1 //===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR. The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand. The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables. For example,
15 // you can do something like this:
16 //
17 // Value *Exp = ...
18 // Value *X, *Y; ConstantInt *C1, *C2; // (X & C1) | (Y & C2)
19 // if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 // m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 // ... Pattern is matched and variables are bound ...
22 // }
23 //
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
26 //
27 //===----------------------------------------------------------------------===//
28
29 #ifndef LLVM_SUPPORT_PATTERNMATCH_H
30 #define LLVM_SUPPORT_PATTERNMATCH_H
31
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/Support/CallSite.h"
37
38 namespace llvm {
39 namespace PatternMatch {
40
41 template<typename Val, typename Pattern>
match(Val * V,const Pattern & P)42 bool match(Val *V, const Pattern &P) {
43 return const_cast<Pattern&>(P).match(V);
44 }
45
46
47 template<typename SubPattern_t>
48 struct OneUse_match {
49 SubPattern_t SubPattern;
50
OneUse_matchOneUse_match51 OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
52
53 template<typename OpTy>
matchOneUse_match54 bool match(OpTy *V) {
55 return V->hasOneUse() && SubPattern.match(V);
56 }
57 };
58
59 template<typename T>
m_OneUse(const T & SubPattern)60 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
61
62
63 template<typename Class>
64 struct class_match {
65 template<typename ITy>
matchclass_match66 bool match(ITy *V) { return isa<Class>(V); }
67 };
68
69 /// m_Value() - Match an arbitrary value and ignore it.
m_Value()70 inline class_match<Value> m_Value() { return class_match<Value>(); }
71 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()72 inline class_match<ConstantInt> m_ConstantInt() {
73 return class_match<ConstantInt>();
74 }
75 /// m_Undef() - Match an arbitrary undef constant.
m_Undef()76 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
77
m_Constant()78 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
79
80 /// Matching combinators
81 template<typename LTy, typename RTy>
82 struct match_combine_or {
83 LTy L;
84 RTy R;
85
match_combine_ormatch_combine_or86 match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
87
88 template<typename ITy>
matchmatch_combine_or89 bool match(ITy *V) {
90 if (L.match(V))
91 return true;
92 if (R.match(V))
93 return true;
94 return false;
95 }
96 };
97
98 template<typename LTy, typename RTy>
99 struct match_combine_and {
100 LTy L;
101 RTy R;
102
match_combine_andmatch_combine_and103 match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
104
105 template<typename ITy>
matchmatch_combine_and106 bool match(ITy *V) {
107 if (L.match(V))
108 if (R.match(V))
109 return true;
110 return false;
111 }
112 };
113
114 /// Combine two pattern matchers matching L || R
115 template<typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)116 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
117 return match_combine_or<LTy, RTy>(L, R);
118 }
119
120 /// Combine two pattern matchers matching L && R
121 template<typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)122 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
123 return match_combine_and<LTy, RTy>(L, R);
124 }
125
126 struct match_zero {
127 template<typename ITy>
matchmatch_zero128 bool match(ITy *V) {
129 if (const Constant *C = dyn_cast<Constant>(V))
130 return C->isNullValue();
131 return false;
132 }
133 };
134
135 /// m_Zero() - Match an arbitrary zero/null constant. This includes
136 /// zero_initializer for vectors and ConstantPointerNull for pointers.
m_Zero()137 inline match_zero m_Zero() { return match_zero(); }
138
139 struct match_neg_zero {
140 template<typename ITy>
matchmatch_neg_zero141 bool match(ITy *V) {
142 if (const Constant *C = dyn_cast<Constant>(V))
143 return C->isNegativeZeroValue();
144 return false;
145 }
146 };
147
148 /// m_NegZero() - Match an arbitrary zero/null constant. This includes
149 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
150 /// floating point constants, this will match negative zero but not positive
151 /// zero
m_NegZero()152 inline match_neg_zero m_NegZero() { return match_neg_zero(); }
153
154 /// m_AnyZero() - Match an arbitrary zero/null constant. This includes
155 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
156 /// floating point constants, this will match negative zero and positive zero
m_AnyZero()157 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
158 return m_CombineOr(m_Zero(), m_NegZero());
159 }
160
161 struct apint_match {
162 const APInt *&Res;
apint_matchapint_match163 apint_match(const APInt *&R) : Res(R) {}
164 template<typename ITy>
matchapint_match165 bool match(ITy *V) {
166 if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
167 Res = &CI->getValue();
168 return true;
169 }
170 if (V->getType()->isVectorTy())
171 if (const Constant *C = dyn_cast<Constant>(V))
172 if (ConstantInt *CI =
173 dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
174 Res = &CI->getValue();
175 return true;
176 }
177 return false;
178 }
179 };
180
181 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
182 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)183 inline apint_match m_APInt(const APInt *&Res) { return Res; }
184
185
186 template<int64_t Val>
187 struct constantint_match {
188 template<typename ITy>
matchconstantint_match189 bool match(ITy *V) {
190 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
191 const APInt &CIV = CI->getValue();
192 if (Val >= 0)
193 return CIV == static_cast<uint64_t>(Val);
194 // If Val is negative, and CI is shorter than it, truncate to the right
195 // number of bits. If it is larger, then we have to sign extend. Just
196 // compare their negated values.
