqueId& other) const {
174     return data_ < other.data_;
175   }
176 
177  private:
178   intptr_t data_;
179 };
180 
181 // --- Handles ---
182 
183 #define TYPE_CHECK(T, S)                                       \
184   while (false) {                                              \
185     *(static_cast<T* volatile*>(0)) = static_cast<S*>(0);      \
186   }
187 
188 
189 /**
190  * An object reference managed by the v8 garbage collector.
191  *
192  * All objects returned from v8 have to be tracked by the garbage
193  * collector so that it knows that the objects are still alive.  Also,
194  * because the garbage collector may move objects, it is unsafe to
195  * point directly to an object.  Instead, all objects are stored in
196  * handles which are known by the garbage collector and updated
197  * whenever an object moves.  Handles should always be passed by value
198  * (except in cases like out-parameters) and they should never be
199  * allocated on the heap.
200  *
201  * There are two types of handles: local and persistent handles.
202  * Local handles are light-weight and transient and typically used in
203  * local operations.  They are managed by HandleScopes.  Persistent
204  * handles can be used when storing objects across several independent
205  * operations and have to be explicitly deallocated when they're no
206  * longer used.
207  *
208  * It is safe to extract the object stored in the handle by
209  * dereferencing the handle (for instance, to extract the Object* from
210  * a Handle<Object>); the value will still be governed by a handle
211  * behind the scenes and the same rules apply to these values as to
212  * their handles.
213  */
214 template <class T> class Handle {
215  public:
216   /**
217    * Creates an empty handle.
218    */
Handle()219   V8_INLINE Handle() : val_(0) {}
220 
221   /**
222    * Creates a handle for the contents of the specified handle.  This
223    * constructor allows you to pass handles as arguments by value and
224    * to assign between handles.  However, if you try to assign between
225    * incompatible handles, for instance from a Handle<String> to a
226    * Handle<Number> it will cause a compile-time error.  Assigning
227    * between compatible handles, for instance assigning a
228    * Handle<String> to a variable declared as Handle<Value>, is legal
229    * because String is a subclass of Value.
230    */
Handle(Handle<S> that)231   template <class S> V8_INLINE Handle(Handle<S> that)
232       : val_(reinterpret_cast<T*>(*that)) {
233     /**
234      * This check fails when trying to convert between incompatible
235      * handles. For example, converting from a Handle<String> to a
236      * Handle<Number>.
237      */
238     TYPE_CHECK(T, S);
239   }
240 
241   /**
242    * Returns true if the handle is empty.
243    */
IsEmpty()244   V8_INLINE bool IsEmpty() const { return val_ == 0; }
245 
246   /**
247    * Sets the handle to be empty. IsEmpty() will then return true.
248    */
Clear()249   V8_INLINE void Clear() { val_ = 0; }
250 
251   V8_INLINE T* operator->() const { return val_; }
252 
253   V8_INLINE T* operator*() const { return val_; }
254 
255   /**
256    * Checks whether two handles are the same.
257    * Returns true if both are empty, or if the objects
258    * to which they refer are identical.
259    * The handles' references are not checked.
260    */
261   template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
262     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
263     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
264     if (a == 0) return b == 0;
265     if (b == 0) return false;
266     return *a == *b;
267   }
268 
269   template <class S> V8_INLINE bool operator==(
270       const PersistentBase<S>& that) const {
271     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
272     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
273     if (a == 0) return b == 0;
274     if (b == 0) return false;
275     return *a == *b;
276   }
277 
278   /**
279    * Checks whether two handles are different.
280    * Returns true if only one of the handles is empty, or if
281    * the objects to which they refer are different.
282    * The handles' references are not checked.
283    */
284   template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
285     return !operator==(that);
286   }
287 
288   template <class S> V8_INLINE bool operator!=(
289       const Persistent<S>& that) const {
290     return !operator==(that);
291   }
292 
Cast(Handle<S> that)293   template <class S> V8_INLINE static Handle<T> Cast(Handle<S> that) {
294 #ifdef V8_ENABLE_CHECKS
295     // If we're going to perform the type check then we have to check
296     // that the handle isn't empty before doing the checked cast.
297     if (that.IsEmpty()) return Handle<T>();
298 #endif
299     return Handle<T>(T::Cast(*that));
300   }
301 
As()302   template <class S> V8_INLINE Handle<S> As() {
303     return Handle<S>::Cast(*this);
304   }
305 
New(Isolate * isolate,Handle<T> that)306   V8_INLINE static Handle<T> New(Isolate* isolate, Handle<T> that) {
307     return New(isolate, that.val_);
308   }
New(Isolate * isolate,const PersistentBase<T> & that)309   V8_INLINE static Handle<T> New(Isolate* isolate,
310                                  const PersistentBase<T>& that) {
311     return New(isolate, that.val_);
312   }
313 
314 #ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
315 
316  private:
317 #endif
318   /**
319    * Creates a new handle for the specified value.
320    */
Handle(T * val)321   V8_INLINE explicit Handle(T* val) : val_(val) {}
322 
323  private:
324   friend class Utils;
325   template<class F, class M> friend class Persistent;
326   template<class F> friend class PersistentBase;
327   template<class F> friend class Handle;
328   template<class F> friend class Local;
329   template<class F> friend class FunctionCallbackInfo;
330   template<class F> friend class PropertyCallbackInfo;
331   template<class F> friend class internal::CustomArguments;
332   friend Handle<Primitive> Undefined(Isolate* isolate);
333   friend Handle<Primitive> Null(Isolate* isolate);
334   friend Handle<Boolean> True(Isolate* isolate);
335   friend Handle<Boolean> False(Isolate* isolate);
336   friend class Context;
337   friend class HandleScope;
338   friend class Object;
339   friend class Private;
340 
341   V8_INLINE static Handle<T> New(Isolate* isolate, T* that);
342 
343   T* val_;
344 };
345 
346 
347 /**
348  * A light-weight stack-allocated object handle.  All operations
349  * that return objects from within v8 return them in local handles.  They
350  * are created within HandleScopes, and all local handles allocated within a
351  * handle scope are destroyed when the handle scope is destroyed.  Hence it
352  * is not necessary to explicitly deallocate local handles.
353  */
354 template <class T> class Local : public Handle<T> {
355  public:
356   V8_INLINE Local();
Local(Local<S> that)357   template <class S> V8_INLINE Local(Local<S> that)
358       : Handle<T>(reinterpret_cast<T*>(*that)) {
359     /**
360      * This check fails when trying to convert between incompatible
361      * handles. For example, converting from a Handle<String> to a
362      * Handle<Number>.
363      */
364     TYPE_CHECK(T, S);
365   }
366 
367 
Cast(Local<S> that)368   template <class S> V8_INLINE static Local<T> Cast(Local<S> that) {
369 #ifdef V8_ENABLE_CHECKS
370     // If we're going to perform the type check then we have to check
371     // that the handle isn't empty before doing the checked cast.
372     if (that.IsEmpty()) return Local<T>();
373 #endif
374     return Local<T>(T::Cast(*that));
375   }
Local(Handle<S> that)376   template <class S> V8_INLINE Local(Handle<S> that)
377       : Handle<T>(reinterpret_cast<T*>(*that)) {
378     TYPE_CHECK(T, S);
379   }
380 
As()381   template <class S> V8_INLINE Local<S> As() {
382     return Local<S>::Cast(*this);
383   }
384 
385   /**
386    * Create a local handle for the content of another handle.
387    * The referee is kept alive by the local handle even when
388    * the original handle is destroyed/disposed.
389    */
390   V8_INLINE static Local<T> New(Isolate* isolate, Handle<T> that);
391   V8_INLINE static Local<T> New(Isolate* isolate,
392                                 const PersistentBase<T>& that);
393 
394 #ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
395 
396  private:
397 #endif
Local(S * that)398   template <class S> V8_INLINE Local(S* that) : Handle<T>(that) { }
399 
400  private:
401   friend class Utils;
402   template<class F> friend class Eternal;
403   template<class F> friend class PersistentBase;
404   template<class F, class M> friend class Persistent;
405   template<class F> friend class Handle;
406   template<class F> friend class Local;
407   template<class F> friend class FunctionCallbackInfo;
408   template<class F> friend class PropertyCallbackInfo;
409   friend class String;
410   friend class Object;
411   friend class Context;
412   template<class F> friend class internal::CustomArguments;
413   friend class HandleScope;
414   friend class EscapableHandleScope;
415 
416   V8_INLINE static Local<T> New(Isolate* isolate, T* that);
417 };
418 
419 
420 // Eternal handles are set-once handles that live for the life of the isolate.
421 template <class T> class Eternal {
422  public:
Eternal()423   V8_INLINE Eternal() : index_(kInitialValue) { }
424   template<class S>
Eternal(Isolate * isolate,Local<S> handle)425   V8_INLINE Eternal(Isolate* isolate, Local<S> handle) : index_(kInitialValue) {
426     Set(isolate, handle);
427   }
428   // Can only be safely called if already set.
429   V8_INLINE Local<T> Get(Isolate* isolate);
IsEmpty()430   V8_INLINE bool IsEmpty() { return index_ == kInitialValue; }
431   template<class S> V8_INLINE void Set(Isolate* isolate, Local<S> handle);
432 
433  private:
434   static const int kInitialValue = -1;
435   int index_;
436 };
437 
438 
439 template<class T, class P>
440 class WeakCallbackData {
441  public:
442   typedef void (*Callback)(const WeakCallbackData<T, P>& data);
443 
GetIsolate()444   V8_INLINE Isolate* GetIsolate() const { return isolate_; }
GetValue()445   V8_INLINE Local<T> GetValue() const { return handle_; }
GetParameter()446   V8_INLINE P* GetParameter() const { return parameter_; }
447 
448  private:
449   friend class internal::GlobalHandles;
WeakCallbackData(Isolate * isolate,Local<T> handle,P * parameter)450   WeakCallbackData(Isolate* isolate, Local<T> handle, P* parameter)
451     : isolate_(isolate), handle_(handle), parameter_(parameter) { }
452   Isolate* isolate_;
453   Local<T> handle_;
454   P* parameter_;
455 };
456 
457 
458 // TODO(dcarney): Remove this class.
459 template<typename T,
460          typename P,
461          typename M = NonCopyablePersistentTraits<T> >
462 class WeakReferenceCallbacks {
463  public:
464   typedef void (*Revivable)(Isolate* isolate,
465                             Persistent<T, M>* object,
466                             P* parameter);
467 };
468 
469 
470 /**
471  * An object reference that is independent of any handle scope.  Where
472  * a Local handle only lives as long as the HandleScope in which it was
473  * allocated, a PersistentBase handle remains valid until it is explicitly
474  * disposed.
475  *
476  * A persistent handle contains a reference to a storage cell within
477  * the v8 engine which holds an object value and which is updated by
478  * the garbage collector whenever the object is moved.  A new storage
479  * cell can be created using the constructor or PersistentBase::Reset and
480  * existing handles can be disposed using PersistentBase::Reset.
481  *
482  */
483 template <class T> class PersistentBase {
484  public:
485   /**
486    * If non-empty, destroy the underlying storage cell
487    * IsEmpty() will return true after this call.
488    */
489   V8_INLINE void Reset();
490   /**
491    * If non-empty, destroy the underlying storage cell
492    * and create a new one with the contents of other if other is non empty
493    */
494   template <class S>
495   V8_INLINE void Reset(Isolate* isolate, const Handle<S>& other);
496 
497   /**
498    * If non-empty, destroy the underlying storage cell
499    * and create a new one with the contents of other if other is non empty
500    */
501   template <class S>
502   V8_INLINE void Reset(Isolate* isolate, const PersistentBase<S>& other);
503 
IsEmpty()504   V8_INLINE bool IsEmpty() const { return val_ == 0; }
505 
506   template <class S>
507   V8_INLINE bool operator==(const PersistentBase<S>& that) const {
508     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
509     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
510     if (a == 0) return b == 0;
511     if (b == 0) return false;
512     return *a == *b;
513   }
514 
515   template <class S> V8_INLINE bool operator==(const Handle<S>& that) const {
516     internal::Object** a = reinterpret_cast<internal::Object**>(this->val_);
517     internal::Object** b = reinterpret_cast<internal::Object**>(that.val_);
518     if (a == 0) return b == 0;
519     if (b == 0) return false;
520     return *a == *b;
521   }
522 
523   template <class S>
524   V8_INLINE bool operator!=(const PersistentBase<S>& that) const {
525     return !operator==(that);
526   }
527 
528   template <class S> V8_INLINE bool operator!=(const Handle<S>& that) const {
529     return !operator==(that);
530   }
531 
532   template<typename P>
533   V8_INLINE void SetWeak(
534       P* parameter,
535       typename WeakCallbackData<T, P>::Callback callback);
536 
537   template<typename S, typename P>
538   V8_INLINE void SetWeak(
539       P* parameter,
540       typename WeakCallbackData<S, P>::Callback callback);
541 
542   V8_INLINE void ClearWeak();
543 
544   /**
545    * Marks the reference to this object independent. Garbage collector is free
546    * to ignore any object groups containing this object. Weak callback for an
547    * independent handle should not assume that it will be preceded by a global
548    * GC prologue callback or followed by a global GC epilogue callback.
549    */
550   V8_INLINE void MarkIndependent();
551 
552   /**
553    * Marks the reference to this object partially dependent. Partially dependent
554    * handles only depend on other partially dependent handles and these
555    * dependencies are provided through object groups. It provides a way to build
556    * smaller object groups for young objects that represent only a subset of all
557    * external dependencies. This mark is automatically cleared after each
558    * garbage collection.
559    */
560   V8_INLINE void MarkPartiallyDependent();
561 
562   V8_INLINE bool IsIndependent() const;
563 
564   /** Checks if the handle holds the only reference to an object. */
565   V8_INLINE bool IsNearDeath() const;
566 
567   /** Returns true if the handle's reference is weak.  */
568   V8_INLINE bool IsWeak() const;
569 
570   /**
571    * Assigns a wrapper class ID to the handle. See RetainedObjectInfo interface
572    * description in v8-profiler.h for details.
573    */
574   V8_INLINE void SetWrapperClassId(uint16_t class_id);
575 
576   /**
577    * Returns the class ID previously assigned to this handle or 0 if no class ID
578    * was previously assigned.
579    */
580   V8_INLINE uint16_t WrapperClassId() const;
581 
582  private:
583   friend class Isolate;
584   friend class Utils;
585   template<class F> friend class Handle;
586   template<class F> friend class Local;
587   template<class F1, class F2> friend class Persistent;
588   template<class F> friend class UniquePersistent;
589   template<class F> friend class PersistentBase;
590   template<class F> friend class ReturnValue;
591 
PersistentBase(T * val)592   explicit V8_INLINE PersistentBase(T* val) : val_(val) {}
593   PersistentBase(PersistentBase& other); // NOLINT
594   void operator=(PersistentBase&);
595   V8_INLINE static T* New(Isolate* isolate, T* that);
596 
597   T* val_;
598 };
599 
600 
601 /**
602  * Default traits for Persistent. This class does not allow
603  * use of the copy constructor or assignment operator.
604  * At present kResetInDestructor is not set, but that will change in a future
605  * version.
606  */
607 template<class T>
608 class NonCopyablePersistentTraits {
609  public:
610   typedef Persistent<T, NonCopyablePersistentTraits<T> > NonCopyablePersistent;
611   static const bool kResetInDestructor = false;
612   template<class S, class M>
Copy(const Persistent<S,M> & source,NonCopyablePersistent * dest)613   V8_INLINE static void Copy(const Persistent<S, M>& source,
614                              NonCopyablePersistent* dest) {
615     Uncompilable<Object>();
616   }
617   // TODO(dcarney): come up with a good compile error here.
Uncompilable()618   template<class O> V8_INLINE static void Uncompilable() {
619     TYPE_CHECK(O, Primitive);
620   }
621 };
622 
623 
624 /**
625  * Helper class traits to allow copying and assignment of Persistent.
626  * This will clone the contents of storage cell, but not any of the flags, etc.
627  */
628 template<class T>
629 struct CopyablePersistentTraits {
630   typedef Persistent<T, CopyablePersistentTraits<T> > CopyablePersistent;
631   static const bool kResetInDestructor = true;
632   template<class S, class M>
CopyCopyablePersistentTraits633   static V8_INLINE void Copy(const Persistent<S, M>& source,
634                              CopyablePersistent* dest) {
635     // do nothing, just allow copy
636   }
637 };
638 
639 
640 /**
641  * A PersistentBase which allows copy and assignment.
642  *
643  * Copy, assignment and destructor bevavior is controlled by the traits
644  * class M.
645  *
646  * Note: Persistent class hierarchy is subject to future changes.
647  */
648 template <class T, class M> class Persistent : public PersistentBase<T> {
649  public:
650   /**
651    * A Persistent with no storage cell.
652    */
Persistent()653   V8_INLINE Persistent() : PersistentBase<T>(0) { }
654   /**
655    * Construct a Persistent from a Handle.
656    * When the Handle is non-empty, a new storage cell is created
657    * pointing to the same object, and no flags are set.
658    */
Persistent(Isolate * isolate,Handle<S> that)659   template <class S> V8_INLINE Persistent(Isolate* isolate, Handle<S> that)
660       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
661     TYPE_CHECK(T, S);
662   }
663   /**
664    * Construct a Persistent from a Persistent.
665    * When the Persistent is non-empty, a new storage cell is created
666    * pointing to the same object, and no flags are set.
667    */
668   template <class S, class M2>
Persistent(Isolate * isolate,const Persistent<S,M2> & that)669   V8_INLINE Persistent(Isolate* isolate, const Persistent<S, M2>& that)
670     : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
671     TYPE_CHECK(T, S);
672   }
673   /**
674    * The copy constructors and assignment operator create a Persistent
675    * exactly as the Persistent constructor, but the Copy function from the
676    * traits class is called, allowing the setting of flags based on the
677    * copied Persistent.
678    */
Persistent(const Persistent & that)679   V8_INLINE Persistent(const Persistent& that) : PersistentBase<T>(0) {
680     Copy(that);
681   }
682   template <class S, class M2>
Persistent(const Persistent<S,M2> & that)683   V8_INLINE Persistent(const Persistent<S, M2>& that) : PersistentBase<T>(0) {
684     Copy(that);
685   }
686   V8_INLINE Persistent& operator=(const Persistent& that) { // NOLINT
687     Copy(that);
688     return *this;
689   }
690   template <class S, class M2>
691   V8_INLINE Persistent& operator=(const Persistent<S, M2>& that) { // NOLINT
692     Copy(that);
693     return *this;
694   }
695   /**
696    * The destructor will dispose the Persistent based on the
697    * kResetInDestructor flags in the traits class.  Since not calling dispose
698    * can result in a memory leak, it is recommended to always set this flag.
699    */
~Persistent()700   V8_INLINE ~Persistent() {
701     if (M::kResetInDestructor) this->Reset();
702   }
703 
704   V8_DEPRECATED("Use Reset instead",
705                 V8_INLINE void Dispose()) { this->Reset(); }
706 
707   // TODO(dcarney): this is pretty useless, fix or remove
708   template <class S>
Cast(Persistent<S> & that)709   V8_INLINE static Persistent<T>& Cast(Persistent<S>& that) { // NOLINT
710 #ifdef V8_ENABLE_CHECKS
711     // If we're going to perform the type check then we have to check
712     // that the handle isn't empty before doing the checked cast.
713     if (!that.IsEmpty()) T::Cast(*that);
714 #endif
715     return reinterpret_cast<Persistent<T>&>(that);
716   }
717 
718   // TODO(dcarney): this is pretty useless, fix or remove
As()719   template <class S> V8_INLINE Persistent<S>& As() { // NOLINT
720     return Persistent<S>::Cast(*this);
721   }
722 
723   template<typename S, typename P>
724   V8_DEPRECATED(
725       "Use SetWeak instead",
726       V8_INLINE void MakeWeak(
727           P* parameter,
728           typename WeakReferenceCallbacks<S, P>::Revivable callback));
729 
730   template<typename P>
731   V8_DEPRECATED(
732       "Use SetWeak instead",
733       V8_INLINE void MakeWeak(
734           P* parameter,
735           typename WeakReferenceCallbacks<T, P>::Revivable callback));
736 
737   // This will be removed.
738   V8_INLINE T* ClearAndLeak();
739 
740   V8_DEPRECATED("This will be removed",
741                 V8_INLINE void Clear()) { this->val_ = 0; }
742 
743   // TODO(dcarney): remove
744 #ifndef V8_ALLOW_ACCESS_TO_RAW_HANDLE_CONSTRUCTOR
745 
746  private:
747 #endif
Persistent(S * that)748   template <class S> V8_INLINE Persistent(S* that) : PersistentBase<T>(that) { }
749 
750   V8_INLINE T* operator*() const { return this->val_; }
751 
752  private:
753   friend class Isolate;
754   friend class Utils;
755   template<class F> friend class Handle;
756   template<class F> friend class Local;
757   template<class F1, class F2> friend class Persistent;
758   template<class F> friend class ReturnValue;
759 
760   template<class S, class M2>
761   V8_INLINE void Copy(const Persistent<S, M2>& that);
762 };
763 
764 
765 /**
766  * A PersistentBase which has move semantics.
767  *
768  * Note: Persistent class hierarchy is subject to future changes.
769  */
770 template<class T>
771 class UniquePersistent : public PersistentBase<T> {
772   struct RValue {
RValueRValue773     V8_INLINE explicit RValue(UniquePersistent* object) : object(object) {}
774     UniquePersistent* object;
775   };
776 
777  public:
778     /**
779    * A UniquePersistent with no storage cell.
780    */
UniquePersistent()781   V8_INLINE UniquePersistent() : PersistentBase<T>(0) { }
782   /**
783    * Construct a UniquePersistent from a Handle.
784    * When the Handle is non-empty, a new storage cell is created
785    * pointing to the same object, and no flags are set.
786    */
787   template <class S>
UniquePersistent(Isolate * isolate,Handle<S> that)788   V8_INLINE UniquePersistent(Isolate* isolate, Handle<S> that)
789       : PersistentBase<T>(PersistentBase<T>::New(isolate, *that)) {
790     TYPE_CHECK(T, S);
791   }
792   /**
793    * Construct a UniquePersistent from a PersistentBase.
794    * When the Persistent is non-empty, a new storage cell is created
795    * pointing to the same object, and no flags are set.
796    */
797   template <class S>
UniquePersistent(Isolate * isolate,const PersistentBase<S> & that)798   V8_INLINE UniquePersistent(Isolate* isolate, const PersistentBase<S>& that)
799     : PersistentBase<T>(PersistentBase<T>::New(isolate, that.val_)) {
800     TYPE_CHECK(T, S);
801   }
802   /**
803    * Move constructor.
804    */
UniquePersistent(RValue rvalue)805   V8_INLINE UniquePersistent(RValue rvalue)
806     : PersistentBase<T>(rvalue.object->val_) {
807     rvalue.object->val_ = 0;
808   }
~UniquePersistent()809   V8_INLINE ~UniquePersistent() { this->Reset(); }
810   /**
811    * Move via assignment.
812    */
813   template<class S>
814   V8_INLINE UniquePersistent& operator=(UniquePersistent<S> rhs) {
815     TYPE_CHECK(T, S);
816     this->val_ = rhs.val_;
817     rhs.val_ = 0;
818     return *this;
819   }
820   /**
821    * Cast operator for moves.
822    */
RValue()823   V8_INLINE operator RValue() { return RValue(this); }
824   /**
825    * Pass allows returning uniques from functions, etc.
826    */
Pass()827   V8_INLINE UniquePersistent Pass() { return UniquePersistent(RValue(this)); }
828 
829  private:
830   UniquePersistent(UniquePersistent&);
831   void operator=(UniquePersistent&);
832 };
833 
834 
835  /**
836  * A stack-allocated class that governs a number of local handles.
837  * After a handle scope has been created, all local handles will be
838  * allocated within that handle scope until either the handle scope is
839  * deleted or another handle scope is created.  If there is already a
840  * handle scope and a new one is created, all allocations will take
841  * place in the new handle scope until it is deleted.  After that,
842  * new handles will again be allocated in the original handle scope.
843  *
844  * After the handle scope of a local handle has been deleted the
845  * garbage collector will no longer track the object stored in the
846  * handle and may deallocate it.  The behavior of accessing a handle
847  * for which the handle scope has been deleted is undefined.
848  */
849 class V8_EXPORT HandleScope {
850  public:
851   HandleScope(Isolate* isolate);
852 
853   ~HandleScope();
854 
855   template <class T>
856   V8_DEPRECATED("Use EscapableHandleScope::Escape instead",
857                 Local<T> Close(Handle<T> value));
858 
859   /**
860    * Counts the number of allocated handles.
861    */
862   static int NumberOfHandles();
863 
864  private:
865   /**
866    * Creates a new handle with the given value.
867    */
868   static internal::Object** CreateHandle(internal::Isolate* isolate,
869                                          internal::Object* value);
870   // Uses HeapObject to obtain the current Isolate.
871   static internal::Object** CreateHandle(internal::HeapObject* heap_object,
872                                          internal::Object* value);
873 
HandleScope()874   V8_INLINE HandleScope() {}
875   void Initialize(Isolate* isolate);
876 
877   // Make it hard to create heap-allocated or illegal handle scopes by
878   // disallowing certain operations.
879   HandleScope(const HandleScope&);
880   void operator=(const HandleScope&);
881   void* operator new(size_t size);
882   void operator delete(void*, size_t);
883 
884   // This Data class is accessible internally as HandleScopeData through a
885   // typedef in the ImplementationUtilities class.
886   class V8_EXPORT Data {
887    public:
888     internal::Object** next;
889     internal::Object** limit;
890     int level;
Initialize()891     V8_INLINE void Initialize() {
892       next = limit = NULL;
893       level = 0;
894     }
895   };
896 
897   void Leave();
898 
899   internal::Isolate* isolate_;
900   internal::Object** prev_next_;
901   internal::Object** prev_limit_;
902 
903   // TODO(dcarney): remove this field
904   // Allow for the active closing of HandleScopes which allows to pass a handle
905   // from the HandleScope being closed to the next top most HandleScope.
906   bool is_closed_;
907   internal::Object** RawClose(internal::Object** value);
908 
909   friend class ImplementationUtilities;
910   friend class EscapableHandleScope;
911   template<class F> friend class Handle;
912   template<class F> friend class Local;
913   friend class Object;
914   friend class Context;
915 };
916 
917 
918 /**
919  * A HandleScope which first allocates a handle in the current scope
920  * which will be later filled with the escape value.
921  */
922 class V8_EXPORT EscapableHandleScope : public HandleScope {
923  public:
924   EscapableHandleScope(Isolate* isolate);
~EscapableHandleScope()925   V8_INLINE ~EscapableHandleScope() {}
926 
927   /**
928    * Pushes the value into the previous scope and returns a handle to it.
929    * Cannot be called twice.
930    */
931   template <class T>
Escape(Local<T> value)932   V8_INLINE Local<T> Escape(Local<T> value) {
933     internal::Object** slot =
934         Escape(reinterpret_cast<internal::Object**>(*value));
935     return Local<T>(reinterpret_cast<T*>(slot));
936   }
937 
938  private:
939   internal::Object** Escape(internal::Object** escape_value);
940 
941   // Make it hard to create heap-allocated or illegal handle scopes by
942   // disallowing certain operations.
943   EscapableHandleScope(const EscapableHandleScope&);
944   void operator=(const EscapableHandleScope&);
945   void* operator new(size_t size);
946   void operator delete(void*, size_t);
947 
948   internal::Object** escape_slot_;
949 };
950 
951 
952 /**
953  * A simple Maybe type, representing an object which may or may not have a
954  * value.
955  */
956 template<class T>
957 struct Maybe {
MaybeMaybe958   Maybe() : has_value(false) {}
MaybeMaybe959   explicit Maybe(T t) : has_value(true), value(t) {}
MaybeMaybe960   Maybe(bool has, T t) : has_value(has), value(t) {}
961 
962   bool has_value;
963   T value;
964 };
965 
966 
967 // --- Special objects ---
968 
969 
970 /**
971  * The superclass of values and API object templates.
972  */
973 class V8_EXPORT Data {
974  private:
975   Data();
976 };
977 
978 
979 /**
980  * Pre-compilation data that can be associated with a script.  This
981  * data can be calculated for a script in advance of actually
982  * compiling it, and can be stored between compilations.  When script
983  * data is given to the compile method compilation will be faster.
984  */
985 class V8_EXPORT ScriptData {  // NOLINT
986  public:
~ScriptData()987   virtual ~ScriptData() { }
988 
989   /**
990    * Pre-compiles the specified script (context-independent).
991    *
992    * \param input Pointer to UTF-8 script source code.
993    * \param length Length of UTF-8 script source code.
994    */
995   static ScriptData* PreCompile(Isolate* isolate,
996                                 const char* input,
997                                 int length);
998 
999   /**
1000    * Pre-compiles the specified script (context-independent).
1001    *
1002    * NOTE: Pre-compilation using this method cannot happen on another thread
1003    * without using Lockers.
1004    *
1005    * \param source Script source code.
1006    */
1007   static ScriptData* PreCompile(Handle<String> source);
1008 
1009   /**
1010    * Load previous pre-compilation data.
1011    *
1012    * \param data Pointer to data returned by a call to Data() of a previous
1013    *   ScriptData. Ownership is not transferred.
1014    * \param length Length of data.
1015    */
1016   static ScriptData* New(const char* data, int length);
1017 
1018   /**
1019    * Returns the length of Data().
1020    */
1021   virtual int Length() = 0;
1022 
1023   /**
1024    * Returns a serialized representation of this ScriptData that can later be
1025    * passed to New(). NOTE: Serialized data is platform-dependent.
