• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- llvm/Support/PatternMatch.h - Match on the LLVM IR ------*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file provides a simple and efficient mechanism for performing general
11 // tree-based pattern matches on the LLVM IR.  The power of these routines is
12 // that it allows you to write concise patterns that are expressive and easy to
13 // understand.  The other major advantage of this is that it allows you to
14 // trivially capture/bind elements in the pattern to variables.  For example,
15 // you can do something like this:
16 //
17 //  Value *Exp = ...
18 //  Value *X, *Y;  ConstantInt *C1, *C2;      // (X & C1) | (Y & C2)
19 //  if (match(Exp, m_Or(m_And(m_Value(X), m_ConstantInt(C1)),
20 //                      m_And(m_Value(Y), m_ConstantInt(C2))))) {
21 //    ... Pattern is matched and variables are bound ...
22 //  }
23 //
24 // This is primarily useful to things like the instruction combiner, but can
25 // also be useful for static analysis tools or code generators.
26 //
27 //===----------------------------------------------------------------------===//
28 
29 #ifndef LLVM_SUPPORT_PATTERNMATCH_H
30 #define LLVM_SUPPORT_PATTERNMATCH_H
31 
32 #include "llvm/IR/Constants.h"
33 #include "llvm/IR/Instructions.h"
34 #include "llvm/IR/IntrinsicInst.h"
35 #include "llvm/IR/Operator.h"
36 #include "llvm/Support/CallSite.h"
37 
38 namespace llvm {
39 namespace PatternMatch {
40 
41 template<typename Val, typename Pattern>
match(Val * V,const Pattern & P)42 bool match(Val *V, const Pattern &P) {
43   return const_cast<Pattern&>(P).match(V);
44 }
45 
46 
47 template<typename SubPattern_t>
48 struct OneUse_match {
49   SubPattern_t SubPattern;
50 
OneUse_matchOneUse_match51   OneUse_match(const SubPattern_t &SP) : SubPattern(SP) {}
52 
53   template<typename OpTy>
matchOneUse_match54   bool match(OpTy *V) {
55     return V->hasOneUse() && SubPattern.match(V);
56   }
57 };
58 
59 template<typename T>
m_OneUse(const T & SubPattern)60 inline OneUse_match<T> m_OneUse(const T &SubPattern) { return SubPattern; }
61 
62 
63 template<typename Class>
64 struct class_match {
65   template<typename ITy>
matchclass_match66   bool match(ITy *V) { return isa<Class>(V); }
67 };
68 
69 /// m_Value() - Match an arbitrary value and ignore it.
m_Value()70 inline class_match<Value> m_Value() { return class_match<Value>(); }
71 /// m_ConstantInt() - Match an arbitrary ConstantInt and ignore it.
m_ConstantInt()72 inline class_match<ConstantInt> m_ConstantInt() {
73   return class_match<ConstantInt>();
74 }
75 /// m_Undef() - Match an arbitrary undef constant.
m_Undef()76 inline class_match<UndefValue> m_Undef() { return class_match<UndefValue>(); }
77 
m_Constant()78 inline class_match<Constant> m_Constant() { return class_match<Constant>(); }
79 
80 /// Matching combinators
81 template<typename LTy, typename RTy>
82 struct match_combine_or {
83   LTy L;
84   RTy R;
85 
match_combine_ormatch_combine_or86   match_combine_or(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
87 
88   template<typename ITy>
matchmatch_combine_or89   bool match(ITy *V) {
90     if (L.match(V))
91       return true;
92     if (R.match(V))
93       return true;
94     return false;
95   }
96 };
97 
98 template<typename LTy, typename RTy>
99 struct match_combine_and {
100   LTy L;
101   RTy R;
102 
match_combine_andmatch_combine_and103   match_combine_and(const LTy &Left, const RTy &Right) : L(Left), R(Right) { }
104 
105   template<typename ITy>
matchmatch_combine_and106   bool match(ITy *V) {
107     if (L.match(V))
108       if (R.match(V))
109         return true;
110     return false;
111   }
112 };
113 
114 /// Combine two pattern matchers matching L || R
115 template<typename LTy, typename RTy>
m_CombineOr(const LTy & L,const RTy & R)116 inline match_combine_or<LTy, RTy> m_CombineOr(const LTy &L, const RTy &R) {
117   return match_combine_or<LTy, RTy>(L, R);
118 }
119 
120 /// Combine two pattern matchers matching L && R
121 template<typename LTy, typename RTy>
m_CombineAnd(const LTy & L,const RTy & R)122 inline match_combine_and<LTy, RTy> m_CombineAnd(const LTy &L, const RTy &R) {
123   return match_combine_and<LTy, RTy>(L, R);
124 }
125 
126 struct match_zero {
127   template<typename ITy>
matchmatch_zero128   bool match(ITy *V) {
129     if (const Constant *C = dyn_cast<Constant>(V))
130       return C->isNullValue();
131     return false;
132   }
133 };
134 
135 /// m_Zero() - Match an arbitrary zero/null constant.  This includes
136 /// zero_initializer for vectors and ConstantPointerNull for pointers.
m_Zero()137 inline match_zero m_Zero() { return match_zero(); }
138 
139 struct match_neg_zero {
140   template<typename ITy>
matchmatch_neg_zero141   bool match(ITy *V) {
142     if (const Constant *C = dyn_cast<Constant>(V))
143       return C->isNegativeZeroValue();
144     return false;
145   }
146 };
147 
148 /// m_NegZero() - Match an arbitrary zero/null constant.  This includes
149 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
150 /// floating point constants, this will match negative zero but not positive
151 /// zero
m_NegZero()152 inline match_neg_zero m_NegZero() { return match_neg_zero(); }
153 
154 /// m_AnyZero() - Match an arbitrary zero/null constant.  This includes
155 /// zero_initializer for vectors and ConstantPointerNull for pointers. For
156 /// floating point constants, this will match negative zero and positive zero
m_AnyZero()157 inline match_combine_or<match_zero, match_neg_zero> m_AnyZero() {
158   return m_CombineOr(m_Zero(), m_NegZero());
159 }
160 
161 struct apint_match {
162   const APInt *&Res;
apint_matchapint_match163   apint_match(const APInt *&R) : Res(R) {}
164   template<typename ITy>
matchapint_match165   bool match(ITy *V) {
166     if (ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
167       Res = &CI->getValue();
168       return true;
169     }
170     if (V->getType()->isVectorTy())
171       if (const Constant *C = dyn_cast<Constant>(V))
172         if (ConstantInt *CI =
173             dyn_cast_or_null<ConstantInt>(C->getSplatValue())) {
174           Res = &CI->getValue();
175           return true;
176         }
177     return false;
178   }
179 };
180 
181 /// m_APInt - Match a ConstantInt or splatted ConstantVector, binding the
182 /// specified pointer to the contained APInt.