197 return -CIV == -Val;
198 }
199 return false;
200 }
201 };
202
203 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
204 template<int64_t Val>
m_ConstantInt()205 inline constantint_match<Val> m_ConstantInt() {
206 return constantint_match<Val>();
207 }
208
209 /// cst_pred_ty - This helper class is used to match scalar and vector constants
210 /// that satisfy a specified predicate.
211 template<typename Predicate>
212 struct cst_pred_ty : public Predicate {
213 template<typename ITy>
matchcst_pred_ty214 bool match(ITy *V) {
215 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
216 return this->isValue(CI->getValue());
217 if (V->getType()->isVectorTy())
218 if (const Constant *C = dyn_cast<Constant>(V))
219 if (const ConstantInt *CI =
220 dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
221 return this->isValue(CI->getValue());
222 return false;
223 }
224 };
225
226 /// api_pred_ty - This helper class is used to match scalar and vector constants
227 /// that satisfy a specified predicate, and bind them to an APInt.
228 template<typename Predicate>
229 struct api_pred_ty : public Predicate {
230 const APInt *&Res;
api_pred_tyapi_pred_ty231 api_pred_ty(const APInt *&R) : Res(R) {}
232 template<typename ITy>
matchapi_pred_ty233 bool match(ITy *V) {
234 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
235 if (this->isValue(CI->getValue())) {
236 Res = &CI->getValue();
237 return true;
238 }
239 if (V->getType()->isVectorTy())
240 if (const Constant *C = dyn_cast<Constant>(V))
241 if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
242 if (this->isValue(CI->getValue())) {
243 Res = &CI->getValue();
244 return true;
245 }
246
247 return false;
248 }
249 };
250
251
252 struct is_one {
isValueis_one253 bool isValue(const APInt &C) { return C == 1; }
254 };
255
256 /// m_One() - Match an integer 1 or a vector with all elements equal to 1.
m_One()257 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
m_One(const APInt * & V)258 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
259
260 struct is_all_ones {
isValueis_all_ones261 bool isValue(const APInt &C) { return C.isAllOnesValue(); }
262 };
263
264 /// m_AllOnes() - Match an integer or vector with all bits set to true.
m_AllOnes()265 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
m_AllOnes(const APInt * & V)266 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
267
268 struct is_sign_bit {
isValueis_sign_bit269 bool isValue(const APInt &C) { return C.isSignBit(); }
270 };
271
272 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
m_SignBit()273 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
m_SignBit(const APInt * & V)274 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
275
276 struct is_power2 {
isValueis_power2277 bool isValue(const APInt &C) { return C.isPowerOf2(); }
278 };
279
280 /// m_Power2() - Match an integer or vector power of 2.
m_Power2()281 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
m_Power2(const APInt * & V)282 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
283
284 template<typename Class>
285 struct bind_ty {
286 Class *&VR;
bind_tybind_ty287 bind_ty(Class *&V) : VR(V) {}
288
289 template<typename ITy>
matchbind_ty290 bool match(ITy *V) {
291 if (Class *CV = dyn_cast<Class>(V)) {
292 VR = CV;
293 return true;
294 }
295 return false;
296 }
297 };
298
299 /// m_Value - Match a value, capturing it if we match.
m_Value(Value * & V)300 inline bind_ty<Value> m_Value(Value *&V) { return V; }
301
302 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)303 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
304
305 /// m_Constant - Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)306 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
307
308 /// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)309 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
310
311 /// specificval_ty - Match a specified Value*.
312 struct specificval_ty {
313 const Value *Val;
specificval_tyspecificval_ty314 specificval_ty(const Value *V) : Val(V) {}
315
316 template<typename ITy>
matchspecificval_ty317 bool match(ITy *V) {
318 return V == Val;
319 }
320 };
321
322 /// m_Specific - Match if we have a specific specified value.
m_Specific(const Value * V)323 inline specificval_ty m_Specific(const Value *V) { return V; }
324
325 /// Match a specified floating point value or vector of all elements of that
326 /// value.