1026    */
1027   virtual const char* Data() = 0;
1028 
1029   /**
1030    * Returns true if the source code could not be parsed.
1031    */
1032   virtual bool HasError() = 0;
1033 };
1034 
1035 
1036 /**
1037  * The origin, within a file, of a script.
1038  */
1039 class ScriptOrigin {
1040  public:
1041   V8_INLINE ScriptOrigin(
1042       Handle<Value> resource_name,
1043       Handle<Integer> resource_line_offset = Handle<Integer>(),
1044       Handle<Integer> resource_column_offset = Handle<Integer>(),
1045       Handle<Boolean> resource_is_shared_cross_origin = Handle<Boolean>())
resource_name_(resource_name)1046       : resource_name_(resource_name),
1047         resource_line_offset_(resource_line_offset),
1048         resource_column_offset_(resource_column_offset),
1049         resource_is_shared_cross_origin_(resource_is_shared_cross_origin) { }
1050   V8_INLINE Handle<Value> ResourceName() const;
1051   V8_INLINE Handle<Integer> ResourceLineOffset() const;
1052   V8_INLINE Handle<Integer> ResourceColumnOffset() const;
1053   V8_INLINE Handle<Boolean> ResourceIsSharedCrossOrigin() const;
1054  private:
1055   Handle<Value> resource_name_;
1056   Handle<Integer> resource_line_offset_;
1057   Handle<Integer> resource_column_offset_;
1058   Handle<Boolean> resource_is_shared_cross_origin_;
1059 };
1060 
1061 
1062 /**
1063  * A compiled JavaScript script.
1064  */
1065 class V8_EXPORT Script {
1066  public:
1067   /**
1068    * Compiles the specified script (context-independent).
1069    *
1070    * \param source Script source code.
1071    * \param origin Script origin, owned by caller, no references are kept
1072    *   when New() returns
1073    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1074    *   using pre_data speeds compilation if it's done multiple times.
1075    *   Owned by caller, no references are kept when New() returns.
1076    * \param script_data Arbitrary data associated with script. Using
1077    *   this has same effect as calling SetData(), but allows data to be
1078    *   available to compile event handlers.
1079    * \return Compiled script object (context independent; when run it
1080    *   will use the currently entered context).
1081    */
1082   static Local<Script> New(Handle<String> source,
1083                            ScriptOrigin* origin = NULL,
1084                            ScriptData* pre_data = NULL,
1085                            Handle<String> script_data = Handle<String>());
1086 
1087   /**
1088    * Compiles the specified script using the specified file name
1089    * object (typically a string) as the script's origin.
1090    *
1091    * \param source Script source code.
1092    * \param file_name file name object (typically a string) to be used
1093    *   as the script's origin.
1094    * \return Compiled script object (context independent; when run it
1095    *   will use the currently entered context).
1096    */
1097   static Local<Script> New(Handle<String> source,
1098                            Handle<Value> file_name);
1099 
1100   /**
1101    * Compiles the specified script (bound to current context).
1102    *
1103    * \param source Script source code.
1104    * \param origin Script origin, owned by caller, no references are kept
1105    *   when Compile() returns
1106    * \param pre_data Pre-parsing data, as obtained by ScriptData::PreCompile()
1107    *   using pre_data speeds compilation if it's done multiple times.
1108    *   Owned by caller, no references are kept when Compile() returns.
1109    * \param script_data Arbitrary data associated with script. Using
1110    *   this has same effect as calling SetData(), but makes data available
1111    *   earlier (i.e. to compile event handlers).
1112    * \return Compiled script object, bound to the context that was active
1113    *   when this function was called.  When run it will always use this
1114    *   context.
1115    */
1116   static Local<Script> Compile(Handle<String> source,
1117                                ScriptOrigin* origin = NULL,
1118                                ScriptData* pre_data = NULL,
1119                                Handle<String> script_data = Handle<String>());
1120 
1121   /**
1122    * Compiles the specified script using the specified file name
1123    * object (typically a string) as the script's origin.
1124    *
1125    * \param source Script source code.
1126    * \param file_name File name to use as script's origin
1127    * \param script_data Arbitrary data associated with script. Using
1128    *   this has same effect as calling SetData(), but makes data available
1129    *   earlier (i.e. to compile event handlers).
1130    * \return Compiled script object, bound to the context that was active
1131    *   when this function was called.  When run it will always use this
1132    *   context.
1133    */
1134   static Local<Script> Compile(Handle<String> source,
1135                                Handle<Value> file_name,
1136                                Handle<String> script_data = Handle<String>());
1137 
1138   /**
1139    * Runs the script returning the resulting value.  If the script is
1140    * context independent (created using ::New) it will be run in the
1141    * currently entered context.  If it is context specific (created
1142    * using ::Compile) it will be run in the context in which it was
1143    * compiled.
1144    */
1145   Local<Value> Run();
1146 
1147   /**
1148    * Returns the script id value.
1149    */
1150   V8_DEPRECATED("Use GetId instead", Local<Value> Id());
1151 
1152   /**
1153    * Returns the script id.
1154    */
1155   int GetId();
1156 
1157   /**
1158    * Associate an additional data object with the script. This is mainly used
1159    * with the debugger as this data object is only available through the
1160    * debugger API.
1161    */
1162   void SetData(Handle<String> data);
1163 
1164   /**
1165    * Returns the name value of one Script.
1166    */
1167   Handle<Value> GetScriptName();
1168 
1169   /**
1170    * Returns zero based line number of the code_pos location in the script.
1171    * -1 will be returned if no information available.
1172    */
1173   int GetLineNumber(int code_pos);
1174 
1175   static const int kNoScriptId = 0;
1176 };
1177 
1178 
1179 /**
1180  * An error message.
1181  */
1182 class V8_EXPORT Message {
1183  public:
1184   Local<String> Get() const;
1185   Local<String> GetSourceLine() const;
1186 
1187   /**
1188    * Returns the resource name for the script from where the function causing
1189    * the error originates.
1190    */
1191   Handle<Value> GetScriptResourceName() const;
1192 
1193   /**
1194    * Returns the resource data for the script from where the function causing
1195    * the error originates.
1196    */
1197   Handle<Value> GetScriptData() const;
1198 
1199   /**
1200    * Exception stack trace. By default stack traces are not captured for
1201    * uncaught exceptions. SetCaptureStackTraceForUncaughtExceptions allows
1202    * to change this option.
1203    */
1204   Handle<StackTrace> GetStackTrace() const;
1205 
1206   /**
1207    * Returns the number, 1-based, of the line where the error occurred.
1208    */
1209   int GetLineNumber() const;
1210 
1211   /**
1212    * Returns the index within the script of the first character where
1213    * the error occurred.
1214    */
1215   int GetStartPosition() const;
1216 
1217   /**
1218    * Returns the index within the script of the last character where
1219    * the error occurred.
1220    */
1221   int GetEndPosition() const;
1222 
1223   /**
1224    * Returns the index within the line of the first character where
1225    * the error occurred.
1226    */
1227   int GetStartColumn() const;
1228 
1229   /**
1230    * Returns the index within the line of the last character where
1231    * the error occurred.
1232    */
1233   int GetEndColumn() const;
1234 
1235   /**
1236    * Passes on the value set by the embedder when it fed the script from which
1237    * this Message was generated to V8.
1238    */
1239   bool IsSharedCrossOrigin() const;
1240 
1241   // TODO(1245381): Print to a string instead of on a FILE.
1242   static void PrintCurrentStackTrace(Isolate* isolate, FILE* out);
1243   V8_DEPRECATED("Will be removed",
1244                 static void PrintCurrentStackTrace(FILE* out));
1245 
1246   static const int kNoLineNumberInfo = 0;
1247   static const int kNoColumnInfo = 0;
1248   static const int kNoScriptIdInfo = 0;
1249 };
1250 
1251 
1252 /**
1253  * Representation of a JavaScript stack trace. The information collected is a
1254  * snapshot of the execution stack and the information remains valid after
1255  * execution continues.
1256  */
1257 class V8_EXPORT StackTrace {
1258  public:
1259   /**
1260    * Flags that determine what information is placed captured for each
1261    * StackFrame when grabbing the current stack trace.
1262    */
1263   enum StackTraceOptions {
1264     kLineNumber = 1,
1265     kColumnOffset = 1 << 1 | kLineNumber,
1266     kScriptName = 1 << 2,
1267     kFunctionName = 1 << 3,
1268     kIsEval = 1 << 4,
1269     kIsConstructor = 1 << 5,
1270     kScriptNameOrSourceURL = 1 << 6,
1271     kScriptId = 1 << 7,
1272     kOverview = kLineNumber | kColumnOffset | kScriptName | kFunctionName,
1273     kDetailed = kOverview | kIsEval | kIsConstructor | kScriptNameOrSourceURL
1274   };
1275 
1276   /**
1277    * Returns a StackFrame at a particular index.
1278    */
1279   Local<StackFrame> GetFrame(uint32_t index) const;
1280 
1281   /**
1282    * Returns the number of StackFrames.
1283    */
1284   int GetFrameCount() const;
1285 
1286   /**
1287    * Returns StackTrace as a v8::Array that contains StackFrame objects.
1288    */
1289   Local<Array> AsArray();
1290 
1291   /**
1292    * Grab a snapshot of the current JavaScript execution stack.
1293    *
1294    * \param frame_limit The maximum number of stack frames we want to capture.
1295    * \param options Enumerates the set of things we will capture for each
1296    *   StackFrame.
1297    */
1298   static Local<StackTrace> CurrentStackTrace(
1299       Isolate* isolate,
1300       int frame_limit,
1301       StackTraceOptions options = kOverview);
1302   V8_DEPRECATED("Will be removed",
1303                 static Local<StackTrace> CurrentStackTrace(
1304                     int frame_limit, StackTraceOptions options = kOverview));
1305 };
1306 
1307 
1308 /**
1309  * A single JavaScript stack frame.
1310  */
1311 class V8_EXPORT StackFrame {
1312  public:
1313   /**
1314    * Returns the number, 1-based, of the line for the associate function call.
1315    * This method will return Message::kNoLineNumberInfo if it is unable to
1316    * retrieve the line number, or if kLineNumber was not passed as an option
1317    * when capturing the StackTrace.
1318    */
1319   int GetLineNumber() const;
1320 
1321   /**
1322    * Returns the 1-based column offset on the line for the associated function
1323    * call.
1324    * This method will return Message::kNoColumnInfo if it is unable to retrieve
1325    * the column number, or if kColumnOffset was not passed as an option when
1326    * capturing the StackTrace.
1327    */
1328   int GetColumn() const;
1329 
1330   /**
1331    * Returns the id of the script for the function for this StackFrame.
1332    * This method will return Message::kNoScriptIdInfo if it is unable to
1333    * retrieve the script id, or if kScriptId was not passed as an option when
1334    * capturing the StackTrace.
1335    */
1336   int GetScriptId() const;
1337 
1338   /**
1339    * Returns the name of the resource that contains the script for the
1340    * function for this StackFrame.
1341    */
1342   Local<String> GetScriptName() const;
1343 
1344   /**
1345    * Returns the name of the resource that contains the script for the
1346    * function for this StackFrame or sourceURL value if the script name
1347    * is undefined and its source ends with //# sourceURL=... string or
1348    * deprecated //@ sourceURL=... string.
1349    */
1350   Local<String> GetScriptNameOrSourceURL() const;
1351 
1352   /**
1353    * Returns the name of the function associated with this stack frame.
1354    */
1355   Local<String> GetFunctionName() const;
1356 
1357   /**
1358    * Returns whether or not the associated function is compiled via a call to
1359    * eval().
1360    */
1361   bool IsEval() const;
1362 
1363   /**
1364    * Returns whether or not the associated function is called as a
1365    * constructor via "new".
1366    */
1367   bool IsConstructor() const;
1368 };
1369 
1370 
1371 /**
1372  * A JSON Parser.
1373  */
1374 class V8_EXPORT JSON {
1375  public:
1376   /**
1377    * Tries to parse the string |json_string| and returns it as value if
1378    * successful.
1379    *
1380    * \param json_string The string to parse.
1381    * \return The corresponding value if successfully parsed.
1382    */
1383   static Local<Value> Parse(Local<String> json_string);
1384 };
1385 
1386 
1387 // --- Value ---
1388 
1389 
1390 /**
1391  * The superclass of all JavaScript values and objects.
1392  */
1393 class V8_EXPORT Value : public Data {
1394  public:
1395   /**
1396    * Returns true if this value is the undefined value.  See ECMA-262
1397    * 4.3.10.
1398    */
1399   V8_INLINE bool IsUndefined() const;
1400 
1401   /**
1402    * Returns true if this value is the null value.  See ECMA-262
1403    * 4.3.11.
1404    */
1405   V8_INLINE bool IsNull() const;
1406 
1407    /**
1408    * Returns true if this value is true.
1409    */
1410   bool IsTrue() const;
1411 
1412   /**
1413    * Returns true if this value is false.
1414    */
1415   bool IsFalse() const;
1416 
1417   /**
1418    * Returns true if this value is an instance of the String type.
1419    * See ECMA-262 8.4.
1420    */
1421   V8_INLINE bool IsString() const;
1422 
1423   /**
1424    * Returns true if this value is a symbol.
1425    * This is an experimental feature.
1426    */
1427   bool IsSymbol() const;
1428 
1429   /**
1430    * Returns true if this value is a function.
1431    */
1432   bool IsFunction() const;
1433 
1434   /**
1435    * Returns true if this value is an array.
1436    */
1437   bool IsArray() const;
1438 
1439   /**
1440    * Returns true if this value is an object.
1441    */
1442   bool IsObject() const;
1443 
1444   /**
1445    * Returns true if this value is boolean.
1446    */
1447   bool IsBoolean() const;
1448 
1449   /**
1450    * Returns true if this value is a number.
1451    */
1452   bool IsNumber() const;
1453 
1454   /**
1455    * Returns true if this value is external.
1456    */
1457   bool IsExternal() const;
1458 
1459   /**
1460    * Returns true if this value is a 32-bit signed integer.
1461    */
1462   bool IsInt32() const;
1463 
1464   /**
1465    * Returns true if this value is a 32-bit unsigned integer.
1466    */
1467   bool IsUint32() const;
1468 
1469   /**
1470    * Returns true if this value is a Date.
1471    */
1472   bool IsDate() const;
1473 
1474   /**
1475    * Returns true if this value is a Boolean object.
1476    */
1477   bool IsBooleanObject() const;
1478 
1479   /**
1480    * Returns true if this value is a Number object.
1481    */
1482   bool IsNumberObject() const;
1483 
1484   /**
1485    * Returns true if this value is a String object.
1486    */
1487   bool IsStringObject() const;
1488 
1489   /**
1490    * Returns true if this value is a Symbol object.
1491    * This is an experimental feature.
1492    */
1493   bool IsSymbolObject() const;
1494 
1495   /**
1496    * Returns true if this value is a NativeError.
1497    */
1498   bool IsNativeError() const;
1499 
1500   /**
1501    * Returns true if this value is a RegExp.
1502    */
1503   bool IsRegExp() const;
1504 
1505 
1506   /**
1507    * Returns true if this value is an ArrayBuffer.
1508    * This is an experimental feature.
1509    */
1510   bool IsArrayBuffer() const;
1511 
1512   /**
1513    * Returns true if this value is an ArrayBufferView.
1514    * This is an experimental feature.
1515    */
1516   bool IsArrayBufferView() const;
1517 
1518   /**
1519    * Returns true if this value is one of TypedArrays.
1520    * This is an experimental feature.
1521    */
1522   bool IsTypedArray() const;
1523 
1524   /**
1525    * Returns true if this value is an Uint8Array.
1526    * This is an experimental feature.
1527    */
1528   bool IsUint8Array() const;
1529 
1530   /**
1531    * Returns true if this value is an Uint8ClampedArray.
1532    * This is an experimental feature.
1533    */
1534   bool IsUint8ClampedArray() const;
1535 
1536   /**
1537    * Returns true if this value is an Int8Array.
1538    * This is an experimental feature.
1539    */
1540   bool IsInt8Array() const;
1541 
1542   /**
1543    * Returns true if this value is an Uint16Array.
1544    * This is an experimental feature.
1545    */
1546   bool IsUint16Array() const;
1547 
1548   /**
1549    * Returns true if this value is an Int16Array.
1550    * This is an experimental feature.
1551    */
1552   bool IsInt16Array() const;
1553 
1554   /**
1555    * Returns true if this value is an Uint32Array.
1556    * This is an experimental feature.
1557    */
1558   bool IsUint32Array() const;
1559 
1560   /**
1561    * Returns true if this value is an Int32Array.
1562    * This is an experimental feature.
1563    */
1564   bool IsInt32Array() const;
1565 
1566   /**
1567    * Returns true if this value is a Float32Array.
1568    * This is an experimental feature.
1569    */
1570   bool IsFloat32Array() const;
1571 
1572   /**
1573    * Returns true if this value is a Float64Array.
1574    * This is an experimental feature.
1575    */
1576   bool IsFloat64Array() const;
1577 
1578   /**
1579    * Returns true if this value is a DataView.
1580    * This is an experimental feature.
1581    */
1582   bool IsDataView() const;
1583 
1584   Local<Boolean> ToBoolean() const;
1585   Local<Number> ToNumber() const;
1586   Local<String> ToString() const;
1587   Local<String> ToDetailString() const;
1588   Local<Object> ToObject() const;
1589   Local<Integer> ToInteger() const;
1590   Local<Uint32> ToUint32() const;
1591   Local<Int32> ToInt32() const;
1592 
1593   /**
1594    * Attempts to convert a string to an array index.
1595    * Returns an empty handle if the conversion fails.
1596    */
1597   Local<Uint32> ToArrayIndex() const;
1598 
1599   bool BooleanValue() const;
1600   double NumberValue() const;
1601   int64_t IntegerValue() const;
1602   uint32_t Uint32Value() const;
1603   int32_t Int32Value() const;
1604 
1605   /** JS == */
1606   bool Equals(Handle<Value> that) const;
1607   bool StrictEquals(Handle<Value> that) const;
1608   bool SameValue(Handle<Value> that) const;
1609 
1610   template <class T> V8_INLINE static Value* Cast(T* value);
1611 
1612  private:
1613   V8_INLINE bool QuickIsUndefined() const;
1614   V8_INLINE bool QuickIsNull() const;
1615   V8_INLINE bool QuickIsString() const;
1616   bool FullIsUndefined() const;
1617   bool FullIsNull() const;
1618   bool FullIsString() const;
1619 };
1620 
1621 
1622 /**
1623  * The superclass of primitive values.  See ECMA-262 4.3.2.
1624  */
1625 class V8_EXPORT Primitive : public Value { };
1626 
1627 
1628 /**
1629  * A primitive boolean value (ECMA-262, 4.3.14).  Either the true
1630  * or false value.
1631  */
1632 class V8_EXPORT Boolean : public Primitive {
1633  public:
1634   bool Value() const;
1635   V8_INLINE static Handle<Boolean> New(Isolate* isolate, bool value);
1636   V8_DEPRECATED("Will be removed",
1637                 V8_INLINE static Handle<Boolean> New(bool value));
1638 };
1639 
1640 
1641 /**
1642  * A JavaScript string value (ECMA-262, 4.3.17).
1643  */
1644 class V8_EXPORT String : public Primitive {
1645  public:
1646   enum Encoding {
1647     UNKNOWN_ENCODING = 0x1,
1648     TWO_BYTE_ENCODING = 0x0,
1649     ASCII_ENCODING = 0x4,
1650     ONE_BYTE_ENCODING = 0x4
1651   };
1652   /**
1653    * Returns the number of characters in this string.
1654    */
1655   int Length() const;
1656 
1657   /**
1658    * Returns the number of bytes in the UTF-8 encoded
1659    * representation of this string.
1660    */
1661   int Utf8Length() const;
1662 
1663   /**
1664    * Returns whether this string is known to contain only one byte data.
1665    * Does not read the string.
1666    * False negatives are possible.
1667    */
1668   bool IsOneByte() const;
1669 
1670   /**
1671    * Returns whether this string contain only one byte data.
1672    * Will read the entire string in some cases.
1673    */
1674   bool ContainsOnlyOneByte() const;
1675 
1676   /**
1677    * Write the contents of the string to an external buffer.
1678    * If no arguments are given, expects the buffer to be large
1679    * enough to hold the entire string and NULL terminator. Copies
1680    * the contents of the string and the NULL terminator into the
1681    * buffer.
1682    *
1683    * WriteUtf8 will not write partial UTF-8 sequences, preferring to stop
1684    * before the end of the buffer.
1685    *
1686    * Copies up to length characters into the output buffer.
1687    * Only null-terminates if there is enough space in the buffer.
1688    *
1689    * \param buffer The buffer into which the string will be copied.
1690    * \param start The starting position within the string at which
1691    * copying begins.
1692    * \param length The number of characters to copy from the string.  For
1693    *    WriteUtf8 the number of bytes in the buffer.
1694    * \param nchars_ref The number of characters written, can be NULL.
1695    * \param options Various options that might affect performance of this or
1696    *    subsequent operations.
1697    * \return The number of characters copied to the buffer excluding the null
1698    *    terminator.  For WriteUtf8: The number of bytes copied to the buffer
1699    *    including the null terminator (if written).
1700    */
1701   enum WriteOptions {
1702     NO_OPTIONS = 0,
1703     HINT_MANY_WRITES_EXPECTED = 1,
1704     NO_NULL_TERMINATION = 2,
1705     PRESERVE_ASCII_NULL = 4
1706   };
1707 
1708   // 16-bit character codes.
1709   int Write(uint16_t* buffer,
1710             int start = 0,
1711             int length = -1,
1712             int options = NO_OPTIONS) const;
1713   // One byte characters.
1714   int WriteOneByte(uint8_t* buffer,
1715                    int start = 0,
1716                    int length = -1,
1717                    int options = NO_OPTIONS) const;
1718   // UTF-8 encoded characters.
1719   int WriteUtf8(char* buffer,
1720                 int length = -1,
1721                 int* nchars_ref = NULL,
1722                 int options = NO_OPTIONS) const;
1723 
1724   /**
1725    * A zero length string.
1726    */
1727   static v8::Local<v8::String> Empty();
1728   V8_INLINE static v8::Local<v8::String> Empty(Isolate* isolate);
1729 
1730   /**
1731    * Returns true if the string is external
1732    */
1733   bool IsExternal() const;
1734 
1735   /**
1736    * Returns true if the string is both external and ASCII
1737    */
1738   bool IsExternalAscii() const;
1739 
1740   class V8_EXPORT ExternalStringResourceBase {  // NOLINT
1741    public:
~ExternalStringResourceBase()1742     virtual ~ExternalStringResourceBase() {}
1743 
1744    protected:
ExternalStringResourceBase()1745     ExternalStringResourceBase() {}
1746 
1747     /**
1748      * Internally V8 will call this Dispose method when the external string
1749      * resource is no longer needed. The default implementation will use the
1750      * delete operator. This method can be overridden in subclasses to
1751      * control how allocated external string resources are disposed.
1752      */
Dispose()1753     virtual void Dispose() { delete this; }
1754 
1755    private:
1756     // Disallow copying and assigning.
1757     ExternalStringResourceBase(const ExternalStringResourceBase&);
1758     void operator=(const ExternalStringResourceBase&);
1759 
1760     friend class v8::internal::Heap;
1761   };
1762 
1763   /**
1764    * An ExternalStringResource is a wrapper around a two-byte string
1765    * buffer that resides outside V8's heap. Implement an
1766    * ExternalStringResource to manage the life cycle of the underlying
1767    * buffer.  Note that the string data must be immutable.
1768    */
1769   class V8_EXPORT ExternalStringResource
1770       : public ExternalStringResourceBase {
1771    public:
1772     /**
1773      * Override the destructor to manage the life cycle of the underlying
1774      * buffer.
1775      */
~ExternalStringResource()1776     virtual ~ExternalStringResource() {}
1777 
1778     /**
1779      * The string data from the underlying buffer.
1780      */
1781     virtual const uint16_t* data() const = 0;
1782 
1783     /**
1784      * The length of the string. That is, the number of two-byte characters.
1785      */
1786     virtual size_t length() const = 0;
1787 
1788    protected:
ExternalStringResource()1789     ExternalStringResource() {}
1790   };
1791 
1792   /**
1793    * An ExternalAsciiStringResource is a wrapper around an ASCII
1794    * string buffer that resides outside V8's heap. Implement an
1795    * ExternalAsciiStringResource to manage the life cycle of the
1796    * underlying buffer.  Note that the string data must be immutable
1797    * and that the data must be strict (7-bit) ASCII, not Latin-1 or
1798    * UTF-8, which would require special treatment internally in the
1799    * engine and, in the case of UTF-8, do not allow efficient indexing.
1800    * Use String::New or convert to 16 bit data for non-ASCII.
1801    */
1802 
1803   class V8_EXPORT ExternalAsciiStringResource
1804       : public ExternalStringResourceBase {
1805    public:
1806     /**
1807      * Override the destructor to manage the life cycle of the underlying
1808      * buffer.
1809      */
~ExternalAsciiStringResource()1810     virtual ~ExternalAsciiStringResource() {}
1811     /** The string data from the underlying buffer.*/
1812     virtual const char* data() const = 0;
1813     /** The number of ASCII characters in the string.*/
1814     virtual size_t length() const = 0;
1815    protected:
ExternalAsciiStringResource()1816     ExternalAsciiStringResource() {}
1817   };
1818 
1819   typedef ExternalAsciiStringResource ExternalOneByteStringResource;
1820 
1821   /**
1822    * If the string is an external string, return the ExternalStringResourceBase
1823    * regardless of the encoding, otherwise return NULL.  The encoding of the
1824    * string is returned in encoding_out.
1825    */
1826   V8_INLINE ExternalStringResourceBase* GetExternalStringResourceBase(
1827       Encoding* encoding_out) const;
1828 
1829   /**
1830    * Get the ExternalStringResource for an external string.  Returns
1831    * NULL if IsExternal() doesn't return true.
1832    */
1833   V8_INLINE ExternalStringResource* GetExternalStringResource() const;
1834 
1835   /**
1836    * Get the ExternalAsciiStringResource for an external ASCII string.
1837    * Returns NULL if IsExternalAscii() doesn't return true.
1838    */
1839   const ExternalAsciiStringResource* GetExternalAsciiStringResource() const;
1840 
1841   V8_INLINE static String* Cast(v8::Value* obj);
1842 
1843   /**
1844    * Allocates a new string from either UTF-8 encoded or ASCII data.
1845    * The second parameter 'length' gives the buffer length. If omitted,
1846    * the function calls 'strlen' to determine the buffer length.
1847    */
1848   V8_DEPRECATED(
1849       "Use NewFromUtf8 instead",
1850       V8_INLINE static Local<String> New(const char* data, int length = -1));
1851 
1852   /** Allocates a new string from 16-bit character codes.*/
1853   V8_DEPRECATED(
1854       "Use NewFromTwoByte instead",
1855       V8_INLINE static Local<String> New(
1856           const uint16_t* data, int length = -1));
1857 
1858   /**
1859    * Creates an internalized string (historically called a "symbol",
1860    * not to be confused with ES6 symbols). Returns one if it exists already.
1861    */
1862   V8_DEPRECATED(
1863       "Use NewFromUtf8 instead",
1864       V8_INLINE static Local<String> NewSymbol(
1865           const char* data, int length = -1));
1866 
1867   enum NewStringType {
1868     kNormalString, kInternalizedString, kUndetectableString
1869   };
1870 
1871   /** Allocates a new string from UTF-8 data.*/
1872   static Local<String> NewFromUtf8(Isolate* isolate,
1873                                   const char* data,
1874                                   NewStringType type = kNormalString,
1875                                   int length = -1);
1876 
1877   /** Allocates a new string from Latin-1 data.*/
1878   static Local<String> NewFromOneByte(
1879       Isolate* isolate,
1880       const uint8_t* data,
1881       NewStringType type = kNormalString,
1882       int length = -1);
1883 
1884   /** Allocates a new string from UTF-16 data.*/
1885   static Local<String> NewFromTwoByte(
1886       Isolate* isolate,
1887       const uint16_t* data,
1888       NewStringType type = kNormalString,
1889       int length = -1);
1890 
1891   /**
1892    * Creates a new string by concatenating the left and the right strings
1893    * passed in as parameters.
1894    */
1895   static Local<String> Concat(Handle<String> left, Handle<String> right);
1896 
1897   /**
1898    * Creates a new external string using the data defined in the given
1899    * resource. When the external string is no longer live on V8's heap the
1900    * resource will be disposed by calling its Dispose method. The caller of
1901    * this function should not otherwise delete or modify the resource. Neither
1902    * should the underlying buffer be deallocated or modified except through the
1903    * destructor of the external string resource.
1904    */
1905   static Local<String> NewExternal(Isolate* isolate,
1906                                    ExternalStringResource* resource);
1907   V8_DEPRECATED("Will be removed", static Local<String> NewExternal(
1908                                         ExternalStringResource* resource));
1909 
1910   /**
1911    * Associate an external string resource with this string by transforming it
1912    * in place so that existing references to this string in the JavaScript heap
1913    * will use the external string resource. The external string resource's
1914    * character contents need to be equivalent to this string.
1915    * Returns true if the string has been changed to be an external string.
1916    * The string is not modified if the operation fails. See NewExternal for
1917    * information on the lifetime of the resource.
