1 //===- lib/Linker/LinkModules.cpp - Module Linker Implementation ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LLVM module linker.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "llvm/Linker.h"
15 #include "llvm-c/Linker.h"
16 #include "llvm/ADT/Optional.h"
17 #include "llvm/ADT/SetVector.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/IR/Constants.h"
20 #include "llvm/IR/Module.h"
21 #include "llvm/IR/TypeFinder.h"
22 #include "llvm/Support/Debug.h"
23 #include "llvm/Support/raw_ostream.h"
24 #include "llvm/Transforms/Utils/Cloning.h"
25
26 #include <ctype.h>
27 using namespace llvm;
28
29 //===----------------------------------------------------------------------===//
30 // TypeMap implementation.
31 //===----------------------------------------------------------------------===//
32
33 namespace {
34 typedef SmallPtrSet<StructType*, 32> TypeSet;
35
36 class TypeMapTy : public ValueMapTypeRemapper {
37 /// MappedTypes - This is a mapping from a source type to a destination type
38 /// to use.
39 DenseMap<Type*, Type*> MappedTypes;
40
41 /// SpeculativeTypes - When checking to see if two subgraphs are isomorphic,
42 /// we speculatively add types to MappedTypes, but keep track of them here in
43 /// case we need to roll back.
44 SmallVector<Type*, 16> SpeculativeTypes;
45
46 /// SrcDefinitionsToResolve - This is a list of non-opaque structs in the
47 /// source module that are mapped to an opaque struct in the destination
48 /// module.
49 SmallVector<StructType*, 16> SrcDefinitionsToResolve;
50
51 /// DstResolvedOpaqueTypes - This is the set of opaque types in the
52 /// destination modules who are getting a body from the source module.
53 SmallPtrSet<StructType*, 16> DstResolvedOpaqueTypes;
54
55 public:
TypeMapTy(TypeSet & Set)56 TypeMapTy(TypeSet &Set) : DstStructTypesSet(Set) {}
57
58 TypeSet &DstStructTypesSet;
59 /// addTypeMapping - Indicate that the specified type in the destination
60 /// module is conceptually equivalent to the specified type in the source
61 /// module.
62 void addTypeMapping(Type *DstTy, Type *SrcTy);
63
64 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
65 /// module from a type definition in the source module.
66 void linkDefinedTypeBodies();
67
68 /// get - Return the mapped type to use for the specified input type from the
69 /// source module.
70 Type *get(Type *SrcTy);
71
get(FunctionType * T)72 FunctionType *get(FunctionType *T) {return cast<FunctionType>(get((Type*)T));}
73
74 /// dump - Dump out the type map for debugging purposes.
dump() const75 void dump() const {
76 for (DenseMap<Type*, Type*>::const_iterator
77 I = MappedTypes.begin(), E = MappedTypes.end(); I != E; ++I) {
78 dbgs() << "TypeMap: ";
79 I->first->dump();
80 dbgs() << " => ";
81 I->second->dump();
82 dbgs() << '\n';
83 }
84 }
85
86 private:
87 Type *getImpl(Type *T);
88 /// remapType - Implement the ValueMapTypeRemapper interface.
remapType(Type * SrcTy)89 Type *remapType(Type *SrcTy) {
90 return get(SrcTy);
91 }
92
93 bool areTypesIsomorphic(Type *DstTy, Type *SrcTy);
94 };
95 }
96
addTypeMapping(Type * DstTy,Type * SrcTy)97 void TypeMapTy::addTypeMapping(Type *DstTy, Type *SrcTy) {
98 Type *&Entry = MappedTypes[SrcTy];
99 if (Entry) return;
100
101 if (DstTy == SrcTy) {
102 Entry = DstTy;
103 return;
104 }
105
106 // Check to see if these types are recursively isomorphic and establish a
107 // mapping between them if so.
108 if (!areTypesIsomorphic(DstTy, SrcTy)) {
109 // Oops, they aren't isomorphic. Just discard this request by rolling out
110 // any speculative mappings we've established.
111 for (unsigned i = 0, e = SpeculativeTypes.size(); i != e; ++i)
112 MappedTypes.erase(SpeculativeTypes[i]);
113 }
114 SpeculativeTypes.clear();
115 }
116
117 /// areTypesIsomorphic - Recursively walk this pair of types, returning true
118 /// if they are isomorphic, false if they are not.
areTypesIsomorphic(Type * DstTy,Type * SrcTy)119 bool TypeMapTy::areTypesIsomorphic(Type *DstTy, Type *SrcTy) {
120 // Two types with differing kinds are clearly not isomorphic.
121 if (DstTy->getTypeID() != SrcTy->getTypeID()) return false;
122
123 // If we have an entry in the MappedTypes table, then we have our answer.
124 Type *&Entry = MappedTypes[SrcTy];
125 if (Entry)
126 return Entry == DstTy;
127
128 // Two identical types are clearly isomorphic. Remember this
129 // non-speculatively.
130 if (DstTy == SrcTy) {
131 Entry = DstTy;
132 return true;
133 }
134
135 // Okay, we have two types with identical kinds that we haven't seen before.
136
137 // If this is an opaque struct type, special case it.
138 if (StructType *SSTy = dyn_cast<StructType>(SrcTy)) {
139 // Mapping an opaque type to any struct, just keep the dest struct.
140 if (SSTy->isOpaque()) {
141 Entry = DstTy;
142 SpeculativeTypes.push_back(SrcTy);
143 return true;
144 }
145
146 // Mapping a non-opaque source type to an opaque dest. If this is the first
147 // type that we're mapping onto this destination type then we succeed. Keep
148 // the dest, but fill it in later. This doesn't need to be speculative. If
149 // this is the second (different) type that we're trying to map onto the
150 // same opaque type then we fail.
151 if (cast<StructType>(DstTy)->isOpaque()) {
152 // We can only map one source type onto the opaque destination type.