m_APInt(const APInt * & Res)183 inline apint_match m_APInt(const APInt *&Res) { return Res; }
184 
185 
186 template<int64_t Val>
187 struct constantint_match {
188   template<typename ITy>
matchconstantint_match189   bool match(ITy *V) {
190     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
191       const APInt &CIV = CI->getValue();
192       if (Val >= 0)
193         return CIV == static_cast<uint64_t>(Val);
194       // If Val is negative, and CI is shorter than it, truncate to the right
195       // number of bits.  If it is larger, then we have to sign extend.  Just
196       // compare their negated values.
197       return -CIV == -Val;
198     }
199     return false;
200   }
201 };
202 
203 /// m_ConstantInt<int64_t> - Match a ConstantInt with a specific value.
204 template<int64_t Val>
m_ConstantInt()205 inline constantint_match<Val> m_ConstantInt() {
206   return constantint_match<Val>();
207 }
208 
209 /// cst_pred_ty - This helper class is used to match scalar and vector constants
210 /// that satisfy a specified predicate.
211 template<typename Predicate>
212 struct cst_pred_ty : public Predicate {
213   template<typename ITy>
matchcst_pred_ty214   bool match(ITy *V) {
215     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
216       return this->isValue(CI->getValue());
217     if (V->getType()->isVectorTy())
218       if (const Constant *C = dyn_cast<Constant>(V))
219         if (const ConstantInt *CI =
220             dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
221           return this->isValue(CI->getValue());
222     return false;
223   }
224 };
225 
226 /// api_pred_ty - This helper class is used to match scalar and vector constants
227 /// that satisfy a specified predicate, and bind them to an APInt.
228 template<typename Predicate>
229 struct api_pred_ty : public Predicate {
230   const APInt *&Res;
api_pred_tyapi_pred_ty231   api_pred_ty(const APInt *&R) : Res(R) {}
232   template<typename ITy>
matchapi_pred_ty233   bool match(ITy *V) {
234     if (const ConstantInt *CI = dyn_cast<ConstantInt>(V))
235       if (this->isValue(CI->getValue())) {
236         Res = &CI->getValue();
237         return true;
238       }
239     if (V->getType()->isVectorTy())
240       if (const Constant *C = dyn_cast<Constant>(V))
241         if (ConstantInt *CI = dyn_cast_or_null<ConstantInt>(C->getSplatValue()))
242           if (this->isValue(CI->getValue())) {
243             Res = &CI->getValue();
244             return true;
245           }
246 
247     return false;
248   }
249 };
250 
251 
252 struct is_one {
isValueis_one253   bool isValue(const APInt &C) { return C == 1; }
254 };
255 
256 /// m_One() - Match an integer 1 or a vector with all elements equal to 1.
m_One()257 inline cst_pred_ty<is_one> m_One() { return cst_pred_ty<is_one>(); }
m_One(const APInt * & V)258 inline api_pred_ty<is_one> m_One(const APInt *&V) { return V; }
259 
260 struct is_all_ones {
isValueis_all_ones261   bool isValue(const APInt &C) { return C.isAllOnesValue(); }
262 };
263 
264 /// m_AllOnes() - Match an integer or vector with all bits set to true.
m_AllOnes()265 inline cst_pred_ty<is_all_ones> m_AllOnes() {return cst_pred_ty<is_all_ones>();}
m_AllOnes(const APInt * & V)266 inline api_pred_ty<is_all_ones> m_AllOnes(const APInt *&V) { return V; }
267 
268 struct is_sign_bit {
isValueis_sign_bit269   bool isValue(const APInt &C) { return C.isSignBit(); }
270 };
271 
272 /// m_SignBit() - Match an integer or vector with only the sign bit(s) set.
m_SignBit()273 inline cst_pred_ty<is_sign_bit> m_SignBit() {return cst_pred_ty<is_sign_bit>();}
m_SignBit(const APInt * & V)274 inline api_pred_ty<is_sign_bit> m_SignBit(const APInt *&V) { return V; }
275 
276 struct is_power2 {
isValueis_power2277   bool isValue(const APInt &C) { return C.isPowerOf2(); }
278 };
279 
280 /// m_Power2() - Match an integer or vector power of 2.
m_Power2()281 inline cst_pred_ty<is_power2> m_Power2() { return cst_pred_ty<is_power2>(); }
m_Power2(const APInt * & V)282 inline api_pred_ty<is_power2> m_Power2(const APInt *&V) { return V; }
283 
284 template<typename Class>
285 struct bind_ty {
286   Class *&VR;
bind_tybind_ty287   bind_ty(Class *&V) : VR(V) {}
288 
289   template<typename ITy>
matchbind_ty290   bool match(ITy *V) {
291     if (Class *CV = dyn_cast<Class>(V)) {
292       VR = CV;
293       return true;
294     }
295     return false;
296   }
297 };
298 
299 /// m_Value - Match a value, capturing it if we match.
m_Value(Value * & V)300 inline bind_ty<Value> m_Value(Value *&V) { return V; }
301 
302 /// m_ConstantInt - Match a ConstantInt, capturing the value if we match.
m_ConstantInt(ConstantInt * & CI)303 inline bind_ty<ConstantInt> m_ConstantInt(ConstantInt *&CI) { return CI; }
304 
305 /// m_Constant - Match a Constant, capturing the value if we match.
m_Constant(Constant * & C)306 inline bind_ty<Constant> m_Constant(Constant *&C) { return C; }
307 
308 /// m_ConstantFP - Match a ConstantFP, capturing the value if we match.
m_ConstantFP(ConstantFP * & C)309 inline bind_ty<ConstantFP> m_ConstantFP(ConstantFP *&C) { return C; }
310 
311 /// specificval_ty - Match a specified Value*.