1918    */
1919   bool MakeExternal(ExternalStringResource* resource);
1920 
1921   /**
1922    * Creates a new external string using the ASCII data defined in the given
1923    * resource. When the external string is no longer live on V8's heap the
1924    * resource will be disposed by calling its Dispose method. The caller of
1925    * this function should not otherwise delete or modify the resource. Neither
1926    * should the underlying buffer be deallocated or modified except through the
1927    * destructor of the external string resource.
1928    */
1929   static Local<String> NewExternal(Isolate* isolate,
1930                                    ExternalAsciiStringResource* resource);
1931   V8_DEPRECATED("Will be removed", static Local<String> NewExternal(
1932                                         ExternalAsciiStringResource* resource));
1933 
1934   /**
1935    * Associate an external string resource with this string by transforming it
1936    * in place so that existing references to this string in the JavaScript heap
1937    * will use the external string resource. The external string resource's
1938    * character contents need to be equivalent to this string.
1939    * Returns true if the string has been changed to be an external string.
1940    * The string is not modified if the operation fails. See NewExternal for
1941    * information on the lifetime of the resource.
1942    */
1943   bool MakeExternal(ExternalAsciiStringResource* resource);
1944 
1945   /**
1946    * Returns true if this string can be made external.
1947    */
1948   bool CanMakeExternal();
1949 
1950   /** Creates an undetectable string from the supplied ASCII or UTF-8 data.*/
1951   V8_DEPRECATED(
1952       "Use NewFromUtf8 instead",
1953       V8_INLINE static Local<String> NewUndetectable(const char* data,
1954                                                      int length = -1));
1955 
1956   /** Creates an undetectable string from the supplied 16-bit character codes.*/
1957   V8_DEPRECATED(
1958       "Use NewFromTwoByte instead",
1959       V8_INLINE static Local<String> NewUndetectable(const uint16_t* data,
1960                                                      int length = -1));
1961 
1962   /**
1963    * Converts an object to a UTF-8-encoded character array.  Useful if
1964    * you want to print the object.  If conversion to a string fails
1965    * (e.g. due to an exception in the toString() method of the object)
1966    * then the length() method returns 0 and the * operator returns
1967    * NULL.
1968    */
1969   class V8_EXPORT Utf8Value {
1970    public:
1971     explicit Utf8Value(Handle<v8::Value> obj);
1972     ~Utf8Value();
1973     char* operator*() { return str_; }
1974     const char* operator*() const { return str_; }
length()1975     int length() const { return length_; }
1976    private:
1977     char* str_;
1978     int length_;
1979 
1980     // Disallow copying and assigning.
1981     Utf8Value(const Utf8Value&);
1982     void operator=(const Utf8Value&);
1983   };
1984 
1985   /**
1986    * Converts an object to an ASCII string.
1987    * Useful if you want to print the object.
1988    * If conversion to a string fails (eg. due to an exception in the toString()
1989    * method of the object) then the length() method returns 0 and the * operator
1990    * returns NULL.
1991    */
1992   class V8_EXPORT AsciiValue {
1993    public:
1994     V8_DEPRECATED("Use Utf8Value instead",
1995                   explicit AsciiValue(Handle<v8::Value> obj));
1996     ~AsciiValue();
1997     char* operator*() { return str_; }
1998     const char* operator*() const { return str_; }
length()1999     int length() const { return length_; }
2000    private:
2001     char* str_;
2002     int length_;
2003 
2004     // Disallow copying and assigning.
2005     AsciiValue(const AsciiValue&);
2006     void operator=(const AsciiValue&);
2007   };
2008 
2009   /**
2010    * Converts an object to a two-byte string.
2011    * If conversion to a string fails (eg. due to an exception in the toString()
2012    * method of the object) then the length() method returns 0 and the * operator
2013    * returns NULL.
2014    */
2015   class V8_EXPORT Value {
2016    public:
2017     explicit Value(Handle<v8::Value> obj);
2018     ~Value();
2019     uint16_t* operator*() { return str_; }
2020     const uint16_t* operator*() const { return str_; }
length()2021     int length() const { return length_; }
2022    private:
2023     uint16_t* str_;
2024     int length_;
2025 
2026     // Disallow copying and assigning.
2027     Value(const Value&);
2028     void operator=(const Value&);
2029   };
2030 
2031  private:
2032   void VerifyExternalStringResourceBase(ExternalStringResourceBase* v,
2033                                         Encoding encoding) const;
2034   void VerifyExternalStringResource(ExternalStringResource* val) const;
2035   static void CheckCast(v8::Value* obj);
2036 };
2037 
2038 
2039 /**
2040  * A JavaScript symbol (ECMA-262 edition 6)
2041  *
2042  * This is an experimental feature. Use at your own risk.
2043  */
2044 class V8_EXPORT Symbol : public Primitive {
2045  public:
2046   // Returns the print name string of the symbol, or undefined if none.
2047   Local<Value> Name() const;
2048 
2049   // Create a symbol. If data is not NULL, it will be used as a print name.
2050   static Local<Symbol> New(
2051       Isolate *isolate, const char* data = NULL, int length = -1);
2052 
2053   V8_INLINE static Symbol* Cast(v8::Value* obj);
2054  private:
2055   Symbol();
2056   static void CheckCast(v8::Value* obj);
2057 };
2058 
2059 
2060 /**
2061  * A private symbol
2062  *
2063  * This is an experimental feature. Use at your own risk.
2064  */
2065 class V8_EXPORT Private : public Data {
2066  public:
2067   // Returns the print name string of the private symbol, or undefined if none.
2068   Local<Value> Name() const;
2069 
2070   // Create a private symbol. If data is not NULL, it will be the print name.
2071   static Local<Private> New(
2072       Isolate *isolate, const char* data = NULL, int length = -1);
2073 
2074  private:
2075   Private();
2076 };
2077 
2078 
2079 /**
2080  * A JavaScript number value (ECMA-262, 4.3.20)
2081  */
2082 class V8_EXPORT Number : public Primitive {
2083  public:
2084   double Value() const;
2085   static Local<Number> New(Isolate* isolate, double value);
2086   // Will be deprecated soon.
2087   static Local<Number> New(double value);
2088   V8_INLINE static Number* Cast(v8::Value* obj);
2089  private:
2090   Number();
2091   static void CheckCast(v8::Value* obj);
2092 };
2093 
2094 
2095 /**
2096  * A JavaScript value representing a signed integer.
2097  */
2098 class V8_EXPORT Integer : public Number {
2099  public:
2100   static Local<Integer> New(Isolate* isolate, int32_t value);
2101   static Local<Integer> NewFromUnsigned(Isolate* isolate, uint32_t value);
2102   // Will be deprecated soon.
2103   static Local<Integer> New(int32_t value, Isolate*);
2104   static Local<Integer> NewFromUnsigned(uint32_t value, Isolate*);
2105   static Local<Integer> New(int32_t value);
2106   static Local<Integer> NewFromUnsigned(uint32_t value);
2107   int64_t Value() const;
2108   V8_INLINE static Integer* Cast(v8::Value* obj);
2109  private:
2110   Integer();
2111   static void CheckCast(v8::Value* obj);
2112 };
2113 
2114 
2115 /**
2116  * A JavaScript value representing a 32-bit signed integer.
2117  */
2118 class V8_EXPORT Int32 : public Integer {
2119  public:
2120   int32_t Value() const;
2121  private:
2122   Int32();
2123 };
2124 
2125 
2126 /**
2127  * A JavaScript value representing a 32-bit unsigned integer.
2128  */
2129 class V8_EXPORT Uint32 : public Integer {
2130  public:
2131   uint32_t Value() const;
2132  private:
2133   Uint32();
2134 };
2135 
2136 
2137 enum PropertyAttribute {
2138   None       = 0,
2139   ReadOnly   = 1 << 0,
2140   DontEnum   = 1 << 1,
2141   DontDelete = 1 << 2
2142 };
2143 
2144 enum ExternalArrayType {
2145   kExternalByteArray = 1,
2146   kExternalUnsignedByteArray,
2147   kExternalShortArray,
2148   kExternalUnsignedShortArray,
2149   kExternalIntArray,
2150   kExternalUnsignedIntArray,
2151   kExternalFloatArray,
2152   kExternalDoubleArray,
2153   kExternalPixelArray
2154 };
2155 
2156 /**
2157  * Accessor[Getter|Setter] are used as callback functions when
2158  * setting|getting a particular property. See Object and ObjectTemplate's
2159  * method SetAccessor.
2160  */
2161 typedef void (*AccessorGetterCallback)(
2162     Local<String> property,
2163     const PropertyCallbackInfo<Value>& info);
2164 
2165 
2166 typedef void (*AccessorSetterCallback)(
2167     Local<String> property,
2168     Local<Value> value,
2169     const PropertyCallbackInfo<void>& info);
2170 
2171 
2172 /**
2173  * Access control specifications.
2174  *
2175  * Some accessors should be accessible across contexts.  These
2176  * accessors have an explicit access control parameter which specifies
2177  * the kind of cross-context access that should be allowed.
2178  *
2179  * Additionally, for security, accessors can prohibit overwriting by
2180  * accessors defined in JavaScript.  For objects that have such
2181  * accessors either locally or in their prototype chain it is not
2182  * possible to overwrite the accessor by using __defineGetter__ or
2183  * __defineSetter__ from JavaScript code.
2184  */
2185 enum AccessControl {
2186   DEFAULT               = 0,
2187   ALL_CAN_READ          = 1,
2188   ALL_CAN_WRITE         = 1 << 1,
2189   PROHIBITS_OVERWRITING = 1 << 2
2190 };
2191 
2192 
2193 /**
2194  * A JavaScript object (ECMA-262, 4.3.3)
2195  */
2196 class V8_EXPORT Object : public Value {
2197  public:
2198   bool Set(Handle<Value> key,
2199            Handle<Value> value,
2200            PropertyAttribute attribs = None);
2201 
2202   bool Set(uint32_t index, Handle<Value> value);
2203 
2204   // Sets a local property on this object bypassing interceptors and
2205   // overriding accessors or read-only properties.
2206   //
2207   // Note that if the object has an interceptor the property will be set
2208   // locally, but since the interceptor takes precedence the local property
2209   // will only be returned if the interceptor doesn't return a value.
2210   //
2211   // Note also that this only works for named properties.
2212   bool ForceSet(Handle<Value> key,
2213                 Handle<Value> value,
2214                 PropertyAttribute attribs = None);
2215 
2216   Local<Value> Get(Handle<Value> key);
2217 
2218   Local<Value> Get(uint32_t index);
2219 
2220   /**
2221    * Gets the property attributes of a property which can be None or
2222    * any combination of ReadOnly, DontEnum and DontDelete. Returns
2223    * None when the property doesn't exist.
2224    */
2225   PropertyAttribute GetPropertyAttributes(Handle<Value> key);
2226 
2227   bool Has(Handle<Value> key);
2228 
2229   bool Delete(Handle<Value> key);
2230 
2231   // Delete a property on this object bypassing interceptors and
2232   // ignoring dont-delete attributes.
2233   bool ForceDelete(Handle<Value> key);
2234 
2235   bool Has(uint32_t index);
2236 
2237   bool Delete(uint32_t index);
2238 
2239   bool SetAccessor(Handle<String> name,
2240                    AccessorGetterCallback getter,
2241                    AccessorSetterCallback setter = 0,
2242                    Handle<Value> data = Handle<Value>(),
2243                    AccessControl settings = DEFAULT,
2244                    PropertyAttribute attribute = None);
2245 
2246   // This function is not yet stable and should not be used at this time.
2247   bool SetDeclaredAccessor(Local<String> name,
2248                            Local<DeclaredAccessorDescriptor> descriptor,
2249                            PropertyAttribute attribute = None,
2250                            AccessControl settings = DEFAULT);
2251 
2252   /**
2253    * Functionality for private properties.
2254    * This is an experimental feature, use at your own risk.
2255    * Note: Private properties are inherited. Do not rely on this, since it may
2256    * change.
2257    */
2258   bool HasPrivate(Handle<Private> key);
2259   bool SetPrivate(Handle<Private> key, Handle<Value> value);
2260   bool DeletePrivate(Handle<Private> key);
2261   Local<Value> GetPrivate(Handle<Private> key);
2262 
2263   /**
2264    * Returns an array containing the names of the enumerable properties
2265    * of this object, including properties from prototype objects.  The
2266    * array returned by this method contains the same values as would
2267    * be enumerated by a for-in statement over this object.
2268    */
2269   Local<Array> GetPropertyNames();
2270 
2271   /**
2272    * This function has the same functionality as GetPropertyNames but
2273    * the returned array doesn't contain the names of properties from
2274    * prototype objects.
2275    */
2276   Local<Array> GetOwnPropertyNames();
2277 
2278   /**
2279    * Get the prototype object.  This does not skip objects marked to
2280    * be skipped by __proto__ and it does not consult the security
2281    * handler.
2282    */
2283   Local<Value> GetPrototype();
2284 
2285   /**
2286    * Set the prototype object.  This does not skip objects marked to
2287    * be skipped by __proto__ and it does not consult the security
2288    * handler.
2289    */
2290   bool SetPrototype(Handle<Value> prototype);
2291 
2292   /**
2293    * Finds an instance of the given function template in the prototype
2294    * chain.
2295    */
2296   Local<Object> FindInstanceInPrototypeChain(Handle<FunctionTemplate> tmpl);
2297 
2298   /**
2299    * Call builtin Object.prototype.toString on this object.
2300    * This is different from Value::ToString() that may call
2301    * user-defined toString function. This one does not.
2302    */
2303   Local<String> ObjectProtoToString();
2304 
2305   /**
2306    * Returns the function invoked as a constructor for this object.
2307    * May be the null value.
2308    */
2309   Local<Value> GetConstructor();
2310 
2311   /**
2312    * Returns the name of the function invoked as a constructor for this object.
2313    */
2314   Local<String> GetConstructorName();
2315 
2316   /** Gets the number of internal fields for this Object. */
2317   int InternalFieldCount();
2318 
2319   /** Gets the value from an internal field. */
2320   V8_INLINE Local<Value> GetInternalField(int index);
2321 
2322   /** Sets the value in an internal field. */
2323   void SetInternalField(int index, Handle<Value> value);
2324 
2325   /**
2326    * Gets a 2-byte-aligned native pointer from an internal field. This field
2327    * must have been set by SetAlignedPointerInInternalField, everything else
2328    * leads to undefined behavior.
2329    */
2330   V8_INLINE void* GetAlignedPointerFromInternalField(int index);
2331 
2332   /**
2333    * Sets a 2-byte-aligned native pointer in an internal field. To retrieve such
2334    * a field, GetAlignedPointerFromInternalField must be used, everything else
2335    * leads to undefined behavior.
2336    */
2337   void SetAlignedPointerInInternalField(int index, void* value);
2338 
2339   // Testers for local properties.
2340   bool HasOwnProperty(Handle<String> key);
2341   bool HasRealNamedProperty(Handle<String> key);
2342   bool HasRealIndexedProperty(uint32_t index);
2343   bool HasRealNamedCallbackProperty(Handle<String> key);
2344 
2345   /**
2346    * If result.IsEmpty() no real property was located in the prototype chain.
2347    * This means interceptors in the prototype chain are not called.
2348    */
2349   Local<Value> GetRealNamedPropertyInPrototypeChain(Handle<String> key);
2350 
2351   /**
2352    * If result.IsEmpty() no real property was located on the object or
2353    * in the prototype chain.
2354    * This means interceptors in the prototype chain are not called.
2355    */
2356   Local<Value> GetRealNamedProperty(Handle<String> key);
2357 
2358   /** Tests for a named lookup interceptor.*/
2359   bool HasNamedLookupInterceptor();
2360 
2361   /** Tests for an index lookup interceptor.*/
2362   bool HasIndexedLookupInterceptor();
2363 
2364   /**
2365    * Turns on access check on the object if the object is an instance of
2366    * a template that has access check callbacks. If an object has no
2367    * access check info, the object cannot be accessed by anyone.
2368    */
2369   void TurnOnAccessCheck();
2370 
2371   /**
2372    * Returns the identity hash for this object. The current implementation
2373    * uses a hidden property on the object to store the identity hash.
2374    *
2375    * The return value will never be 0. Also, it is not guaranteed to be
2376    * unique.
2377    */
2378   int GetIdentityHash();
2379 
2380   /**
2381    * Access hidden properties on JavaScript objects. These properties are
2382    * hidden from the executing JavaScript and only accessible through the V8
2383    * C++ API. Hidden properties introduced by V8 internally (for example the
2384    * identity hash) are prefixed with "v8::".
2385    */
2386   bool SetHiddenValue(Handle<String> key, Handle<Value> value);
2387   Local<Value> GetHiddenValue(Handle<String> key);
2388   bool DeleteHiddenValue(Handle<String> key);
2389 
2390   /**
2391    * Returns true if this is an instance of an api function (one
2392    * created from a function created from a function template) and has
2393    * been modified since it was created.  Note that this method is
2394    * conservative and may return true for objects that haven't actually
2395    * been modified.
2396    */
2397   bool IsDirty();
2398 
2399   /**
2400    * Clone this object with a fast but shallow copy.  Values will point
2401    * to the same values as the original object.
2402    */
2403   Local<Object> Clone();
2404 
2405   /**
2406    * Returns the context in which the object was created.
2407    */
2408   Local<Context> CreationContext();
2409 
2410   /**
2411    * Set the backing store of the indexed properties to be managed by the
2412    * embedding layer. Access to the indexed properties will follow the rules
2413    * spelled out in CanvasPixelArray.
2414    * Note: The embedding program still owns the data and needs to ensure that
2415    *       the backing store is preserved while V8 has a reference.
2416    */
2417   void SetIndexedPropertiesToPixelData(uint8_t* data, int length);
2418   bool HasIndexedPropertiesInPixelData();
2419   uint8_t* GetIndexedPropertiesPixelData();
2420   int GetIndexedPropertiesPixelDataLength();
2421 
2422   /**
2423    * Set the backing store of the indexed properties to be managed by the
2424    * embedding layer. Access to the indexed properties will follow the rules
2425    * spelled out for the CanvasArray subtypes in the WebGL specification.
2426    * Note: The embedding program still owns the data and needs to ensure that
2427    *       the backing store is preserved while V8 has a reference.
2428    */
2429   void SetIndexedPropertiesToExternalArrayData(void* data,
2430                                                ExternalArrayType array_type,
2431                                                int number_of_elements);
2432   bool HasIndexedPropertiesInExternalArrayData();
2433   void* GetIndexedPropertiesExternalArrayData();
2434   ExternalArrayType GetIndexedPropertiesExternalArrayDataType();
2435   int GetIndexedPropertiesExternalArrayDataLength();
2436 
2437   /**
2438    * Checks whether a callback is set by the
2439    * ObjectTemplate::SetCallAsFunctionHandler method.
2440    * When an Object is callable this method returns true.
2441    */
2442   bool IsCallable();
2443 
2444   /**
2445    * Call an Object as a function if a callback is set by the
2446    * ObjectTemplate::SetCallAsFunctionHandler method.
2447    */
2448   Local<Value> CallAsFunction(Handle<Value> recv,
2449                               int argc,
2450                               Handle<Value> argv[]);
2451 
2452   /**
2453    * Call an Object as a constructor if a callback is set by the
2454    * ObjectTemplate::SetCallAsFunctionHandler method.
2455    * Note: This method behaves like the Function::NewInstance method.
2456    */
2457   Local<Value> CallAsConstructor(int argc, Handle<Value> argv[]);
2458 
2459   static Local<Object> New(Isolate* isolate);
2460   // Will be deprecated soon.
2461   static Local<Object> New();
2462   V8_INLINE static Object* Cast(Value* obj);
2463 
2464  private:
2465   Object();
2466   static void CheckCast(Value* obj);
2467   Local<Value> SlowGetInternalField(int index);
2468   void* SlowGetAlignedPointerFromInternalField(int index);
2469 };
2470 
2471 
2472 /**
2473  * An instance of the built-in array constructor (ECMA-262, 15.4.2).
2474  */
2475 class V8_EXPORT Array : public Object {
2476  public:
2477   uint32_t Length() const;
2478 
2479   /**
2480    * Clones an element at index |index|.  Returns an empty
2481    * handle if cloning fails (for any reason).
2482    */
2483   Local<Object> CloneElementAt(uint32_t index);
2484 
2485   /**
2486    * Creates a JavaScript array with the given length. If the length
2487    * is negative the returned array will have length 0.
2488    */
2489   static Local<Array> New(Isolate* isolate, int length = 0);
2490   V8_DEPRECATED("Will be removed", static Local<Array> New(int length = 0));
2491 
2492   V8_INLINE static Array* Cast(Value* obj);
2493  private:
2494   Array();
2495   static void CheckCast(Value* obj);
2496 };
2497 
2498 
2499 template<typename T>
2500 class ReturnValue {
2501  public:
ReturnValue(const ReturnValue<S> & that)2502   template <class S> V8_INLINE ReturnValue(const ReturnValue<S>& that)
2503       : value_(that.value_) {
2504     TYPE_CHECK(T, S);
2505   }
2506   // Handle setters
2507   template <typename S> V8_INLINE void Set(const Persistent<S>& handle);
2508   template <typename S> V8_INLINE void Set(const Handle<S> handle);
2509   // Fast primitive setters
2510   V8_INLINE void Set(bool value);
2511   V8_INLINE void Set(double i);
2512   V8_INLINE void Set(int32_t i);
2513   V8_INLINE void Set(uint32_t i);
2514   // Fast JS primitive setters
2515   V8_INLINE void SetNull();
2516   V8_INLINE void SetUndefined();
2517   V8_INLINE void SetEmptyString();
2518   // Convenience getter for Isolate
2519   V8_INLINE Isolate* GetIsolate();
2520 
2521  private:
2522   template<class F> friend class ReturnValue;
2523   template<class F> friend class FunctionCallbackInfo;
2524   template<class F> friend class PropertyCallbackInfo;
2525   V8_INLINE internal::Object* GetDefaultValue();
2526   V8_INLINE explicit ReturnValue(internal::Object** slot);
2527   internal::Object** value_;
2528 };
2529 
2530 
2531 /**
2532  * The argument information given to function call callbacks.  This
2533  * class provides access to information about the context of the call,
2534  * including the receiver, the number and values of arguments, and
2535  * the holder of the function.
2536  */
2537 template<typename T>
2538 class FunctionCallbackInfo {
2539  public:
2540   V8_INLINE int Length() const;
2541   V8_INLINE Local<Value> operator[](int i) const;
2542   V8_INLINE Local<Function> Callee() const;
2543   V8_INLINE Local<Object> This() const;
2544   V8_INLINE Local<Object> Holder() const;
2545   V8_INLINE bool IsConstructCall() const;
2546   V8_INLINE Local<Value> Data() const;
2547   V8_INLINE Isolate* GetIsolate() const;
2548   V8_INLINE ReturnValue<T> GetReturnValue() const;
2549   // This shouldn't be public, but the arm compiler needs it.
2550   static const int kArgsLength = 7;
2551 
2552  protected:
2553   friend class internal::FunctionCallbackArguments;
2554   friend class internal::CustomArguments<FunctionCallbackInfo>;
2555   static const int kHolderIndex = 0;
2556   static const int kIsolateIndex = 1;
2557   static const int kReturnValueDefaultValueIndex = 2;
2558   static const int kReturnValueIndex = 3;
2559   static const int kDataIndex = 4;
2560   static const int kCalleeIndex = 5;
2561   static const int kContextSaveIndex = 6;
2562 
2563   V8_INLINE FunctionCallbackInfo(internal::Object** implicit_args,
2564                    internal::Object** values,
2565                    int length,
2566                    bool is_construct_call);
2567   internal::Object** implicit_args_;
2568   internal::Object** values_;
2569   int length_;
2570   bool is_construct_call_;
2571 };
2572 
2573 
2574 /**
2575  * The information passed to a property callback about the context
2576  * of the property access.
2577  */
2578 template<typename T>
2579 class PropertyCallbackInfo {
2580  public:
2581   V8_INLINE Isolate* GetIsolate() const;
2582   V8_INLINE Local<Value> Data() const;
2583   V8_INLINE Local<Object> This() const;
2584   V8_INLINE Local<Object> Holder() const;
2585   V8_INLINE ReturnValue<T> GetReturnValue() const;
2586   // This shouldn't be public, but the arm compiler needs it.
2587   static const int kArgsLength = 6;
2588 
2589  protected:
2590   friend class MacroAssembler;
2591   friend class internal::PropertyCallbackArguments;
2592   friend class internal::CustomArguments<PropertyCallbackInfo>;
2593   static const int kHolderIndex = 0;
2594   static const int kIsolateIndex = 1;
2595   static const int kReturnValueDefaultValueIndex = 2;
2596   static const int kReturnValueIndex = 3;
2597   static const int kDataIndex = 4;
2598   static const int kThisIndex = 5;
2599 
PropertyCallbackInfo(internal::Object ** args)2600   V8_INLINE PropertyCallbackInfo(internal::Object** args) : args_(args) {}
2601   internal::Object** args_;
2602 };
2603 
2604 
2605 typedef void (*FunctionCallback)(const FunctionCallbackInfo<Value>& info);
2606 
2607 
2608 /**
2609  * A JavaScript function object (ECMA-262, 15.3).
2610  */
2611 class V8_EXPORT Function : public Object {
2612  public:
2613   /**
2614    * Create a function in the current execution context
2615    * for a given FunctionCallback.
2616    */
2617   static Local<Function> New(Isolate* isolate,
2618                              FunctionCallback callback,
2619                              Local<Value> data = Local<Value>(),
2620                              int length = 0);
2621 
2622   Local<Object> NewInstance() const;
2623   Local<Object> NewInstance(int argc, Handle<Value> argv[]) const;
2624   Local<Value> Call(Handle<Value> recv, int argc, Handle<Value> argv[]);
2625   void SetName(Handle<String> name);
2626   Handle<Value> GetName() const;
2627 
2628   /**
2629    * Name inferred from variable or property assignment of this function.
2630    * Used to facilitate debugging and profiling of JavaScript code written
2631    * in an OO style, where many functions are anonymous but are assigned
2632    * to object properties.
2633    */
2634   Handle<Value> GetInferredName() const;
2635 
2636   /**
2637    * User-defined name assigned to the "displayName" property of this function.
2638    * Used to facilitate debugging and profiling of JavaScript code.
2639    */
2640   Handle<Value> GetDisplayName() const;
2641 
2642   /**
2643    * Returns zero based line number of function body and
2644    * kLineOffsetNotFound if no information available.
2645    */
2646   int GetScriptLineNumber() const;
2647   /**
2648    * Returns zero based column number of function body and
2649    * kLineOffsetNotFound if no information available.
2650    */
2651   int GetScriptColumnNumber() const;
2652 
2653   /**
2654    * Tells whether this function is builtin.
2655    */
2656   bool IsBuiltin() const;
2657 
2658   /**
2659    * Returns scriptId object.
2660    */
2661   V8_DEPRECATED("Use ScriptId instead", Handle<Value> GetScriptId() const);
2662 
2663   /**
2664    * Returns scriptId.
2665    */
2666   int ScriptId() const;
2667 
2668   ScriptOrigin GetScriptOrigin() const;
2669   V8_INLINE static Function* Cast(Value* obj);
2670   static const int kLineOffsetNotFound;
2671 
2672  private:
2673   Function();
2674   static void CheckCast(Value* obj);
2675 };
2676 
2677 #ifndef V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT
2678 // The number of required internal fields can be defined by embedder.
2679 #define V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT 2
2680 #endif
2681 
2682 /**
2683  * An instance of the built-in ArrayBuffer constructor (ES6 draft 15.13.5).
2684  * This API is experimental and may change significantly.
2685  */
2686 class V8_EXPORT ArrayBuffer : public Object {
2687  public:
2688   /**
2689    * Allocator that V8 uses to allocate |ArrayBuffer|'s memory.
2690    * The allocator is a global V8 setting. It should be set with
2691    * V8::SetArrayBufferAllocator prior to creation of a first ArrayBuffer.
2692    *
2693    * This API is experimental and may change significantly.
2694    */
2695   class V8_EXPORT Allocator { // NOLINT
2696    public:
~Allocator()2697     virtual ~Allocator() {}
2698 
2699     /**
2700      * Allocate |length| bytes. Return NULL if allocation is not successful.
2701      * Memory should be initialized to zeroes.
2702      */
2703     virtual void* Allocate(size_t length) = 0;
2704 
2705     /**
2706      * Allocate |length| bytes. Return NULL if allocation is not successful.
2707      * Memory does not have to be initialized.
2708      */
2709     virtual void* AllocateUninitialized(size_t length) = 0;
2710     /**
2711      * Free the memory block of size |length|, pointed to by |data|.
2712      * That memory is guaranteed to be previously allocated by |Allocate|.
2713      */
2714     virtual void Free(void* data, size_t length) = 0;
2715   };
2716 
2717   /**
2718    * The contents of an |ArrayBuffer|. Externalization of |ArrayBuffer|
2719    * returns an instance of this class, populated, with a pointer to data
2720    * and byte length.
2721    *
2722    * The Data pointer of ArrayBuffer::Contents is always allocated with
2723    * Allocator::Allocate that is set with V8::SetArrayBufferAllocator.
2724    *
2725    * This API is experimental and may change significantly.
2726    */
2727   class V8_EXPORT Contents { // NOLINT
2728    public:
Contents()2729     Contents() : data_(NULL), byte_length_(0) {}
2730 
Data()2731     void* Data() const { return data_; }
ByteLength()2732     size_t ByteLength() const { return byte_length_; }
2733 
2734    private:
2735     void* data_;
2736     size_t byte_length_;
2737 
2738     friend class ArrayBuffer;
2739   };
2740 
2741 
2742   /**
2743    * Data length in bytes.