153 if (!DstResolvedOpaqueTypes.insert(cast<StructType>(DstTy)))
154 return false;
155 SrcDefinitionsToResolve.push_back(SSTy);
156 Entry = DstTy;
157 return true;
158 }
159 }
160
161 // If the number of subtypes disagree between the two types, then we fail.
162 if (SrcTy->getNumContainedTypes() != DstTy->getNumContainedTypes())
163 return false;
164
165 // Fail if any of the extra properties (e.g. array size) of the type disagree.
166 if (isa<IntegerType>(DstTy))
167 return false; // bitwidth disagrees.
168 if (PointerType *PT = dyn_cast<PointerType>(DstTy)) {
169 if (PT->getAddressSpace() != cast<PointerType>(SrcTy)->getAddressSpace())
170 return false;
171
172 } else if (FunctionType *FT = dyn_cast<FunctionType>(DstTy)) {
173 if (FT->isVarArg() != cast<FunctionType>(SrcTy)->isVarArg())
174 return false;
175 } else if (StructType *DSTy = dyn_cast<StructType>(DstTy)) {
176 StructType *SSTy = cast<StructType>(SrcTy);
177 if (DSTy->isLiteral() != SSTy->isLiteral() ||
178 DSTy->isPacked() != SSTy->isPacked())
179 return false;
180 } else if (ArrayType *DATy = dyn_cast<ArrayType>(DstTy)) {
181 if (DATy->getNumElements() != cast<ArrayType>(SrcTy)->getNumElements())
182 return false;
183 } else if (VectorType *DVTy = dyn_cast<VectorType>(DstTy)) {
184 if (DVTy->getNumElements() != cast<VectorType>(SrcTy)->getNumElements())
185 return false;
186 }
187
188 // Otherwise, we speculate that these two types will line up and recursively
189 // check the subelements.
190 Entry = DstTy;
191 SpeculativeTypes.push_back(SrcTy);
192
193 for (unsigned i = 0, e = SrcTy->getNumContainedTypes(); i != e; ++i)
194 if (!areTypesIsomorphic(DstTy->getContainedType(i),
195 SrcTy->getContainedType(i)))
196 return false;
197
198 // If everything seems to have lined up, then everything is great.
199 return true;
200 }
201
202 /// linkDefinedTypeBodies - Produce a body for an opaque type in the dest
203 /// module from a type definition in the source module.
linkDefinedTypeBodies()204 void TypeMapTy::linkDefinedTypeBodies() {
205 SmallVector<Type*, 16> Elements;
206 SmallString<16> TmpName;
207
208 // Note that processing entries in this loop (calling 'get') can add new
209 // entries to the SrcDefinitionsToResolve vector.
210 while (!SrcDefinitionsToResolve.empty()) {
211 StructType *SrcSTy = SrcDefinitionsToResolve.pop_back_val();
212 StructType *DstSTy = cast<StructType>(MappedTypes[SrcSTy]);
213
214 // TypeMap is a many-to-one mapping, if there were multiple types that
215 // provide a body for DstSTy then previous iterations of this loop may have
216 // already handled it. Just ignore this case.
217 if (!DstSTy->isOpaque()) continue;
218 assert(!SrcSTy->isOpaque() && "Not resolving a definition?");
219
220 // Map the body of the source type over to a new body for the dest type.
221 Elements.resize(SrcSTy->getNumElements());
222 for (unsigned i = 0, e = Elements.size(); i != e; ++i)
223 Elements[i] = getImpl(SrcSTy->getElementType(i));
224
225 DstSTy->setBody(Elements, SrcSTy->isPacked());
226
227 // If DstSTy has no name or has a longer name than STy, then viciously steal
228 // STy's name.
229 if (!SrcSTy->hasName()) continue;
230 StringRef SrcName = SrcSTy->getName();
231
232 if (!DstSTy->hasName() || DstSTy->getName().size() > SrcName.size()) {
233 TmpName.insert(TmpName.end(), SrcName.begin(), SrcName.end());
234 SrcSTy->setName("");
235 DstSTy->setName(TmpName.str());
236 TmpName.clear();
237 }
238 }
239
240 DstResolvedOpaqueTypes.clear();
241 }
242
243 /// get - Return the mapped type to use for the specified input type from the
244 /// source module.
get(Type * Ty)245 Type *TypeMapTy::get(Type *Ty) {
246 Type *Result = getImpl(Ty);
247
248 // If this caused a reference to any struct type, resolve it before returning.
249 if (!SrcDefinitionsToResolve.empty())
250 linkDefinedTypeBodies();
251 return Result;
252 }
253
254 /// getImpl - This is the recursive version of get().
getImpl(Type * Ty)255 Type *TypeMapTy::getImpl(Type *Ty) {
256 // If we already have an entry for this type, return it.
257 Type **Entry = &MappedTypes[Ty];
258 if (*Entry) return *Entry;
259
260 // If this is not a named struct type, then just map all of the elements and
261 // then rebuild the type from inside out.
262 if (!isa<StructType>(Ty) || cast<StructType>(Ty)->isLiteral()) {
263 // If there are no element types to map, then the type is itself. This is
264 // true for the anonymous {} struct, things like 'float', integers, etc.
265 if (Ty->getNumContainedTypes() == 0)
266 return *Entry = Ty;
267
268 // Remap all of the elements, keeping track of whether any of them change.
269 bool AnyChange = false;
270 SmallVector<Type*, 4> ElementTypes;
271 ElementTypes.resize(Ty->getNumContainedTypes());
272 for (unsigned i = 0, e = Ty->getNumContainedTypes(); i != e; ++i) {
273 ElementTypes[i] = getImpl(Ty->getContainedType(i));
274 AnyChange |= ElementTypes[i] != Ty->getContainedType(i);
275 }
276
277 // If we found our type while recursively processing stuff, just use it.
278 Entry = &MappedTypes[Ty];
279 if (*Entry) return *Entry;
280
281 // If all of the element types mapped directly over, then the type is usable
282 // as-is.
283 if (!AnyChange)
284 return *Entry = Ty;
285
286 // Otherwise, rebuild a modified type.