312 struct specificval_ty {
313   const Value *Val;
specificval_tyspecificval_ty314   specificval_ty(const Value *V) : Val(V) {}
315 
316   template<typename ITy>
matchspecificval_ty317   bool match(ITy *V) {
318     return V == Val;
319   }
320 };
321 
322 /// m_Specific - Match if we have a specific specified value.
m_Specific(const Value * V)323 inline specificval_ty m_Specific(const Value *V) { return V; }
324 
325 /// Match a specified floating point value or vector of all elements of that
326 /// value.
327 struct specific_fpval {
328   double Val;
specific_fpvalspecific_fpval329   specific_fpval(double V) : Val(V) {}
330 
331   template<typename ITy>
matchspecific_fpval332   bool match(ITy *V) {
333     if (const ConstantFP *CFP = dyn_cast<ConstantFP>(V))
334       return CFP->isExactlyValue(Val);
335     if (V->getType()->isVectorTy())
336       if (const Constant *C = dyn_cast<Constant>(V))
337         if (ConstantFP *CFP = dyn_cast_or_null<ConstantFP>(C->getSplatValue()))
338           return CFP->isExactlyValue(Val);
339     return false;
340   }
341 };
342 
343 /// Match a specific floating point value or vector with all elements equal to
344 /// the value.
m_SpecificFP(double V)345 inline specific_fpval m_SpecificFP(double V) { return specific_fpval(V); }
346 
347 /// Match a float 1.0 or vector with all elements equal to 1.0.
m_FPOne()348 inline specific_fpval m_FPOne() { return m_SpecificFP(1.0); }
349 
350 struct bind_const_intval_ty {
351   uint64_t &VR;
bind_const_intval_tybind_const_intval_ty352   bind_const_intval_ty(uint64_t &V) : VR(V) {}
353 
354   template<typename ITy>
matchbind_const_intval_ty355   bool match(ITy *V) {
356     if (ConstantInt *CV = dyn_cast<ConstantInt>(V))
357       if (CV->getBitWidth() <= 64) {
358         VR = CV->getZExtValue();
359         return true;
360       }
361     return false;
362   }
363 };
364 
365 /// m_ConstantInt - Match a ConstantInt and bind to its value.  This does not
366 /// match ConstantInts wider than 64-bits.
m_ConstantInt(uint64_t & V)367 inline bind_const_intval_ty m_ConstantInt(uint64_t &V) { return V; }
368 
369 //===----------------------------------------------------------------------===//
370 // Matchers for specific binary operators.
371 //
372 
373 template<typename LHS_t, typename RHS_t, unsigned Opcode>
374 struct BinaryOp_match {
375   LHS_t L;
376   RHS_t R;
377 
BinaryOp_matchBinaryOp_match378   BinaryOp_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
379 
380   template<typename OpTy>
matchBinaryOp_match381   bool match(OpTy *V) {
382     if (V->getValueID() == Value::InstructionVal + Opcode) {
383       BinaryOperator *I = cast<BinaryOperator>(V);
384       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
385     }
386     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
387       return CE->getOpcode() == Opcode && L.match(CE->getOperand(0)) &&
388              R.match(CE->getOperand(1));
389     return false;
390   }
391 };
392 
393 template<typename LHS, typename RHS>
394 inline BinaryOp_match<LHS, RHS, Instruction::Add>
m_Add(const LHS & L,const RHS & R)395 m_Add(const LHS &L, const RHS &R) {
396   return BinaryOp_match<LHS, RHS, Instruction::Add>(L, R);
397 }
398 
399 template<typename LHS, typename RHS>
400 inline BinaryOp_match<LHS, RHS, Instruction::FAdd>
m_FAdd(const LHS & L,const RHS & R)401 m_FAdd(const LHS &L, const RHS &R) {
402   return BinaryOp_match<LHS, RHS, Instruction::FAdd>(L, R);
403 }
404 
405 template<typename LHS, typename RHS>
406 inline BinaryOp_match<LHS, RHS, Instruction::Sub>
m_Sub(const LHS & L,const RHS & R)407 m_Sub(const LHS &L, const RHS &R) {
408   return BinaryOp_match<LHS, RHS, Instruction::Sub>(L, R);
409 }
410 
411 template<typename LHS, typename RHS>
412 inline BinaryOp_match<LHS, RHS, Instruction::FSub>
m_FSub(const LHS & L,const RHS & R)413 m_FSub(const LHS &L, const RHS &R) {
414   return BinaryOp_match<LHS, RHS, Instruction::FSub>(L, R);
415 }
416 
417 template<typename LHS, typename RHS>
418 inline BinaryOp_match<LHS, RHS, Instruction::Mul>
m_Mul(const LHS & L,const RHS & R)419 m_Mul(const LHS &L, const RHS &R) {
420   return BinaryOp_match<LHS, RHS, Instruction::Mul>(L, R);
421 }
422 
423 template<typename LHS, typename RHS>
424 inline BinaryOp_match<LHS, RHS, Instruction::FMul>
m_FMul(const LHS & L,const RHS & R)425 m_FMul(const LHS &L, const RHS &R) {
426   return BinaryOp_match<LHS, RHS, Instruction::FMul>(L, R);
427 }
428 
429 template<typename LHS, typename RHS>
430 inline BinaryOp_match<LHS, RHS, Instruction::UDiv>
m_UDiv(const LHS & L,const RHS & R)431 m_UDiv(const LHS &L, const RHS &R) {
432   return BinaryOp_match<LHS, RHS, Instruction::UDiv>(L, R);
433 }
434 
435 template<typename LHS, typename RHS>
