• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // This file is part of Eigen, a lightweight C++ template library
2 // for linear algebra.
3 //
4 // Copyright (C) 2009 Benoit Jacob <jacob.benoit.1@gmail.com>
5 // Copyright (C) 2009 Gael Guennebaud <gael.guennebaud@inria.fr>
6 //
7 // This Source Code Form is subject to the terms of the Mozilla
8 // Public License v. 2.0. If a copy of the MPL was not distributed
9 // with this file, You can obtain one at http://mozilla.org/MPL/2.0/.
10 
11 #ifndef EIGEN_JACOBI_H
12 #define EIGEN_JACOBI_H
13 
14 namespace Eigen {
15 
16 /** \ingroup Jacobi_Module
17   * \jacobi_module
18   * \class JacobiRotation
19   * \brief Rotation given by a cosine-sine pair.
20   *
21   * This class represents a Jacobi or Givens rotation.
22   * This is a 2D rotation in the plane \c J of angle \f$ \theta \f$ defined by
23   * its cosine \c c and sine \c s as follow:
24   * \f$ J = \left ( \begin{array}{cc} c & \overline s \\ -s  & \overline c \end{array} \right ) \f$
25   *
26   * You can apply the respective counter-clockwise rotation to a column vector \c v by
27   * applying its adjoint on the left: \f$ v = J^* v \f$ that translates to the following Eigen code:
28   * \code
29   * v.applyOnTheLeft(J.adjoint());
30   * \endcode
31   *
32   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
33   */
34 template<typename Scalar> class JacobiRotation
35 {
36   public:
37     typedef typename NumTraits<Scalar>::Real RealScalar;
38 
39     /** Default constructor without any initialization. */
JacobiRotation()40     JacobiRotation() {}
41 
42     /** Construct a planar rotation from a cosine-sine pair (\a c, \c s). */
JacobiRotation(const Scalar & c,const Scalar & s)43     JacobiRotation(const Scalar& c, const Scalar& s) : m_c(c), m_s(s) {}
44 
c()45     Scalar& c() { return m_c; }
c()46     Scalar c() const { return m_c; }
s()47     Scalar& s() { return m_s; }
s()48     Scalar s() const { return m_s; }
49 
50     /** Concatenates two planar rotation */
51     JacobiRotation operator*(const JacobiRotation& other)
52     {
53       return JacobiRotation(m_c * other.m_c - internal::conj(m_s) * other.m_s,
54                             internal::conj(m_c * internal::conj(other.m_s) + internal::conj(m_s) * internal::conj(other.m_c)));
55     }
56 
57     /** Returns the transposed transformation */
transpose()58     JacobiRotation transpose() const { return JacobiRotation(m_c, -internal::conj(m_s)); }
59 
60     /** Returns the adjoint transformation */
adjoint()61     JacobiRotation adjoint() const { return JacobiRotation(internal::conj(m_c), -m_s); }
62 
63     template<typename Derived>
64     bool makeJacobi(const MatrixBase<Derived>&, typename Derived::Index p, typename Derived::Index q);
65     bool makeJacobi(RealScalar x, Scalar y, RealScalar z);
66 
67     void makeGivens(const Scalar& p, const Scalar& q, Scalar* z=0);
68 
69   protected:
70     void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::true_type);
71     void makeGivens(const Scalar& p, const Scalar& q, Scalar* z, internal::false_type);
72 
73     Scalar m_c, m_s;
74 };
75 
76 /** Makes \c *this as a Jacobi rotation \a J such that applying \a J on both the right and left sides of the selfadjoint 2x2 matrix
77   * \f$ B = \left ( \begin{array}{cc} x & y \\ \overline y & z \end{array} \right )\f$ yields a diagonal matrix \f$ A = J^* B J \f$
78   *
79   * \sa MatrixBase::makeJacobi(const MatrixBase<Derived>&, Index, Index), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
80   */
81 template<typename Scalar>
makeJacobi(RealScalar x,Scalar y,RealScalar z)82 bool JacobiRotation<Scalar>::makeJacobi(RealScalar x, Scalar y, RealScalar z)
83 {
84   typedef typename NumTraits<Scalar>::Real RealScalar;
85   if(y == Scalar(0))
86   {
87     m_c = Scalar(1);
88     m_s = Scalar(0);
89     return false;
90   }
91   else
92   {
93     RealScalar tau = (x-z)/(RealScalar(2)*internal::abs(y));
94     RealScalar w = internal::sqrt(internal::abs2(tau) + RealScalar(1));
95     RealScalar t;
96     if(tau>RealScalar(0))
97     {
98       t = RealScalar(1) / (tau + w);