287 switch (Ty->getTypeID()) {
288 default: llvm_unreachable("unknown derived type to remap");
289 case Type::ArrayTyID:
290 return *Entry = ArrayType::get(ElementTypes[0],
291 cast<ArrayType>(Ty)->getNumElements());
292 case Type::VectorTyID:
293 return *Entry = VectorType::get(ElementTypes[0],
294 cast<VectorType>(Ty)->getNumElements());
295 case Type::PointerTyID:
296 return *Entry = PointerType::get(ElementTypes[0],
297 cast<PointerType>(Ty)->getAddressSpace());
298 case Type::FunctionTyID:
299 return *Entry = FunctionType::get(ElementTypes[0],
300 makeArrayRef(ElementTypes).slice(1),
301 cast<FunctionType>(Ty)->isVarArg());
302 case Type::StructTyID:
303 // Note that this is only reached for anonymous structs.
304 return *Entry = StructType::get(Ty->getContext(), ElementTypes,
305 cast<StructType>(Ty)->isPacked());
306 }
307 }
308
309 // Otherwise, this is an unmapped named struct. If the struct can be directly
310 // mapped over, just use it as-is. This happens in a case when the linked-in
311 // module has something like:
312 // %T = type {%T*, i32}
313 // @GV = global %T* null
314 // where T does not exist at all in the destination module.
315 //
316 // The other case we watch for is when the type is not in the destination
317 // module, but that it has to be rebuilt because it refers to something that
318 // is already mapped. For example, if the destination module has:
319 // %A = type { i32 }
320 // and the source module has something like
321 // %A' = type { i32 }
322 // %B = type { %A'* }
323 // @GV = global %B* null
324 // then we want to create a new type: "%B = type { %A*}" and have it take the
325 // pristine "%B" name from the source module.
326 //
327 // To determine which case this is, we have to recursively walk the type graph
328 // speculating that we'll be able to reuse it unmodified. Only if this is
329 // safe would we map the entire thing over. Because this is an optimization,
330 // and is not required for the prettiness of the linked module, we just skip
331 // it and always rebuild a type here.
332 StructType *STy = cast<StructType>(Ty);
333
334 // If the type is opaque, we can just use it directly.
335 if (STy->isOpaque()) {
336 // A named structure type from src module is used. Add it to the Set of
337 // identified structs in the destination module.
338 DstStructTypesSet.insert(STy);
339 return *Entry = STy;
340 }
341
342 // Otherwise we create a new type and resolve its body later. This will be
343 // resolved by the top level of get().
344 SrcDefinitionsToResolve.push_back(STy);
345 StructType *DTy = StructType::create(STy->getContext());
346 // A new identified structure type was created. Add it to the set of
347 // identified structs in the destination module.
348 DstStructTypesSet.insert(DTy);
349 DstResolvedOpaqueTypes.insert(DTy);
350 return *Entry = DTy;
351 }
352
353 //===----------------------------------------------------------------------===//
354 // ModuleLinker implementation.
355 //===----------------------------------------------------------------------===//
356
357 namespace {
358 class ModuleLinker;
359
360 /// ValueMaterializerTy - Creates prototypes for functions that are lazily
361 /// linked on the fly. This speeds up linking for modules with many
362 /// lazily linked functions of which few get used.
363 class ValueMaterializerTy : public ValueMaterializer {
364 TypeMapTy &TypeMap;
365 Module *DstM;
366 std::vector<Function*> &LazilyLinkFunctions;
367 public:
ValueMaterializerTy(TypeMapTy & TypeMap,Module * DstM,std::vector<Function * > & LazilyLinkFunctions)368 ValueMaterializerTy(TypeMapTy &TypeMap, Module *DstM,
369 std::vector<Function*> &LazilyLinkFunctions) :
370 ValueMaterializer(), TypeMap(TypeMap), DstM(DstM),
371 LazilyLinkFunctions(LazilyLinkFunctions) {
372 }
373
374 virtual Value *materializeValueFor(Value *V);
375 };
376
377 /// ModuleLinker - This is an implementation class for the LinkModules
378 /// function, which is the entrypoint for this file.
379 class ModuleLinker {
380 Module *DstM, *SrcM;
381
382 TypeMapTy TypeMap;
383 ValueMaterializerTy ValMaterializer;
384
385 /// ValueMap - Mapping of values from what they used to be in Src, to what
386 /// they are now in DstM. ValueToValueMapTy is a ValueMap, which involves
387 /// some overhead due to the use of Value handles which the Linker doesn't
388 /// actually need, but this allows us to reuse the ValueMapper code.
389 ValueToValueMapTy ValueMap;
390
391 struct AppendingVarInfo {
392 GlobalVariable *NewGV; // New aggregate global in dest module.
393 Constant *DstInit; // Old initializer from dest module.
394 Constant *SrcInit; // Old initializer from src module.
395 };
396
397 std::vector<AppendingVarInfo> AppendingVars;
398
399 unsigned Mode; // Mode to treat source module.
400
401 // Set of items not to link in from source.
402 SmallPtrSet<const Value*, 16> DoNotLinkFromSource;
403
404 // Vector of functions to lazily link in.
405 std::vector<Function*> LazilyLinkFunctions;
406
407 public:
408 std::string ErrorMsg;
409
ModuleLinker(Module * dstM,TypeSet & Set,Module * srcM,unsigned mode)410 ModuleLinker(Module *dstM, TypeSet &Set, Module *srcM, unsigned mode)
411 : DstM(dstM), SrcM(srcM), TypeMap(Set),
412 ValMaterializer(TypeMap, DstM, LazilyLinkFunctions),
413 Mode(mode) { }
414
415 bool run();
416
417 private:
418 /// emitError - Helper method for setting a message and returning an error
419 /// code.
emitError(const Twine & Message)420 bool emitError(const Twine &Message) {
421 ErrorMsg = Message.str();
422 return true;
423 }
424
425 /// getLinkageResult - This analyzes the two global values and determines
426 /// what the result will look like in the destination module.