2744    */
2745   size_t ByteLength() const;
2746 
2747   /**
2748    * Create a new ArrayBuffer. Allocate |byte_length| bytes.
2749    * Allocated memory will be owned by a created ArrayBuffer and
2750    * will be deallocated when it is garbage-collected,
2751    * unless the object is externalized.
2752    */
2753   static Local<ArrayBuffer> New(Isolate* isolate, size_t byte_length);
2754   V8_DEPRECATED("Will be removed",
2755                 static Local<ArrayBuffer> New(size_t byte_length));
2756 
2757   /**
2758    * Create a new ArrayBuffer over an existing memory block.
2759    * The created array buffer is immediately in externalized state.
2760    * The memory block will not be reclaimed when a created ArrayBuffer
2761    * is garbage-collected.
2762    */
2763   static Local<ArrayBuffer> New(Isolate* isolate, void* data,
2764                                 size_t byte_length);
2765   V8_DEPRECATED("Will be removed",
2766                 static Local<ArrayBuffer> New(void* data, size_t byte_length));
2767 
2768   /**
2769    * Returns true if ArrayBuffer is extrenalized, that is, does not
2770    * own its memory block.
2771    */
2772   bool IsExternal() const;
2773 
2774   /**
2775    * Neuters this ArrayBuffer and all its views (typed arrays).
2776    * Neutering sets the byte length of the buffer and all typed arrays to zero,
2777    * preventing JavaScript from ever accessing underlying backing store.
2778    * ArrayBuffer should have been externalized.
2779    */
2780   void Neuter();
2781 
2782   /**
2783    * Make this ArrayBuffer external. The pointer to underlying memory block
2784    * and byte length are returned as |Contents| structure. After ArrayBuffer
2785    * had been etxrenalized, it does no longer owns the memory block. The caller
2786    * should take steps to free memory when it is no longer needed.
2787    *
2788    * The memory block is guaranteed to be allocated with |Allocator::Allocate|
2789    * that has been set with V8::SetArrayBufferAllocator.
2790    */
2791   Contents Externalize();
2792 
2793   V8_INLINE static ArrayBuffer* Cast(Value* obj);
2794 
2795   static const int kInternalFieldCount = V8_ARRAY_BUFFER_INTERNAL_FIELD_COUNT;
2796 
2797  private:
2798   ArrayBuffer();
2799   static void CheckCast(Value* obj);
2800 };
2801 
2802 
2803 #ifndef V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT
2804 // The number of required internal fields can be defined by embedder.
2805 #define V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT 2
2806 #endif
2807 
2808 
2809 /**
2810  * A base class for an instance of one of "views" over ArrayBuffer,
2811  * including TypedArrays and DataView (ES6 draft 15.13).
2812  *
2813  * This API is experimental and may change significantly.
2814  */
2815 class V8_EXPORT ArrayBufferView : public Object {
2816  public:
2817   /**
2818    * Returns underlying ArrayBuffer.
2819    */
2820   Local<ArrayBuffer> Buffer();
2821   /**
2822    * Byte offset in |Buffer|.
2823    */
2824   size_t ByteOffset();
2825   /**
2826    * Size of a view in bytes.
2827    */
2828   size_t ByteLength();
2829 
2830   V8_INLINE static ArrayBufferView* Cast(Value* obj);
2831 
2832   static const int kInternalFieldCount =
2833       V8_ARRAY_BUFFER_VIEW_INTERNAL_FIELD_COUNT;
2834 
2835  private:
2836   ArrayBufferView();
2837   static void CheckCast(Value* obj);
2838 };
2839 
2840 
2841 /**
2842  * A base class for an instance of TypedArray series of constructors
2843  * (ES6 draft 15.13.6).
2844  * This API is experimental and may change significantly.
2845  */
2846 class V8_EXPORT TypedArray : public ArrayBufferView {
2847  public:
2848   /**
2849    * Number of elements in this typed array
2850    * (e.g. for Int16Array, |ByteLength|/2).
2851    */
2852   size_t Length();
2853 
2854   V8_INLINE static TypedArray* Cast(Value* obj);
2855 
2856  private:
2857   TypedArray();
2858   static void CheckCast(Value* obj);
2859 };
2860 
2861 
2862 /**
2863  * An instance of Uint8Array constructor (ES6 draft 15.13.6).
2864  * This API is experimental and may change significantly.
2865  */
2866 class V8_EXPORT Uint8Array : public TypedArray {
2867  public:
2868   static Local<Uint8Array> New(Handle<ArrayBuffer> array_buffer,
2869                                size_t byte_offset, size_t length);
2870   V8_INLINE static Uint8Array* Cast(Value* obj);
2871 
2872  private:
2873   Uint8Array();
2874   static void CheckCast(Value* obj);
2875 };
2876 
2877 
2878 /**
2879  * An instance of Uint8ClampedArray constructor (ES6 draft 15.13.6).
2880  * This API is experimental and may change significantly.
2881  */
2882 class V8_EXPORT Uint8ClampedArray : public TypedArray {
2883  public:
2884   static Local<Uint8ClampedArray> New(Handle<ArrayBuffer> array_buffer,
2885                                size_t byte_offset, size_t length);
2886   V8_INLINE static Uint8ClampedArray* Cast(Value* obj);
2887 
2888  private:
2889   Uint8ClampedArray();
2890   static void CheckCast(Value* obj);
2891 };
2892 
2893 /**
2894  * An instance of Int8Array constructor (ES6 draft 15.13.6).
2895  * This API is experimental and may change significantly.
2896  */
2897 class V8_EXPORT Int8Array : public TypedArray {
2898  public:
2899   static Local<Int8Array> New(Handle<ArrayBuffer> array_buffer,
2900                                size_t byte_offset, size_t length);
2901   V8_INLINE static Int8Array* Cast(Value* obj);
2902 
2903  private:
2904   Int8Array();
2905   static void CheckCast(Value* obj);
2906 };
2907 
2908 
2909 /**
2910  * An instance of Uint16Array constructor (ES6 draft 15.13.6).
2911  * This API is experimental and may change significantly.
2912  */
2913 class V8_EXPORT Uint16Array : public TypedArray {
2914  public:
2915   static Local<Uint16Array> New(Handle<ArrayBuffer> array_buffer,
2916                                size_t byte_offset, size_t length);
2917   V8_INLINE static Uint16Array* Cast(Value* obj);
2918 
2919  private:
2920   Uint16Array();
2921   static void CheckCast(Value* obj);
2922 };
2923 
2924 
2925 /**
2926  * An instance of Int16Array constructor (ES6 draft 15.13.6).
2927  * This API is experimental and may change significantly.
2928  */
2929 class V8_EXPORT Int16Array : public TypedArray {
2930  public:
2931   static Local<Int16Array> New(Handle<ArrayBuffer> array_buffer,
2932                                size_t byte_offset, size_t length);
2933   V8_INLINE static Int16Array* Cast(Value* obj);
2934 
2935  private:
2936   Int16Array();
2937   static void CheckCast(Value* obj);
2938 };
2939 
2940 
2941 /**
2942  * An instance of Uint32Array constructor (ES6 draft 15.13.6).
2943  * This API is experimental and may change significantly.
2944  */
2945 class V8_EXPORT Uint32Array : public TypedArray {
2946  public:
2947   static Local<Uint32Array> New(Handle<ArrayBuffer> array_buffer,
2948                                size_t byte_offset, size_t length);
2949   V8_INLINE static Uint32Array* Cast(Value* obj);
2950 
2951  private:
2952   Uint32Array();
2953   static void CheckCast(Value* obj);
2954 };
2955 
2956 
2957 /**
2958  * An instance of Int32Array constructor (ES6 draft 15.13.6).
2959  * This API is experimental and may change significantly.
2960  */
2961 class V8_EXPORT Int32Array : public TypedArray {
2962  public:
2963   static Local<Int32Array> New(Handle<ArrayBuffer> array_buffer,
2964                                size_t byte_offset, size_t length);
2965   V8_INLINE static Int32Array* Cast(Value* obj);
2966 
2967  private:
2968   Int32Array();
2969   static void CheckCast(Value* obj);
2970 };
2971 
2972 
2973 /**
2974  * An instance of Float32Array constructor (ES6 draft 15.13.6).
2975  * This API is experimental and may change significantly.
2976  */
2977 class V8_EXPORT Float32Array : public TypedArray {
2978  public:
2979   static Local<Float32Array> New(Handle<ArrayBuffer> array_buffer,
2980                                size_t byte_offset, size_t length);
2981   V8_INLINE static Float32Array* Cast(Value* obj);
2982 
2983  private:
2984   Float32Array();
2985   static void CheckCast(Value* obj);
2986 };
2987 
2988 
2989 /**
2990  * An instance of Float64Array constructor (ES6 draft 15.13.6).
2991  * This API is experimental and may change significantly.
2992  */
2993 class V8_EXPORT Float64Array : public TypedArray {
2994  public:
2995   static Local<Float64Array> New(Handle<ArrayBuffer> array_buffer,
2996                                size_t byte_offset, size_t length);
2997   V8_INLINE static Float64Array* Cast(Value* obj);
2998 
2999  private:
3000   Float64Array();
3001   static void CheckCast(Value* obj);
3002 };
3003 
3004 
3005 /**
3006  * An instance of DataView constructor (ES6 draft 15.13.7).
3007  * This API is experimental and may change significantly.
3008  */
3009 class V8_EXPORT DataView : public ArrayBufferView {
3010  public:
3011   static Local<DataView> New(Handle<ArrayBuffer> array_buffer,
3012                              size_t byte_offset, size_t length);
3013   V8_INLINE static DataView* Cast(Value* obj);
3014 
3015  private:
3016   DataView();
3017   static void CheckCast(Value* obj);
3018 };
3019 
3020 
3021 /**
3022  * An instance of the built-in Date constructor (ECMA-262, 15.9).
3023  */
3024 class V8_EXPORT Date : public Object {
3025  public:
3026   static Local<Value> New(Isolate* isolate, double time);
3027   V8_DEPRECATED("Will be removed", static Local<Value> New(double time));
3028 
3029   V8_DEPRECATED(
3030       "Use ValueOf instead",
NumberValue()3031       double NumberValue() const) { return ValueOf(); }
3032 
3033   /**
3034    * A specialization of Value::NumberValue that is more efficient
3035    * because we know the structure of this object.
3036    */
3037   double ValueOf() const;
3038 
3039   V8_INLINE static Date* Cast(v8::Value* obj);
3040 
3041   /**
3042    * Notification that the embedder has changed the time zone,
3043    * daylight savings time, or other date / time configuration
3044    * parameters.  V8 keeps a cache of various values used for
3045    * date / time computation.  This notification will reset
3046    * those cached values for the current context so that date /
3047    * time configuration changes would be reflected in the Date
3048    * object.
3049    *
3050    * This API should not be called more than needed as it will
3051    * negatively impact the performance of date operations.
3052    */
3053   static void DateTimeConfigurationChangeNotification(Isolate* isolate);
3054   V8_DEPRECATED("Will be removed",
3055                 static void DateTimeConfigurationChangeNotification());
3056 
3057  private:
3058   static void CheckCast(v8::Value* obj);
3059 };
3060 
3061 
3062 /**
3063  * A Number object (ECMA-262, 4.3.21).
3064  */
3065 class V8_EXPORT NumberObject : public Object {
3066  public:
3067   static Local<Value> New(Isolate* isolate, double value);
3068   V8_DEPRECATED("Will be removed", static Local<Value> New(double value));
3069 
3070   V8_DEPRECATED(
3071       "Use ValueOf instead",
NumberValue()3072       double NumberValue() const) { return ValueOf(); }
3073 
3074   /**
3075    * Returns the Number held by the object.
3076    */
3077   double ValueOf() const;
3078 
3079   V8_INLINE static NumberObject* Cast(v8::Value* obj);
3080 
3081  private:
3082   static void CheckCast(v8::Value* obj);
3083 };
3084 
3085 
3086 /**
3087  * A Boolean object (ECMA-262, 4.3.15).
3088  */
3089 class V8_EXPORT BooleanObject : public Object {
3090  public:
3091   static Local<Value> New(bool value);
3092 
3093   V8_DEPRECATED(
3094       "Use ValueOf instead",
BooleanValue()3095       bool BooleanValue() const) { return ValueOf(); }
3096 
3097   /**
3098    * Returns the Boolean held by the object.
3099    */
3100   bool ValueOf() const;
3101 
3102   V8_INLINE static BooleanObject* Cast(v8::Value* obj);
3103 
3104  private:
3105   static void CheckCast(v8::Value* obj);
3106 };
3107 
3108 
3109 /**
3110  * A String object (ECMA-262, 4.3.18).
3111  */
3112 class V8_EXPORT StringObject : public Object {
3113  public:
3114   static Local<Value> New(Handle<String> value);
3115 
3116   V8_DEPRECATED(
3117       "Use ValueOf instead",
3118       Local<String> StringValue() const) { return ValueOf(); }
3119 
3120   /**
3121    * Returns the String held by the object.
3122    */
3123   Local<String> ValueOf() const;
3124 
3125   V8_INLINE static StringObject* Cast(v8::Value* obj);
3126 
3127  private:
3128   static void CheckCast(v8::Value* obj);
3129 };
3130 
3131 
3132 /**
3133  * A Symbol object (ECMA-262 edition 6).
3134  *
3135  * This is an experimental feature. Use at your own risk.
3136  */
3137 class V8_EXPORT SymbolObject : public Object {
3138  public:
3139   static Local<Value> New(Isolate* isolate, Handle<Symbol> value);
3140 
3141   V8_DEPRECATED(
3142       "Use ValueOf instead",
3143       Local<Symbol> SymbolValue() const) { return ValueOf(); }
3144 
3145   /**
3146    * Returns the Symbol held by the object.
3147    */
3148   Local<Symbol> ValueOf() const;
3149 
3150   V8_INLINE static SymbolObject* Cast(v8::Value* obj);
3151 
3152  private:
3153   static void CheckCast(v8::Value* obj);
3154 };
3155 
3156 
3157 /**
3158  * An instance of the built-in RegExp constructor (ECMA-262, 15.10).
3159  */
3160 class V8_EXPORT RegExp : public Object {
3161  public:
3162   /**
3163    * Regular expression flag bits. They can be or'ed to enable a set
3164    * of flags.
3165    */
3166   enum Flags {
3167     kNone = 0,
3168     kGlobal = 1,
3169     kIgnoreCase = 2,
3170     kMultiline = 4
3171   };
3172 
3173   /**
3174    * Creates a regular expression from the given pattern string and
3175    * the flags bit field. May throw a JavaScript exception as
3176    * described in ECMA-262, 15.10.4.1.
3177    *
3178    * For example,
3179    *   RegExp::New(v8::String::New("foo"),
3180    *               static_cast<RegExp::Flags>(kGlobal | kMultiline))
3181    * is equivalent to evaluating "/foo/gm".
3182    */
3183   static Local<RegExp> New(Handle<String> pattern, Flags flags);
3184 
3185   /**
3186    * Returns the value of the source property: a string representing
3187    * the regular expression.
3188    */
3189   Local<String> GetSource() const;
3190 
3191   /**
3192    * Returns the flags bit field.
3193    */
3194   Flags GetFlags() const;
3195 
3196   V8_INLINE static RegExp* Cast(v8::Value* obj);
3197 
3198  private:
3199   static void CheckCast(v8::Value* obj);
3200 };
3201 
3202 
3203 /**
3204  * A JavaScript value that wraps a C++ void*. This type of value is mainly used
3205  * to associate C++ data structures with JavaScript objects.
3206  */
3207 class V8_EXPORT External : public Value {
3208  public:
3209   static Local<External> New(Isolate* isolate, void* value);
3210   V8_DEPRECATED("Will be removed", static Local<External> New(void *value));
3211   V8_INLINE static External* Cast(Value* obj);
3212   void* Value() const;
3213  private:
3214   static void CheckCast(v8::Value* obj);
3215 };
3216 
3217 
3218 // --- Templates ---
3219 
3220 
3221 /**
3222  * The superclass of object and function templates.
3223  */
3224 class V8_EXPORT Template : public Data {
3225  public:
3226   /** Adds a property to each instance created by this template.*/
3227   void Set(Handle<String> name, Handle<Data> value,
3228            PropertyAttribute attributes = None);
3229   V8_INLINE void Set(Isolate* isolate, const char* name, Handle<Data> value);
3230   V8_DEPRECATED("Will be removed",
3231                 V8_INLINE void Set(const char* name, Handle<Data> value));
3232 
3233   void SetAccessorProperty(
3234      Local<String> name,
3235      Local<FunctionTemplate> getter = Local<FunctionTemplate>(),
3236      Local<FunctionTemplate> setter = Local<FunctionTemplate>(),
3237      PropertyAttribute attribute = None,
3238      AccessControl settings = DEFAULT);
3239 
3240   /**
3241    * Whenever the property with the given name is accessed on objects
3242    * created from this Template the getter and setter callbacks
3243    * are called instead of getting and setting the property directly
3244    * on the JavaScript object.
3245    *
3246    * \param name The name of the property for which an accessor is added.
3247    * \param getter The callback to invoke when getting the property.
3248    * \param setter The callback to invoke when setting the property.
3249    * \param data A piece of data that will be passed to the getter and setter
3250    *   callbacks whenever they are invoked.
3251    * \param settings Access control settings for the accessor. This is a bit
3252    *   field consisting of one of more of
3253    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
3254    *   The default is to not allow cross-context access.
3255    *   ALL_CAN_READ means that all cross-context reads are allowed.
3256    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
3257    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
3258    *   cross-context access.
3259    * \param attribute The attributes of the property for which an accessor
3260    *   is added.
3261    * \param signature The signature describes valid receivers for the accessor
3262    *   and is used to perform implicit instance checks against them. If the
3263    *   receiver is incompatible (i.e. is not an instance of the constructor as
3264    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
3265    *   thrown and no callback is invoked.
3266    */
3267   void SetNativeDataProperty(Local<String> name,
3268                              AccessorGetterCallback getter,
3269                              AccessorSetterCallback setter = 0,
3270                              // TODO(dcarney): gcc can't handle Local below
3271                              Handle<Value> data = Handle<Value>(),
3272                              PropertyAttribute attribute = None,
3273                              Local<AccessorSignature> signature =
3274                                  Local<AccessorSignature>(),
3275                              AccessControl settings = DEFAULT);
3276 
3277   // This function is not yet stable and should not be used at this time.
3278   bool SetDeclaredAccessor(Local<String> name,
3279                            Local<DeclaredAccessorDescriptor> descriptor,
3280                            PropertyAttribute attribute = None,
3281                            Local<AccessorSignature> signature =
3282                                Local<AccessorSignature>(),
3283                            AccessControl settings = DEFAULT);
3284 
3285  private:
3286   Template();
3287 
3288   friend class ObjectTemplate;
3289   friend class FunctionTemplate;
3290 };
3291 
3292 
3293 /**
3294  * NamedProperty[Getter|Setter] are used as interceptors on object.
3295  * See ObjectTemplate::SetNamedPropertyHandler.
3296  */
3297 typedef void (*NamedPropertyGetterCallback)(
3298     Local<String> property,
3299     const PropertyCallbackInfo<Value>& info);
3300 
3301 
3302 /**
3303  * Returns the value if the setter intercepts the request.
3304  * Otherwise, returns an empty handle.
3305  */
3306 typedef void (*NamedPropertySetterCallback)(
3307     Local<String> property,
3308     Local<Value> value,
3309     const PropertyCallbackInfo<Value>& info);
3310 
3311 
3312 /**
3313  * Returns a non-empty handle if the interceptor intercepts the request.
3314  * The result is an integer encoding property attributes (like v8::None,
3315  * v8::DontEnum, etc.)
3316  */
3317 typedef void (*NamedPropertyQueryCallback)(
3318     Local<String> property,
3319     const PropertyCallbackInfo<Integer>& info);
3320 
3321 
3322 /**
3323  * Returns a non-empty handle if the deleter intercepts the request.
3324  * The return value is true if the property could be deleted and false
3325  * otherwise.
3326  */
3327 typedef void (*NamedPropertyDeleterCallback)(
3328     Local<String> property,
3329     const PropertyCallbackInfo<Boolean>& info);
3330 
3331 
3332 /**
3333  * Returns an array containing the names of the properties the named
3334  * property getter intercepts.
3335  */
3336 typedef void (*NamedPropertyEnumeratorCallback)(
3337     const PropertyCallbackInfo<Array>& info);
3338 
3339 
3340 /**
3341  * Returns the value of the property if the getter intercepts the
3342  * request.  Otherwise, returns an empty handle.
3343  */
3344 typedef void (*IndexedPropertyGetterCallback)(
3345     uint32_t index,
3346     const PropertyCallbackInfo<Value>& info);
3347 
3348 
3349 /**
3350  * Returns the value if the setter intercepts the request.
3351  * Otherwise, returns an empty handle.
3352  */
3353 typedef void (*IndexedPropertySetterCallback)(
3354     uint32_t index,
3355     Local<Value> value,
3356     const PropertyCallbackInfo<Value>& info);
3357 
3358 
3359 /**
3360  * Returns a non-empty handle if the interceptor intercepts the request.
3361  * The result is an integer encoding property attributes.
3362  */
3363 typedef void (*IndexedPropertyQueryCallback)(
3364     uint32_t index,
3365     const PropertyCallbackInfo<Integer>& info);
3366 
3367 
3368 /**
3369  * Returns a non-empty handle if the deleter intercepts the request.
3370  * The return value is true if the property could be deleted and false
3371  * otherwise.
3372  */
3373 typedef void (*IndexedPropertyDeleterCallback)(
3374     uint32_t index,
3375     const PropertyCallbackInfo<Boolean>& info);
3376 
3377 
3378 /**
3379  * Returns an array containing the indices of the properties the
3380  * indexed property getter intercepts.
3381  */
3382 typedef void (*IndexedPropertyEnumeratorCallback)(
3383     const PropertyCallbackInfo<Array>& info);
3384 
3385 
3386 /**
3387  * Access type specification.
3388  */
3389 enum AccessType {
3390   ACCESS_GET,
3391   ACCESS_SET,
3392   ACCESS_HAS,
3393   ACCESS_DELETE,
3394   ACCESS_KEYS
3395 };
3396 
3397 
3398 /**
3399  * Returns true if cross-context access should be allowed to the named
3400  * property with the given key on the host object.
3401  */
3402 typedef bool (*NamedSecurityCallback)(Local<Object> host,
3403                                       Local<Value> key,
3404                                       AccessType type,
3405                                       Local<Value> data);
3406 
3407 
3408 /**
3409  * Returns true if cross-context access should be allowed to the indexed
3410  * property with the given index on the host object.
3411  */
3412 typedef bool (*IndexedSecurityCallback)(Local<Object> host,
3413                                         uint32_t index,
3414                                         AccessType type,
3415                                         Local<Value> data);
3416 
3417 
3418 /**
3419  * A FunctionTemplate is used to create functions at runtime. There
3420  * can only be one function created from a FunctionTemplate in a
3421  * context.  The lifetime of the created function is equal to the
3422  * lifetime of the context.  So in case the embedder needs to create
3423  * temporary functions that can be collected using Scripts is
3424  * preferred.
3425  *
3426  * A FunctionTemplate can have properties, these properties are added to the
3427  * function object when it is created.
3428  *
3429  * A FunctionTemplate has a corresponding instance template which is
3430  * used to create object instances when the function is used as a
3431  * constructor. Properties added to the instance template are added to
3432  * each object instance.
3433  *
3434  * A FunctionTemplate can have a prototype template. The prototype template
3435  * is used to create the prototype object of the function.
3436  *
3437  * The following example shows how to use a FunctionTemplate:
3438  *
3439  * \code
3440  *    v8::Local<v8::FunctionTemplate> t = v8::FunctionTemplate::New();
3441  *    t->Set("func_property", v8::Number::New(1));
3442  *
3443  *    v8::Local<v8::Template> proto_t = t->PrototypeTemplate();
3444  *    proto_t->Set("proto_method", v8::FunctionTemplate::New(InvokeCallback));
3445  *    proto_t->Set("proto_const", v8::Number::New(2));
3446  *
3447  *    v8::Local<v8::ObjectTemplate> instance_t = t->InstanceTemplate();
3448  *    instance_t->SetAccessor("instance_accessor", InstanceAccessorCallback);
3449  *    instance_t->SetNamedPropertyHandler(PropertyHandlerCallback, ...);
3450  *    instance_t->Set("instance_property", Number::New(3));
3451  *
3452  *    v8::Local<v8::Function> function = t->GetFunction();
3453  *    v8::Local<v8::Object> instance = function->NewInstance();
3454  * \endcode
3455  *
3456  * Let's use "function" as the JS variable name of the function object
3457  * and "instance" for the instance object created above.  The function
3458  * and the instance will have the following properties:
3459  *
3460  * \code
3461  *   func_property in function == true;
3462  *   function.func_property == 1;
3463  *
3464  *   function.prototype.proto_method() invokes 'InvokeCallback'
3465  *   function.prototype.proto_const == 2;
3466  *
3467  *   instance instanceof function == true;
3468  *   instance.instance_accessor calls 'InstanceAccessorCallback'
3469  *   instance.instance_property == 3;
3470  * \endcode
3471  *
3472  * A FunctionTemplate can inherit from another one by calling the
3473  * FunctionTemplate::Inherit method.  The following graph illustrates
3474  * the semantics of inheritance:
3475  *
3476  * \code
3477  *   FunctionTemplate Parent  -> Parent() . prototype -> { }
3478  *     ^                                                  ^
3479  *     | Inherit(Parent)                                  | .__proto__
3480  *     |                                                  |
3481  *   FunctionTemplate Child   -> Child()  . prototype -> { }
3482  * \endcode
3483  *
3484  * A FunctionTemplate 'Child' inherits from 'Parent', the prototype
3485  * object of the Child() function has __proto__ pointing to the
3486  * Parent() function's prototype object. An instance of the Child
3487  * function has all properties on Parent's instance templates.
3488  *
3489  * Let Parent be the FunctionTemplate initialized in the previous
3490  * section and create a Child FunctionTemplate by:
3491  *
3492  * \code
3493  *   Local<FunctionTemplate> parent = t;
3494  *   Local<FunctionTemplate> child = FunctionTemplate::New();
3495  *   child->Inherit(parent);
3496  *
3497  *   Local<Function> child_function = child->GetFunction();
3498  *   Local<Object> child_instance = child_function->NewInstance();
3499  * \endcode
3500  *
3501  * The Child function and Child instance will have the following
3502  * properties:
3503  *
3504  * \code
3505  *   child_func.prototype.__proto__ == function.prototype;
3506  *   child_instance.instance_accessor calls 'InstanceAccessorCallback'
3507  *   child_instance.instance_property == 3;
3508  * \endcode
3509  */
3510 class V8_EXPORT FunctionTemplate : public Template {
3511  public:
3512   /** Creates a function template.*/
3513   static Local<FunctionTemplate> New(
3514       Isolate* isolate,
3515       FunctionCallback callback = 0,
3516       Handle<Value> data = Handle<Value>(),
3517       Handle<Signature> signature = Handle<Signature>(),
3518       int length = 0);
3519   // Will be deprecated soon.
3520   static Local<FunctionTemplate> New(
3521       FunctionCallback callback = 0,
3522       Handle<Value> data = Handle<Value>(),
3523       Handle<Signature> signature = Handle<Signature>(),
3524       int length = 0);
3525 
3526   /** Returns the unique function instance in the current execution context.*/
3527   Local<Function> GetFunction();
3528 
3529   /**
3530    * Set the call-handler callback for a FunctionTemplate.  This
3531    * callback is called whenever the function created from this
3532    * FunctionTemplate is called.
3533    */
3534   void SetCallHandler(FunctionCallback callback,
3535                       Handle<Value> data = Handle<Value>());
3536 
3537   /** Set the predefined length property for the FunctionTemplate. */
3538   void SetLength(int length);
3539 
3540   /** Get the InstanceTemplate. */
3541   Local<ObjectTemplate> InstanceTemplate();
3542 
3543   /** Causes the function template to inherit from a parent function template.*/
3544   void Inherit(Handle<FunctionTemplate> parent);
3545 
3546   /**
3547    * A PrototypeTemplate is the template used to create the prototype object
3548    * of the function created by this template.
3549    */
3550   Local<ObjectTemplate> PrototypeTemplate();
3551 
3552   /**
3553    * Set the class name of the FunctionTemplate.  This is used for
3554    * printing objects created with the function created from the
3555    * FunctionTemplate as its constructor.
3556    */
3557   void SetClassName(Handle<String> name);
3558 
3559   /**
3560    * Determines whether the __proto__ accessor ignores instances of
3561    * the function template.  If instances of the function template are
3562    * ignored, __proto__ skips all instances and instead returns the
3563    * next object in the prototype chain.
3564    *
3565    * Call with a value of true to make the __proto__ accessor ignore
3566    * instances of the function template.  Call with a value of false
3567    * to make the __proto__ accessor not ignore instances of the
3568    * function template.  By default, instances of a function template
3569    * are not ignored.
3570    */
3571   void SetHiddenPrototype(bool value);
3572 
3573   /**
3574    * Sets the ReadOnly flag in the attributes of the 'prototype' property
3575    * of functions created from this FunctionTemplate to true.
3576    */
3577   void ReadOnlyPrototype();
3578 
3579   /**
3580    * Removes the prototype property from functions created from this
3581    * FunctionTemplate.
3582    */
3583   void RemovePrototype();
3584 
3585   /**
3586    * Returns true if the given object is an instance of this function
3587    * template.