436 inline BinaryOp_match<LHS, RHS, Instruction::SDiv>
m_SDiv(const LHS & L,const RHS & R)437 m_SDiv(const LHS &L, const RHS &R) {
438   return BinaryOp_match<LHS, RHS, Instruction::SDiv>(L, R);
439 }
440 
441 template<typename LHS, typename RHS>
442 inline BinaryOp_match<LHS, RHS, Instruction::FDiv>
m_FDiv(const LHS & L,const RHS & R)443 m_FDiv(const LHS &L, const RHS &R) {
444   return BinaryOp_match<LHS, RHS, Instruction::FDiv>(L, R);
445 }
446 
447 template<typename LHS, typename RHS>
448 inline BinaryOp_match<LHS, RHS, Instruction::URem>
m_URem(const LHS & L,const RHS & R)449 m_URem(const LHS &L, const RHS &R) {
450   return BinaryOp_match<LHS, RHS, Instruction::URem>(L, R);
451 }
452 
453 template<typename LHS, typename RHS>
454 inline BinaryOp_match<LHS, RHS, Instruction::SRem>
m_SRem(const LHS & L,const RHS & R)455 m_SRem(const LHS &L, const RHS &R) {
456   return BinaryOp_match<LHS, RHS, Instruction::SRem>(L, R);
457 }
458 
459 template<typename LHS, typename RHS>
460 inline BinaryOp_match<LHS, RHS, Instruction::FRem>
m_FRem(const LHS & L,const RHS & R)461 m_FRem(const LHS &L, const RHS &R) {
462   return BinaryOp_match<LHS, RHS, Instruction::FRem>(L, R);
463 }
464 
465 template<typename LHS, typename RHS>
466 inline BinaryOp_match<LHS, RHS, Instruction::And>
m_And(const LHS & L,const RHS & R)467 m_And(const LHS &L, const RHS &R) {
468   return BinaryOp_match<LHS, RHS, Instruction::And>(L, R);
469 }
470 
471 template<typename LHS, typename RHS>
472 inline BinaryOp_match<LHS, RHS, Instruction::Or>
m_Or(const LHS & L,const RHS & R)473 m_Or(const LHS &L, const RHS &R) {
474   return BinaryOp_match<LHS, RHS, Instruction::Or>(L, R);
475 }
476 
477 template<typename LHS, typename RHS>
478 inline BinaryOp_match<LHS, RHS, Instruction::Xor>
m_Xor(const LHS & L,const RHS & R)479 m_Xor(const LHS &L, const RHS &R) {
480   return BinaryOp_match<LHS, RHS, Instruction::Xor>(L, R);
481 }
482 
483 template<typename LHS, typename RHS>
484 inline BinaryOp_match<LHS, RHS, Instruction::Shl>
m_Shl(const LHS & L,const RHS & R)485 m_Shl(const LHS &L, const RHS &R) {
486   return BinaryOp_match<LHS, RHS, Instruction::Shl>(L, R);
487 }
488 
489 template<typename LHS, typename RHS>
490 inline BinaryOp_match<LHS, RHS, Instruction::LShr>
m_LShr(const LHS & L,const RHS & R)491 m_LShr(const LHS &L, const RHS &R) {
492   return BinaryOp_match<LHS, RHS, Instruction::LShr>(L, R);
493 }
494 
495 template<typename LHS, typename RHS>
496 inline BinaryOp_match<LHS, RHS, Instruction::AShr>
m_AShr(const LHS & L,const RHS & R)497 m_AShr(const LHS &L, const RHS &R) {
498   return BinaryOp_match<LHS, RHS, Instruction::AShr>(L, R);
499 }
500 
501 //===----------------------------------------------------------------------===//
502 // Class that matches two different binary ops.
503 //
504 template<typename LHS_t, typename RHS_t, unsigned Opc1, unsigned Opc2>
505 struct BinOp2_match {
506   LHS_t L;
507   RHS_t R;
508 
BinOp2_matchBinOp2_match509   BinOp2_match(const LHS_t &LHS, const RHS_t &RHS) : L(LHS), R(RHS) {}
510 
511   template<typename OpTy>
matchBinOp2_match512   bool match(OpTy *V) {
513     if (V->getValueID() == Value::InstructionVal + Opc1 ||
514         V->getValueID() == Value::InstructionVal + Opc2) {
515       BinaryOperator *I = cast<BinaryOperator>(V);
516       return L.match(I->getOperand(0)) && R.match(I->getOperand(1));
517     }
518     if (ConstantExpr *CE = dyn_cast<ConstantExpr>(V))
519       return (CE->getOpcode() == Opc1 || CE->getOpcode() == Opc2) &&
520              L.match(CE->getOperand(0)) && R.match(CE->getOperand(1));
521     return false;
522   }
523 };
524 
525 /// m_Shr - Matches LShr or AShr.
526 template<typename LHS, typename RHS>
527 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>
m_Shr(const LHS & L,const RHS & R)528 m_Shr(const LHS &L, const RHS &R) {
529   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::AShr>(L, R);
530 }
531 
532 /// m_LogicalShift - Matches LShr or Shl.
533 template<typename LHS, typename RHS>
534 inline BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>
m_LogicalShift(const LHS & L,const RHS & R)535 m_LogicalShift(const LHS &L, const RHS &R) {
536   return BinOp2_match<LHS, RHS, Instruction::LShr, Instruction::Shl>(L, R);
537 }
538 
539 /// m_IDiv - Matches UDiv and SDiv.
540 template<typename LHS, typename RHS>
541 inline BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>
m_IDiv(const LHS & L,const RHS & R)542 m_IDiv(const LHS &L, const RHS &R) {
543   return BinOp2_match<LHS, RHS, Instruction::SDiv, Instruction::UDiv>(L, R);
544 }
545 
546 //===----------------------------------------------------------------------===//
547 // Class that matches exact binary ops.