427 bool getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
428 GlobalValue::LinkageTypes <,
429 GlobalValue::VisibilityTypes &Vis,
430 bool &LinkFromSrc);
431
432 /// getLinkedToGlobal - Given a global in the source module, return the
433 /// global in the destination module that is being linked to, if any.
getLinkedToGlobal(GlobalValue * SrcGV)434 GlobalValue *getLinkedToGlobal(GlobalValue *SrcGV) {
435 // If the source has no name it can't link. If it has local linkage,
436 // there is no name match-up going on.
437 if (!SrcGV->hasName() || SrcGV->hasLocalLinkage())
438 return 0;
439
440 // Otherwise see if we have a match in the destination module's symtab.
441 GlobalValue *DGV = DstM->getNamedValue(SrcGV->getName());
442 if (DGV == 0) return 0;
443
444 // If we found a global with the same name in the dest module, but it has
445 // internal linkage, we are really not doing any linkage here.
446 if (DGV->hasLocalLinkage())
447 return 0;
448
449 // Otherwise, we do in fact link to the destination global.
450 return DGV;
451 }
452
453 void computeTypeMapping();
454
455 bool linkAppendingVarProto(GlobalVariable *DstGV, GlobalVariable *SrcGV);
456 bool linkGlobalProto(GlobalVariable *SrcGV);
457 bool linkFunctionProto(Function *SrcF);
458 bool linkAliasProto(GlobalAlias *SrcA);
459 bool linkModuleFlagsMetadata();
460
461 void linkAppendingVarInit(const AppendingVarInfo &AVI);
462 void linkGlobalInits();
463 void linkFunctionBody(Function *Dst, Function *Src);
464 void linkAliasBodies();
465 void linkNamedMDNodes();
466 };
467 }
468
469 /// forceRenaming - The LLVM SymbolTable class autorenames globals that conflict
470 /// in the symbol table. This is good for all clients except for us. Go
471 /// through the trouble to force this back.
forceRenaming(GlobalValue * GV,StringRef Name)472 static void forceRenaming(GlobalValue *GV, StringRef Name) {
473 // If the global doesn't force its name or if it already has the right name,
474 // there is nothing for us to do.
475 if (GV->hasLocalLinkage() || GV->getName() == Name)
476 return;
477
478 Module *M = GV->getParent();
479
480 // If there is a conflict, rename the conflict.
481 if (GlobalValue *ConflictGV = M->getNamedValue(Name)) {
482 GV->takeName(ConflictGV);
483 ConflictGV->setName(Name); // This will cause ConflictGV to get renamed
484 assert(ConflictGV->getName() != Name && "forceRenaming didn't work");
485 } else {
486 GV->setName(Name); // Force the name back
487 }
488 }
489
490 /// copyGVAttributes - copy additional attributes (those not needed to construct
491 /// a GlobalValue) from the SrcGV to the DestGV.
copyGVAttributes(GlobalValue * DestGV,const GlobalValue * SrcGV)492 static void copyGVAttributes(GlobalValue *DestGV, const GlobalValue *SrcGV) {
493 // Use the maximum alignment, rather than just copying the alignment of SrcGV.
494 unsigned Alignment = std::max(DestGV->getAlignment(), SrcGV->getAlignment());
495 DestGV->copyAttributesFrom(SrcGV);
496 DestGV->setAlignment(Alignment);
497
498 forceRenaming(DestGV, SrcGV->getName());
499 }
500
isLessConstraining(GlobalValue::VisibilityTypes a,GlobalValue::VisibilityTypes b)501 static bool isLessConstraining(GlobalValue::VisibilityTypes a,
502 GlobalValue::VisibilityTypes b) {
503 if (a == GlobalValue::HiddenVisibility)
504 return false;
505 if (b == GlobalValue::HiddenVisibility)
506 return true;
507 if (a == GlobalValue::ProtectedVisibility)
508 return false;
509 if (b == GlobalValue::ProtectedVisibility)
510 return true;
511 return false;
512 }
513
materializeValueFor(Value * V)514 Value *ValueMaterializerTy::materializeValueFor(Value *V) {
515 Function *SF = dyn_cast<Function>(V);
516 if (!SF)
517 return NULL;
518
519 Function *DF = Function::Create(TypeMap.get(SF->getFunctionType()),
520 SF->getLinkage(), SF->getName(), DstM);
521 copyGVAttributes(DF, SF);
522
523 LazilyLinkFunctions.push_back(SF);
524 return DF;
525 }
526
527
528 /// getLinkageResult - This analyzes the two global values and determines what
529 /// the result will look like in the destination module. In particular, it
530 /// computes the resultant linkage type and visibility, computes whether the
531 /// global in the source should be copied over to the destination (replacing
532 /// the existing one), and computes whether this linkage is an error or not.
getLinkageResult(GlobalValue * Dest,const GlobalValue * Src,GlobalValue::LinkageTypes & LT,GlobalValue::VisibilityTypes & Vis,bool & LinkFromSrc)533 bool ModuleLinker::getLinkageResult(GlobalValue *Dest, const GlobalValue *Src,
534 GlobalValue::LinkageTypes <,
535 GlobalValue::VisibilityTypes &Vis,
536 bool &LinkFromSrc) {
537 assert(Dest && "Must have two globals being queried");
538 assert(!Src->hasLocalLinkage() &&
539 "If Src has internal linkage, Dest shouldn't be set!");
540
541 bool SrcIsDeclaration = Src->isDeclaration() && !Src->isMaterializable();
542 bool DestIsDeclaration = Dest->isDeclaration();
543
544 if (SrcIsDeclaration) {
545 // If Src is external or if both Src & Dest are external.. Just link the
546 // external globals, we aren't adding anything.
547 if (Src->hasDLLImportLinkage()) {
548 // If one of GVs has DLLImport linkage, result should be dllimport'ed.
549 if (DestIsDeclaration) {
550 LinkFromSrc = true;
551 LT = Src->getLinkage();
552 }
553 } else if (Dest->hasExternalWeakLinkage()) {
554 // If the Dest is weak, use the source linkage.