327 struct specific_fpval {
328 double Val;
specific_fpvalspecific_fpval329 specific_fpval(double V) : Val(V) {}
330
331 template<typename ITy>
matchspecific_fpval332 bool match(ITy *V) {
333 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
334 return CFP->isExactlyValue(Val);
335 if (V->getType()->isVectorTy())
336 if (const Constant *C = dyn_cast<Constant>(V))
337 if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
338 return CFP->isExactlyValue(Val);
339 return false;
340 }
341 };
342
343 /// Match a specific floating point value or vector with all elements equal to
344 /// the value.
m_SpecificFP(double V)345 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
346
347 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()348 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
349
350 struct bind_const_intval_ty {
351 uint64_t &VR;
bind_const_intval_tybind_const_intval_ty352 bind_const_intval_ty(uint64_t &V) : VR(V) {}
353
354 template<typename ITy>
matchbind_const_intval_ty355 bool match(ITy *V) {
356 if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
357 if (CV->getBitWidth() <= 64) {
358 VR = CV->getZExtValue();
359 return true;
360 }
361 return false;
362 }
363 };
364
365 /// m_ConstantInt - Match a ConstantInt and bind to its value. This does not
366 /// match ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)367 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
368
369 //===----------------------------------------------------------------------===//
370 // Matchers for specific binary operators.
371 //
372
373 template<typename LHS_t, typename RHS_t, unsigned Opcode>
374 struct BinaryOp_match {
375 LHS_t L;
376 RHS_t R;
377
BinaryOp_matchBinaryOp_match378 BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
379
380 template<typename OpTy>
matchBinaryOp_match381 bool match(OpTy *V) {
382 if (V->getValueID() == Value::InstructionVal + Opcode) {
383 BinaryOperator *I = cast<BinaryOperator>(V);
384 return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
385 }
386 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
387 return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
388 R.match(CE->getOperand(1));
389 return false;
390 }
391 };
392
393 template<typename LHS, typename RHS>
394 inline BinaryOp_match<LHS, RHS, Instruction::Add>
m_Add(const LHS & L,const RHS & R)395 m_Add(const LHS &L, const RHS &R) {
396 return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
397 }
398
399 template<typename LHS, typename RHS>
400 inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
m_FAdd(const LHS & L,const RHS & R)401 m_FAdd(const LHS &L, const RHS &R) {
402 return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
403 }
404
405 template<typename LHS, typename RHS>
406 inline BinaryOp_match<LHS, RHS, Instruction::Sub>
m_Sub(const LHS & L,const RHS & R)407 m_Sub(const LHS &L, const RHS &R) {
408 return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
409 }
410
411 template<typename LHS, typename RHS>
412 inline BinaryOp_match<LHS, RHS, Instruction::FSub>
m_FSub(const LHS & L,const RHS & R)413 m_FSub(const LHS &L, const RHS &R) {
414 return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
415 }
416
417 template<typename LHS, typename RHS>
418 inline BinaryOp_match<LHS, RHS, Instruction::Mul>
m_Mul(const LHS & L,const RHS & R)419 m_Mul(const LHS &L, const RHS &R) {
420 return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
421 }
422
423 template<typename LHS, typename RHS>
424 inline BinaryOp_match<LHS, RHS, Instruction::FMul>
m_FMul(const LHS & L,const RHS & R)425 m_FMul(const LHS &L, const RHS &R) {
426 return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
427 }
428
429 template<typename LHS, typename RHS>
430 inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
m_UDiv(const LHS & L,const RHS & R)431 m_UDiv(const LHS &L, const RHS &R) {
432 return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
433 }
434
435 template<typename LHS, typename RHS>
436 inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
m_SDiv(const LHS & L,const RHS & R)437 m_SDiv(const LHS &L, const RHS &R) {
438 return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
439 }
440
441 template<typename LHS, typename RHS>