548 //
549 template<typename SubPattern_t>
550 struct Exact_match {
551   SubPattern_t SubPattern;
552 
Exact_matchExact_match553   Exact_match(const SubPattern_t &SP) : SubPattern(SP) {}
554 
555   template<typename OpTy>
matchExact_match556   bool match(OpTy *V) {
557     if (PossiblyExactOperator *PEO = dyn_cast<PossiblyExactOperator>(V))
558       return PEO->isExact() && SubPattern.match(V);
559     return false;
560   }
561 };
562 
563 template<typename T>
m_Exact(const T & SubPattern)564 inline Exact_match<T> m_Exact(const T &SubPattern) { return SubPattern; }
565 
566 //===----------------------------------------------------------------------===//
567 // Matchers for CmpInst classes
568 //
569 
570 template<typename LHS_t, typename RHS_t, typename Class, typename PredicateTy>
571 struct CmpClass_match {
572   PredicateTy &Predicate;
573   LHS_t L;
574   RHS_t R;
575 
CmpClass_matchCmpClass_match576   CmpClass_match(PredicateTy &Pred, const LHS_t &LHS, const RHS_t &RHS)
577     : Predicate(Pred), L(LHS), R(RHS) {}
578 
579   template<typename OpTy>
matchCmpClass_match580   bool match(OpTy *V) {
581     if (Class *I = dyn_cast<Class>(V))
582       if (L.match(I->getOperand(0)) && R.match(I->getOperand(1))) {
583         Predicate = I->getPredicate();
584         return true;
585       }
586     return false;
587   }
588 };
589 
590 template<typename LHS, typename RHS>
591 inline CmpClass_match<LHS, RHS, ICmpInst, ICmpInst::Predicate>
m_ICmp(ICmpInst::Predicate & Pred,const LHS & L,const RHS & R)592 m_ICmp(ICmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
593   return CmpClass_match<LHS, RHS,
594                         ICmpInst, ICmpInst::Predicate>(Pred, L, R);
595 }
596 
597 template<typename LHS, typename RHS>
598 inline CmpClass_match<LHS, RHS, FCmpInst, FCmpInst::Predicate>
m_FCmp(FCmpInst::Predicate & Pred,const LHS & L,const RHS & R)599 m_FCmp(FCmpInst::Predicate &Pred, const LHS &L, const RHS &R) {
600   return CmpClass_match<LHS, RHS,
601                         FCmpInst, FCmpInst::Predicate>(Pred, L, R);
602 }
603 
604 //===----------------------------------------------------------------------===//
605 // Matchers for SelectInst classes
606 //
607 
608 template<typename Cond_t, typename LHS_t, typename RHS_t>
609 struct SelectClass_match {
610   Cond_t C;
611   LHS_t L;
612   RHS_t R;
613 
SelectClass_matchSelectClass_match614   SelectClass_match(const Cond_t &Cond, const LHS_t &LHS,
615                     const RHS_t &RHS)
616     : C(Cond), L(LHS), R(RHS) {}
617 
618   template<typename OpTy>
matchSelectClass_match619   bool match(OpTy *V) {
620     if (SelectInst *I = dyn_cast<SelectInst>(V))
621       return C.match(I->getOperand(0)) &&
622              L.match(I->getOperand(1)) &&
623              R.match(I->getOperand(2));
624     return false;
625   }
626 };
627 
628 template<typename Cond, typename LHS, typename RHS>
629 inline SelectClass_match<Cond, LHS, RHS>
m_Select(const Cond & C,const LHS & L,const RHS & R)630 m_Select(const Cond &C, const LHS &L, const RHS &R) {
631   return SelectClass_match<Cond, LHS, RHS>(C, L, R);
632 }
633 
634 /// m_SelectCst - This matches a select of two constants, e.g.:
635 ///    m_SelectCst<-1, 0>(m_Value(V))
636 template<int64_t L, int64_t R, typename Cond>
637 inline SelectClass_match<Cond, constantint_match<L>, constantint_match<R> >
m_SelectCst(const Cond & C)638 m_SelectCst(const Cond &C) {
639   return m_Select(C, m_ConstantInt<L>(), m_ConstantInt<R>());
640 }
641 
642 
643 //===----------------------------------------------------------------------===//
644 // Matchers for CastInst classes
645 //
646 
647 template<typename Op_t, unsigned Opcode>
648 struct CastClass_match {
649   Op_t Op;
650 
CastClass_matchCastClass_match651   CastClass_match(const Op_t &OpMatch) : Op(OpMatch) {}
652 
653   template<typename OpTy>
matchCastClass_match654   bool match(OpTy *V) {
655     if (Operator *O = dyn_cast<Operator>(V))
656       return O->getOpcode() == Opcode && Op.match(O->getOperand(0));
657     return false;
658   }
659 };
660 
661 /// m_BitCast
662 template<typename OpTy>
663 inline CastClass_match<OpTy, Instruction::BitCast>
m_BitCast(const OpTy & Op)664 m_BitCast(const OpTy &Op) {
665   return CastClass_match<OpTy, Instruction::BitCast>(Op);
666 }
667 
668 /// m_PtrToInt
669 template<typename OpTy>
670 inline CastClass_match<OpTy, Instruction::PtrToInt>
m_PtrToInt(const OpTy & Op)671 m_PtrToInt(const OpTy &Op) {
672   return CastClass_match<OpTy, Instruction::PtrToInt>(Op);
673 }
674 
675 /// m_Trunc
676 template<typename OpTy>
677 inline CastClass_match<OpTy, Instruction::Trunc>
m_Trunc(const OpTy & Op)678 m_Trunc(const OpTy &Op) {
679   return CastClass_match<OpTy, Instruction::Trunc>(Op);
680 }
681 
682 /// m_SExt
683 template<typename OpTy>
684 inline CastClass_match<OpTy, Instruction::SExt>
m_SExt(const OpTy & Op)685 m_SExt(const OpTy &Op) {
686   return CastClass_match<OpTy, Instruction::SExt>(Op);
687 }
688 
689 /// m_ZExt
690 template<typename OpTy>
691 inline CastClass_match<OpTy, Instruction::ZExt>
m_ZExt(const OpTy & Op)692 m_ZExt(const OpTy &Op) {
693   return CastClass_match<OpTy, Instruction::ZExt>(Op);
694 }
695 
696 /// m_UIToFP
697 template<typename OpTy>
698 inline CastClass_match<OpTy, Instruction::UIToFP>
m_UIToFP(const OpTy & Op)699 m_UIToFP(const OpTy &Op) {
700   return CastClass_match<OpTy, Instruction::UIToFP>(Op);
701 }
702 
703 /// m_SIToFP
704 template<typename OpTy>
705 inline CastClass_match<OpTy, Instruction::SIToFP>
m_SIToFP(const OpTy & Op)706 m_SIToFP(const OpTy &Op) {
707   return CastClass_match<OpTy, Instruction::SIToFP>(Op);
708 }
709 
710 //===----------------------------------------------------------------------===//
711 // Matchers for unary operators
712 //
713 
714 template<typename LHS_t>
715 struct not_match {
716   LHS_t L;
717 
not_matchnot_match718   not_match(const LHS_t &LHS) : L(LHS) {}
719 
720   template<typename OpTy>
matchnot_match721   bool match(OpTy *V) {
722     if (Operator *O = dyn_cast<Operator>(V))
723       if (O->getOpcode() == Instruction::Xor)
724         return matchIfNot(O->getOperand(0), O->getOperand(1));
725     return false;
726   }
727 private:
matchIfNotnot_match728   bool matchIfNot(Value *LHS, Value *RHS) {
729     return (isa<ConstantInt>(RHS) || isa<ConstantDataVector>(RHS) ||
730             // FIXME: Remove CV.