555 LinkFromSrc = true;
556 LT = Src->getLinkage();
557 } else {
558 LinkFromSrc = false;
559 LT = Dest->getLinkage();
560 }
561 } else if (DestIsDeclaration && !Dest->hasDLLImportLinkage()) {
562 // If Dest is external but Src is not:
563 LinkFromSrc = true;
564 LT = Src->getLinkage();
565 } else if (Src->isWeakForLinker()) {
566 // At this point we know that Dest has LinkOnce, External*, Weak, Common,
567 // or DLL* linkage.
568 if (Dest->hasExternalWeakLinkage() ||
569 Dest->hasAvailableExternallyLinkage() ||
570 (Dest->hasLinkOnceLinkage() &&
571 (Src->hasWeakLinkage() || Src->hasCommonLinkage()))) {
572 LinkFromSrc = true;
573 LT = Src->getLinkage();
574 } else {
575 LinkFromSrc = false;
576 LT = Dest->getLinkage();
577 }
578 } else if (Dest->isWeakForLinker()) {
579 // At this point we know that Src has External* or DLL* linkage.
580 if (Src->hasExternalWeakLinkage()) {
581 LinkFromSrc = false;
582 LT = Dest->getLinkage();
583 } else {
584 LinkFromSrc = true;
585 LT = GlobalValue::ExternalLinkage;
586 }
587 } else {
588 assert((Dest->hasExternalLinkage() || Dest->hasDLLImportLinkage() ||
589 Dest->hasDLLExportLinkage() || Dest->hasExternalWeakLinkage()) &&
590 (Src->hasExternalLinkage() || Src->hasDLLImportLinkage() ||
591 Src->hasDLLExportLinkage() || Src->hasExternalWeakLinkage()) &&
592 "Unexpected linkage type!");
593 return emitError("Linking globals named '" + Src->getName() +
594 "': symbol multiply defined!");
595 }
596
597 // Compute the visibility. We follow the rules in the System V Application
598 // Binary Interface.
599 Vis = isLessConstraining(Src->getVisibility(), Dest->getVisibility()) ?
600 Dest->getVisibility() : Src->getVisibility();
601 return false;
602 }
603
604 /// computeTypeMapping - Loop over all of the linked values to compute type
605 /// mappings. For example, if we link "extern Foo *x" and "Foo *x = NULL", then
606 /// we have two struct types 'Foo' but one got renamed when the module was
607 /// loaded into the same LLVMContext.
computeTypeMapping()608 void ModuleLinker::computeTypeMapping() {
609 // Incorporate globals.
610 for (Module::global_iterator I = SrcM->global_begin(),
611 E = SrcM->global_end(); I != E; ++I) {
612 GlobalValue *DGV = getLinkedToGlobal(I);
613 if (DGV == 0) continue;
614
615 if (!DGV->hasAppendingLinkage() || !I->hasAppendingLinkage()) {
616 TypeMap.addTypeMapping(DGV->getType(), I->getType());
617 continue;
618 }
619
620 // Unify the element type of appending arrays.
621 ArrayType *DAT = cast<ArrayType>(DGV->getType()->getElementType());
622 ArrayType *SAT = cast<ArrayType>(I->getType()->getElementType());
623 TypeMap.addTypeMapping(DAT->getElementType(), SAT->getElementType());
624 }
625
626 // Incorporate functions.
627 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I) {
628 if (GlobalValue *DGV = getLinkedToGlobal(I))
629 TypeMap.addTypeMapping(DGV->getType(), I->getType());
630 }
631
632 // Incorporate types by name, scanning all the types in the source module.
633 // At this point, the destination module may have a type "%foo = { i32 }" for
634 // example. When the source module got loaded into the same LLVMContext, if
635 // it had the same type, it would have been renamed to "%foo.42 = { i32 }".
636 TypeFinder SrcStructTypes;
637 SrcStructTypes.run(*SrcM, true);
638 SmallPtrSet<StructType*, 32> SrcStructTypesSet(SrcStructTypes.begin(),
639 SrcStructTypes.end());
640
641 for (unsigned i = 0, e = SrcStructTypes.size(); i != e; ++i) {
642 StructType *ST = SrcStructTypes[i];
643 if (!ST->hasName()) continue;
644
645 // Check to see if there is a dot in the name followed by a digit.
646 size_t DotPos = ST->getName().rfind('.');
647 if (DotPos == 0 || DotPos == StringRef::npos ||
648 ST->getName().back() == '.' ||
649 !isdigit(static_cast<unsigned char>(ST->getName()[DotPos+1])))
650 continue;
651
652 // Check to see if the destination module has a struct with the prefix name.
653 if (StructType *DST = DstM->getTypeByName(ST->getName().substr(0, DotPos)))
654 // Don't use it if this actually came from the source module. They're in
655 // the same LLVMContext after all. Also don't use it unless the type is
656 // actually used in the destination module. This can happen in situations
657 // like this:
658 //
659 // Module A Module B
660 // -------- --------
661 // %Z = type { %A } %B = type { %C.1 }
662 // %A = type { %B.1, [7 x i8] } %C.1 = type { i8* }
663 // %B.1 = type { %C } %A.2 = type { %B.3, [5 x i8] }
664 // %C = type { i8* } %B.3 = type { %C.1 }
665 //
666 // When we link Module B with Module A, the '%B' in Module B is
667 // used. However, that would then use '%C.1'. But when we process '%C.1',
668 // we prefer to take the '%C' version. So we are then left with both
669 // '%C.1' and '%C' being used for the same types. This leads to some
670 // variables using one type and some using the other.
671 if (!SrcStructTypesSet.count(DST) && TypeMap.DstStructTypesSet.count(DST))
672 TypeMap.addTypeMapping(DST, ST);
673 }
674
675 // Don't bother incorporating aliases, they aren't generally typed well.
676
677 // Now that we have discovered all of the type equivalences, get a body for
678 // any 'opaque' types in the dest module that are now resolved.