442 inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
m_FDiv(const LHS & L,const RHS & R)443 m_FDiv(const LHS &L, const RHS &R) {
444 return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
445 }
446
447 template<typename LHS, typename RHS>
448 inline BinaryOp_match<LHS, RHS, Instruction::URem>
m_URem(const LHS & L,const RHS & R)449 m_URem(const LHS &L, const RHS &R) {
450 return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
451 }
452
453 template<typename LHS, typename RHS>
454 inline BinaryOp_match<LHS, RHS, Instruction::SRem>
m_SRem(const LHS & L,const RHS & R)455 m_SRem(const LHS &L, const RHS &R) {
456 return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
457 }
458
459 template<typename LHS, typename RHS>
460 inline BinaryOp_match<LHS, RHS, Instruction::FRem>
m_FRem(const LHS & L,const RHS & R)461 m_FRem(const LHS &L, const RHS &R) {
462 return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
463 }
464
465 template<typename LHS, typename RHS>
466 inline BinaryOp_match<LHS, RHS, Instruction::And>
m_And(const LHS & L,const RHS & R)467 m_And(const LHS &L, const RHS &R) {
468 return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
469 }
470
471 template<typename LHS, typename RHS>
472 inline BinaryOp_match<LHS, RHS, Instruction::Or>
m_Or(const LHS & L,const RHS & R)473 m_Or(const LHS &L, const RHS &R) {
474 return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
475 }
476
477 template<typename LHS, typename RHS>
478 inline BinaryOp_match<LHS, RHS, Instruction::Xor>
m_Xor(const LHS & L,const RHS & R)479 m_Xor(const LHS &L, const RHS &R) {
480 return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
481 }
482
483 template<typename LHS, typename RHS>
484 inline BinaryOp_match<LHS, RHS, Instruction::Shl>
m_Shl(const LHS & L,const RHS & R)485 m_Shl(const LHS &L, const RHS &R) {
486 return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
487 }
488
489 template<typename LHS, typename RHS>
490 inline BinaryOp_match<LHS, RHS, Instruction::LShr>
m_LShr(const LHS & L,const RHS & R)491 m_LShr(const LHS &L, const RHS &R) {
492 return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
493 }
494
495 template<typename LHS, typename RHS>
496 inline BinaryOp_match<LHS, RHS, Instruction::AShr>
m_AShr(const LHS & L,const RHS & R)497 m_AShr(const LHS &L, const RHS &R) {
498 return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
499 }
500
501 //===----------------------------------------------------------------------===//
502 // Class that matches two different binary ops.
503 //
504 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
505 struct BinOp2_match {
506 LHS_t L;
507 RHS_t R;
508
BinOp2_matchBinOp2_match509 BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
510
511 template<typename OpTy>
matchBinOp2_match512 bool match(OpTy *V) {
513 if (V->getValueID() == Value::InstructionVal + Opc1 ||
514 V->getValueID() == Value::InstructionVal + Opc2) {
515 BinaryOperator *I = cast<BinaryOperator>(V);
516 return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
517 }
518 if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
519 return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
520 L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
521 return false;
522 }
523 };
524
525 /// m_Shr - Matches LShr or AShr.
526 template<typename LHS, typename RHS>
527 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
m_Shr(const LHS & L,const RHS & R)528 m_Shr(const LHS &L, const RHS &R) {
529 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
530 }
531
532 /// m_LogicalShift - Matches LShr or Shl.
533 template<typename LHS, typename RHS>
534 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
m_LogicalShift(const LHS & L,const RHS & R)535 m_LogicalShift(const LHS &L, const RHS &R) {
536 return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
537 }
538
539 /// m_IDiv - Matches UDiv and SDiv.
540 template<typename LHS, typename RHS>
541 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
m_IDiv(const LHS & L,const RHS & R)542 m_IDiv(const LHS &L, const RHS &R) {
543 return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
544 }
545
546 //===----------------------------------------------------------------------===//
547 // Class that matches exact binary ops.