3588    */
3589   bool HasInstance(Handle<Value> object);
3590 
3591  private:
3592   FunctionTemplate();
3593   friend class Context;
3594   friend class ObjectTemplate;
3595 };
3596 
3597 
3598 /**
3599  * An ObjectTemplate is used to create objects at runtime.
3600  *
3601  * Properties added to an ObjectTemplate are added to each object
3602  * created from the ObjectTemplate.
3603  */
3604 class V8_EXPORT ObjectTemplate : public Template {
3605  public:
3606   /** Creates an ObjectTemplate. */
3607   static Local<ObjectTemplate> New(Isolate* isolate);
3608   // Will be deprecated soon.
3609   static Local<ObjectTemplate> New();
3610 
3611   /** Creates a new instance of this template.*/
3612   Local<Object> NewInstance();
3613 
3614   /**
3615    * Sets an accessor on the object template.
3616    *
3617    * Whenever the property with the given name is accessed on objects
3618    * created from this ObjectTemplate the getter and setter callbacks
3619    * are called instead of getting and setting the property directly
3620    * on the JavaScript object.
3621    *
3622    * \param name The name of the property for which an accessor is added.
3623    * \param getter The callback to invoke when getting the property.
3624    * \param setter The callback to invoke when setting the property.
3625    * \param data A piece of data that will be passed to the getter and setter
3626    *   callbacks whenever they are invoked.
3627    * \param settings Access control settings for the accessor. This is a bit
3628    *   field consisting of one of more of
3629    *   DEFAULT = 0, ALL_CAN_READ = 1, or ALL_CAN_WRITE = 2.
3630    *   The default is to not allow cross-context access.
3631    *   ALL_CAN_READ means that all cross-context reads are allowed.
3632    *   ALL_CAN_WRITE means that all cross-context writes are allowed.
3633    *   The combination ALL_CAN_READ | ALL_CAN_WRITE can be used to allow all
3634    *   cross-context access.
3635    * \param attribute The attributes of the property for which an accessor
3636    *   is added.
3637    * \param signature The signature describes valid receivers for the accessor
3638    *   and is used to perform implicit instance checks against them. If the
3639    *   receiver is incompatible (i.e. is not an instance of the constructor as
3640    *   defined by FunctionTemplate::HasInstance()), an implicit TypeError is
3641    *   thrown and no callback is invoked.
3642    */
3643   void SetAccessor(Handle<String> name,
3644                    AccessorGetterCallback getter,
3645                    AccessorSetterCallback setter = 0,
3646                    Handle<Value> data = Handle<Value>(),
3647                    AccessControl settings = DEFAULT,
3648                    PropertyAttribute attribute = None,
3649                    Handle<AccessorSignature> signature =
3650                        Handle<AccessorSignature>());
3651 
3652   /**
3653    * Sets a named property handler on the object template.
3654    *
3655    * Whenever a named property is accessed on objects created from
3656    * this object template, the provided callback is invoked instead of
3657    * accessing the property directly on the JavaScript object.
3658    *
3659    * \param getter The callback to invoke when getting a property.
3660    * \param setter The callback to invoke when setting a property.
3661    * \param query The callback to invoke to check if a property is present,
3662    *   and if present, get its attributes.
3663    * \param deleter The callback to invoke when deleting a property.
3664    * \param enumerator The callback to invoke to enumerate all the named
3665    *   properties of an object.
3666    * \param data A piece of data that will be passed to the callbacks
3667    *   whenever they are invoked.
3668    */
3669   void SetNamedPropertyHandler(
3670       NamedPropertyGetterCallback getter,
3671       NamedPropertySetterCallback setter = 0,
3672       NamedPropertyQueryCallback query = 0,
3673       NamedPropertyDeleterCallback deleter = 0,
3674       NamedPropertyEnumeratorCallback enumerator = 0,
3675       Handle<Value> data = Handle<Value>());
3676 
3677   /**
3678    * Sets an indexed property handler on the object template.
3679    *
3680    * Whenever an indexed property is accessed on objects created from
3681    * this object template, the provided callback is invoked instead of
3682    * accessing the property directly on the JavaScript object.
3683    *
3684    * \param getter The callback to invoke when getting a property.
3685    * \param setter The callback to invoke when setting a property.
3686    * \param query The callback to invoke to check if an object has a property.
3687    * \param deleter The callback to invoke when deleting a property.
3688    * \param enumerator The callback to invoke to enumerate all the indexed
3689    *   properties of an object.
3690    * \param data A piece of data that will be passed to the callbacks
3691    *   whenever they are invoked.
3692    */
3693   void SetIndexedPropertyHandler(
3694       IndexedPropertyGetterCallback getter,
3695       IndexedPropertySetterCallback setter = 0,
3696       IndexedPropertyQueryCallback query = 0,
3697       IndexedPropertyDeleterCallback deleter = 0,
3698       IndexedPropertyEnumeratorCallback enumerator = 0,
3699       Handle<Value> data = Handle<Value>());
3700 
3701   /**
3702    * Sets the callback to be used when calling instances created from
3703    * this template as a function.  If no callback is set, instances
3704    * behave like normal JavaScript objects that cannot be called as a
3705    * function.
3706    */
3707   void SetCallAsFunctionHandler(FunctionCallback callback,
3708                                 Handle<Value> data = Handle<Value>());
3709 
3710   /**
3711    * Mark object instances of the template as undetectable.
3712    *
3713    * In many ways, undetectable objects behave as though they are not
3714    * there.  They behave like 'undefined' in conditionals and when
3715    * printed.  However, properties can be accessed and called as on
3716    * normal objects.
3717    */
3718   void MarkAsUndetectable();
3719 
3720   /**
3721    * Sets access check callbacks on the object template.
3722    *
3723    * When accessing properties on instances of this object template,
3724    * the access check callback will be called to determine whether or
3725    * not to allow cross-context access to the properties.
3726    * The last parameter specifies whether access checks are turned
3727    * on by default on instances. If access checks are off by default,
3728    * they can be turned on on individual instances by calling
3729    * Object::TurnOnAccessCheck().
3730    */
3731   void SetAccessCheckCallbacks(NamedSecurityCallback named_handler,
3732                                IndexedSecurityCallback indexed_handler,
3733                                Handle<Value> data = Handle<Value>(),
3734                                bool turned_on_by_default = true);
3735 
3736   /**
3737    * Gets the number of internal fields for objects generated from
3738    * this template.
3739    */
3740   int InternalFieldCount();
3741 
3742   /**
3743    * Sets the number of internal fields for objects generated from
3744    * this template.
3745    */
3746   void SetInternalFieldCount(int value);
3747 
3748  private:
3749   ObjectTemplate();
3750   static Local<ObjectTemplate> New(internal::Isolate* isolate,
3751                                    Handle<FunctionTemplate> constructor);
3752   friend class FunctionTemplate;
3753 };
3754 
3755 
3756 /**
3757  * A Signature specifies which receivers and arguments are valid
3758  * parameters to a function.
3759  */
3760 class V8_EXPORT Signature : public Data {
3761  public:
3762   static Local<Signature> New(Isolate* isolate,
3763                               Handle<FunctionTemplate> receiver =
3764                                   Handle<FunctionTemplate>(),
3765                               int argc = 0,
3766                               Handle<FunctionTemplate> argv[] = 0);
3767   V8_DEPRECATED("Will be removed",
3768                 static Local<Signature> New(Handle<FunctionTemplate> receiver =
3769                                                 Handle<FunctionTemplate>(),
3770                                             int argc = 0,
3771                                             Handle<FunctionTemplate> argv[] =
3772                                                 0));
3773 
3774  private:
3775   Signature();
3776 };
3777 
3778 
3779 /**
3780  * An AccessorSignature specifies which receivers are valid parameters
3781  * to an accessor callback.
3782  */
3783 class V8_EXPORT AccessorSignature : public Data {
3784  public:
3785   static Local<AccessorSignature> New(Isolate* isolate,
3786                                       Handle<FunctionTemplate> receiver =
3787                                           Handle<FunctionTemplate>());
3788   V8_DEPRECATED("Will be removed", static Local<AccessorSignature> New(
3789                                        Handle<FunctionTemplate> receiver =
3790                                            Handle<FunctionTemplate>()));
3791 
3792  private:
3793   AccessorSignature();
3794 };
3795 
3796 
3797 class V8_EXPORT DeclaredAccessorDescriptor : public Data {
3798  private:
3799   DeclaredAccessorDescriptor();
3800 };
3801 
3802 
3803 class V8_EXPORT ObjectOperationDescriptor : public Data {
3804  public:
3805   // This function is not yet stable and should not be used at this time.
3806   static Local<RawOperationDescriptor> NewInternalFieldDereference(
3807       Isolate* isolate,
3808       int internal_field);
3809  private:
3810   ObjectOperationDescriptor();
3811 };
3812 
3813 
3814 enum DeclaredAccessorDescriptorDataType {
3815     kDescriptorBoolType,
3816     kDescriptorInt8Type, kDescriptorUint8Type,
3817     kDescriptorInt16Type, kDescriptorUint16Type,
3818     kDescriptorInt32Type, kDescriptorUint32Type,
3819     kDescriptorFloatType, kDescriptorDoubleType
3820 };
3821 
3822 
3823 class V8_EXPORT RawOperationDescriptor : public Data {
3824  public:
3825   Local<DeclaredAccessorDescriptor> NewHandleDereference(Isolate* isolate);
3826   Local<RawOperationDescriptor> NewRawDereference(Isolate* isolate);
3827   Local<RawOperationDescriptor> NewRawShift(Isolate* isolate,
3828                                             int16_t byte_offset);
3829   Local<DeclaredAccessorDescriptor> NewPointerCompare(Isolate* isolate,
3830                                                       void* compare_value);
3831   Local<DeclaredAccessorDescriptor> NewPrimitiveValue(
3832       Isolate* isolate,
3833       DeclaredAccessorDescriptorDataType data_type,
3834       uint8_t bool_offset = 0);
3835   Local<DeclaredAccessorDescriptor> NewBitmaskCompare8(Isolate* isolate,
3836                                                        uint8_t bitmask,
3837                                                        uint8_t compare_value);
3838   Local<DeclaredAccessorDescriptor> NewBitmaskCompare16(
3839       Isolate* isolate,
3840       uint16_t bitmask,
3841       uint16_t compare_value);
3842   Local<DeclaredAccessorDescriptor> NewBitmaskCompare32(
3843       Isolate* isolate,
3844       uint32_t bitmask,
3845       uint32_t compare_value);
3846 
3847  private:
3848   RawOperationDescriptor();
3849 };
3850 
3851 
3852 /**
3853  * A utility for determining the type of objects based on the template
3854  * they were constructed from.
3855  */
3856 class V8_EXPORT TypeSwitch : public Data {
3857  public:
3858   static Local<TypeSwitch> New(Handle<FunctionTemplate> type);
3859   static Local<TypeSwitch> New(int argc, Handle<FunctionTemplate> types[]);
3860   int match(Handle<Value> value);
3861  private:
3862   TypeSwitch();
3863 };
3864 
3865 
3866 // --- Extensions ---
3867 
3868 class V8_EXPORT ExternalAsciiStringResourceImpl
3869     : public String::ExternalAsciiStringResource {
3870  public:
ExternalAsciiStringResourceImpl()3871   ExternalAsciiStringResourceImpl() : data_(0), length_(0) {}
ExternalAsciiStringResourceImpl(const char * data,size_t length)3872   ExternalAsciiStringResourceImpl(const char* data, size_t length)
3873       : data_(data), length_(length) {}
data()3874   const char* data() const { return data_; }
length()3875   size_t length() const { return length_; }
3876 
3877  private:
3878   const char* data_;
3879   size_t length_;
3880 };
3881 
3882 /**
3883  * Ignore
3884  */
3885 class V8_EXPORT Extension {  // NOLINT
3886  public:
3887   // Note that the strings passed into this constructor must live as long
3888   // as the Extension itself.
3889   Extension(const char* name,
3890             const char* source = 0,
3891             int dep_count = 0,
3892             const char** deps = 0,
3893             int source_length = -1);
~Extension()3894   virtual ~Extension() { }
GetNativeFunctionTemplate(v8::Isolate * isolate,v8::Handle<v8::String> name)3895   virtual v8::Handle<v8::FunctionTemplate> GetNativeFunctionTemplate(
3896       v8::Isolate* isolate, v8::Handle<v8::String> name) {
3897 #if defined(V8_DEPRECATION_WARNINGS)
3898     return v8::Handle<v8::FunctionTemplate>();
3899 #else
3900     return GetNativeFunction(name);
3901 #endif
3902   }
3903 
3904   V8_DEPRECATED("Will be removed",
3905                 virtual v8::Handle<v8::FunctionTemplate> GetNativeFunction(
3906                     v8::Handle<v8::String> name)) {
3907     return v8::Handle<v8::FunctionTemplate>();
3908   }
3909 
name()3910   const char* name() const { return name_; }
source_length()3911   size_t source_length() const { return source_length_; }
source()3912   const String::ExternalAsciiStringResource* source() const {
3913     return &source_; }
dependency_count()3914   int dependency_count() { return dep_count_; }
dependencies()3915   const char** dependencies() { return deps_; }
set_auto_enable(bool value)3916   void set_auto_enable(bool value) { auto_enable_ = value; }
auto_enable()3917   bool auto_enable() { return auto_enable_; }
3918 
3919  private:
3920   const char* name_;
3921   size_t source_length_;  // expected to initialize before source_
3922   ExternalAsciiStringResourceImpl source_;
3923   int dep_count_;
3924   const char** deps_;
3925   bool auto_enable_;
3926 
3927   // Disallow copying and assigning.
3928   Extension(const Extension&);
3929   void operator=(const Extension&);
3930 };
3931 
3932 
3933 void V8_EXPORT RegisterExtension(Extension* extension);
3934 
3935 
3936 /**
3937  * Ignore
3938  */
3939 class V8_EXPORT DeclareExtension {
3940  public:
DeclareExtension(Extension * extension)3941   V8_INLINE DeclareExtension(Extension* extension) {
3942     RegisterExtension(extension);
3943   }
3944 };
3945 
3946 
3947 // --- Statics ---
3948 
3949 V8_INLINE Handle<Primitive> Undefined(Isolate* isolate);
3950 V8_INLINE Handle<Primitive> Null(Isolate* isolate);
3951 V8_INLINE Handle<Boolean> True(Isolate* isolate);
3952 V8_INLINE Handle<Boolean> False(Isolate* isolate);
3953 
3954 V8_DEPRECATED("Will be removed", Handle<Primitive> V8_EXPORT Undefined());
3955 V8_DEPRECATED("Will be removed", Handle<Primitive> V8_EXPORT Null());
3956 V8_DEPRECATED("Will be removed", Handle<Boolean> V8_EXPORT True());
3957 V8_DEPRECATED("Will be removed", Handle<Boolean> V8_EXPORT False());
3958 
3959 
3960 /**
3961  * A set of constraints that specifies the limits of the runtime's memory use.
3962  * You must set the heap size before initializing the VM - the size cannot be
3963  * adjusted after the VM is initialized.
3964  *
3965  * If you are using threads then you should hold the V8::Locker lock while
3966  * setting the stack limit and you must set a non-default stack limit separately
3967  * for each thread.
3968  */
3969 class V8_EXPORT ResourceConstraints {
3970  public:
3971   ResourceConstraints();
3972 
3973   /**
3974    * Configures the constraints with reasonable default values based on the
3975    * capabilities of the current device the VM is running on.
3976    *
3977    * \param physical_memory The total amount of physical memory on the current
3978    *   device, in bytes.
3979    * \param number_of_processors The number of CPUs available on the current
3980    *   device.
3981    */
3982   void ConfigureDefaults(uint64_t physical_memory,
3983                          uint32_t number_of_processors);
3984   V8_DEPRECATED("Will be removed",
3985                 void ConfigureDefaults(uint64_t physical_memory));
3986 
max_young_space_size()3987   int max_young_space_size() const { return max_young_space_size_; }
set_max_young_space_size(int value)3988   void set_max_young_space_size(int value) { max_young_space_size_ = value; }
max_old_space_size()3989   int max_old_space_size() const { return max_old_space_size_; }
set_max_old_space_size(int value)3990   void set_max_old_space_size(int value) { max_old_space_size_ = value; }
max_executable_size()3991   int max_executable_size() const { return max_executable_size_; }
set_max_executable_size(int value)3992   void set_max_executable_size(int value) { max_executable_size_ = value; }
stack_limit()3993   uint32_t* stack_limit() const { return stack_limit_; }
3994   // Sets an address beyond which the VM's stack may not grow.
set_stack_limit(uint32_t * value)3995   void set_stack_limit(uint32_t* value) { stack_limit_ = value; }
max_available_threads()3996   int max_available_threads() const { return max_available_threads_; }
3997   // Set the number of threads available to V8, assuming at least 1.
set_max_available_threads(int value)3998   void set_max_available_threads(int value) {
3999     max_available_threads_ = value;
4000   }
4001 
4002  private:
4003   int max_young_space_size_;
4004   int max_old_space_size_;
4005   int max_executable_size_;
4006   uint32_t* stack_limit_;
4007   int max_available_threads_;
4008 };
4009 
4010 
4011 /**
4012  * Sets the given ResourceConstraints on the given Isolate.
4013  */
4014 bool V8_EXPORT SetResourceConstraints(Isolate* isolate,
4015                                       ResourceConstraints* constraints);
4016 
4017 
4018 // --- Exceptions ---
4019 
4020 
4021 typedef void (*FatalErrorCallback)(const char* location, const char* message);
4022 
4023 
4024 typedef void (*MessageCallback)(Handle<Message> message, Handle<Value> error);
4025 
4026 
4027 V8_DEPRECATED(
4028     "Use Isolate::ThrowException instead",
4029     Handle<Value> V8_EXPORT ThrowException(Handle<Value> exception));
4030 
4031 /**
4032  * Create new error objects by calling the corresponding error object
4033  * constructor with the message.
4034  */
4035 class V8_EXPORT Exception {
4036  public:
4037   static Local<Value> RangeError(Handle<String> message);
4038   static Local<Value> ReferenceError(Handle<String> message);
4039   static Local<Value> SyntaxError(Handle<String> message);
4040   static Local<Value> TypeError(Handle<String> message);
4041   static Local<Value> Error(Handle<String> message);
4042 };
4043 
4044 
4045 // --- Counters Callbacks ---
4046 
4047 typedef int* (*CounterLookupCallback)(const char* name);
4048 
4049 typedef void* (*CreateHistogramCallback)(const char* name,
4050                                          int min,
4051                                          int max,
4052                                          size_t buckets);
4053 
4054 typedef void (*AddHistogramSampleCallback)(void* histogram, int sample);
4055 
4056 // --- Memory Allocation Callback ---
4057   enum ObjectSpace {
4058     kObjectSpaceNewSpace = 1 << 0,
4059     kObjectSpaceOldPointerSpace = 1 << 1,
4060     kObjectSpaceOldDataSpace = 1 << 2,
4061     kObjectSpaceCodeSpace = 1 << 3,
4062     kObjectSpaceMapSpace = 1 << 4,
4063     kObjectSpaceLoSpace = 1 << 5,
4064 
4065     kObjectSpaceAll = kObjectSpaceNewSpace | kObjectSpaceOldPointerSpace |
4066       kObjectSpaceOldDataSpace | kObjectSpaceCodeSpace | kObjectSpaceMapSpace |
4067       kObjectSpaceLoSpace
4068   };
4069 
4070   enum AllocationAction {
4071     kAllocationActionAllocate = 1 << 0,
4072     kAllocationActionFree = 1 << 1,
4073     kAllocationActionAll = kAllocationActionAllocate | kAllocationActionFree
4074   };
4075 
4076 typedef void (*MemoryAllocationCallback)(ObjectSpace space,
4077                                          AllocationAction action,
4078                                          int size);
4079 
4080 // --- Leave Script Callback ---
4081 typedef void (*CallCompletedCallback)();
4082 
4083 // --- Failed Access Check Callback ---
4084 typedef void (*FailedAccessCheckCallback)(Local<Object> target,
4085                                           AccessType type,
4086                                           Local<Value> data);
4087 
4088 // --- AllowCodeGenerationFromStrings callbacks ---
4089 
4090 /**
4091  * Callback to check if code generation from strings is allowed. See
4092  * Context::AllowCodeGenerationFromStrings.
4093  */
4094 typedef bool (*AllowCodeGenerationFromStringsCallback)(Local<Context> context);
4095 
4096 // --- Garbage Collection Callbacks ---
4097 
4098 /**
4099  * Applications can register callback functions which will be called
4100  * before and after a garbage collection.  Allocations are not
4101  * allowed in the callback functions, you therefore cannot manipulate
4102  * objects (set or delete properties for example) since it is possible
4103  * such operations will result in the allocation of objects.
4104  */
4105 enum GCType {
4106   kGCTypeScavenge = 1 << 0,
4107   kGCTypeMarkSweepCompact = 1 << 1,
4108   kGCTypeAll = kGCTypeScavenge | kGCTypeMarkSweepCompact
4109 };
4110 
4111 enum GCCallbackFlags {
4112   kNoGCCallbackFlags = 0,
4113   kGCCallbackFlagCompacted = 1 << 0,
4114   kGCCallbackFlagConstructRetainedObjectInfos = 1 << 1
4115 };
4116 
4117 typedef void (*GCPrologueCallback)(GCType type, GCCallbackFlags flags);
4118 typedef void (*GCEpilogueCallback)(GCType type, GCCallbackFlags flags);
4119 
4120 
4121 /**
4122  * Collection of V8 heap information.
4123  *
4124  * Instances of this class can be passed to v8::V8::HeapStatistics to
4125  * get heap statistics from V8.
4126  */
4127 class V8_EXPORT HeapStatistics {
4128  public:
4129   HeapStatistics();
total_heap_size()4130   size_t total_heap_size() { return total_heap_size_; }
total_heap_size_executable()4131   size_t total_heap_size_executable() { return total_heap_size_executable_; }
total_physical_size()4132   size_t total_physical_size() { return total_physical_size_; }
used_heap_size()4133   size_t used_heap_size() { return used_heap_size_; }
heap_size_limit()4134   size_t heap_size_limit() { return heap_size_limit_; }
4135 
4136  private:
4137   size_t total_heap_size_;
4138   size_t total_heap_size_executable_;
4139   size_t total_physical_size_;
4140   size_t used_heap_size_;
4141   size_t heap_size_limit_;
4142 
4143   friend class V8;
4144   friend class Isolate;
4145 };
4146 
4147 
4148 class RetainedObjectInfo;
4149 
4150 /**
4151  * Isolate represents an isolated instance of the V8 engine.  V8
4152  * isolates have completely separate states.  Objects from one isolate
4153  * must not be used in other isolates.  When V8 is initialized a
4154  * default isolate is implicitly created and entered.  The embedder
4155  * can create additional isolates and use them in parallel in multiple
4156  * threads.  An isolate can be entered by at most one thread at any
4157  * given time.  The Locker/Unlocker API must be used to synchronize.
4158  */
4159 class V8_EXPORT Isolate {
4160  public:
4161   /**
4162    * Stack-allocated class which sets the isolate for all operations
4163    * executed within a local scope.
4164    */
4165   class V8_EXPORT Scope {
4166    public:
Scope(Isolate * isolate)4167     explicit Scope(Isolate* isolate) : isolate_(isolate) {
4168       isolate->Enter();
4169     }
4170 
~Scope()4171     ~Scope() { isolate_->Exit(); }
4172 
4173    private:
4174     Isolate* const isolate_;
4175 
4176     // Prevent copying of Scope objects.
4177     Scope(const Scope&);
4178     Scope& operator=(const Scope&);
4179   };
4180 
4181   /**
4182    * Creates a new isolate.  Does not change the currently entered
4183    * isolate.
4184    *
4185    * When an isolate is no longer used its resources should be freed
4186    * by calling Dispose().  Using the delete operator is not allowed.
4187    */
4188   static Isolate* New();
4189 
4190   /**
4191    * Returns the entered isolate for the current thread or NULL in
4192    * case there is no current isolate.
4193    */
4194   static Isolate* GetCurrent();
4195 
4196   /**
4197    * Methods below this point require holding a lock (using Locker) in
4198    * a multi-threaded environment.
4199    */
4200 
4201   /**
4202    * Sets this isolate as the entered one for the current thread.
4203    * Saves the previously entered one (if any), so that it can be
4204    * restored when exiting.  Re-entering an isolate is allowed.
4205    */
4206   void Enter();
4207 
4208   /**
4209    * Exits this isolate by restoring the previously entered one in the
4210    * current thread.  The isolate may still stay the same, if it was
4211    * entered more than once.
4212    *
4213    * Requires: this == Isolate::GetCurrent().
4214    */
4215   void Exit();
4216 
4217   /**
4218    * Disposes the isolate.  The isolate must not be entered by any
4219    * thread to be disposable.
4220    */
4221   void Dispose();
4222 
4223   V8_DEPRECATED("Use SetData(0, data) instead.",
4224                 V8_INLINE void SetData(void* data));
4225   V8_DEPRECATED("Use GetData(0) instead.", V8_INLINE void* GetData());
4226 
4227   /**
4228    * Associate embedder-specific data with the isolate. |slot| has to be
4229    * between 0 and GetNumberOfDataSlots() - 1.
4230    */
4231   V8_INLINE void SetData(uint32_t slot, void* data);
4232 
4233   /**
4234    * Retrieve embedder-specific data from the isolate.
4235    * Returns NULL if SetData has never been called for the given |slot|.
4236    */
4237   V8_INLINE void* GetData(uint32_t slot);
4238 
4239   /**
4240    * Returns the maximum number of available embedder data slots. Valid slots
4241    * are in the range of 0 - GetNumberOfDataSlots() - 1.
4242    */
4243   V8_INLINE static uint32_t GetNumberOfDataSlots();
4244 
4245   /**
4246    * Get statistics about the heap memory usage.
4247    */
4248   void GetHeapStatistics(HeapStatistics* heap_statistics);
4249 
4250   /**
4251    * Adjusts the amount of registered external memory. Used to give V8 an
4252    * indication of the amount of externally allocated memory that is kept alive
4253    * by JavaScript objects. V8 uses this to decide when to perform global
4254    * garbage collections. Registering externally allocated memory will trigger
4255    * global garbage collections more often than it would otherwise in an attempt
4256    * to garbage collect the JavaScript objects that keep the externally
4257    * allocated memory alive.
4258    *
4259    * \param change_in_bytes the change in externally allocated memory that is
4260    *   kept alive by JavaScript objects.
4261    * \returns the adjusted value.
4262    */
4263   int64_t AdjustAmountOfExternalAllocatedMemory(int64_t change_in_bytes);
4264 
4265   /**
4266    * Returns heap profiler for this isolate. Will return NULL until the isolate
4267    * is initialized.
4268    */
4269   HeapProfiler* GetHeapProfiler();
4270 
4271   /**
4272    * Returns CPU profiler for this isolate. Will return NULL unless the isolate
4273    * is initialized. It is the embedder's responsibility to stop all CPU
4274    * profiling activities if it has started any.
4275    */
4276   CpuProfiler* GetCpuProfiler();
4277 
4278   /** Returns true if this isolate has a current context. */
4279   bool InContext();
4280 
4281   /** Returns the context that is on the top of the stack. */
4282   Local<Context> GetCurrentContext();
4283 
4284   /**
4285    * Returns the context of the calling JavaScript code.  That is the
4286    * context of the top-most JavaScript frame.  If there are no
4287    * JavaScript frames an empty handle is returned.
4288    */
4289   Local<Context> GetCallingContext();
4290 
4291   /** Returns the last entered context. */
4292   Local<Context> GetEnteredContext();
4293 
4294   /**
4295    * Schedules an exception to be thrown when returning to JavaScript.  When an
4296    * exception has been scheduled it is illegal to invoke any JavaScript
4297    * operation; the caller must return immediately and only after the exception
4298    * has been handled does it become legal to invoke JavaScript operations.
4299    */
4300   Local<Value> ThrowException(Local<Value> exception);
4301 
4302   /**
4303    * Allows the host application to group objects together. If one
4304    * object in the group is alive, all objects in the group are alive.
4305    * After each garbage collection, object groups are removed. It is
4306    * intended to be used in the before-garbage-collection callback
4307    * function, for instance to simulate DOM tree connections among JS
4308    * wrapper objects. Object groups for all dependent handles need to
4309    * be provided for kGCTypeMarkSweepCompact collections, for all other
4310    * garbage collection types it is sufficient to provide object groups
4311    * for partially dependent handles only.
4312    */
4313   template<typename T> void SetObjectGroupId(const Persistent<T>& object,
4314                                              UniqueId id);
4315 
4316   /**
4317    * Allows the host application to declare implicit references from an object
4318    * group to an object. If the objects of the object group are alive, the child
4319    * object is alive too. After each garbage collection, all implicit references
4320    * are removed. It is intended to be used in the before-garbage-collection
4321    * callback function.
4322    */
4323   template<typename T> void SetReferenceFromGroup(UniqueId id,
4324                                                   const Persistent<T>& child);
4325 
4326   /**
4327    * Allows the host application to declare implicit references from an object
4328    * to another object. If the parent object is alive, the child object is alive
4329    * too. After each garbage collection, all implicit references are removed. It
4330    * is intended to be used in the before-garbage-collection callback function.
4331    */
4332   template<typename T, typename S>
4333   void SetReference(const Persistent<T>& parent, const Persistent<S>& child);
4334 
4335   typedef void (*GCPrologueCallback)(Isolate* isolate,
4336                                      GCType type,
4337                                      GCCallbackFlags flags);
4338   typedef void (*GCEpilogueCallback)(Isolate* isolate,
4339                                      GCType type,
4340                                      GCCallbackFlags flags);
4341 
4342   /**
4343    * Enables the host application to receive a notification before a
4344    * garbage collection.  Allocations are not allowed in the
4345    * callback function, you therefore cannot manipulate objects (set
4346    * or delete properties for example) since it is possible such
4347    * operations will result in the allocation of objects. It is possible
4348    * to specify the GCType filter for your callback. But it is not possible to
4349    * register the same callback function two times with different
4350    * GCType filters.