99     }
100     else
101     {
102       t = RealScalar(1) / (tau - w);
103     }
104     RealScalar sign_t = t > RealScalar(0) ? RealScalar(1) : RealScalar(-1);
105     RealScalar n = RealScalar(1) / internal::sqrt(internal::abs2(t)+RealScalar(1));
106     m_s = - sign_t * (internal::conj(y) / internal::abs(y)) * internal::abs(t) * n;
107     m_c = n;
108     return true;
109   }
110 }
111 
112 /** Makes \c *this as a Jacobi rotation \c J such that applying \a J on both the right and left sides of the 2x2 selfadjoint matrix
113   * \f$ B = \left ( \begin{array}{cc} \text{this}_{pp} & \text{this}_{pq} \\ (\text{this}_{pq})^* & \text{this}_{qq} \end{array} \right )\f$ yields
114   * a diagonal matrix \f$ A = J^* B J \f$
115   *
116   * Example: \include Jacobi_makeJacobi.cpp
117   * Output: \verbinclude Jacobi_makeJacobi.out
118   *
119   * \sa JacobiRotation::makeJacobi(RealScalar, Scalar, RealScalar), MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
120   */
121 template<typename Scalar>
122 template<typename Derived>
makeJacobi(const MatrixBase<Derived> & m,typename Derived::Index p,typename Derived::Index q)123 inline bool JacobiRotation<Scalar>::makeJacobi(const MatrixBase<Derived>& m, typename Derived::Index p, typename Derived::Index q)
124 {
125   return makeJacobi(internal::real(m.coeff(p,p)), m.coeff(p,q), internal::real(m.coeff(q,q)));
126 }
127 
128 /** Makes \c *this as a Givens rotation \c G such that applying \f$ G^* \f$ to the left of the vector
129   * \f$ V = \left ( \begin{array}{c} p \\ q \end{array} \right )\f$ yields:
130   * \f$ G^* V = \left ( \begin{array}{c} r \\ 0 \end{array} \right )\f$.
131   *
132   * The value of \a z is returned if \a z is not null (the default is null).
133   * Also note that G is built such that the cosine is always real.
134   *
135   * Example: \include Jacobi_makeGivens.cpp
136   * Output: \verbinclude Jacobi_makeGivens.out
137   *
138   * This function implements the continuous Givens rotation generation algorithm
139   * found in Anderson (2000), Discontinuous Plane Rotations and the Symmetric Eigenvalue Problem.
140   * LAPACK Working Note 150, University of Tennessee, UT-CS-00-454, December 4, 2000.
141   *
142   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
143   */
144 template<typename Scalar>
makeGivens(const Scalar & p,const Scalar & q,Scalar * z)145 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* z)
146 {
147   makeGivens(p, q, z, typename internal::conditional<NumTraits<Scalar>::IsComplex, internal::true_type, internal::false_type>::type());
148 }
149 
150 
151 // specialization for complexes
152 template<typename Scalar>
makeGivens(const Scalar & p,const Scalar & q,Scalar * r,internal::true_type)153 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::true_type)
154 {
155   if(q==Scalar(0))
156   {
157     m_c = internal::real(p)<0 ? Scalar(-1) : Scalar(1);
158     m_s = 0;
159     if(r) *r = m_c * p;
160   }
161   else if(p==Scalar(0))
162   {
163     m_c = 0;
164     m_s = -q/internal::abs(q);
165     if(r) *r = internal::abs(q);
166   }
167   else
168   {
169     RealScalar p1 = internal::norm1(p);
170     RealScalar q1 = internal::norm1(q);
171     if(p1>=q1)
172     {
173       Scalar ps = p / p1;
174       RealScalar p2 = internal::abs2(ps);
175       Scalar qs = q / p1;
176       RealScalar q2 = internal::abs2(qs);
177 
178       RealScalar u = internal::sqrt(RealScalar(1) + q2/p2);
179       if(internal::real(p)<RealScalar(0))
180         u = -u;
181 
182       m_c = Scalar(1)/u;
183       m_s = -qs*internal::conj(ps)*(m_c/p2);
184       if(r) *r = p * u;
185     }
186     else
187     {
188       Scalar ps = p / q1;
189       RealScalar p2 = internal::abs2(ps);
190       Scalar qs = q / q1;
191       RealScalar q2 = internal::abs2(qs);
192 
193       RealScalar u = q1 * internal::sqrt(p2 + q2);
194       if(internal::real(p)<RealScalar(0))
195         u = -u;
196 
197       p1 = internal::abs(p);
198       ps = p/p1;
199       m_c = p1/u;
200       m_s = -internal::conj(ps) * (q/u);
201       if(r) *r = ps * u;
202     }
203   }
204 }
205 