548 //
549 template<typename SubPattern_t>
550 struct Exact_match {
551 SubPattern_t SubPattern;
552
Exact_matchExact_match553 Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
554
555 template<typename OpTy>
matchExact_match556 bool match(OpTy *V) {
557 if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
558 return PEO->isExact() && SubPattern.match(V);
559 return false;
560 }
561 };
562
563 template<typename T>
m_Exact(const T & SubPattern)564 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
565
566 //===----------------------------------------------------------------------===//
567 // Matchers for CmpInst classes
568 //
569
570 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
571 struct CmpClass_match {
572 PredicateTy &Predicate;
573 LHS_t L;
574 RHS_t R;
575
CmpClass_matchCmpClass_match576 CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
577 : Predicate(Pred), L(LHS), R(RHS) {}
578
579 template<typename OpTy>
matchCmpClass_match580 bool match(OpTy *V) {
581 if (Class *I = dyn_cast<Class>(V))
582 if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
583 Predicate = I->getPredicate();
584 return true;
585 }
586 return false;
587 }
588 };
589
590 template<typename LHS, typename RHS>
591 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)592 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
593 return CmpClass_match<LHS, RHS,
594 ICmpInst, ICmpInst::Predicate>(Pred, L, R);
595 }
596
597 template<typename LHS, typename RHS>
598 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)599 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
600 return CmpClass_match<LHS, RHS,
601 FCmpInst, FCmpInst::Predicate>(Pred, L, R);
602 }
603
604 //===----------------------------------------------------------------------===//
605 // Matchers for SelectInst classes
606 //
607
608 template<typename Cond_t, typename LHS_t, typename RHS_t>
609 struct SelectClass_match {
610 Cond_t C;
611 LHS_t L;
612 RHS_t R;
613
SelectClass_matchSelectClass_match614 SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
615 const RHS_t &RHS)
616 : C(Cond), L(LHS), R(RHS) {}
617
618 template<typename OpTy>
matchSelectClass_match619 bool match(OpTy *V) {
620 if (SelectInst *I = dyn_cast<SelectInst>(V))
621 return C.match(I->getOperand(0)) &&
622 L.match(I->getOperand(1)) &&
623 R.match(I->getOperand(2));
624 return false;
625 }
626 };
627
628 template<typename Cond, typename LHS, typename RHS>
629 inline SelectClass_match<Cond, LHS, RHS>
m_Select(const Cond & C,const LHS & L,const RHS & R)630 m_Select(const Cond &C, const LHS &L, const RHS &R) {
631 return SelectClass_match<Cond, LHS, RHS>(C, L, R);
632 }
633
634 /// m_SelectCst - This matches a select of two constants, e.g.:
635 /// m_SelectCst<-1, 0>(m_Value(V))
636 template<int64_t L, int64_t R, typename Cond>
637 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
m_SelectCst(const Cond & C)638 m_SelectCst(const Cond &C) {
639 return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
640 }
641
642
643 //===----------------------------------------------------------------------===//
644 // Matchers for CastInst classes
645 //
646
647 template<typename Op_t, unsigned Opcode>
648 struct CastClass_match {
649 Op_t Op;
650
CastClass_matchCastClass_match651 CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
652
653 template<typename OpTy>
matchCastClass_match654 bool match(OpTy *V) {
655 if (Operator *O = dyn_cast<Operator>(V))
656 return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
657 return false;
658 }
659 };
660
661 /// m_BitCast
662 template<typename OpTy>
663 inline CastClass_match<OpTy, Instruction::BitCast>
m_BitCast(const OpTy & Op)664 m_BitCast(const OpTy &Op) {
665 return CastClass_match<OpTy, Instruction::BitCast>(Op);
666 }
667
668 /// m_PtrToInt
669 template<typename OpTy>
670 inline CastClass_match<OpTy, Instruction::PtrToInt>
m_PtrToInt(const OpTy & Op)671 m_PtrToInt(const OpTy &Op) {
672 return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
673 }
674
675 /// m_Trunc
676 template<typename OpTy>
677 inline CastClass_match<OpTy, Instruction::Trunc>
m_Trunc(const OpTy & Op)678 m_Trunc(const OpTy &Op) {
679 return CastClass_match<OpTy, Instruction::Trunc>(Op);
680 }
681
682 /// m_SExt
683 template<typename OpTy>
684 inline CastClass_match<OpTy, Instruction::SExt>
m_SExt(const OpTy & Op)685 m_SExt(const OpTy &Op) {
686 return CastClass_match<OpTy, Instruction::SExt>(Op);
687 }
688
689 /// m_ZExt
690 template<typename OpTy>
691 inline CastClass_match<OpTy, Instruction::ZExt>
m_ZExt(const OpTy & Op)692 m_ZExt(const OpTy &Op) {
693 return CastClass_match<OpTy, Instruction::ZExt>(Op);
694 }
695
696 /// m_UIToFP
697 template<typename OpTy>
698 inline CastClass_match<OpTy, Instruction::UIToFP>
m_UIToFP(const OpTy & Op)699 m_UIToFP(const OpTy &Op) {
700 return CastClass_match<OpTy, Instruction::UIToFP>(Op);
701 }
702
703 /// m_SIToFP
704 template<typename OpTy>
705 inline CastClass_match<OpTy, Instruction::SIToFP>
m_SIToFP(const OpTy & Op)706 m_SIToFP(const OpTy &Op) {
707 return CastClass_match<OpTy, Instruction::SIToFP>(Op);
708 }
709
710 //===----------------------------------------------------------------------===//
711 // Matchers for unary operators
712 //
713
714 template<typename LHS_t>
715 struct not_match {
716 LHS_t L;
717
not_matchnot_match718 not_match(const LHS_t &LHS) : L(LHS) {}
719
720 template<typename OpTy>
matchnot_match721 bool match(OpTy *V) {
722 if (Operator *O = dyn_cast<Operator>(V))
723 if (O->getOpcode() == Instruction::Xor)
724 return matchIfNot(O->getOperand(0), O->getOperand(1));
725 return false;
726 }
727 private:
matchIfNotnot_match728 bool matchIfNot(Value *LHS, Value *RHS) {
729 return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
730 // FIXME: Remove CV.