4351    */
4352   void AddGCPrologueCallback(
4353       GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
4354 
4355   /**
4356    * This function removes callback which was installed by
4357    * AddGCPrologueCallback function.
4358    */
4359   void RemoveGCPrologueCallback(GCPrologueCallback callback);
4360 
4361   /**
4362    * Enables the host application to receive a notification after a
4363    * garbage collection.  Allocations are not allowed in the
4364    * callback function, you therefore cannot manipulate objects (set
4365    * or delete properties for example) since it is possible such
4366    * operations will result in the allocation of objects. It is possible
4367    * to specify the GCType filter for your callback. But it is not possible to
4368    * register the same callback function two times with different
4369    * GCType filters.
4370    */
4371   void AddGCEpilogueCallback(
4372       GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
4373 
4374   /**
4375    * This function removes callback which was installed by
4376    * AddGCEpilogueCallback function.
4377    */
4378   void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
4379 
4380  private:
4381   Isolate();
4382   Isolate(const Isolate&);
4383   ~Isolate();
4384   Isolate& operator=(const Isolate&);
4385   void* operator new(size_t size);
4386   void operator delete(void*, size_t);
4387 
4388   void SetObjectGroupId(internal::Object** object, UniqueId id);
4389   void SetReferenceFromGroup(UniqueId id, internal::Object** object);
4390   void SetReference(internal::Object** parent, internal::Object** child);
4391 };
4392 
4393 class V8_EXPORT StartupData {
4394  public:
4395   enum CompressionAlgorithm {
4396     kUncompressed,
4397     kBZip2
4398   };
4399 
4400   const char* data;
4401   int compressed_size;
4402   int raw_size;
4403 };
4404 
4405 
4406 /**
4407  * A helper class for driving V8 startup data decompression.  It is based on
4408  * "CompressedStartupData" API functions from the V8 class.  It isn't mandatory
4409  * for an embedder to use this class, instead, API functions can be used
4410  * directly.
4411  *
4412  * For an example of the class usage, see the "shell.cc" sample application.
4413  */
4414 class V8_EXPORT StartupDataDecompressor {  // NOLINT
4415  public:
4416   StartupDataDecompressor();
4417   virtual ~StartupDataDecompressor();
4418   int Decompress();
4419 
4420  protected:
4421   virtual int DecompressData(char* raw_data,
4422                              int* raw_data_size,
4423                              const char* compressed_data,
4424                              int compressed_data_size) = 0;
4425 
4426  private:
4427   char** raw_data;
4428 };
4429 
4430 
4431 /**
4432  * EntropySource is used as a callback function when v8 needs a source
4433  * of entropy.
4434  */
4435 typedef bool (*EntropySource)(unsigned char* buffer, size_t length);
4436 
4437 
4438 /**
4439  * ReturnAddressLocationResolver is used as a callback function when v8 is
4440  * resolving the location of a return address on the stack. Profilers that
4441  * change the return address on the stack can use this to resolve the stack
4442  * location to whereever the profiler stashed the original return address.
4443  *
4444  * \param return_addr_location points to a location on stack where a machine
4445  *    return address resides.
4446  * \returns either return_addr_location, or else a pointer to the profiler's
4447  *    copy of the original return address.
4448  *
4449  * \note the resolver function must not cause garbage collection.
4450  */
4451 typedef uintptr_t (*ReturnAddressLocationResolver)(
4452     uintptr_t return_addr_location);
4453 
4454 
4455 /**
4456  * FunctionEntryHook is the type of the profile entry hook called at entry to
4457  * any generated function when function-level profiling is enabled.
4458  *
4459  * \param function the address of the function that's being entered.
4460  * \param return_addr_location points to a location on stack where the machine
4461  *    return address resides. This can be used to identify the caller of
4462  *    \p function, and/or modified to divert execution when \p function exits.
4463  *
4464  * \note the entry hook must not cause garbage collection.
4465  */
4466 typedef void (*FunctionEntryHook)(uintptr_t function,
4467                                   uintptr_t return_addr_location);
4468 
4469 
4470 /**
4471  * A JIT code event is issued each time code is added, moved or removed.
4472  *
4473  * \note removal events are not currently issued.
4474  */
4475 struct JitCodeEvent {
4476   enum EventType {
4477     CODE_ADDED,
4478     CODE_MOVED,
4479     CODE_REMOVED,
4480     CODE_ADD_LINE_POS_INFO,
4481     CODE_START_LINE_INFO_RECORDING,
4482     CODE_END_LINE_INFO_RECORDING
4483   };
4484   // Definition of the code position type. The "POSITION" type means the place
4485   // in the source code which are of interest when making stack traces to
4486   // pin-point the source location of a stack frame as close as possible.
4487   // The "STATEMENT_POSITION" means the place at the beginning of each
4488   // statement, and is used to indicate possible break locations.
4489   enum PositionType {
4490     POSITION,
4491     STATEMENT_POSITION
4492   };
4493 
4494   // Type of event.
4495   EventType type;
4496   // Start of the instructions.
4497   void* code_start;
4498   // Size of the instructions.
4499   size_t code_len;
4500   // Script info for CODE_ADDED event.
4501   Handle<Script> script;
4502   // User-defined data for *_LINE_INFO_* event. It's used to hold the source
4503   // code line information which is returned from the
4504   // CODE_START_LINE_INFO_RECORDING event. And it's passed to subsequent
4505   // CODE_ADD_LINE_POS_INFO and CODE_END_LINE_INFO_RECORDING events.
4506   void* user_data;
4507 
4508   struct name_t {
4509     // Name of the object associated with the code, note that the string is not
4510     // zero-terminated.
4511     const char* str;
4512     // Number of chars in str.
4513     size_t len;
4514   };
4515 
4516   struct line_info_t {
4517     // PC offset
4518     size_t offset;
4519     // Code postion
4520     size_t pos;
4521     // The position type.
4522     PositionType position_type;
4523   };
4524 
4525   union {
4526     // Only valid for CODE_ADDED.
4527     struct name_t name;
4528 
4529     // Only valid for CODE_ADD_LINE_POS_INFO
4530     struct line_info_t line_info;
4531 
4532     // New location of instructions. Only valid for CODE_MOVED.
4533     void* new_code_start;
4534   };
4535 };
4536 
4537 /**
4538  * Option flags passed to the SetJitCodeEventHandler function.
4539  */
4540 enum JitCodeEventOptions {
4541   kJitCodeEventDefault = 0,
4542   // Generate callbacks for already existent code.
4543   kJitCodeEventEnumExisting = 1
4544 };
4545 
4546 
4547 /**
4548  * Callback function passed to SetJitCodeEventHandler.
4549  *
4550  * \param event code add, move or removal event.
4551  */
4552 typedef void (*JitCodeEventHandler)(const JitCodeEvent* event);
4553 
4554 
4555 /**
4556  * Interface for iterating through all external resources in the heap.
4557  */
4558 class V8_EXPORT ExternalResourceVisitor {  // NOLINT
4559  public:
~ExternalResourceVisitor()4560   virtual ~ExternalResourceVisitor() {}
VisitExternalString(Handle<String> string)4561   virtual void VisitExternalString(Handle<String> string) {}
4562 };
4563 
4564 
4565 /**
4566  * Interface for iterating through all the persistent handles in the heap.
4567  */
4568 class V8_EXPORT PersistentHandleVisitor {  // NOLINT
4569  public:
~PersistentHandleVisitor()4570   virtual ~PersistentHandleVisitor() {}
VisitPersistentHandle(Persistent<Value> * value,uint16_t class_id)4571   virtual void VisitPersistentHandle(Persistent<Value>* value,
4572                                      uint16_t class_id) {}
4573 };
4574 
4575 
4576 /**
4577  * Asserts that no action is performed that could cause a handle's value
4578  * to be modified. Useful when otherwise unsafe handle operations need to
4579  * be performed.
4580  */
4581 class V8_EXPORT AssertNoGCScope {
4582 #ifndef DEBUG
4583   // TODO(yangguo): remove isolate argument.
AssertNoGCScope(Isolate * isolate)4584   V8_INLINE AssertNoGCScope(Isolate* isolate) {}
4585 #else
4586   AssertNoGCScope(Isolate* isolate);
4587   ~AssertNoGCScope();
4588  private:
4589   void* disallow_heap_allocation_;
4590 #endif
4591 };
4592 
4593 
4594 /**
4595  * Container class for static utility functions.
4596  */
4597 class V8_EXPORT V8 {
4598  public:
4599   /** Set the callback to invoke in case of fatal errors. */
4600   static void SetFatalErrorHandler(FatalErrorCallback that);
4601 
4602   /**
4603    * Set the callback to invoke to check if code generation from
4604    * strings should be allowed.
4605    */
4606   static void SetAllowCodeGenerationFromStringsCallback(
4607       AllowCodeGenerationFromStringsCallback that);
4608 
4609   /**
4610    * Set allocator to use for ArrayBuffer memory.
4611    * The allocator should be set only once. The allocator should be set
4612    * before any code tha uses ArrayBuffers is executed.
4613    * This allocator is used in all isolates.
4614    */
4615   static void SetArrayBufferAllocator(ArrayBuffer::Allocator* allocator);
4616 
4617   /**
4618    * Ignore out-of-memory exceptions.
4619    *
4620    * V8 running out of memory is treated as a fatal error by default.
4621    * This means that the fatal error handler is called and that V8 is
4622    * terminated.
4623    *
4624    * IgnoreOutOfMemoryException can be used to not treat an
4625    * out-of-memory situation as a fatal error.  This way, the contexts
4626    * that did not cause the out of memory problem might be able to
4627    * continue execution.
4628    */
4629   static void IgnoreOutOfMemoryException();
4630 
4631   /**
4632    * Check if V8 is dead and therefore unusable.  This is the case after
4633    * fatal errors such as out-of-memory situations.
4634    */
4635   static bool IsDead();
4636 
4637   /**
4638    * The following 4 functions are to be used when V8 is built with
4639    * the 'compress_startup_data' flag enabled. In this case, the
4640    * embedder must decompress startup data prior to initializing V8.
4641    *
4642    * This is how interaction with V8 should look like:
4643    *   int compressed_data_count = v8::V8::GetCompressedStartupDataCount();
4644    *   v8::StartupData* compressed_data =
4645    *     new v8::StartupData[compressed_data_count];
4646    *   v8::V8::GetCompressedStartupData(compressed_data);
4647    *   ... decompress data (compressed_data can be updated in-place) ...
4648    *   v8::V8::SetDecompressedStartupData(compressed_data);
4649    *   ... now V8 can be initialized
4650    *   ... make sure the decompressed data stays valid until V8 shutdown
4651    *
4652    * A helper class StartupDataDecompressor is provided. It implements
4653    * the protocol of the interaction described above, and can be used in
4654    * most cases instead of calling these API functions directly.
4655    */
4656   static StartupData::CompressionAlgorithm GetCompressedStartupDataAlgorithm();
4657   static int GetCompressedStartupDataCount();
4658   static void GetCompressedStartupData(StartupData* compressed_data);
4659   static void SetDecompressedStartupData(StartupData* decompressed_data);
4660 
4661   /**
4662    * Adds a message listener.
4663    *
4664    * The same message listener can be added more than once and in that
4665    * case it will be called more than once for each message.
4666    *
4667    * If data is specified, it will be passed to the callback when it is called.
4668    * Otherwise, the exception object will be passed to the callback instead.
4669    */
4670   static bool AddMessageListener(MessageCallback that,
4671                                  Handle<Value> data = Handle<Value>());
4672 
4673   /**
4674    * Remove all message listeners from the specified callback function.
4675    */
4676   static void RemoveMessageListeners(MessageCallback that);
4677 
4678   /**
4679    * Tells V8 to capture current stack trace when uncaught exception occurs
4680    * and report it to the message listeners. The option is off by default.
4681    */
4682   static void SetCaptureStackTraceForUncaughtExceptions(
4683       bool capture,
4684       int frame_limit = 10,
4685       StackTrace::StackTraceOptions options = StackTrace::kOverview);
4686 
4687   /**
4688    * Sets V8 flags from a string.
4689    */
4690   static void SetFlagsFromString(const char* str, int length);
4691 
4692   /**
4693    * Sets V8 flags from the command line.
4694    */
4695   static void SetFlagsFromCommandLine(int* argc,
4696                                       char** argv,
4697                                       bool remove_flags);
4698 
4699   /** Get the version string. */
4700   static const char* GetVersion();
4701 
4702   /**
4703    * Enables the host application to provide a mechanism for recording
4704    * statistics counters.
4705    */
4706   static void SetCounterFunction(CounterLookupCallback);
4707 
4708   /**
4709    * Enables the host application to provide a mechanism for recording
4710    * histograms. The CreateHistogram function returns a
4711    * histogram which will later be passed to the AddHistogramSample
4712    * function.
4713    */
4714   static void SetCreateHistogramFunction(CreateHistogramCallback);
4715   static void SetAddHistogramSampleFunction(AddHistogramSampleCallback);
4716 
4717   /** Callback function for reporting failed access checks.*/
4718   static void SetFailedAccessCheckCallbackFunction(FailedAccessCheckCallback);
4719 
4720   /**
4721    * Enables the host application to receive a notification before a
4722    * garbage collection.  Allocations are not allowed in the
4723    * callback function, you therefore cannot manipulate objects (set
4724    * or delete properties for example) since it is possible such
4725    * operations will result in the allocation of objects. It is possible
4726    * to specify the GCType filter for your callback. But it is not possible to
4727    * register the same callback function two times with different
4728    * GCType filters.
4729    */
4730   static void AddGCPrologueCallback(
4731       GCPrologueCallback callback, GCType gc_type_filter = kGCTypeAll);
4732 
4733   /**
4734    * This function removes callback which was installed by
4735    * AddGCPrologueCallback function.
4736    */
4737   static void RemoveGCPrologueCallback(GCPrologueCallback callback);
4738 
4739   /**
4740    * Enables the host application to receive a notification after a
4741    * garbage collection.  Allocations are not allowed in the
4742    * callback function, you therefore cannot manipulate objects (set
4743    * or delete properties for example) since it is possible such
4744    * operations will result in the allocation of objects. It is possible
4745    * to specify the GCType filter for your callback. But it is not possible to
4746    * register the same callback function two times with different
4747    * GCType filters.
4748    */
4749   static void AddGCEpilogueCallback(
4750       GCEpilogueCallback callback, GCType gc_type_filter = kGCTypeAll);
4751 
4752   /**
4753    * This function removes callback which was installed by
4754    * AddGCEpilogueCallback function.
4755    */
4756   static void RemoveGCEpilogueCallback(GCEpilogueCallback callback);
4757 
4758   /**
4759    * Enables the host application to provide a mechanism to be notified
4760    * and perform custom logging when V8 Allocates Executable Memory.
4761    */
4762   static void AddMemoryAllocationCallback(MemoryAllocationCallback callback,
4763                                           ObjectSpace space,
4764                                           AllocationAction action);
4765 
4766   /**
4767    * Removes callback that was installed by AddMemoryAllocationCallback.
4768    */
4769   static void RemoveMemoryAllocationCallback(MemoryAllocationCallback callback);
4770 
4771   /**
4772    * Adds a callback to notify the host application when a script finished
4773    * running.  If a script re-enters the runtime during executing, the
4774    * CallCompletedCallback is only invoked when the outer-most script
4775    * execution ends.  Executing scripts inside the callback do not trigger
4776    * further callbacks.
4777    */
4778   static void AddCallCompletedCallback(CallCompletedCallback callback);
4779 
4780   /**
4781    * Removes callback that was installed by AddCallCompletedCallback.
4782    */
4783   static void RemoveCallCompletedCallback(CallCompletedCallback callback);
4784 
4785   /**
4786    * Initializes from snapshot if possible. Otherwise, attempts to
4787    * initialize from scratch.  This function is called implicitly if
4788    * you use the API without calling it first.
4789    */
4790   static bool Initialize();
4791 
4792   /**
4793    * Allows the host application to provide a callback which can be used
4794    * as a source of entropy for random number generators.
4795    */
4796   static void SetEntropySource(EntropySource source);
4797 
4798   /**
4799    * Allows the host application to provide a callback that allows v8 to
4800    * cooperate with a profiler that rewrites return addresses on stack.
4801    */
4802   static void SetReturnAddressLocationResolver(
4803       ReturnAddressLocationResolver return_address_resolver);
4804 
4805   /**
4806    * Allows the host application to provide the address of a function that's
4807    * invoked on entry to every V8-generated function.
4808    * Note that \p entry_hook is invoked at the very start of each
4809    * generated function.
4810    *
4811    * \param isolate the isolate to operate on.
4812    * \param entry_hook a function that will be invoked on entry to every
4813    *   V8-generated function.
4814    * \returns true on success on supported platforms, false on failure.
4815    * \note Setting an entry hook can only be done very early in an isolates
4816    *   lifetime, and once set, the entry hook cannot be revoked.
4817    */
4818   static bool SetFunctionEntryHook(Isolate* isolate,
4819                                    FunctionEntryHook entry_hook);
4820 
4821   /**
4822    * Allows the host application to provide the address of a function that is
4823    * notified each time code is added, moved or removed.
4824    *
4825    * \param options options for the JIT code event handler.
4826    * \param event_handler the JIT code event handler, which will be invoked
4827    *     each time code is added, moved or removed.
4828    * \note \p event_handler won't get notified of existent code.
4829    * \note since code removal notifications are not currently issued, the
4830    *     \p event_handler may get notifications of code that overlaps earlier
4831    *     code notifications. This happens when code areas are reused, and the
4832    *     earlier overlapping code areas should therefore be discarded.
4833    * \note the events passed to \p event_handler and the strings they point to
4834    *     are not guaranteed to live past each call. The \p event_handler must
4835    *     copy strings and other parameters it needs to keep around.
4836    * \note the set of events declared in JitCodeEvent::EventType is expected to
4837    *     grow over time, and the JitCodeEvent structure is expected to accrue
4838    *     new members. The \p event_handler function must ignore event codes
4839    *     it does not recognize to maintain future compatibility.
4840    */
4841   static void SetJitCodeEventHandler(JitCodeEventOptions options,
4842                                      JitCodeEventHandler event_handler);
4843 
4844   V8_DEPRECATED(
4845       "Use Isolate::AdjustAmountOfExternalAllocatedMemory instead",
4846       static int64_t AdjustAmountOfExternalAllocatedMemory(
4847           int64_t change_in_bytes));
4848 
4849   /**
4850    * Forcefully terminate the current thread of JavaScript execution
4851    * in the given isolate. If no isolate is provided, the default
4852    * isolate is used.
4853    *
4854    * This method can be used by any thread even if that thread has not
4855    * acquired the V8 lock with a Locker object.
4856    *
4857    * \param isolate The isolate in which to terminate the current JS execution.
4858    */
4859   static void TerminateExecution(Isolate* isolate = NULL);
4860 
4861   /**
4862    * Is V8 terminating JavaScript execution.
4863    *
4864    * Returns true if JavaScript execution is currently terminating
4865    * because of a call to TerminateExecution.  In that case there are
4866    * still JavaScript frames on the stack and the termination
4867    * exception is still active.
4868    *
4869    * \param isolate The isolate in which to check.
4870    */
4871   static bool IsExecutionTerminating(Isolate* isolate = NULL);
4872 
4873   /**
4874    * Resume execution capability in the given isolate, whose execution
4875    * was previously forcefully terminated using TerminateExecution().
4876    *
4877    * When execution is forcefully terminated using TerminateExecution(),
4878    * the isolate can not resume execution until all JavaScript frames
4879    * have propagated the uncatchable exception which is generated.  This
4880    * method allows the program embedding the engine to handle the
4881    * termination event and resume execution capability, even if
4882    * JavaScript frames remain on the stack.
4883    *
4884    * This method can be used by any thread even if that thread has not
4885    * acquired the V8 lock with a Locker object.
4886    *
4887    * \param isolate The isolate in which to resume execution capability.
4888    */
4889   static void CancelTerminateExecution(Isolate* isolate);
4890 
4891   /**
4892    * Releases any resources used by v8 and stops any utility threads
4893    * that may be running.  Note that disposing v8 is permanent, it
4894    * cannot be reinitialized.
4895    *
4896    * It should generally not be necessary to dispose v8 before exiting
4897    * a process, this should happen automatically.  It is only necessary
4898    * to use if the process needs the resources taken up by v8.
4899    */
4900   static bool Dispose();
4901 
4902   /**
4903    * Iterates through all external resources referenced from current isolate
4904    * heap.  GC is not invoked prior to iterating, therefore there is no
4905    * guarantee that visited objects are still alive.
4906    */
4907   static void VisitExternalResources(ExternalResourceVisitor* visitor);
4908 
4909   /**
4910    * Iterates through all the persistent handles in the current isolate's heap
4911    * that have class_ids.
4912    */
4913   static void VisitHandlesWithClassIds(PersistentHandleVisitor* visitor);
4914 
4915   /**
4916    * Iterates through all the persistent handles in the current isolate's heap
4917    * that have class_ids and are candidates to be marked as partially dependent
4918    * handles. This will visit handles to young objects created since the last
4919    * garbage collection but is free to visit an arbitrary superset of these
4920    * objects.
4921    */
4922   static void VisitHandlesForPartialDependence(
4923       Isolate* isolate, PersistentHandleVisitor* visitor);
4924 
4925   /**
4926    * Optional notification that the embedder is idle.
4927    * V8 uses the notification to reduce memory footprint.
4928    * This call can be used repeatedly if the embedder remains idle.
4929    * Returns true if the embedder should stop calling IdleNotification
4930    * until real work has been done.  This indicates that V8 has done
4931    * as much cleanup as it will be able to do.
4932    *
4933    * The hint argument specifies the amount of work to be done in the function
4934    * on scale from 1 to 1000. There is no guarantee that the actual work will
4935    * match the hint.
4936    */
4937   static bool IdleNotification(int hint = 1000);
4938 
4939   /**
4940    * Optional notification that the system is running low on memory.
4941    * V8 uses these notifications to attempt to free memory.
4942    */
4943   static void LowMemoryNotification();
4944 
4945   /**
4946    * Optional notification that a context has been disposed. V8 uses
4947    * these notifications to guide the GC heuristic. Returns the number
4948    * of context disposals - including this one - since the last time
4949    * V8 had a chance to clean up.
4950    */
4951   static int ContextDisposedNotification();
4952 
4953   /**
4954    * Initialize the ICU library bundled with V8. The embedder should only
4955    * invoke this method when using the bundled ICU. Returns true on success.
4956    */
4957   static bool InitializeICU();
4958 
4959   /**
4960    * Sets the v8::Platform to use. This should be invoked before V8 is
4961    * initialized.
4962    */
4963   static void InitializePlatform(Platform* platform);
4964 
4965   /**
4966    * Clears all references to the v8::Platform. This should be invoked after
4967    * V8 was disposed.
4968    */
4969   static void ShutdownPlatform();
4970 
4971  private:
4972   V8();
4973 
4974   static internal::Object** GlobalizeReference(internal::Isolate* isolate,
4975                                                internal::Object** handle);
4976   static internal::Object** CopyPersistent(internal::Object** handle);
4977   static void DisposeGlobal(internal::Object** global_handle);
4978   typedef WeakReferenceCallbacks<Value, void>::Revivable RevivableCallback;
4979   typedef WeakCallbackData<Value, void>::Callback WeakCallback;
4980   static void MakeWeak(internal::Object** global_handle,
4981                        void* data,
4982                        WeakCallback weak_callback,
4983                        RevivableCallback weak_reference_callback);
4984   static void ClearWeak(internal::Object** global_handle);
4985   static void Eternalize(Isolate* isolate,
4986                          Value* handle,
4987                          int* index);
4988   static Local<Value> GetEternal(Isolate* isolate, int index);
4989 
4990   template <class T> friend class Handle;
4991   template <class T> friend class Local;
4992   template <class T> friend class Eternal;
4993   template <class T> friend class PersistentBase;
4994   template <class T, class M> friend class Persistent;
4995   friend class Context;
4996 };
4997 
4998 
4999 /**
5000  * An external exception handler.
5001  */
5002 class V8_EXPORT TryCatch {
5003  public:
5004   /**
5005    * Creates a new try/catch block and registers it with v8.  Note that
5006    * all TryCatch blocks should be stack allocated because the memory
5007    * location itself is compared against JavaScript try/catch blocks.
5008    */
5009   TryCatch();
5010 
5011   /**
5012    * Unregisters and deletes this try/catch block.
5013    */
5014   ~TryCatch();
5015 
5016   /**
5017    * Returns true if an exception has been caught by this try/catch block.
5018    */
5019   bool HasCaught() const;
5020 
5021   /**
5022    * For certain types of exceptions, it makes no sense to continue execution.
5023    *
5024    * If CanContinue returns false, the correct action is to perform any C++
5025    * cleanup needed and then return.  If CanContinue returns false and
5026    * HasTerminated returns true, it is possible to call
5027    * CancelTerminateExecution in order to continue calling into the engine.
5028    */
5029   bool CanContinue() const;
5030 
5031   /**
5032    * Returns true if an exception has been caught due to script execution
5033    * being terminated.
5034    *
5035    * There is no JavaScript representation of an execution termination
5036    * exception.  Such exceptions are thrown when the TerminateExecution
5037    * methods are called to terminate a long-running script.
5038    *
5039    * If such an exception has been thrown, HasTerminated will return true,
5040    * indicating that it is possible to call CancelTerminateExecution in order
5041    * to continue calling into the engine.
5042    */
5043   bool HasTerminated() const;
5044 
5045   /**
5046    * Throws the exception caught by this TryCatch in a way that avoids
5047    * it being caught again by this same TryCatch.  As with ThrowException
5048    * it is illegal to execute any JavaScript operations after calling
5049    * ReThrow; the caller must return immediately to where the exception
5050    * is caught.
5051    */
5052   Handle<Value> ReThrow();
5053 
5054   /**
5055    * Returns the exception caught by this try/catch block.  If no exception has
5056    * been caught an empty handle is returned.
5057    *
5058    * The returned handle is valid until this TryCatch block has been destroyed.
5059    */
5060   Local<Value> Exception() const;
5061 
5062   /**
5063    * Returns the .stack property of the thrown object.  If no .stack
5064    * property is present an empty handle is returned.
5065    */
5066   Local<Value> StackTrace() const;
5067 
5068   /**
5069    * Returns the message associated with this exception.  If there is
5070    * no message associated an empty handle is returned.
5071    *
5072    * The returned handle is valid until this TryCatch block has been
5073    * destroyed.
5074    */
5075   Local<v8::Message> Message() const;
5076 
5077   /**
5078    * Clears any exceptions that may have been caught by this try/catch block.
5079    * After this method has been called, HasCaught() will return false.
5080    *
5081    * It is not necessary to clear a try/catch block before using it again; if
5082    * another exception is thrown the previously caught exception will just be
5083    * overwritten.  However, it is often a good idea since it makes it easier
5084    * to determine which operation threw a given exception.
5085    */
5086   void Reset();
5087 
5088   /**
5089    * Set verbosity of the external exception handler.
5090    *
5091    * By default, exceptions that are caught by an external exception
5092    * handler are not reported.  Call SetVerbose with true on an
5093    * external exception handler to have exceptions caught by the
5094    * handler reported as if they were not caught.
5095    */
5096   void SetVerbose(bool value);
5097 
5098   /**
5099    * Set whether or not this TryCatch should capture a Message object
5100    * which holds source information about where the exception
5101    * occurred.  True by default.
5102    */
5103   void SetCaptureMessage(bool value);
5104 
5105  private:
5106   // Make it hard to create heap-allocated TryCatch blocks.
5107   TryCatch(const TryCatch&);
5108   void operator=(const TryCatch&);
5109   void* operator new(size_t size);
5110   void operator delete(void*, size_t);
5111 
5112   v8::internal::Isolate* isolate_;
5113   void* next_;
5114   void* exception_;
5115   void* message_obj_;
5116   void* message_script_;
5117   int message_start_pos_;
5118   int message_end_pos_;
5119   bool is_verbose_ : 1;
5120   bool can_continue_ : 1;
5121   bool capture_message_ : 1;
5122   bool rethrow_ : 1;
5123   bool has_terminated_ : 1;
5124 
5125   friend class v8::internal::Isolate;
5126 };
5127 
5128 
5129 // --- Context ---
5130 
5131 
5132 /**
5133  * Ignore
5134  */
5135 class V8_EXPORT ExtensionConfiguration {
5136  public:
ExtensionConfiguration(int name_count,const char * names[])5137   ExtensionConfiguration(int name_count, const char* names[])
5138       : name_count_(name_count), names_(names) { }
5139  private:
5140   friend class ImplementationUtilities;
5141   int name_count_;
5142   const char** names_;
5143 };
5144 
5145 
5146 /**
5147  * A sandboxed execution context with its own set of built-in objects
5148  * and functions.
5149  */
5150 class V8_EXPORT Context {
5151  public:
5152   /**
5153    * Returns the global proxy object.
5154    *
5155    * Global proxy object is a thin wrapper whose prototype points to actual
5156    * context's global object with the properties like Object, etc. This is done
5157    * that way for security reasons (for more details see
5158    * https://wiki.mozilla.org/Gecko:SplitWindow).