206 // specialization for reals
207 template<typename Scalar>
makeGivens(const Scalar & p,const Scalar & q,Scalar * r,internal::false_type)208 void JacobiRotation<Scalar>::makeGivens(const Scalar& p, const Scalar& q, Scalar* r, internal::false_type)
209 {
210 
211   if(q==Scalar(0))
212   {
213     m_c = p<Scalar(0) ? Scalar(-1) : Scalar(1);
214     m_s = Scalar(0);
215     if(r) *r = internal::abs(p);
216   }
217   else if(p==Scalar(0))
218   {
219     m_c = Scalar(0);
220     m_s = q<Scalar(0) ? Scalar(1) : Scalar(-1);
221     if(r) *r = internal::abs(q);
222   }
223   else if(internal::abs(p) > internal::abs(q))
224   {
225     Scalar t = q/p;
226     Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
227     if(p<Scalar(0))
228       u = -u;
229     m_c = Scalar(1)/u;
230     m_s = -t * m_c;
231     if(r) *r = p * u;
232   }
233   else
234   {
235     Scalar t = p/q;
236     Scalar u = internal::sqrt(Scalar(1) + internal::abs2(t));
237     if(q<Scalar(0))
238       u = -u;
239     m_s = -Scalar(1)/u;
240     m_c = -t * m_s;
241     if(r) *r = q * u;
242   }
243 
244 }
245 
246 /****************************************************************************************
247 *   Implementation of MatrixBase methods
248 ****************************************************************************************/
249 
250 /** \jacobi_module
251   * Applies the clock wise 2D rotation \a j to the set of 2D vectors of cordinates \a x and \a y:
252   * \f$ \left ( \begin{array}{cc} x \\ y \end{array} \right )  =  J \left ( \begin{array}{cc} x \\ y \end{array} \right ) \f$
253   *
254   * \sa MatrixBase::applyOnTheLeft(), MatrixBase::applyOnTheRight()
255   */
256 namespace internal {
257 template<typename VectorX, typename VectorY, typename OtherScalar>
258 void apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j);
259 }
260 
261 /** \jacobi_module
262   * Applies the rotation in the plane \a j to the rows \a p and \a q of \c *this, i.e., it computes B = J * B,
263   * with \f$ B = \left ( \begin{array}{cc} \text{*this.row}(p) \\ \text{*this.row}(q) \end{array} \right ) \f$.
264   *
265   * \sa class JacobiRotation, MatrixBase::applyOnTheRight(), internal::apply_rotation_in_the_plane()
266   */
267 template<typename Derived>
268 template<typename OtherScalar>
applyOnTheLeft(Index p,Index q,const JacobiRotation<OtherScalar> & j)269 inline void MatrixBase<Derived>::applyOnTheLeft(Index p, Index q, const JacobiRotation<OtherScalar>& j)
270 {
271   RowXpr x(this->row(p));
272   RowXpr y(this->row(q));
273   internal::apply_rotation_in_the_plane(x, y, j);
274 }
275 
276 /** \ingroup Jacobi_Module
277   * Applies the rotation in the plane \a j to the columns \a p and \a q of \c *this, i.e., it computes B = B * J
278   * with \f$ B = \left ( \begin{array}{cc} \text{*this.col}(p) & \text{*this.col}(q) \end{array} \right ) \f$.
279   *
280   * \sa class JacobiRotation, MatrixBase::applyOnTheLeft(), internal::apply_rotation_in_the_plane()
281   */
282 template<typename Derived>
283 template<typename OtherScalar>
applyOnTheRight(Index p,Index q,const JacobiRotation<OtherScalar> & j)284 inline void MatrixBase<Derived>::applyOnTheRight(Index p, Index q, const JacobiRotation<OtherScalar>& j)
285 {
286   ColXpr x(this->col(p));
287   ColXpr y(this->col(q));
288   internal::apply_rotation_in_the_plane(x, y, j.transpose());
289 }
290 
291 namespace internal {
292 template<typename VectorX, typename VectorY, typename OtherScalar>
apply_rotation_in_the_plane(VectorX & _x,VectorY & _y,const JacobiRotation<OtherScalar> & j)293 void /*EIGEN_DONT_INLINE*/ apply_rotation_in_the_plane(VectorX& _x, VectorY& _y, const JacobiRotation<OtherScalar>& j)
294 {
295   typedef typename VectorX::Index Index;
296   typedef typename VectorX::Scalar Scalar;
297   enum { PacketSize = packet_traits<Scalar>::size };
298   typedef typename packet_traits<Scalar>::type Packet;
299   eigen_assert(_x.size() == _y.size());
300   Index size = _x.size();
301   Index incrx = _x.innerStride();
302   Index incry = _y.innerStride();
303 
304   Scalar* EIGEN_RESTRICT x = &_x.coeffRef(0);