679 TypeMap.linkDefinedTypeBodies();
680 }
681
682 /// linkAppendingVarProto - If there were any appending global variables, link
683 /// them together now. Return true on error.
linkAppendingVarProto(GlobalVariable * DstGV,GlobalVariable * SrcGV)684 bool ModuleLinker::linkAppendingVarProto(GlobalVariable *DstGV,
685 GlobalVariable *SrcGV) {
686
687 if (!SrcGV->hasAppendingLinkage() || !DstGV->hasAppendingLinkage())
688 return emitError("Linking globals named '" + SrcGV->getName() +
689 "': can only link appending global with another appending global!");
690
691 ArrayType *DstTy = cast<ArrayType>(DstGV->getType()->getElementType());
692 ArrayType *SrcTy =
693 cast<ArrayType>(TypeMap.get(SrcGV->getType()->getElementType()));
694 Type *EltTy = DstTy->getElementType();
695
696 // Check to see that they two arrays agree on type.
697 if (EltTy != SrcTy->getElementType())
698 return emitError("Appending variables with different element types!");
699 if (DstGV->isConstant() != SrcGV->isConstant())
700 return emitError("Appending variables linked with different const'ness!");
701
702 if (DstGV->getAlignment() != SrcGV->getAlignment())
703 return emitError(
704 "Appending variables with different alignment need to be linked!");
705
706 if (DstGV->getVisibility() != SrcGV->getVisibility())
707 return emitError(
708 "Appending variables with different visibility need to be linked!");
709
710 if (DstGV->getSection() != SrcGV->getSection())
711 return emitError(
712 "Appending variables with different section name need to be linked!");
713
714 uint64_t NewSize = DstTy->getNumElements() + SrcTy->getNumElements();
715 ArrayType *NewType = ArrayType::get(EltTy, NewSize);
716
717 // Create the new global variable.
718 GlobalVariable *NG =
719 new GlobalVariable(*DstGV->getParent(), NewType, SrcGV->isConstant(),
720 DstGV->getLinkage(), /*init*/0, /*name*/"", DstGV,
721 DstGV->getThreadLocalMode(),
722 DstGV->getType()->getAddressSpace());
723
724 // Propagate alignment, visibility and section info.
725 copyGVAttributes(NG, DstGV);
726
727 AppendingVarInfo AVI;
728 AVI.NewGV = NG;
729 AVI.DstInit = DstGV->getInitializer();
730 AVI.SrcInit = SrcGV->getInitializer();
731 AppendingVars.push_back(AVI);
732
733 // Replace any uses of the two global variables with uses of the new
734 // global.
735 ValueMap[SrcGV] = ConstantExpr::getBitCast(NG, TypeMap.get(SrcGV->getType()));
736
737 DstGV->replaceAllUsesWith(ConstantExpr::getBitCast(NG, DstGV->getType()));
738 DstGV->eraseFromParent();
739
740 // Track the source variable so we don't try to link it.
741 DoNotLinkFromSource.insert(SrcGV);
742
743 return false;
744 }
745
746 /// linkGlobalProto - Loop through the global variables in the src module and
747 /// merge them into the dest module.
linkGlobalProto(GlobalVariable * SGV)748 bool ModuleLinker::linkGlobalProto(GlobalVariable *SGV) {
749 GlobalValue *DGV = getLinkedToGlobal(SGV);
750 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
751
752 if (DGV) {
753 // Concatenation of appending linkage variables is magic and handled later.
754 if (DGV->hasAppendingLinkage() || SGV->hasAppendingLinkage())
755 return linkAppendingVarProto(cast<GlobalVariable>(DGV), SGV);
756
757 // Determine whether linkage of these two globals follows the source
758 // module's definition or the destination module's definition.
759 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
760 GlobalValue::VisibilityTypes NV;
761 bool LinkFromSrc = false;
762 if (getLinkageResult(DGV, SGV, NewLinkage, NV, LinkFromSrc))
763 return true;
764 NewVisibility = NV;
765
766 // If we're not linking from the source, then keep the definition that we
767 // have.
768 if (!LinkFromSrc) {
769 // Special case for const propagation.
770 if (GlobalVariable *DGVar = dyn_cast<GlobalVariable>(DGV))
771 if (DGVar->isDeclaration() && SGV->isConstant() && !DGVar->isConstant())
772 DGVar->setConstant(true);
773
774 // Set calculated linkage and visibility.
775 DGV->setLinkage(NewLinkage);
776 DGV->setVisibility(*NewVisibility);
777
778 // Make sure to remember this mapping.
779 ValueMap[SGV] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGV->getType()));
780
781 // Track the source global so that we don't attempt to copy it over when
782 // processing global initializers.
783 DoNotLinkFromSource.insert(SGV);
784
785 return false;
786 }
787 }
788
789 // No linking to be performed or linking from the source: simply create an
790 // identical version of the symbol over in the dest module... the
791 // initializer will be filled in later by LinkGlobalInits.
792 GlobalVariable *NewDGV =
793 new GlobalVariable(*DstM, TypeMap.get(SGV->getType()->getElementType()),
794 SGV->isConstant(), SGV->getLinkage(), /*init*/0,
795 SGV->getName(), /*insertbefore*/0,
796 SGV->getThreadLocalMode(),
797 SGV->getType()->getAddressSpace());
798 // Propagate alignment, visibility and section info.
799 copyGVAttributes(NewDGV, SGV);
800 if (NewVisibility)
801 NewDGV->setVisibility(*NewVisibility);
802
803 if (DGV) {
804 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDGV, DGV->getType()));
805 DGV->eraseFromParent();
806 }
807
808 // Make sure to remember this mapping.