5159    *
5160    * Please note that changes to global proxy object prototype most probably
5161    * would break VM---v8 expects only global object as a prototype of global
5162    * proxy object.
5163    */
5164   Local<Object> Global();
5165 
5166   /**
5167    * Detaches the global object from its context before
5168    * the global object can be reused to create a new context.
5169    */
5170   void DetachGlobal();
5171 
5172   /**
5173    * Creates a new context and returns a handle to the newly allocated
5174    * context.
5175    *
5176    * \param isolate The isolate in which to create the context.
5177    *
5178    * \param extensions An optional extension configuration containing
5179    * the extensions to be installed in the newly created context.
5180    *
5181    * \param global_template An optional object template from which the
5182    * global object for the newly created context will be created.
5183    *
5184    * \param global_object An optional global object to be reused for
5185    * the newly created context. This global object must have been
5186    * created by a previous call to Context::New with the same global
5187    * template. The state of the global object will be completely reset
5188    * and only object identify will remain.
5189    */
5190   static Local<Context> New(
5191       Isolate* isolate,
5192       ExtensionConfiguration* extensions = NULL,
5193       Handle<ObjectTemplate> global_template = Handle<ObjectTemplate>(),
5194       Handle<Value> global_object = Handle<Value>());
5195 
5196   V8_DEPRECATED("Use Isolate::GetEnteredContext instead",
5197                 static Local<Context> GetEntered());
5198 
5199   V8_DEPRECATED("Use Isolate::GetCurrentContext instead",
5200                 static Local<Context> GetCurrent());
5201 
5202   V8_DEPRECATED("Use Isolate::GetCallingContext instead",
5203                 static Local<Context> GetCalling());
5204 
5205   /**
5206    * Sets the security token for the context.  To access an object in
5207    * another context, the security tokens must match.
5208    */
5209   void SetSecurityToken(Handle<Value> token);
5210 
5211   /** Restores the security token to the default value. */
5212   void UseDefaultSecurityToken();
5213 
5214   /** Returns the security token of this context.*/
5215   Handle<Value> GetSecurityToken();
5216 
5217   /**
5218    * Enter this context.  After entering a context, all code compiled
5219    * and run is compiled and run in this context.  If another context
5220    * is already entered, this old context is saved so it can be
5221    * restored when the new context is exited.
5222    */
5223   void Enter();
5224 
5225   /**
5226    * Exit this context.  Exiting the current context restores the
5227    * context that was in place when entering the current context.
5228    */
5229   void Exit();
5230 
5231   /** Returns true if the context has experienced an out of memory situation. */
5232   bool HasOutOfMemoryException();
5233 
5234   V8_DEPRECATED("Use Isolate::InContext instead",
5235                 static bool InContext());
5236 
5237   /** Returns an isolate associated with a current context. */
5238   v8::Isolate* GetIsolate();
5239 
5240   /**
5241    * Gets the embedder data with the given index, which must have been set by a
5242    * previous call to SetEmbedderData with the same index. Note that index 0
5243    * currently has a special meaning for Chrome's debugger.
5244    */
5245   V8_INLINE Local<Value> GetEmbedderData(int index);
5246 
5247   /**
5248    * Sets the embedder data with the given index, growing the data as
5249    * needed. Note that index 0 currently has a special meaning for Chrome's
5250    * debugger.
5251    */
5252   void SetEmbedderData(int index, Handle<Value> value);
5253 
5254   /**
5255    * Gets a 2-byte-aligned native pointer from the embedder data with the given
5256    * index, which must have bees set by a previous call to
5257    * SetAlignedPointerInEmbedderData with the same index. Note that index 0
5258    * currently has a special meaning for Chrome's debugger.
5259    */
5260   V8_INLINE void* GetAlignedPointerFromEmbedderData(int index);
5261 
5262   /**
5263    * Sets a 2-byte-aligned native pointer in the embedder data with the given
5264    * index, growing the data as needed. Note that index 0 currently has a
5265    * special meaning for Chrome's debugger.
5266    */
5267   void SetAlignedPointerInEmbedderData(int index, void* value);
5268 
5269   /**
5270    * Control whether code generation from strings is allowed. Calling
5271    * this method with false will disable 'eval' and the 'Function'
5272    * constructor for code running in this context. If 'eval' or the
5273    * 'Function' constructor are used an exception will be thrown.
5274    *
5275    * If code generation from strings is not allowed the
5276    * V8::AllowCodeGenerationFromStrings callback will be invoked if
5277    * set before blocking the call to 'eval' or the 'Function'
5278    * constructor. If that callback returns true, the call will be
5279    * allowed, otherwise an exception will be thrown. If no callback is
5280    * set an exception will be thrown.
5281    */
5282   void AllowCodeGenerationFromStrings(bool allow);
5283 
5284   /**
5285    * Returns true if code generation from strings is allowed for the context.
5286    * For more details see AllowCodeGenerationFromStrings(bool) documentation.
5287    */
5288   bool IsCodeGenerationFromStringsAllowed();
5289 
5290   /**
5291    * Sets the error description for the exception that is thrown when
5292    * code generation from strings is not allowed and 'eval' or the 'Function'
5293    * constructor are called.
5294    */
5295   void SetErrorMessageForCodeGenerationFromStrings(Handle<String> message);
5296 
5297   /**
5298    * Stack-allocated class which sets the execution context for all
5299    * operations executed within a local scope.
5300    */
5301   class Scope {
5302    public:
Scope(Handle<Context> context)5303     explicit V8_INLINE Scope(Handle<Context> context) : context_(context) {
5304       context_->Enter();
5305     }
5306     V8_DEPRECATED(
5307         "Use Handle version instead",
5308         V8_INLINE Scope(Isolate* isolate, Persistent<Context>& context)) // NOLINT
context_(Handle<Context>::New (isolate,context))5309     : context_(Handle<Context>::New(isolate, context)) {
5310       context_->Enter();
5311     }
~Scope()5312     V8_INLINE ~Scope() { context_->Exit(); }
5313 
5314    private:
5315     Handle<Context> context_;
5316   };
5317 
5318  private:
5319   friend class Value;
5320   friend class Script;
5321   friend class Object;
5322   friend class Function;
5323 
5324   Local<Value> SlowGetEmbedderData(int index);
5325   void* SlowGetAlignedPointerFromEmbedderData(int index);
5326 };
5327 
5328 
5329 /**
5330  * Multiple threads in V8 are allowed, but only one thread at a time is allowed
5331  * to use any given V8 isolate, see the comments in the Isolate class. The
5332  * definition of 'using a V8 isolate' includes accessing handles or holding onto
5333  * object pointers obtained from V8 handles while in the particular V8 isolate.
5334  * It is up to the user of V8 to ensure, perhaps with locking, that this
5335  * constraint is not violated. In addition to any other synchronization
5336  * mechanism that may be used, the v8::Locker and v8::Unlocker classes must be
5337  * used to signal thead switches to V8.
5338  *
5339  * v8::Locker is a scoped lock object. While it's active, i.e. between its
5340  * construction and destruction, the current thread is allowed to use the locked
5341  * isolate. V8 guarantees that an isolate can be locked by at most one thread at
5342  * any time. In other words, the scope of a v8::Locker is a critical section.
5343  *
5344  * Sample usage:
5345 * \code
5346  * ...
5347  * {
5348  *   v8::Locker locker(isolate);
5349  *   v8::Isolate::Scope isolate_scope(isolate);
5350  *   ...
5351  *   // Code using V8 and isolate goes here.
5352  *   ...
5353  * } // Destructor called here
5354  * \endcode
5355  *
5356  * If you wish to stop using V8 in a thread A you can do this either by
5357  * destroying the v8::Locker object as above or by constructing a v8::Unlocker
5358  * object:
5359  *
5360  * \code
5361  * {
5362  *   isolate->Exit();
5363  *   v8::Unlocker unlocker(isolate);
5364  *   ...
5365  *   // Code not using V8 goes here while V8 can run in another thread.
5366  *   ...
5367  * } // Destructor called here.
5368  * isolate->Enter();
5369  * \endcode
5370  *
5371  * The Unlocker object is intended for use in a long-running callback from V8,
5372  * where you want to release the V8 lock for other threads to use.
5373  *
5374  * The v8::Locker is a recursive lock, i.e. you can lock more than once in a
5375  * given thread. This can be useful if you have code that can be called either
5376  * from code that holds the lock or from code that does not. The Unlocker is
5377  * not recursive so you can not have several Unlockers on the stack at once, and
5378  * you can not use an Unlocker in a thread that is not inside a Locker's scope.
5379  *
5380  * An unlocker will unlock several lockers if it has to and reinstate the
5381  * correct depth of locking on its destruction, e.g.:
5382  *
5383  * \code
5384  * // V8 not locked.
5385  * {
5386  *   v8::Locker locker(isolate);
5387  *   Isolate::Scope isolate_scope(isolate);
5388  *   // V8 locked.
5389  *   {
5390  *     v8::Locker another_locker(isolate);
5391  *     // V8 still locked (2 levels).
5392  *     {
5393  *       isolate->Exit();
5394  *       v8::Unlocker unlocker(isolate);
5395  *       // V8 not locked.
5396  *     }
5397  *     isolate->Enter();
5398  *     // V8 locked again (2 levels).
5399  *   }
5400  *   // V8 still locked (1 level).
5401  * }
5402  * // V8 Now no longer locked.
5403  * \endcode
5404  */
5405 class V8_EXPORT Unlocker {
5406  public:
5407   /**
5408    * Initialize Unlocker for a given Isolate.
5409    */
Unlocker(Isolate * isolate)5410   V8_INLINE explicit Unlocker(Isolate* isolate) { Initialize(isolate); }
5411 
5412   ~Unlocker();
5413  private:
5414   void Initialize(Isolate* isolate);
5415 
5416   internal::Isolate* isolate_;
5417 };
5418 
5419 
5420 class V8_EXPORT Locker {
5421  public:
5422   /**
5423    * Initialize Locker for a given Isolate.
5424    */
Locker(Isolate * isolate)5425   V8_INLINE explicit Locker(Isolate* isolate) { Initialize(isolate); }
5426 
5427   ~Locker();
5428 
5429   /**
5430    * Returns whether or not the locker for a given isolate, is locked by the
5431    * current thread.
5432    */
5433   static bool IsLocked(Isolate* isolate);
5434 
5435   /**
5436    * Returns whether v8::Locker is being used by this V8 instance.
5437    */
5438   static bool IsActive();
5439 
5440  private:
5441   void Initialize(Isolate* isolate);
5442 
5443   bool has_lock_;
5444   bool top_level_;
5445   internal::Isolate* isolate_;
5446 
5447   static bool active_;
5448 
5449   // Disallow copying and assigning.
5450   Locker(const Locker&);
5451   void operator=(const Locker&);
5452 };
5453 
5454 
5455 /**
5456  * A struct for exporting HeapStats data from V8, using "push" model.
5457  */
5458 struct HeapStatsUpdate;
5459 
5460 
5461 /**
5462  * An interface for exporting data from V8, using "push" model.
5463  */
5464 class V8_EXPORT OutputStream {  // NOLINT
5465  public:
5466   enum OutputEncoding {
5467     kAscii = 0  // 7-bit ASCII.
5468   };
5469   enum WriteResult {
5470     kContinue = 0,
5471     kAbort = 1
5472   };
~OutputStream()5473   virtual ~OutputStream() {}
5474   /** Notify about the end of stream. */
5475   virtual void EndOfStream() = 0;
5476   /** Get preferred output chunk size. Called only once. */
GetChunkSize()5477   virtual int GetChunkSize() { return 1024; }
5478   /** Get preferred output encoding. Called only once. */
GetOutputEncoding()5479   virtual OutputEncoding GetOutputEncoding() { return kAscii; }
5480   /**
5481    * Writes the next chunk of snapshot data into the stream. Writing
5482    * can be stopped by returning kAbort as function result. EndOfStream
5483    * will not be called in case writing was aborted.
5484    */
5485   virtual WriteResult WriteAsciiChunk(char* data, int size) = 0;
5486   /**
5487    * Writes the next chunk of heap stats data into the stream. Writing
5488    * can be stopped by returning kAbort as function result. EndOfStream
5489    * will not be called in case writing was aborted.
5490    */
WriteHeapStatsChunk(HeapStatsUpdate * data,int count)5491   virtual WriteResult WriteHeapStatsChunk(HeapStatsUpdate* data, int count) {
5492     return kAbort;
5493   };
5494 };
5495 
5496 
5497 /**
5498  * An interface for reporting progress and controlling long-running
5499  * activities.
5500  */
5501 class V8_EXPORT ActivityControl {  // NOLINT
5502  public:
5503   enum ControlOption {
5504     kContinue = 0,
5505     kAbort = 1
5506   };
~ActivityControl()5507   virtual ~ActivityControl() {}
5508   /**
5509    * Notify about current progress. The activity can be stopped by
5510    * returning kAbort as the callback result.
5511    */
5512   virtual ControlOption ReportProgressValue(int done, int total) = 0;
5513 };
5514 
5515 
5516 // --- Implementation ---
5517 
5518 
5519 namespace internal {
5520 
5521 const int kApiPointerSize = sizeof(void*);  // NOLINT
5522 const int kApiIntSize = sizeof(int);  // NOLINT
5523 
5524 // Tag information for HeapObject.
5525 const int kHeapObjectTag = 1;
5526 const int kHeapObjectTagSize = 2;
5527 const intptr_t kHeapObjectTagMask = (1 << kHeapObjectTagSize) - 1;
5528 
5529 // Tag information for Smi.
5530 const int kSmiTag = 0;
5531 const int kSmiTagSize = 1;
5532 const intptr_t kSmiTagMask = (1 << kSmiTagSize) - 1;
5533 
5534 template <size_t ptr_size> struct SmiTagging;
5535 
5536 template<int kSmiShiftSize>
IntToSmi(int value)5537 V8_INLINE internal::Object* IntToSmi(int value) {
5538   int smi_shift_bits = kSmiTagSize + kSmiShiftSize;
5539   intptr_t tagged_value =
5540       (static_cast<intptr_t>(value) << smi_shift_bits) | kSmiTag;
5541   return reinterpret_cast<internal::Object*>(tagged_value);
5542 }
5543 
5544 // Smi constants for 32-bit systems.
5545 template <> struct SmiTagging<4> {
5546   static const int kSmiShiftSize = 0;
5547   static const int kSmiValueSize = 31;
5548   V8_INLINE static int SmiToInt(internal::Object* value) {
5549     int shift_bits = kSmiTagSize + kSmiShiftSize;
5550     // Throw away top 32 bits and shift down (requires >> to be sign extending).
5551     return static_cast<int>(reinterpret_cast<intptr_t>(value)) >> shift_bits;
5552   }
5553   V8_INLINE static internal::Object* IntToSmi(int value) {
5554     return internal::IntToSmi<kSmiShiftSize>(value);
5555   }
5556   V8_INLINE static bool IsValidSmi(intptr_t value) {
5557     // To be representable as an tagged small integer, the two
5558     // most-significant bits of 'value' must be either 00 or 11 due to
5559     // sign-extension. To check this we add 01 to the two
5560     // most-significant bits, and check if the most-significant bit is 0
5561     //
5562     // CAUTION: The original code below:
5563     // bool result = ((value + 0x40000000) & 0x80000000) == 0;
5564     // may lead to incorrect results according to the C language spec, and
5565     // in fact doesn't work correctly with gcc4.1.1 in some cases: The
5566     // compiler may produce undefined results in case of signed integer
5567     // overflow. The computation must be done w/ unsigned ints.
5568     return static_cast<uintptr_t>(value + 0x40000000U) < 0x80000000U;
5569   }
5570 };
5571 
5572 // Smi constants for 64-bit systems.
5573 template <> struct SmiTagging<8> {
5574   static const int kSmiShiftSize = 31;
5575   static const int kSmiValueSize = 32;
5576   V8_INLINE static int SmiToInt(internal::Object* value) {
5577     int shift_bits = kSmiTagSize + kSmiShiftSize;
5578     // Shift down and throw away top 32 bits.
5579     return static_cast<int>(reinterpret_cast<intptr_t>(value) >> shift_bits);
5580   }
5581   V8_INLINE static internal::Object* IntToSmi(int value) {
5582     return internal::IntToSmi<kSmiShiftSize>(value);
5583   }
5584   V8_INLINE static bool IsValidSmi(intptr_t value) {
5585     // To be representable as a long smi, the value must be a 32-bit integer.
5586     return (value == static_cast<int32_t>(value));
5587   }
5588 };
5589 
5590 typedef SmiTagging<kApiPointerSize> PlatformSmiTagging;
5591 const int kSmiShiftSize = PlatformSmiTagging::kSmiShiftSize;
5592 const int kSmiValueSize = PlatformSmiTagging::kSmiValueSize;
5593 V8_INLINE static bool SmiValuesAre31Bits() { return kSmiValueSize == 31; }
5594 V8_INLINE static bool SmiValuesAre32Bits() { return kSmiValueSize == 32; }
5595 
5596 /**
5597  * This class exports constants and functionality from within v8 that
5598  * is necessary to implement inline functions in the v8 api.  Don't
5599  * depend on functions and constants defined here.
5600  */
5601 class Internals {
5602  public:
5603   // These values match non-compiler-dependent values defined within
5604   // the implementation of v8.
5605   static const int kHeapObjectMapOffset = 0;
5606   static const int kMapInstanceTypeOffset = 1 * kApiPointerSize + kApiIntSize;
5607   static const int kStringResourceOffset = 3 * kApiPointerSize;
5608 
5609   static const int kOddballKindOffset = 3 * kApiPointerSize;
5610   static const int kForeignAddressOffset = kApiPointerSize;
5611   static const int kJSObjectHeaderSize = 3 * kApiPointerSize;
5612   static const int kFixedArrayHeaderSize = 2 * kApiPointerSize;
5613   static const int kContextHeaderSize = 2 * kApiPointerSize;
5614   static const int kContextEmbedderDataIndex = 65;
5615   static const int kFullStringRepresentationMask = 0x07;
5616   static const int kStringEncodingMask = 0x4;
5617   static const int kExternalTwoByteRepresentationTag = 0x02;
5618   static const int kExternalAsciiRepresentationTag = 0x06;
5619 
5620   static const int kIsolateEmbedderDataOffset = 0 * kApiPointerSize;
5621   static const int kIsolateRootsOffset = 5 * kApiPointerSize;
5622   static const int kUndefinedValueRootIndex = 5;
5623   static const int kNullValueRootIndex = 7;
5624   static const int kTrueValueRootIndex = 8;
5625   static const int kFalseValueRootIndex = 9;
5626   static const int kEmptyStringRootIndex = 134;
5627 
5628   static const int kNodeClassIdOffset = 1 * kApiPointerSize;
5629   static const int kNodeFlagsOffset = 1 * kApiPointerSize + 3;
5630   static const int kNodeStateMask = 0xf;
5631   static const int kNodeStateIsWeakValue = 2;
5632   static const int kNodeStateIsPendingValue = 3;
5633   static const int kNodeStateIsNearDeathValue = 4;
5634   static const int kNodeIsIndependentShift = 4;
5635   static const int kNodeIsPartiallyDependentShift = 5;
5636 
5637   static const int kJSObjectType = 0xb2;
5638   static const int kFirstNonstringType = 0x80;
5639   static const int kOddballType = 0x83;
5640   static const int kForeignType = 0x87;
5641 
5642   static const int kUndefinedOddballKind = 5;
5643   static const int kNullOddballKind = 3;
5644 
5645   static const uint32_t kNumIsolateDataSlots = 4;
5646 
5647   V8_EXPORT static void CheckInitializedImpl(v8::Isolate* isolate);
5648   V8_INLINE static void CheckInitialized(v8::Isolate* isolate) {
5649 #ifdef V8_ENABLE_CHECKS
5650     CheckInitializedImpl(isolate);
5651 #endif
5652   }
5653 
5654   V8_INLINE static bool HasHeapObjectTag(internal::Object* value) {
5655     return ((reinterpret_cast<intptr_t>(value) & kHeapObjectTagMask) ==
5656             kHeapObjectTag);
5657   }
5658 
5659   V8_INLINE static int SmiValue(internal::Object* value) {
5660     return PlatformSmiTagging::SmiToInt(value);
5661   }
5662 
5663   V8_INLINE static internal::Object* IntToSmi(int value) {
5664     return PlatformSmiTagging::IntToSmi(value);
5665   }
5666 
5667   V8_INLINE static bool IsValidSmi(intptr_t value) {
5668     return PlatformSmiTagging::IsValidSmi(value);
5669   }
5670 
5671   V8_INLINE static int GetInstanceType(internal::Object* obj) {
5672     typedef internal::Object O;
5673     O* map = ReadField<O*>(obj, kHeapObjectMapOffset);
5674     return ReadField<uint8_t>(map, kMapInstanceTypeOffset);
5675   }
5676 
5677   V8_INLINE static int GetOddballKind(internal::Object* obj) {
5678     typedef internal::Object O;
5679     return SmiValue(ReadField<O*>(obj, kOddballKindOffset));
5680   }
5681 
5682   V8_INLINE static bool IsExternalTwoByteString(int instance_type) {
5683     int representation = (instance_type & kFullStringRepresentationMask);
5684     return representation == kExternalTwoByteRepresentationTag;
5685   }
5686 
5687   V8_INLINE static uint8_t GetNodeFlag(internal::Object** obj, int shift) {
5688       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5689       return *addr & static_cast<uint8_t>(1U << shift);
5690   }
5691 
5692   V8_INLINE static void UpdateNodeFlag(internal::Object** obj,
5693                                        bool value, int shift) {
5694       uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5695       uint8_t mask = static_cast<uint8_t>(1 << shift);
5696       *addr = static_cast<uint8_t>((*addr & ~mask) | (value << shift));
5697   }
5698 
5699   V8_INLINE static uint8_t GetNodeState(internal::Object** obj) {
5700     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5701     return *addr & kNodeStateMask;
5702   }
5703 
5704   V8_INLINE static void UpdateNodeState(internal::Object** obj,
5705                                         uint8_t value) {
5706     uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + kNodeFlagsOffset;
5707     *addr = static_cast<uint8_t>((*addr & ~kNodeStateMask) | value);
5708   }
5709 
5710   V8_INLINE static void SetEmbedderData(v8::Isolate *isolate,
5711                                         uint32_t slot,
5712                                         void *data) {
5713     uint8_t *addr = reinterpret_cast<uint8_t *>(isolate) +
5714                     kIsolateEmbedderDataOffset + slot * kApiPointerSize;
5715     *reinterpret_cast<void**>(addr) = data;
5716   }
5717 
5718   V8_INLINE static void* GetEmbedderData(v8::Isolate* isolate, uint32_t slot) {
5719     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) +
5720         kIsolateEmbedderDataOffset + slot * kApiPointerSize;
5721     return *reinterpret_cast<void**>(addr);
5722   }
5723 
5724   V8_INLINE static internal::Object** GetRoot(v8::Isolate* isolate,
5725                                               int index) {
5726     uint8_t* addr = reinterpret_cast<uint8_t*>(isolate) + kIsolateRootsOffset;
5727     return reinterpret_cast<internal::Object**>(addr + index * kApiPointerSize);
5728   }
5729 
5730   template <typename T> V8_INLINE static T ReadField(Object* ptr, int offset) {
5731     uint8_t* addr = reinterpret_cast<uint8_t*>(ptr) + offset - kHeapObjectTag;
5732     return *reinterpret_cast<T*>(addr);
5733   }
5734 
5735   template <typename T>
5736   V8_INLINE static T ReadEmbedderData(Context* context, int index) {
5737     typedef internal::Object O;
5738     typedef internal::Internals I;
5739     O* ctx = *reinterpret_cast<O**>(context);
5740     int embedder_data_offset = I::kContextHeaderSize +
5741         (internal::kApiPointerSize * I::kContextEmbedderDataIndex);
5742     O* embedder_data = I::ReadField<O*>(ctx, embedder_data_offset);
5743     int value_offset =
5744         I::kFixedArrayHeaderSize + (internal::kApiPointerSize * index);
5745     return I::ReadField<T>(embedder_data, value_offset);
5746   }
5747 
5748   V8_INLINE static bool CanCastToHeapObject(void* o) { return false; }
5749   V8_INLINE static bool CanCastToHeapObject(Context* o) { return true; }
5750   V8_INLINE static bool CanCastToHeapObject(String* o) { return true; }
5751   V8_INLINE static bool CanCastToHeapObject(Object* o) { return true; }
5752   V8_INLINE static bool CanCastToHeapObject(Message* o) { return true; }
5753   V8_INLINE static bool CanCastToHeapObject(StackTrace* o) { return true; }
5754   V8_INLINE static bool CanCastToHeapObject(StackFrame* o) { return true; }
5755 };
5756 
5757 }  // namespace internal
5758 
5759 
5760 template <class T>
5761 Local<T>::Local() : Handle<T>() { }
5762 
5763 
5764 template <class T>
5765 Local<T> Local<T>::New(Isolate* isolate, Handle<T> that) {
5766   return New(isolate, that.val_);
5767 }
5768 
5769 template <class T>
5770 Local<T> Local<T>::New(Isolate* isolate, const PersistentBase<T>& that) {
5771   return New(isolate, that.val_);
5772 }
5773 
5774 template <class T>
5775 Handle<T> Handle<T>::New(Isolate* isolate, T* that) {
5776   if (that == NULL) return Handle<T>();
5777   T* that_ptr = that;
5778   internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
5779   return Handle<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
5780       reinterpret_cast<internal::Isolate*>(isolate), *p)));
5781 }
5782 
5783 
5784 template <class T>
5785 Local<T> Local<T>::New(Isolate* isolate, T* that) {
5786   if (that == NULL) return Local<T>();
5787   T* that_ptr = that;
5788   internal::Object** p = reinterpret_cast<internal::Object**>(that_ptr);
5789   return Local<T>(reinterpret_cast<T*>(HandleScope::CreateHandle(
5790       reinterpret_cast<internal::Isolate*>(isolate), *p)));
5791 }
5792 
5793 
5794 template<class T>
5795 template<class S>
5796 void Eternal<T>::Set(Isolate* isolate, Local<S> handle) {
5797   TYPE_CHECK(T, S);
5798   V8::Eternalize(isolate, reinterpret_cast<Value*>(*handle), &this->index_);
5799 }
5800 
5801 
5802 template<class T>
5803 Local<T> Eternal<T>::Get(Isolate* isolate) {
5804   return Local<T>(reinterpret_cast<T*>(*V8::GetEternal(isolate, index_)));
5805 }
5806 
5807 
5808 template <class T>
5809 T* PersistentBase<T>::New(Isolate* isolate, T* that) {
5810   if (that == NULL) return NULL;
5811   internal::Object** p = reinterpret_cast<internal::Object**>(that);
5812   return reinterpret_cast<T*>(
5813       V8::GlobalizeReference(reinterpret_cast<internal::Isolate*>(isolate),
5814                              p));
5815 }
5816 
5817 
5818 template <class T, class M>
5819 template <class S, class M2>
5820 void Persistent<T, M>::Copy(const Persistent<S, M2>& that) {
5821   TYPE_CHECK(T, S);
5822   this->Reset();
5823   if (that.IsEmpty()) return;
5824   internal::Object** p = reinterpret_cast<internal::Object**>(that.val_);
5825   this->val_ = reinterpret_cast<T*>(V8::CopyPersistent(p));
5826   M::Copy(that, this);
5827 }
5828 
5829 
5830 template <class T>
5831 bool PersistentBase<T>::IsIndependent() const {
5832   typedef internal::Internals I;
5833   if (this->IsEmpty()) return false;
5834   return I::GetNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5835                         I::kNodeIsIndependentShift);
5836 }
5837 
5838 
5839 template <class T>
5840 bool PersistentBase<T>::IsNearDeath() const {
5841   typedef internal::Internals I;
5842   if (this->IsEmpty()) return false;
5843   uint8_t node_state =
5844       I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_));
5845   return node_state == I::kNodeStateIsNearDeathValue ||
5846       node_state == I::kNodeStateIsPendingValue;
5847 }
5848 
5849 
5850 template <class T>
5851 bool PersistentBase<T>::IsWeak() const {
5852   typedef internal::Internals I;
5853   if (this->IsEmpty()) return false;
5854   return I::GetNodeState(reinterpret_cast<internal::Object**>(this->val_)) ==
5855       I::kNodeStateIsWeakValue;
5856 }
5857 
5858 
5859 template <class T>
5860 void PersistentBase<T>::Reset() {
5861   if (this->IsEmpty()) return;
5862   V8::DisposeGlobal(reinterpret_cast<internal::Object**>(this->val_));
5863   val_ = 0;
5864 }
5865 
5866 
5867 template <class T>
5868 template <class S>
5869 void PersistentBase<T>::Reset(Isolate* isolate, const Handle<S>& other) {
5870   TYPE_CHECK(T, S);
5871   Reset();
5872   if (other.IsEmpty()) return;
5873   this->val_ = New(isolate, other.val_);
5874 }
5875 
5876 
5877 template <class T>
5878 template <class S>
5879 void PersistentBase<T>::Reset(Isolate* isolate,
5880                               const PersistentBase<S>& other) {
5881   TYPE_CHECK(T, S);
5882   Reset();
5883   if (other.IsEmpty()) return;
5884   this->val_ = New(isolate, other.val_);
5885 }
5886 
5887 
5888 template <class T>
5889 template <typename S, typename P>
5890 void PersistentBase<T>::SetWeak(
5891     P* parameter,
5892     typename WeakCallbackData<S, P>::Callback callback) {
5893   TYPE_CHECK(S, T);
5894   typedef typename WeakCallbackData<Value, void>::Callback Callback;
5895   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
5896                parameter,
5897                reinterpret_cast<Callback>(callback),
5898                NULL);
5899 }
5900 
5901 
5902 template <class T>
5903 template <typename P>
5904 void PersistentBase<T>::SetWeak(
5905     P* parameter,
5906     typename WeakCallbackData<T, P>::Callback callback) {
5907   SetWeak<T, P>(parameter, callback);
5908 }
5909 
5910 
5911 template <class T, class M>
5912 template <typename S, typename P>
5913 void Persistent<T, M>::MakeWeak(
5914     P* parameters,
5915     typename WeakReferenceCallbacks<S, P>::Revivable callback) {
5916   TYPE_CHECK(S, T);
5917   typedef typename WeakReferenceCallbacks<Value, void>::Revivable Revivable;
5918   V8::MakeWeak(reinterpret_cast<internal::Object**>(this->val_),
5919                parameters,
5920                NULL,
5921                reinterpret_cast<Revivable>(callback));
5922 }
5923 
5924 
5925 template <class T, class M>
5926 template <typename P>
5927 void Persistent<T, M>::MakeWeak(
5928     P* parameters,
5929     typename WeakReferenceCallbacks<T, P>::Revivable callback) {
5930   MakeWeak<T, P>(parameters, callback);
5931 }
5932 
5933 
5934 template <class T>
5935 void PersistentBase<T>::ClearWeak() {
5936   V8::ClearWeak(reinterpret_cast<internal::Object**>(this->val_));
5937 }
5938 
5939 
5940 template <class T>
5941 void PersistentBase<T>::MarkIndependent() {
5942   typedef internal::Internals I;
5943   if (this->IsEmpty()) return;
5944   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5945                     true,
5946                     I::kNodeIsIndependentShift);
5947 }
5948 
5949 
5950 template <class T>
5951 void PersistentBase<T>::MarkPartiallyDependent() {
5952   typedef internal::Internals I;
5953   if (this->IsEmpty()) return;
5954   I::UpdateNodeFlag(reinterpret_cast<internal::Object**>(this->val_),
5955                     true,
5956                     I::kNodeIsPartiallyDependentShift);
5957 }
5958 
5959 
5960 template <class T, class M>
5961 T* Persistent<T, M>::ClearAndLeak() {
5962   T* old;
5963   old = this->val_;
5964   this->val_ = NULL;
5965   return old;
5966 }
5967 
5968 
5969 template <class T>
5970 void PersistentBase<T>::SetWrapperClassId(uint16_t class_id) {
5971   typedef internal::Internals I;
5972   if (this->IsEmpty()) return;
5973   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
5974   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
5975   *reinterpret_cast<uint16_t*>(addr) = class_id;
5976 }
5977 
5978 
5979 template <class T>
5980 uint16_t PersistentBase<T>::WrapperClassId() const {
5981   typedef internal::Internals I;
5982   if (this->IsEmpty()) return 0;
5983   internal::Object** obj = reinterpret_cast<internal::Object**>(this->val_);
5984   uint8_t* addr = reinterpret_cast<uint8_t*>(obj) + I::kNodeClassIdOffset;
5985   return *reinterpret_cast<uint16_t*>(addr);
5986 }
5987 
5988 
5989 template<typename T>
5990 ReturnValue<T>::ReturnValue(internal::Object** slot) : value_(slot) {}
5991 
5992 template<typename T>
5993 template<typename S>
5994 void ReturnValue<T>::Set(const Persistent<S>& handle) {
5995   TYPE_CHECK(T, S);
5996   if (V8_UNLIKELY(handle.IsEmpty())) {
5997     *value_ = GetDefaultValue();
5998   } else {
5999     *value_ = *reinterpret_cast<internal::Object**>(*handle);
6000   }
6001 }
6002 
6003 template<typename T>
6004 template<typename S>
6005 void ReturnValue<T>::Set(const Handle<S> handle) {
6006   TYPE_CHECK(T, S);
6007   if (V8_UNLIKELY(handle.IsEmpty())) {
6008     *value_ = GetDefaultValue();
6009   } else {
6010     *value_ = *reinterpret_cast<internal::Object**>(*handle);
6011   }
6012 }
6013 
6014 template<typename T>
6015 void ReturnValue<T>::Set(double i) {
6016   TYPE_CHECK(T, Number);
6017   Set(Number::New(GetIsolate(), i));
6018 }
6019 
6020 template<typename T>
6021 void ReturnValue<T>::Set(int32_t i) {
6022   TYPE_CHECK(T, Integer);
6023   typedef internal::Internals I;
6024   if (V8_LIKELY(I::IsValidSmi(i))) {
6025     *value_ = I::IntToSmi(i);
6026     return;
6027   }
6028   Set(Integer::New(i, GetIsolate()));
6029 }
6030 
6031 template<typename T>
6032 void ReturnValue<T>::Set(uint32_t i) {
6033   TYPE_CHECK(T, Integer);
6034   // Can't simply use INT32_MAX here for whatever reason.