731 isa<ConstantVector>(RHS)) &&
732 cast<Constant>(RHS)->isAllOnesValue() &&
733 L.match(LHS);
734 }
735 };
736
737 template<typename LHS>
m_Not(const LHS & L)738 inline not_match<LHS> m_Not(const LHS &L) { return L; }
739
740
741 template<typename LHS_t>
742 struct neg_match {
743 LHS_t L;
744
neg_matchneg_match745 neg_match(const LHS_t &LHS) : L(LHS) {}
746
747 template<typename OpTy>
matchneg_match748 bool match(OpTy *V) {
749 if (Operator *O = dyn_cast<Operator>(V))
750 if (O->getOpcode() == Instruction::Sub)
751 return matchIfNeg(O->getOperand(0), O->getOperand(1));
752 return false;
753 }
754 private:
matchIfNegneg_match755 bool matchIfNeg(Value *LHS, Value *RHS) {
756 return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
757 isa<ConstantAggregateZero>(LHS)) &&
758 L.match(RHS);
759 }
760 };
761
762 /// m_Neg - Match an integer negate.
763 template<typename LHS>
m_Neg(const LHS & L)764 inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
765
766
767 template<typename LHS_t>
768 struct fneg_match {
769 LHS_t L;
770
fneg_matchfneg_match771 fneg_match(const LHS_t &LHS) : L(LHS) {}
772
773 template<typename OpTy>
matchfneg_match774 bool match(OpTy *V) {
775 if (Operator *O = dyn_cast<Operator>(V))
776 if (O->getOpcode() == Instruction::FSub)
777 return matchIfFNeg(O->getOperand(0), O->getOperand(1));
778 return false;
779 }
780 private:
matchIfFNegfneg_match781 bool matchIfFNeg(Value *LHS, Value *RHS) {
782 if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
783 return C->isNegativeZeroValue() && L.match(RHS);
784 return false;
785 }
786 };
787
788 /// m_FNeg - Match a floating point negate.
789 template<typename LHS>
m_FNeg(const LHS & L)790 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
791
792
793 //===----------------------------------------------------------------------===//
794 // Matchers for control flow.
795 //
796
797 struct br_match {
798 BasicBlock *&Succ;
br_matchbr_match799 br_match(BasicBlock *&Succ)
800 : Succ(Succ) {
801 }
802
803 template<typename OpTy>
matchbr_match804 bool match(OpTy *V) {
805 if (BranchInst *BI = dyn_cast<BranchInst>(V))
806 if (BI->isUnconditional()) {
807 Succ = BI->getSuccessor(0);
808 return true;
809 }
810 return false;
811 }
812 };
813
m_UnconditionalBr(BasicBlock * & Succ)814 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
815
816 template<typename Cond_t>
817 struct brc_match {
818 Cond_t Cond;
819 BasicBlock *&T, *&F;
brc_matchbrc_match820 brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
821 : Cond(C), T(t), F(f) {
822 }
823
824 template<typename OpTy>
matchbrc_match825 bool match(OpTy *V) {
826 if (BranchInst *BI = dyn_cast<BranchInst>(V))
827 if (BI->isConditional() && Cond.match(BI->getCondition())) {
828 T = BI->getSuccessor(0);
829 F = BI->getSuccessor(1);
830 return true;
831 }
832 return false;
833 }
834 };
835
836 template<typename Cond_t>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)837 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
838 return brc_match<Cond_t>(C, T, F);
839 }
840
841
842 //===----------------------------------------------------------------------===//
843 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
844 //
845
846 template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
847 struct MaxMin_match {
848 LHS_t L;
849 RHS_t R;
850
MaxMin_matchMaxMin_match851 MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
852 : L(LHS), R(RHS) {}
853
854 template<typename OpTy>
matchMaxMin_match855 bool match(OpTy *V) {
856 // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
857 SelectInst *SI = dyn_cast<SelectInst>(V);
858 if (!SI)
859 return false;
860 CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
861 if (!Cmp)
862 return false;
863 // At this point we have a select conditioned on a comparison. Check that
864 // it is the values returned by the select that are being compared.