809 ValueMap[SGV] = NewDGV;
810 return false;
811 }
812
813 /// linkFunctionProto - Link the function in the source module into the
814 /// destination module if needed, setting up mapping information.
linkFunctionProto(Function * SF)815 bool ModuleLinker::linkFunctionProto(Function *SF) {
816 GlobalValue *DGV = getLinkedToGlobal(SF);
817 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
818
819 if (DGV) {
820 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
821 bool LinkFromSrc = false;
822 GlobalValue::VisibilityTypes NV;
823 if (getLinkageResult(DGV, SF, NewLinkage, NV, LinkFromSrc))
824 return true;
825 NewVisibility = NV;
826
827 if (!LinkFromSrc) {
828 // Set calculated linkage
829 DGV->setLinkage(NewLinkage);
830 DGV->setVisibility(*NewVisibility);
831
832 // Make sure to remember this mapping.
833 ValueMap[SF] = ConstantExpr::getBitCast(DGV, TypeMap.get(SF->getType()));
834
835 // Track the function from the source module so we don't attempt to remap
836 // it.
837 DoNotLinkFromSource.insert(SF);
838
839 return false;
840 }
841 }
842
843 // If the function is to be lazily linked, don't create it just yet.
844 // The ValueMaterializerTy will deal with creating it if it's used.
845 if (!DGV && (SF->hasLocalLinkage() || SF->hasLinkOnceLinkage() ||
846 SF->hasAvailableExternallyLinkage())) {
847 DoNotLinkFromSource.insert(SF);
848 return false;
849 }
850
851 // If there is no linkage to be performed or we are linking from the source,
852 // bring SF over.
853 Function *NewDF = Function::Create(TypeMap.get(SF->getFunctionType()),
854 SF->getLinkage(), SF->getName(), DstM);
855 copyGVAttributes(NewDF, SF);
856 if (NewVisibility)
857 NewDF->setVisibility(*NewVisibility);
858
859 if (DGV) {
860 // Any uses of DF need to change to NewDF, with cast.
861 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDF, DGV->getType()));
862 DGV->eraseFromParent();
863 }
864
865 ValueMap[SF] = NewDF;
866 return false;
867 }
868
869 /// LinkAliasProto - Set up prototypes for any aliases that come over from the
870 /// source module.
linkAliasProto(GlobalAlias * SGA)871 bool ModuleLinker::linkAliasProto(GlobalAlias *SGA) {
872 GlobalValue *DGV = getLinkedToGlobal(SGA);
873 llvm::Optional<GlobalValue::VisibilityTypes> NewVisibility;
874
875 if (DGV) {
876 GlobalValue::LinkageTypes NewLinkage = GlobalValue::InternalLinkage;
877 GlobalValue::VisibilityTypes NV;
878 bool LinkFromSrc = false;
879 if (getLinkageResult(DGV, SGA, NewLinkage, NV, LinkFromSrc))
880 return true;
881 NewVisibility = NV;
882
883 if (!LinkFromSrc) {
884 // Set calculated linkage.
885 DGV->setLinkage(NewLinkage);
886 DGV->setVisibility(*NewVisibility);
887
888 // Make sure to remember this mapping.
889 ValueMap[SGA] = ConstantExpr::getBitCast(DGV,TypeMap.get(SGA->getType()));
890
891 // Track the alias from the source module so we don't attempt to remap it.
892 DoNotLinkFromSource.insert(SGA);
893
894 return false;
895 }
896 }
897
898 // If there is no linkage to be performed or we're linking from the source,
899 // bring over SGA.
900 GlobalAlias *NewDA = new GlobalAlias(TypeMap.get(SGA->getType()),
901 SGA->getLinkage(), SGA->getName(),
902 /*aliasee*/0, DstM);
903 copyGVAttributes(NewDA, SGA);
904 if (NewVisibility)
905 NewDA->setVisibility(*NewVisibility);
906
907 if (DGV) {
908 // Any uses of DGV need to change to NewDA, with cast.
909 DGV->replaceAllUsesWith(ConstantExpr::getBitCast(NewDA, DGV->getType()));
910 DGV->eraseFromParent();
911 }
912
913 ValueMap[SGA] = NewDA;
914 return false;
915 }
916
getArrayElements(Constant * C,SmallVectorImpl<Constant * > & Dest)917 static void getArrayElements(Constant *C, SmallVectorImpl<Constant*> &Dest) {
918 unsigned NumElements = cast<ArrayType>(C->getType())->getNumElements();
919
920 for (unsigned i = 0; i != NumElements; ++i)
921 Dest.push_back(C->getAggregateElement(i));
922 }
923
linkAppendingVarInit(const AppendingVarInfo & AVI)924 void ModuleLinker::linkAppendingVarInit(const AppendingVarInfo &AVI) {
925 // Merge the initializer.
926 SmallVector<Constant*, 16> Elements;
927 getArrayElements(AVI.DstInit, Elements);
928
929 Constant *SrcInit = MapValue(AVI.SrcInit, ValueMap, RF_None, &TypeMap, &ValMaterializer);
930 getArrayElements(SrcInit, Elements);
931
932 ArrayType *NewType = cast<ArrayType>(AVI.NewGV->getType()->getElementType());
933 AVI.NewGV->setInitializer(ConstantArray::get(NewType, Elements));
934 }
935
936 /// linkGlobalInits - Update the initializers in the Dest module now that all
937 /// globals that may be referenced are in Dest.
linkGlobalInits()938 void ModuleLinker::linkGlobalInits() {
939 // Loop over all of the globals in the src module, mapping them over as we go
940 for (Module::const_global_iterator I = SrcM->global_begin(),
941 E = SrcM->global_end(); I != E; ++I) {
942
943 // Only process initialized GV's or ones not already in dest.
944 if (!I->hasInitializer() || DoNotLinkFromSource.count(I)) continue;
945
946 // Grab destination global variable.
947 GlobalVariable *DGV = cast<GlobalVariable>(ValueMap[I]);
948 // Figure out what the initializer looks like in the dest module.