305   Scalar* EIGEN_RESTRICT y = &_y.coeffRef(0);
306 
307   /*** dynamic-size vectorized paths ***/
308 
309   if(VectorX::SizeAtCompileTime == Dynamic &&
310     (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
311     ((incrx==1 && incry==1) || PacketSize == 1))
312   {
313     // both vectors are sequentially stored in memory => vectorization
314     enum { Peeling = 2 };
315 
316     Index alignedStart = internal::first_aligned(y, size);
317     Index alignedEnd = alignedStart + ((size-alignedStart)/PacketSize)*PacketSize;
318 
319     const Packet pc = pset1<Packet>(j.c());
320     const Packet ps = pset1<Packet>(j.s());
321     conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
322 
323     for(Index i=0; i<alignedStart; ++i)
324     {
325       Scalar xi = x[i];
326       Scalar yi = y[i];
327       x[i] =  j.c() * xi + conj(j.s()) * yi;
328       y[i] = -j.s() * xi + conj(j.c()) * yi;
329     }
330 
331     Scalar* EIGEN_RESTRICT px = x + alignedStart;
332     Scalar* EIGEN_RESTRICT py = y + alignedStart;
333 
334     if(internal::first_aligned(x, size)==alignedStart)
335     {
336       for(Index i=alignedStart; i<alignedEnd; i+=PacketSize)
337       {
338         Packet xi = pload<Packet>(px);
339         Packet yi = pload<Packet>(py);
340         pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
341         pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
342         px += PacketSize;
343         py += PacketSize;
344       }
345     }
346     else
347     {
348       Index peelingEnd = alignedStart + ((size-alignedStart)/(Peeling*PacketSize))*(Peeling*PacketSize);
349       for(Index i=alignedStart; i<peelingEnd; i+=Peeling*PacketSize)
350       {
351         Packet xi   = ploadu<Packet>(px);
352         Packet xi1  = ploadu<Packet>(px+PacketSize);
353         Packet yi   = pload <Packet>(py);
354         Packet yi1  = pload <Packet>(py+PacketSize);
355         pstoreu(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
356         pstoreu(px+PacketSize, padd(pmul(pc,xi1),pcj.pmul(ps,yi1)));
357         pstore (py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
358         pstore (py+PacketSize, psub(pcj.pmul(pc,yi1),pmul(ps,xi1)));
359         px += Peeling*PacketSize;
360         py += Peeling*PacketSize;
361       }
362       if(alignedEnd!=peelingEnd)
363       {
364         Packet xi = ploadu<Packet>(x+peelingEnd);
365         Packet yi = pload <Packet>(y+peelingEnd);
366         pstoreu(x+peelingEnd, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
367         pstore (y+peelingEnd, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
368       }
369     }
370 
371     for(Index i=alignedEnd; i<size; ++i)
372     {
373       Scalar xi = x[i];
374       Scalar yi = y[i];
375       x[i] =  j.c() * xi + conj(j.s()) * yi;
376       y[i] = -j.s() * xi + conj(j.c()) * yi;
377     }
378   }
379 
380   /*** fixed-size vectorized path ***/
381   else if(VectorX::SizeAtCompileTime != Dynamic &&
382           (VectorX::Flags & VectorY::Flags & PacketAccessBit) &&
383           (VectorX::Flags & VectorY::Flags & AlignedBit))
384   {
385     const Packet pc = pset1<Packet>(j.c());
386     const Packet ps = pset1<Packet>(j.s());
387     conj_helper<Packet,Packet,NumTraits<Scalar>::IsComplex,false> pcj;
388     Scalar* EIGEN_RESTRICT px = x;
389     Scalar* EIGEN_RESTRICT py = y;
390     for(Index i=0; i<size; i+=PacketSize)
391     {
392       Packet xi = pload<Packet>(px);
393       Packet yi = pload<Packet>(py);
394       pstore(px, padd(pmul(pc,xi),pcj.pmul(ps,yi)));
395       pstore(py, psub(pcj.pmul(pc,yi),pmul(ps,xi)));
396       px += PacketSize;
397       py += PacketSize;
398     }
399   }
400 
401   /*** non-vectorized path ***/
402   else
403   {
404     for(Index i=0; i<size; ++i)
405     {
406       Scalar xi = *x;
407       Scalar yi = *y;
408       *x =  j.c() * xi + conj(j.s()) * yi;
409       *y = -j.s() * xi + conj(j.c()) * yi;
410       x += incrx;
411       y += incry;
412     }
413   }
414 }
415 
416 } // end namespace internal
417 
418 } // end namespace Eigen
419 
420 #endif // EIGEN_JACOBI_H
421