731             isa<ConstantVector>(RHS)) &&
732            cast<Constant>(RHS)->isAllOnesValue() &&
733            L.match(LHS);
734   }
735 };
736 
737 template<typename LHS>
m_Not(const LHS & L)738 inline not_match<LHS> m_Not(const LHS &L) { return L; }
739 
740 
741 template<typename LHS_t>
742 struct neg_match {
743   LHS_t L;
744 
neg_matchneg_match745   neg_match(const LHS_t &LHS) : L(LHS) {}
746 
747   template<typename OpTy>
matchneg_match748   bool match(OpTy *V) {
749     if (Operator *O = dyn_cast<Operator>(V))
750       if (O->getOpcode() == Instruction::Sub)
751         return matchIfNeg(O->getOperand(0), O->getOperand(1));
752     return false;
753   }
754 private:
matchIfNegneg_match755   bool matchIfNeg(Value *LHS, Value *RHS) {
756     return ((isa<ConstantInt>(LHS) && cast<ConstantInt>(LHS)->isZero()) ||
757             isa<ConstantAggregateZero>(LHS)) &&
758            L.match(RHS);
759   }
760 };
761 
762 /// m_Neg - Match an integer negate.
763 template<typename LHS>
m_Neg(const LHS & L)764 inline neg_match<LHS> m_Neg(const LHS &L) { return L; }
765 
766 
767 template<typename LHS_t>
768 struct fneg_match {
769   LHS_t L;
770 
fneg_matchfneg_match771   fneg_match(const LHS_t &LHS) : L(LHS) {}
772 
773   template<typename OpTy>
matchfneg_match774   bool match(OpTy *V) {
775     if (Operator *O = dyn_cast<Operator>(V))
776       if (O->getOpcode() == Instruction::FSub)
777         return matchIfFNeg(O->getOperand(0), O->getOperand(1));
778     return false;
779   }
780 private:
matchIfFNegfneg_match781   bool matchIfFNeg(Value *LHS, Value *RHS) {
782     if (ConstantFP *C = dyn_cast<ConstantFP>(LHS))
783       return C->isNegativeZeroValue() && L.match(RHS);
784     return false;
785   }
786 };
787 
788 /// m_FNeg - Match a floating point negate.
789 template<typename LHS>
m_FNeg(const LHS & L)790 inline fneg_match<LHS> m_FNeg(const LHS &L) { return L; }
791 
792 
793 //===----------------------------------------------------------------------===//
794 // Matchers for control flow.
795 //
796 
797 struct br_match {
798   BasicBlock *&Succ;
br_matchbr_match799   br_match(BasicBlock *&Succ)
800     : Succ(Succ) {
801   }
802 
803   template<typename OpTy>
matchbr_match804   bool match(OpTy *V) {
805     if (BranchInst *BI = dyn_cast<BranchInst>(V))
806       if (BI->isUnconditional()) {
807         Succ = BI->getSuccessor(0);
808         return true;
809       }
810     return false;
811   }
812 };
813 
m_UnconditionalBr(BasicBlock * & Succ)814 inline br_match m_UnconditionalBr(BasicBlock *&Succ) { return br_match(Succ); }
815 
816 template<typename Cond_t>
817 struct brc_match {
818   Cond_t Cond;
819   BasicBlock *&T, *&F;
brc_matchbrc_match820   brc_match(const Cond_t &C, BasicBlock *&t, BasicBlock *&f)
821     : Cond(C), T(t), F(f) {
822   }
823 
824   template<typename OpTy>
matchbrc_match825   bool match(OpTy *V) {
826     if (BranchInst *BI = dyn_cast<BranchInst>(V))
827       if (BI->isConditional() && Cond.match(BI->getCondition())) {
828         T = BI->getSuccessor(0);
829         F = BI->getSuccessor(1);
830         return true;
831       }
832     return false;
833   }
834 };
835 
836 template<typename Cond_t>
m_Br(const Cond_t & C,BasicBlock * & T,BasicBlock * & F)837 inline brc_match<Cond_t> m_Br(const Cond_t &C, BasicBlock *&T, BasicBlock *&F) {
838   return brc_match<Cond_t>(C, T, F);
839 }
840 
841 
842 //===----------------------------------------------------------------------===//
843 // Matchers for max/min idioms, eg: "select (sgt x, y), x, y" -> smax(x,y).
844 //
845 
846 template<typename CmpInst_t, typename LHS_t, typename RHS_t, typename Pred_t>
847 struct MaxMin_match {
848   LHS_t L;
849   RHS_t R;
850 
MaxMin_matchMaxMin_match851   MaxMin_match(const LHS_t &LHS, const RHS_t &RHS)
852     : L(LHS), R(RHS) {}
853 
854   template<typename OpTy>
matchMaxMin_match855   bool match(OpTy *V) {
856     // Look for "(x pred y) ? x : y" or "(x pred y) ? y : x".
857     SelectInst *SI = dyn_cast<SelectInst>(V);
858     if (!SI)
859       return false;
860     CmpInst_t *Cmp = dyn_cast<CmpInst_t>(SI->getCondition());
861     if (!Cmp)
862       return false;
863     // At this point we have a select conditioned on a comparison.  Check that
864     // it is the values returned by the select that are being compared.
865     Value *TrueVal = SI->getTrueValue();
866     Value *FalseVal = SI->getFalseValue();
867     Value *LHS = Cmp->getOperand(0);
868     Value *RHS = Cmp->getOperand(1);
869     if ((TrueVal != LHS || FalseVal != RHS) &&
870         (TrueVal != RHS || FalseVal != LHS))
871       return false;
872     typename CmpInst_t::Predicate Pred = LHS == TrueVal ?
873       Cmp->getPredicate() : Cmp->getSwappedPredicate();
874     // Does "(x pred y) ? x : y" represent the desired max/min operation?