865 Value *TrueVal = SI->getTrueValue();
866 Value *FalseVal = SI->getFalseValue();
867 Value *LHS = Cmp->getOperand(0);
868 Value *RHS = Cmp->getOperand(1);
869 if ((TrueVal != LHS || FalseVal != RHS) &&
870 (TrueVal != RHS || FalseVal != LHS))
871 return false;
872 typename CmpInst_t::Predicate Pred = LHS == TrueVal ?
873 Cmp->getPredicate() : Cmp->getSwappedPredicate();
874 // Does "(x pred y) ? x : y" represent the desired max/min operation?
875 if (!Pred_t::match(Pred))
876 return false;
877 // It does! Bind the operands.
878 return L.match(LHS) && R.match(RHS);
879 }
880 };
881
882 /// smax_pred_ty - Helper class for identifying signed max predicates.
883 struct smax_pred_ty {
matchsmax_pred_ty884 static bool match(ICmpInst::Predicate Pred) {
885 return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
886 }
887 };
888
889 /// smin_pred_ty - Helper class for identifying signed min predicates.
890 struct smin_pred_ty {
matchsmin_pred_ty891 static bool match(ICmpInst::Predicate Pred) {
892 return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
893 }
894 };
895
896 /// umax_pred_ty - Helper class for identifying unsigned max predicates.
897 struct umax_pred_ty {
matchumax_pred_ty898 static bool match(ICmpInst::Predicate Pred) {
899 return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
900 }
901 };
902
903 /// umin_pred_ty - Helper class for identifying unsigned min predicates.
904 struct umin_pred_ty {
matchumin_pred_ty905 static bool match(ICmpInst::Predicate Pred) {
906 return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
907 }
908 };
909
910 /// ofmax_pred_ty - Helper class for identifying ordered max predicates.
911 struct ofmax_pred_ty {
matchofmax_pred_ty912 static bool match(FCmpInst::Predicate Pred) {
913 return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
914 }
915 };
916
917 /// ofmin_pred_ty - Helper class for identifying ordered min predicates.
918 struct ofmin_pred_ty {
matchofmin_pred_ty919 static bool match(FCmpInst::Predicate Pred) {
920 return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
921 }
922 };
923
924 /// ufmax_pred_ty - Helper class for identifying unordered max predicates.
925 struct ufmax_pred_ty {
matchufmax_pred_ty926 static bool match(FCmpInst::Predicate Pred) {
927 return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
928 }
929 };
930
931 /// ufmin_pred_ty - Helper class for identifying unordered min predicates.
932 struct ufmin_pred_ty {
matchufmin_pred_ty933 static bool match(FCmpInst::Predicate Pred) {
934 return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
935 }
936 };
937
938 template<typename LHS, typename RHS>
939 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>
m_SMax(const LHS & L,const RHS & R)940 m_SMax(const LHS &L, const RHS &R) {
941 return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
942 }
943
944 template<typename LHS, typename RHS>
945 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>
m_SMin(const LHS & L,const RHS & R)946 m_SMin(const LHS &L, const RHS &R) {
947 return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
948 }
949
950 template<typename LHS, typename RHS>
951 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>
m_UMax(const LHS & L,const RHS & R)952 m_UMax(const LHS &L, const RHS &R) {
953 return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
954 }
955
956 template<typename LHS, typename RHS>
957 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>
m_UMin(const LHS & L,const RHS & R)958 m_UMin(const LHS &L, const RHS &R) {
959 return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
960 }
961
962 /// \brief Match an 'ordered' floating point maximum function.
963 /// Floating point has one special value 'NaN'. Therefore, there is no total
964 /// order. However, if we can ignore the 'NaN' value (for example, because of a
965 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
966 /// semantics. In the presence of 'NaN' we have to preserve the original
967 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
968 ///
969 /// max(L, R) iff L and R are not NaN
970 /// m_OrdFMax(L, R) = R iff L or R are NaN
971 template<typename LHS, typename RHS>
972 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>
m_OrdFMax(const LHS & L,const RHS & R)973 m_OrdFMax(const LHS &L, const RHS &R) {
974 return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
975 }
976
977 /// \brief Match an 'ordered' floating point minimum function.
978 /// Floating point has one special value 'NaN'. Therefore, there is no total
979 /// order. However, if we can ignore the 'NaN' value (for example, because of a
980 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
981 /// semantics. In the presence of 'NaN' we have to preserve the original
982 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
983 ///
984 /// max(L, R) iff L and R are not NaN
985 /// m_OrdFMin(L, R) = R iff L or R are NaN
986 template<typename LHS, typename RHS>
987 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>
m_OrdFMin(const LHS & L,const RHS & R)988 m_OrdFMin(const LHS &L, const RHS &R) {
989 return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
990 }
991
992 /// \brief Match an 'unordered' floating point maximum function.