6035   bool fits_into_int32_t = (i & (1U << 31)) == 0;
6036   if (V8_LIKELY(fits_into_int32_t)) {
6037     Set(static_cast<int32_t>(i));
6038     return;
6039   }
6040   Set(Integer::NewFromUnsigned(i, GetIsolate()));
6041 }
6042 
6043 template<typename T>
6044 void ReturnValue<T>::Set(bool value) {
6045   TYPE_CHECK(T, Boolean);
6046   typedef internal::Internals I;
6047   int root_index;
6048   if (value) {
6049     root_index = I::kTrueValueRootIndex;
6050   } else {
6051     root_index = I::kFalseValueRootIndex;
6052   }
6053   *value_ = *I::GetRoot(GetIsolate(), root_index);
6054 }
6055 
6056 template<typename T>
6057 void ReturnValue<T>::SetNull() {
6058   TYPE_CHECK(T, Primitive);
6059   typedef internal::Internals I;
6060   *value_ = *I::GetRoot(GetIsolate(), I::kNullValueRootIndex);
6061 }
6062 
6063 template<typename T>
6064 void ReturnValue<T>::SetUndefined() {
6065   TYPE_CHECK(T, Primitive);
6066   typedef internal::Internals I;
6067   *value_ = *I::GetRoot(GetIsolate(), I::kUndefinedValueRootIndex);
6068 }
6069 
6070 template<typename T>
6071 void ReturnValue<T>::SetEmptyString() {
6072   TYPE_CHECK(T, String);
6073   typedef internal::Internals I;
6074   *value_ = *I::GetRoot(GetIsolate(), I::kEmptyStringRootIndex);
6075 }
6076 
6077 template<typename T>
6078 Isolate* ReturnValue<T>::GetIsolate() {
6079   // Isolate is always the pointer below the default value on the stack.
6080   return *reinterpret_cast<Isolate**>(&value_[-2]);
6081 }
6082 
6083 template<typename T>
6084 internal::Object* ReturnValue<T>::GetDefaultValue() {
6085   // Default value is always the pointer below value_ on the stack.
6086   return value_[-1];
6087 }
6088 
6089 
6090 template<typename T>
6091 FunctionCallbackInfo<T>::FunctionCallbackInfo(internal::Object** implicit_args,
6092                                               internal::Object** values,
6093                                               int length,
6094                                               bool is_construct_call)
6095     : implicit_args_(implicit_args),
6096       values_(values),
6097       length_(length),
6098       is_construct_call_(is_construct_call) { }
6099 
6100 
6101 template<typename T>
6102 Local<Value> FunctionCallbackInfo<T>::operator[](int i) const {
6103   if (i < 0 || length_ <= i) return Local<Value>(*Undefined(GetIsolate()));
6104   return Local<Value>(reinterpret_cast<Value*>(values_ - i));
6105 }
6106 
6107 
6108 template<typename T>
6109 Local<Function> FunctionCallbackInfo<T>::Callee() const {
6110   return Local<Function>(reinterpret_cast<Function*>(
6111       &implicit_args_[kCalleeIndex]));
6112 }
6113 
6114 
6115 template<typename T>
6116 Local<Object> FunctionCallbackInfo<T>::This() const {
6117   return Local<Object>(reinterpret_cast<Object*>(values_ + 1));
6118 }
6119 
6120 
6121 template<typename T>
6122 Local<Object> FunctionCallbackInfo<T>::Holder() const {
6123   return Local<Object>(reinterpret_cast<Object*>(
6124       &implicit_args_[kHolderIndex]));
6125 }
6126 
6127 
6128 template<typename T>
6129 Local<Value> FunctionCallbackInfo<T>::Data() const {
6130   return Local<Value>(reinterpret_cast<Value*>(&implicit_args_[kDataIndex]));
6131 }
6132 
6133 
6134 template<typename T>
6135 Isolate* FunctionCallbackInfo<T>::GetIsolate() const {
6136   return *reinterpret_cast<Isolate**>(&implicit_args_[kIsolateIndex]);
6137 }
6138 
6139 
6140 template<typename T>
6141 ReturnValue<T> FunctionCallbackInfo<T>::GetReturnValue() const {
6142   return ReturnValue<T>(&implicit_args_[kReturnValueIndex]);
6143 }
6144 
6145 
6146 template<typename T>
6147 bool FunctionCallbackInfo<T>::IsConstructCall() const {
6148   return is_construct_call_;
6149 }
6150 
6151 
6152 template<typename T>
6153 int FunctionCallbackInfo<T>::Length() const {
6154   return length_;
6155 }
6156 
6157 
6158 template <class T>
6159 Local<T> HandleScope::Close(Handle<T> value) {
6160   internal::Object** before = reinterpret_cast<internal::Object**>(*value);
6161   internal::Object** after = RawClose(before);
6162   return Local<T>(reinterpret_cast<T*>(after));
6163 }
6164 
6165 Handle<Value> ScriptOrigin::ResourceName() const {
6166   return resource_name_;
6167 }
6168 
6169 
6170 Handle<Integer> ScriptOrigin::ResourceLineOffset() const {
6171   return resource_line_offset_;
6172 }
6173 
6174 
6175 Handle<Integer> ScriptOrigin::ResourceColumnOffset() const {
6176   return resource_column_offset_;
6177 }
6178 
6179 Handle<Boolean> ScriptOrigin::ResourceIsSharedCrossOrigin() const {
6180   return resource_is_shared_cross_origin_;
6181 }
6182 
6183 
6184 Handle<Boolean> Boolean::New(Isolate* isolate, bool value) {
6185   return value ? True(isolate) : False(isolate);
6186 }
6187 
6188 
6189 Handle<Boolean> Boolean::New(bool value) {
6190   return Boolean::New(Isolate::GetCurrent(), value);
6191 }
6192 
6193 
6194 void Template::Set(Isolate* isolate, const char* name, v8::Handle<Data> value) {
6195   Set(v8::String::NewFromUtf8(isolate, name), value);
6196 }
6197 
6198 
6199 void Template::Set(const char* name, v8::Handle<Data> value) {
6200   Set(Isolate::GetCurrent(), name, value);
6201 }
6202 
6203 
6204 Local<Value> Object::GetInternalField(int index) {
6205 #ifndef V8_ENABLE_CHECKS
6206   typedef internal::Object O;
6207   typedef internal::HeapObject HO;
6208   typedef internal::Internals I;
6209   O* obj = *reinterpret_cast<O**>(this);
6210   // Fast path: If the object is a plain JSObject, which is the common case, we
6211   // know where to find the internal fields and can return the value directly.
6212   if (I::GetInstanceType(obj) == I::kJSObjectType) {
6213     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
6214     O* value = I::ReadField<O*>(obj, offset);
6215     O** result = HandleScope::CreateHandle(reinterpret_cast<HO*>(obj), value);
6216     return Local<Value>(reinterpret_cast<Value*>(result));
6217   }
6218 #endif
6219   return SlowGetInternalField(index);
6220 }
6221 
6222 
6223 void* Object::GetAlignedPointerFromInternalField(int index) {
6224 #ifndef V8_ENABLE_CHECKS
6225   typedef internal::Object O;
6226   typedef internal::Internals I;
6227   O* obj = *reinterpret_cast<O**>(this);
6228   // Fast path: If the object is a plain JSObject, which is the common case, we
6229   // know where to find the internal fields and can return the value directly.
6230   if (V8_LIKELY(I::GetInstanceType(obj) == I::kJSObjectType)) {
6231     int offset = I::kJSObjectHeaderSize + (internal::kApiPointerSize * index);
6232     return I::ReadField<void*>(obj, offset);
6233   }
6234 #endif
6235   return SlowGetAlignedPointerFromInternalField(index);
6236 }
6237 
6238 
6239 String* String::Cast(v8::Value* value) {
6240 #ifdef V8_ENABLE_CHECKS
6241   CheckCast(value);
6242 #endif
6243   return static_cast<String*>(value);
6244 }
6245 
6246 
6247 Local<String> String::Empty(Isolate* isolate) {
6248   typedef internal::Object* S;
6249   typedef internal::Internals I;
6250   I::CheckInitialized(isolate);
6251   S* slot = I::GetRoot(isolate, I::kEmptyStringRootIndex);
6252   return Local<String>(reinterpret_cast<String*>(slot));
6253 }
6254 
6255 
6256 Local<String> String::New(const char* data, int length) {
6257   return NewFromUtf8(Isolate::GetCurrent(), data, kNormalString, length);
6258 }
6259 
6260 
6261 Local<String> String::New(const uint16_t* data, int length) {
6262   return NewFromTwoByte(Isolate::GetCurrent(), data, kNormalString, length);
6263 }
6264 
6265 
6266 Local<String> String::NewSymbol(const char* data, int length) {
6267   return NewFromUtf8(Isolate::GetCurrent(), data, kInternalizedString, length);
6268 }
6269 
6270 
6271 Local<String> String::NewUndetectable(const char* data, int length) {
6272   return NewFromUtf8(Isolate::GetCurrent(), data, kUndetectableString, length);
6273 }
6274 
6275 
6276 Local<String> String::NewUndetectable(const uint16_t* data, int length) {
6277   return NewFromTwoByte(
6278       Isolate::GetCurrent(), data, kUndetectableString, length);
6279 }
6280 
6281 
6282 String::ExternalStringResource* String::GetExternalStringResource() const {
6283   typedef internal::Object O;
6284   typedef internal::Internals I;
6285   O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
6286   String::ExternalStringResource* result;
6287   if (I::IsExternalTwoByteString(I::GetInstanceType(obj))) {
6288     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
6289     result = reinterpret_cast<String::ExternalStringResource*>(value);
6290   } else {
6291     result = NULL;
6292   }
6293 #ifdef V8_ENABLE_CHECKS
6294   VerifyExternalStringResource(result);
6295 #endif
6296   return result;
6297 }
6298 
6299 
6300 String::ExternalStringResourceBase* String::GetExternalStringResourceBase(
6301     String::Encoding* encoding_out) const {
6302   typedef internal::Object O;
6303   typedef internal::Internals I;
6304   O* obj = *reinterpret_cast<O**>(const_cast<String*>(this));
6305   int type = I::GetInstanceType(obj) & I::kFullStringRepresentationMask;
6306   *encoding_out = static_cast<Encoding>(type & I::kStringEncodingMask);
6307   ExternalStringResourceBase* resource = NULL;
6308   if (type == I::kExternalAsciiRepresentationTag ||
6309       type == I::kExternalTwoByteRepresentationTag) {
6310     void* value = I::ReadField<void*>(obj, I::kStringResourceOffset);
6311     resource = static_cast<ExternalStringResourceBase*>(value);
6312   }
6313 #ifdef V8_ENABLE_CHECKS
6314     VerifyExternalStringResourceBase(resource, *encoding_out);
6315 #endif
6316   return resource;
6317 }
6318 
6319 
6320 bool Value::IsUndefined() const {
6321 #ifdef V8_ENABLE_CHECKS
6322   return FullIsUndefined();
6323 #else
6324   return QuickIsUndefined();
6325 #endif
6326 }
6327 
6328 bool Value::QuickIsUndefined() const {
6329   typedef internal::Object O;
6330   typedef internal::Internals I;
6331   O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6332   if (!I::HasHeapObjectTag(obj)) return false;
6333   if (I::GetInstanceType(obj) != I::kOddballType) return false;
6334   return (I::GetOddballKind(obj) == I::kUndefinedOddballKind);
6335 }
6336 
6337 
6338 bool Value::IsNull() const {
6339 #ifdef V8_ENABLE_CHECKS
6340   return FullIsNull();
6341 #else
6342   return QuickIsNull();
6343 #endif
6344 }
6345 
6346 bool Value::QuickIsNull() const {
6347   typedef internal::Object O;
6348   typedef internal::Internals I;
6349   O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6350   if (!I::HasHeapObjectTag(obj)) return false;
6351   if (I::GetInstanceType(obj) != I::kOddballType) return false;
6352   return (I::GetOddballKind(obj) == I::kNullOddballKind);
6353 }
6354 
6355 
6356 bool Value::IsString() const {
6357 #ifdef V8_ENABLE_CHECKS
6358   return FullIsString();
6359 #else
6360   return QuickIsString();
6361 #endif
6362 }
6363 
6364 bool Value::QuickIsString() const {
6365   typedef internal::Object O;
6366   typedef internal::Internals I;
6367   O* obj = *reinterpret_cast<O**>(const_cast<Value*>(this));
6368   if (!I::HasHeapObjectTag(obj)) return false;
6369   return (I::GetInstanceType(obj) < I::kFirstNonstringType);
6370 }
6371 
6372 
6373 template <class T> Value* Value::Cast(T* value) {
6374   return static_cast<Value*>(value);
6375 }
6376 
6377 
6378 Symbol* Symbol::Cast(v8::Value* value) {
6379 #ifdef V8_ENABLE_CHECKS
6380   CheckCast(value);
6381 #endif
6382   return static_cast<Symbol*>(value);
6383 }
6384 
6385 
6386 Number* Number::Cast(v8::Value* value) {
6387 #ifdef V8_ENABLE_CHECKS
6388   CheckCast(value);
6389 #endif
6390   return static_cast<Number*>(value);
6391 }
6392 
6393 
6394 Integer* Integer::Cast(v8::Value* value) {
6395 #ifdef V8_ENABLE_CHECKS
6396   CheckCast(value);
6397 #endif
6398   return static_cast<Integer*>(value);
6399 }
6400 
6401 
6402 Date* Date::Cast(v8::Value* value) {
6403 #ifdef V8_ENABLE_CHECKS
6404   CheckCast(value);
6405 #endif
6406   return static_cast<Date*>(value);
6407 }
6408 
6409 
6410 StringObject* StringObject::Cast(v8::Value* value) {
6411 #ifdef V8_ENABLE_CHECKS
6412   CheckCast(value);
6413 #endif
6414   return static_cast<StringObject*>(value);
6415 }
6416 
6417 
6418 SymbolObject* SymbolObject::Cast(v8::Value* value) {
6419 #ifdef V8_ENABLE_CHECKS
6420   CheckCast(value);
6421 #endif
6422   return static_cast<SymbolObject*>(value);
6423 }
6424 
6425 
6426 NumberObject* NumberObject::Cast(v8::Value* value) {
6427 #ifdef V8_ENABLE_CHECKS
6428   CheckCast(value);
6429 #endif
6430   return static_cast<NumberObject*>(value);
6431 }
6432 
6433 
6434 BooleanObject* BooleanObject::Cast(v8::Value* value) {
6435 #ifdef V8_ENABLE_CHECKS
6436   CheckCast(value);
6437 #endif
6438   return static_cast<BooleanObject*>(value);
6439 }
6440 
6441 
6442 RegExp* RegExp::Cast(v8::Value* value) {
6443 #ifdef V8_ENABLE_CHECKS
6444   CheckCast(value);
6445 #endif
6446   return static_cast<RegExp*>(value);
6447 }
6448 
6449 
6450 Object* Object::Cast(v8::Value* value) {
6451 #ifdef V8_ENABLE_CHECKS
6452   CheckCast(value);
6453 #endif
6454   return static_cast<Object*>(value);
6455 }
6456 
6457 
6458 Array* Array::Cast(v8::Value* value) {
6459 #ifdef V8_ENABLE_CHECKS
6460   CheckCast(value);
6461 #endif
6462   return static_cast<Array*>(value);
6463 }
6464 
6465 
6466 ArrayBuffer* ArrayBuffer::Cast(v8::Value* value) {
6467 #ifdef V8_ENABLE_CHECKS
6468   CheckCast(value);
6469 #endif
6470   return static_cast<ArrayBuffer*>(value);
6471 }
6472 
6473 
6474 ArrayBufferView* ArrayBufferView::Cast(v8::Value* value) {
6475 #ifdef V8_ENABLE_CHECKS
6476   CheckCast(value);
6477 #endif
6478   return static_cast<ArrayBufferView*>(value);
6479 }
6480 
6481 
6482 TypedArray* TypedArray::Cast(v8::Value* value) {
6483 #ifdef V8_ENABLE_CHECKS
6484   CheckCast(value);
6485 #endif
6486   return static_cast<TypedArray*>(value);
6487 }
6488 
6489 
6490 Uint8Array* Uint8Array::Cast(v8::Value* value) {
6491 #ifdef V8_ENABLE_CHECKS
6492   CheckCast(value);
6493 #endif
6494   return static_cast<Uint8Array*>(value);
6495 }
6496 
6497 
6498 Int8Array* Int8Array::Cast(v8::Value* value) {
6499 #ifdef V8_ENABLE_CHECKS
6500   CheckCast(value);
6501 #endif
6502   return static_cast<Int8Array*>(value);
6503 }
6504 
6505 
6506 Uint16Array* Uint16Array::Cast(v8::Value* value) {
6507 #ifdef V8_ENABLE_CHECKS
6508   CheckCast(value);
6509 #endif
6510   return static_cast<Uint16Array*>(value);
6511 }
6512 
6513 
6514 Int16Array* Int16Array::Cast(v8::Value* value) {
6515 #ifdef V8_ENABLE_CHECKS
6516   CheckCast(value);
6517 #endif
6518   return static_cast<Int16Array*>(value);
6519 }
6520 
6521 
6522 Uint32Array* Uint32Array::Cast(v8::Value* value) {
6523 #ifdef V8_ENABLE_CHECKS
6524   CheckCast(value);
6525 #endif
6526   return static_cast<Uint32Array*>(value);
6527 }
6528 
6529 
6530 Int32Array* Int32Array::Cast(v8::Value* value) {
6531 #ifdef V8_ENABLE_CHECKS
6532   CheckCast(value);
6533 #endif
6534   return static_cast<Int32Array*>(value);
6535 }
6536 
6537 
6538 Float32Array* Float32Array::Cast(v8::Value* value) {
6539 #ifdef V8_ENABLE_CHECKS
6540   CheckCast(value);
6541 #endif
6542   return static_cast<Float32Array*>(value);
6543 }
6544 
6545 
6546 Float64Array* Float64Array::Cast(v8::Value* value) {
6547 #ifdef V8_ENABLE_CHECKS
6548   CheckCast(value);
6549 #endif
6550   return static_cast<Float64Array*>(value);
6551 }
6552 
6553 
6554 Uint8ClampedArray* Uint8ClampedArray::Cast(v8::Value* value) {
6555 #ifdef V8_ENABLE_CHECKS
6556   CheckCast(value);
6557 #endif
6558   return static_cast<Uint8ClampedArray*>(value);
6559 }
6560 
6561 
6562 DataView* DataView::Cast(v8::Value* value) {
6563 #ifdef V8_ENABLE_CHECKS
6564   CheckCast(value);
6565 #endif
6566   return static_cast<DataView*>(value);
6567 }
6568 
6569 
6570 Function* Function::Cast(v8::Value* value) {
6571 #ifdef V8_ENABLE_CHECKS
6572   CheckCast(value);
6573 #endif
6574   return static_cast<Function*>(value);
6575 }
6576 
6577 
6578 External* External::Cast(v8::Value* value) {
6579 #ifdef V8_ENABLE_CHECKS
6580   CheckCast(value);
6581 #endif
6582   return static_cast<External*>(value);
6583 }
6584 
6585 
6586 template<typename T>
6587 Isolate* PropertyCallbackInfo<T>::GetIsolate() const {
6588   return *reinterpret_cast<Isolate**>(&args_[kIsolateIndex]);
6589 }
6590 
6591 
6592 template<typename T>
6593 Local<Value> PropertyCallbackInfo<T>::Data() const {
6594   return Local<Value>(reinterpret_cast<Value*>(&args_[kDataIndex]));
6595 }
6596 
6597 
6598 template<typename T>
6599 Local<Object> PropertyCallbackInfo<T>::This() const {
6600   return Local<Object>(reinterpret_cast<Object*>(&args_[kThisIndex]));
6601 }
6602 
6603 
6604 template<typename T>
6605 Local<Object> PropertyCallbackInfo<T>::Holder() const {
6606   return Local<Object>(reinterpret_cast<Object*>(&args_[kHolderIndex]));
6607 }
6608 
6609 
6610 template<typename T>
6611 ReturnValue<T> PropertyCallbackInfo<T>::GetReturnValue() const {
6612   return ReturnValue<T>(&args_[kReturnValueIndex]);
6613 }
6614 
6615 
6616 Handle<Primitive> Undefined(Isolate* isolate) {
6617   typedef internal::Object* S;
6618   typedef internal::Internals I;
6619   I::CheckInitialized(isolate);
6620   S* slot = I::GetRoot(isolate, I::kUndefinedValueRootIndex);
6621   return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
6622 }
6623 
6624 
6625 Handle<Primitive> Null(Isolate* isolate) {
6626   typedef internal::Object* S;
6627   typedef internal::Internals I;
6628   I::CheckInitialized(isolate);
6629   S* slot = I::GetRoot(isolate, I::kNullValueRootIndex);
6630   return Handle<Primitive>(reinterpret_cast<Primitive*>(slot));
6631 }
6632 
6633 
6634 Handle<Boolean> True(Isolate* isolate) {
6635   typedef internal::Object* S;
6636   typedef internal::Internals I;
6637   I::CheckInitialized(isolate);
6638   S* slot = I::GetRoot(isolate, I::kTrueValueRootIndex);
6639   return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
6640 }
6641 
6642 
6643 Handle<Boolean> False(Isolate* isolate) {
6644   typedef internal::Object* S;
6645   typedef internal::Internals I;
6646   I::CheckInitialized(isolate);
6647   S* slot = I::GetRoot(isolate, I::kFalseValueRootIndex);
6648   return Handle<Boolean>(reinterpret_cast<Boolean*>(slot));
6649 }
6650 
6651 
6652 void Isolate::SetData(void* data) {
6653   typedef internal::Internals I;
6654   I::SetEmbedderData(this, 0, data);
6655 }
6656 
6657 
6658 void* Isolate::GetData() {
6659   typedef internal::Internals I;
6660   return I::GetEmbedderData(this, 0);
6661 }
6662 
6663 
6664 void Isolate::SetData(uint32_t slot, void* data) {
6665   typedef internal::Internals I;
6666   I::SetEmbedderData(this, slot, data);
6667 }
6668 
6669 
6670 void* Isolate::GetData(uint32_t slot) {
6671   typedef internal::Internals I;
6672   return I::GetEmbedderData(this, slot);
6673 }
6674 
6675 
6676 uint32_t Isolate::GetNumberOfDataSlots() {
6677   typedef internal::Internals I;
6678   return I::kNumIsolateDataSlots;
6679 }
6680 
6681 
6682 template<typename T>
6683 void Isolate::SetObjectGroupId(const Persistent<T>& object,
6684                                UniqueId id) {
6685   TYPE_CHECK(Value, T);
6686   SetObjectGroupId(reinterpret_cast<v8::internal::Object**>(object.val_), id);
6687 }
6688 
6689 
6690 template<typename T>
6691 void Isolate::SetReferenceFromGroup(UniqueId id,
6692                                     const Persistent<T>& object) {
6693   TYPE_CHECK(Value, T);
6694   SetReferenceFromGroup(id,
6695                         reinterpret_cast<v8::internal::Object**>(object.val_));
6696 }
6697 
6698 
6699 template<typename T, typename S>
6700 void Isolate::SetReference(const Persistent<T>& parent,
6701                            const Persistent<S>& child) {
6702   TYPE_CHECK(Object, T);
6703   TYPE_CHECK(Value, S);
6704   SetReference(reinterpret_cast<v8::internal::Object**>(parent.val_),
6705                reinterpret_cast<v8::internal::Object**>(child.val_));
6706 }
6707 
6708 
6709 Local<Value> Context::GetEmbedderData(int index) {
6710 #ifndef V8_ENABLE_CHECKS
6711   typedef internal::Object O;
6712   typedef internal::HeapObject HO;
6713   typedef internal::Internals I;
6714   HO* context = *reinterpret_cast<HO**>(this);
6715   O** result =
6716       HandleScope::CreateHandle(context, I::ReadEmbedderData<O*>(this, index));
6717   return Local<Value>(reinterpret_cast<Value*>(result));
6718 #else
6719   return SlowGetEmbedderData(index);
6720 #endif
6721 }
6722 
6723 
6724 void* Context::GetAlignedPointerFromEmbedderData(int index) {
6725 #ifndef V8_ENABLE_CHECKS
6726   typedef internal::Internals I;
6727   return I::ReadEmbedderData<void*>(this, index);
6728 #else
6729   return SlowGetAlignedPointerFromEmbedderData(index);
6730 #endif
6731 }
6732 
6733 
6734 /**
6735  * \example shell.cc
6736  * A simple shell that takes a list of expressions on the
6737  * command-line and executes them.
6738  */
6739 
6740 
6741 /**
6742  * \example process.cc
6743  */
6744 
6745 
6746 }  // namespace v8
6747 
6748 
6749 #undef TYPE_CHECK
6750 
6751 
6752 #endif  // V8_H_
6753