875     if (!Pred_t::match(Pred))
876       return false;
877     // It does!  Bind the operands.
878     return L.match(LHS) && R.match(RHS);
879   }
880 };
881 
882 /// smax_pred_ty - Helper class for identifying signed max predicates.
883 struct smax_pred_ty {
matchsmax_pred_ty884   static bool match(ICmpInst::Predicate Pred) {
885     return Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
886   }
887 };
888 
889 /// smin_pred_ty - Helper class for identifying signed min predicates.
890 struct smin_pred_ty {
matchsmin_pred_ty891   static bool match(ICmpInst::Predicate Pred) {
892     return Pred == CmpInst::ICMP_SLT || Pred == CmpInst::ICMP_SLE;
893   }
894 };
895 
896 /// umax_pred_ty - Helper class for identifying unsigned max predicates.
897 struct umax_pred_ty {
matchumax_pred_ty898   static bool match(ICmpInst::Predicate Pred) {
899     return Pred == CmpInst::ICMP_UGT || Pred == CmpInst::ICMP_UGE;
900   }
901 };
902 
903 /// umin_pred_ty - Helper class for identifying unsigned min predicates.
904 struct umin_pred_ty {
matchumin_pred_ty905   static bool match(ICmpInst::Predicate Pred) {
906     return Pred == CmpInst::ICMP_ULT || Pred == CmpInst::ICMP_ULE;
907   }
908 };
909 
910 /// ofmax_pred_ty - Helper class for identifying ordered max predicates.
911 struct ofmax_pred_ty {
matchofmax_pred_ty912   static bool match(FCmpInst::Predicate Pred) {
913     return Pred == CmpInst::FCMP_OGT || Pred == CmpInst::FCMP_OGE;
914   }
915 };
916 
917 /// ofmin_pred_ty - Helper class for identifying ordered min predicates.
918 struct ofmin_pred_ty {
matchofmin_pred_ty919   static bool match(FCmpInst::Predicate Pred) {
920     return Pred == CmpInst::FCMP_OLT || Pred == CmpInst::FCMP_OLE;
921   }
922 };
923 
924 /// ufmax_pred_ty - Helper class for identifying unordered max predicates.
925 struct ufmax_pred_ty {
matchufmax_pred_ty926   static bool match(FCmpInst::Predicate Pred) {
927     return Pred == CmpInst::FCMP_UGT || Pred == CmpInst::FCMP_UGE;
928   }
929 };
930 
931 /// ufmin_pred_ty - Helper class for identifying unordered min predicates.
932 struct ufmin_pred_ty {
matchufmin_pred_ty933   static bool match(FCmpInst::Predicate Pred) {
934     return Pred == CmpInst::FCMP_ULT || Pred == CmpInst::FCMP_ULE;
935   }
936 };
937 
938 template<typename LHS, typename RHS>
939 inline MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>
m_SMax(const LHS & L,const RHS & R)940 m_SMax(const LHS &L, const RHS &R) {
941   return MaxMin_match<ICmpInst, LHS, RHS, smax_pred_ty>(L, R);
942 }
943 
944 template<typename LHS, typename RHS>
945 inline MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>
m_SMin(const LHS & L,const RHS & R)946 m_SMin(const LHS &L, const RHS &R) {
947   return MaxMin_match<ICmpInst, LHS, RHS, smin_pred_ty>(L, R);
948 }
949 
950 template<typename LHS, typename RHS>
951 inline MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>
m_UMax(const LHS & L,const RHS & R)952 m_UMax(const LHS &L, const RHS &R) {
953   return MaxMin_match<ICmpInst, LHS, RHS, umax_pred_ty>(L, R);
954 }
955 
956 template<typename LHS, typename RHS>
957 inline MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>
m_UMin(const LHS & L,const RHS & R)958 m_UMin(const LHS &L, const RHS &R) {
959   return MaxMin_match<ICmpInst, LHS, RHS, umin_pred_ty>(L, R);
960 }
961 
962 /// \brief Match an 'ordered' floating point maximum function.
963 /// Floating point has one special value 'NaN'. Therefore, there is no total
964 /// order. However, if we can ignore the 'NaN' value (for example, because of a
965 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
966 /// semantics. In the presence of 'NaN' we have to preserve the original
967 /// select(fcmp(ogt/ge, L, R), L, R) semantics matched by this predicate.
968 ///
969 ///                         max(L, R)  iff L and R are not NaN
970 ///  m_OrdFMax(L, R) =      R          iff L or R are NaN
971 template<typename LHS, typename RHS>
972 inline MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>
m_OrdFMax(const LHS & L,const RHS & R)973 m_OrdFMax(const LHS &L, const RHS &R) {
974   return MaxMin_match<FCmpInst, LHS, RHS, ofmax_pred_ty>(L, R);
975 }
976 
977 /// \brief Match an 'ordered' floating point minimum function.
978 /// Floating point has one special value 'NaN'. Therefore, there is no total
979 /// order. However, if we can ignore the 'NaN' value (for example, because of a
980 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
981 /// semantics. In the presence of 'NaN' we have to preserve the original
982 /// select(fcmp(olt/le, L, R), L, R) semantics matched by this predicate.
983 ///
984 ///                         max(L, R)  iff L and R are not NaN
985 ///  m_OrdFMin(L, R) =      R          iff L or R are NaN
986 template<typename LHS, typename RHS>
987 inline MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>
m_OrdFMin(const LHS & L,const RHS & R)988 m_OrdFMin(const LHS &L, const RHS &R) {
989   return MaxMin_match<FCmpInst, LHS, RHS, ofmin_pred_ty>(L, R);
990 }
991 
992 /// \brief Match an 'unordered' floating point maximum function.
993 /// Floating point has one special value 'NaN'. Therefore, there is no total
994 /// order. However, if we can ignore the 'NaN' value (for example, because of a
995 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'maximum'
996 /// semantics. In the presence of 'NaN' we have to preserve the original
997 /// select(fcmp(ugt/ge, L, R), L, R) semantics matched by this predicate.