993 /// Floating point has one special value 'NaN'. Therefore, there is no total
994 /// order. However, if we can ignore the 'NaN' value (for example, because of a
995 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
996 /// semantics. In the presence of 'NaN' we have to preserve the original
997 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
998 ///
999 /// max(L, R) iff L and R are not NaN
1000 /// m_UnordFMin(L, R) = L iff L or R are NaN
1001 template<typename LHS, typename RHS>
1002 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)1003 m_UnordFMax(const LHS &L, const RHS &R) {
1004 return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1005 }
1006
1007 /// \brief Match an 'unordered' floating point minimum function.
1008 /// Floating point has one special value 'NaN'. Therefore, there is no total
1009 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1010 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1011 /// semantics. In the presence of 'NaN' we have to preserve the original
1012 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1013 ///
1014 /// max(L, R) iff L and R are not NaN
1015 /// m_UnordFMin(L, R) = L iff L or R are NaN
1016 template<typename LHS, typename RHS>
1017 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)1018 m_UnordFMin(const LHS &L, const RHS &R) {
1019 return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1020 }
1021
1022 template<typename Opnd_t>
1023 struct Argument_match {
1024 unsigned OpI;
1025 Opnd_t Val;
Argument_matchArgument_match1026 Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
1027
1028 template<typename OpTy>
matchArgument_match1029 bool match(OpTy *V) {
1030 CallSite CS(V);
1031 return CS.isCall() && Val.match(CS.getArgument(OpI));
1032 }
1033 };
1034
1035 /// Match an argument
1036 template<unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)1037 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1038 return Argument_match<Opnd_t>(OpI, Op);
1039 }
1040
1041 /// Intrinsic matchers.
1042 struct IntrinsicID_match {
1043 unsigned ID;
IntrinsicID_matchIntrinsicID_match1044 IntrinsicID_match(unsigned IntrID) : ID(IntrID) { }
1045
1046 template<typename OpTy>
matchIntrinsicID_match1047 bool match(OpTy *V) {
1048 IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
1049 return II && II->getIntrinsicID() == ID;
1050 }
1051 };
1052
1053 /// Intrinsic matches are combinations of ID matchers, and argument
1054 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1055 /// them with lower arity matchers. Here's some convenient typedefs for up to
1056 /// several arguments, and more can be added as needed
1057 template <typename T0 = void, typename T1 = void, typename T2 = void,
1058 typename T3 = void, typename T4 = void, typename T5 = void,
1059 typename T6 = void, typename T7 = void, typename T8 = void,
1060 typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
1061 template <typename T0>
1062 struct m_Intrinsic_Ty<T0> {
1063 typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
1064 };
1065 template <typename T0, typename T1>
1066 struct m_Intrinsic_Ty<T0, T1> {
1067 typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
1068 Argument_match<T1> > Ty;
1069 };
1070 template <typename T0, typename T1, typename T2>
1071 struct m_Intrinsic_Ty<T0, T1, T2> {
1072 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1073 Argument_match<T2> > Ty;
1074 };
1075 template <typename T0, typename T1, typename T2, typename T3>
1076 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1077 typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1078 Argument_match<T3> > Ty;
1079 };
1080
1081 /// Match intrinsic calls like this:
1082 /// m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1083 template <unsigned IntrID>
1084 inline IntrinsicID_match
1085 m_Intrinsic() { return IntrinsicID_match(IntrID); }
1086
1087 template<unsigned IntrID, typename T0>
1088 inline typename m_Intrinsic_Ty<T0>::Ty
1089 m_Intrinsic(const T0 &Op0) {
1090 return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1091 }
1092
1093 template<unsigned IntrID, typename T0, typename T1>
1094 inline typename m_Intrinsic_Ty<T0, T1>::Ty
1095 m_Intrinsic(const T0 &Op0, const T1 &Op1) {
1096 return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1097 }
1098
1099 template<unsigned IntrID, typename T0, typename T1, typename T2>
1100 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1101 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1102 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1103 }
1104
1105 template<unsigned IntrID, typename T0, typename T1, typename T2, typename T3>
1106 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1107 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1108 return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1109 }
1110
1111 // Helper intrinsic matching specializations
1112 template<typename Opnd0>
1113 inline typename m_Intrinsic_Ty<Opnd0>::Ty
1114 m_BSwap(const Opnd0 &Op0) {
1115 return m_Intrinsic<Intrinsic::bswap>(Op0);
1116 }
1117
1118 } // end namespace PatternMatch
1119 } // end namespace llvm
1120
1121 #endif
1122