998 ///
999 ///                         max(L, R)  iff L and R are not NaN
1000 ///  m_UnordFMin(L, R) =    L          iff L or R are NaN
1001 template<typename LHS, typename RHS>
1002 inline MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>
m_UnordFMax(const LHS & L,const RHS & R)1003 m_UnordFMax(const LHS &L, const RHS &R) {
1004   return MaxMin_match<FCmpInst, LHS, RHS, ufmax_pred_ty>(L, R);
1005 }
1006 
1007 /// \brief Match an 'unordered' floating point minimum function.
1008 /// Floating point has one special value 'NaN'. Therefore, there is no total
1009 /// order. However, if we can ignore the 'NaN' value (for example, because of a
1010 /// 'no-nans-float-math' flag) a combination of a fcmp and select has 'minimum'
1011 /// semantics. In the presence of 'NaN' we have to preserve the original
1012 /// select(fcmp(ult/le, L, R), L, R) semantics matched by this predicate.
1013 ///
1014 ///                          max(L, R)  iff L and R are not NaN
1015 ///  m_UnordFMin(L, R) =     L          iff L or R are NaN
1016 template<typename LHS, typename RHS>
1017 inline MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>
m_UnordFMin(const LHS & L,const RHS & R)1018 m_UnordFMin(const LHS &L, const RHS &R) {
1019   return MaxMin_match<FCmpInst, LHS, RHS, ufmin_pred_ty>(L, R);
1020 }
1021 
1022 template<typename Opnd_t>
1023 struct Argument_match {
1024   unsigned OpI;
1025   Opnd_t Val;
Argument_matchArgument_match1026   Argument_match(unsigned OpIdx, const Opnd_t &V) : OpI(OpIdx), Val(V) { }
1027 
1028   template<typename OpTy>
matchArgument_match1029   bool match(OpTy *V) {
1030     CallSite CS(V);
1031     return CS.isCall() && Val.match(CS.getArgument(OpI));
1032   }
1033 };
1034 
1035 /// Match an argument
1036 template<unsigned OpI, typename Opnd_t>
m_Argument(const Opnd_t & Op)1037 inline Argument_match<Opnd_t> m_Argument(const Opnd_t &Op) {
1038   return Argument_match<Opnd_t>(OpI, Op);
1039 }
1040 
1041 /// Intrinsic matchers.
1042 struct IntrinsicID_match {
1043   unsigned ID;
IntrinsicID_matchIntrinsicID_match1044   IntrinsicID_match(unsigned IntrID) : ID(IntrID) { }
1045 
1046   template<typename OpTy>
matchIntrinsicID_match1047   bool match(OpTy *V) {
1048     IntrinsicInst *II = dyn_cast<IntrinsicInst>(V);
1049     return II && II->getIntrinsicID() == ID;
1050   }
1051 };
1052 
1053 /// Intrinsic matches are combinations of ID matchers, and argument
1054 /// matchers. Higher arity matcher are defined recursively in terms of and-ing
1055 /// them with lower arity matchers. Here's some convenient typedefs for up to
1056 /// several arguments, and more can be added as needed
1057 template <typename T0 = void, typename T1 = void, typename T2 = void,
1058           typename T3 = void, typename T4 = void, typename T5 = void,
1059           typename T6 = void, typename T7 = void, typename T8 = void,
1060           typename T9 = void, typename T10 = void> struct m_Intrinsic_Ty;
1061 template <typename T0>
1062 struct m_Intrinsic_Ty<T0> {
1063   typedef match_combine_and<IntrinsicID_match, Argument_match<T0> > Ty;
1064 };
1065 template <typename T0, typename T1>
1066 struct m_Intrinsic_Ty<T0, T1> {
1067   typedef match_combine_and<typename m_Intrinsic_Ty<T0>::Ty,
1068                             Argument_match<T1> > Ty;
1069 };
1070 template <typename T0, typename T1, typename T2>
1071 struct m_Intrinsic_Ty<T0, T1, T2> {
1072   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1>::Ty,
1073                             Argument_match<T2> > Ty;
1074 };
1075 template <typename T0, typename T1, typename T2, typename T3>
1076 struct m_Intrinsic_Ty<T0, T1, T2, T3> {
1077   typedef match_combine_and<typename m_Intrinsic_Ty<T0, T1, T2>::Ty,
1078                             Argument_match<T3> > Ty;
1079 };
1080 
1081 /// Match intrinsic calls like this:
1082 ///   m_Intrinsic<Intrinsic::fabs>(m_Value(X))
1083 template <unsigned IntrID>
1084 inline IntrinsicID_match
1085 m_Intrinsic() { return IntrinsicID_match(IntrID); }
1086 
1087 template<unsigned IntrID, typename T0>
1088 inline typename m_Intrinsic_Ty<T0>::Ty
1089 m_Intrinsic(const T0 &Op0) {
1090   return m_CombineAnd(m_Intrinsic<IntrID>(), m_Argument<0>(Op0));
1091 }
1092 
1093 template<unsigned IntrID, typename T0, typename T1>
1094 inline typename m_Intrinsic_Ty<T0, T1>::Ty
1095 m_Intrinsic(const T0 &Op0, const T1 &Op1) {
1096   return m_CombineAnd(m_Intrinsic<IntrID>(Op0), m_Argument<1>(Op1));
1097 }
1098 
1099 template<unsigned IntrID, typename T0, typename T1, typename T2>
1100 inline typename m_Intrinsic_Ty<T0, T1, T2>::Ty
1101 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2) {
1102   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1), m_Argument<2>(Op2));
1103 }
1104 
1105 template<unsigned IntrID, typename T0, typename T1, typename T2, typename T3>
1106 inline typename m_Intrinsic_Ty<T0, T1, T2, T3>::Ty
1107 m_Intrinsic(const T0 &Op0, const T1 &Op1, const T2 &Op2, const T3 &Op3) {
1108   return m_CombineAnd(m_Intrinsic<IntrID>(Op0, Op1, Op2), m_Argument<3>(Op3));
1109 }
1110 
1111 // Helper intrinsic matching specializations
1112 template<typename Opnd0>
1113 inline typename m_Intrinsic_Ty<Opnd0>::Ty
1114 m_BSwap(const Opnd0 &Op0) {
1115   return m_Intrinsic<Intrinsic::bswap>(Op0);
1116 }
1117 
1118 } // end namespace PatternMatch
1119 } // end namespace llvm
1120 
1121 #endif
1122