949 DGV->setInitializer(MapValue(I->getInitializer(), ValueMap,
950 RF_None, &TypeMap, &ValMaterializer));
951 }
952 }
953
954 /// linkFunctionBody - Copy the source function over into the dest function and
955 /// fix up references to values. At this point we know that Dest is an external
956 /// function, and that Src is not.
linkFunctionBody(Function * Dst,Function * Src)957 void ModuleLinker::linkFunctionBody(Function *Dst, Function *Src) {
958 assert(Src && Dst && Dst->isDeclaration() && !Src->isDeclaration());
959
960 // Go through and convert function arguments over, remembering the mapping.
961 Function::arg_iterator DI = Dst->arg_begin();
962 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
963 I != E; ++I, ++DI) {
964 DI->setName(I->getName()); // Copy the name over.
965
966 // Add a mapping to our mapping.
967 ValueMap[I] = DI;
968 }
969
970 if (Mode == Linker::DestroySource) {
971 // Splice the body of the source function into the dest function.
972 Dst->getBasicBlockList().splice(Dst->end(), Src->getBasicBlockList());
973
974 // At this point, all of the instructions and values of the function are now
975 // copied over. The only problem is that they are still referencing values in
976 // the Source function as operands. Loop through all of the operands of the
977 // functions and patch them up to point to the local versions.
978 for (Function::iterator BB = Dst->begin(), BE = Dst->end(); BB != BE; ++BB)
979 for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
980 RemapInstruction(I, ValueMap, RF_IgnoreMissingEntries,
981 &TypeMap, &ValMaterializer);
982
983 } else {
984 // Clone the body of the function into the dest function.
985 SmallVector<ReturnInst*, 8> Returns; // Ignore returns.
986 CloneFunctionInto(Dst, Src, ValueMap, false, Returns, "", NULL,
987 &TypeMap, &ValMaterializer);
988 }
989
990 // There is no need to map the arguments anymore.
991 for (Function::arg_iterator I = Src->arg_begin(), E = Src->arg_end();
992 I != E; ++I)
993 ValueMap.erase(I);
994
995 }
996
997 /// linkAliasBodies - Insert all of the aliases in Src into the Dest module.
linkAliasBodies()998 void ModuleLinker::linkAliasBodies() {
999 for (Module::alias_iterator I = SrcM->alias_begin(), E = SrcM->alias_end();
1000 I != E; ++I) {
1001 if (DoNotLinkFromSource.count(I))
1002 continue;
1003 if (Constant *Aliasee = I->getAliasee()) {
1004 GlobalAlias *DA = cast<GlobalAlias>(ValueMap[I]);
1005 DA->setAliasee(MapValue(Aliasee, ValueMap, RF_None,
1006 &TypeMap, &ValMaterializer));
1007 }
1008 }
1009 }
1010
1011 /// linkNamedMDNodes - Insert all of the named MDNodes in Src into the Dest
1012 /// module.
linkNamedMDNodes()1013 void ModuleLinker::linkNamedMDNodes() {
1014 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1015 for (Module::const_named_metadata_iterator I = SrcM->named_metadata_begin(),
1016 E = SrcM->named_metadata_end(); I != E; ++I) {
1017 // Don't link module flags here. Do them separately.
1018 if (&*I == SrcModFlags) continue;
1019 NamedMDNode *DestNMD = DstM->getOrInsertNamedMetadata(I->getName());
1020 // Add Src elements into Dest node.
1021 for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
1022 DestNMD->addOperand(MapValue(I->getOperand(i), ValueMap,
1023 RF_None, &TypeMap, &ValMaterializer));
1024 }
1025 }
1026
1027 /// linkModuleFlagsMetadata - Merge the linker flags in Src into the Dest
1028 /// module.
linkModuleFlagsMetadata()1029 bool ModuleLinker::linkModuleFlagsMetadata() {
1030 // If the source module has no module flags, we are done.
1031 const NamedMDNode *SrcModFlags = SrcM->getModuleFlagsMetadata();
1032 if (!SrcModFlags) return false;
1033
1034 // If the destination module doesn't have module flags yet, then just copy
1035 // over the source module's flags.
1036 NamedMDNode *DstModFlags = DstM->getOrInsertModuleFlagsMetadata();
1037 if (DstModFlags->getNumOperands() == 0) {
1038 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I)
1039 DstModFlags->addOperand(SrcModFlags->getOperand(I));
1040
1041 return false;
1042 }
1043
1044 // First build a map of the existing module flags and requirements.
1045 DenseMap<MDString*, MDNode*> Flags;
1046 SmallSetVector<MDNode*, 16> Requirements;
1047 for (unsigned I = 0, E = DstModFlags->getNumOperands(); I != E; ++I) {
1048 MDNode *Op = DstModFlags->getOperand(I);
1049 ConstantInt *Behavior = cast<ConstantInt>(Op->getOperand(0));
1050 MDString *ID = cast<MDString>(Op->getOperand(1));
1051
1052 if (Behavior->getZExtValue() == Module::Require) {
1053 Requirements.insert(cast<MDNode>(Op->getOperand(2)));
1054 } else {
1055 Flags[ID] = Op;
1056 }
1057 }
1058
1059 // Merge in the flags from the source module, and also collect its set of
1060 // requirements.
1061 bool HasErr = false;
1062 for (unsigned I = 0, E = SrcModFlags->getNumOperands(); I != E; ++I) {
1063 MDNode *SrcOp = SrcModFlags->getOperand(I);
1064 ConstantInt *SrcBehavior = cast<ConstantInt>(SrcOp->getOperand(0));
1065 MDString *ID = cast<MDString>(SrcOp->getOperand(1));
1066 MDNode *DstOp = Flags.lookup(ID);
1067 unsigned SrcBehaviorValue = SrcBehavior->getZExtValue();
1068
1069 // If this is a requirement, add it and continue.
1070 if (SrcBehaviorValue == Module::Require) {
1071 // If the destination module does not already have this requirement, add
1072 // it.
1073 if (Requirements.insert(cast<MDNode>(SrcOp->getOperand(2)))) {
1074 DstModFlags->addOperand(SrcOp);
1075 }
1076 continue;
1077 }
1078
1079 // If there is no existing flag with this ID, just add it.
1080 if (!DstOp) {
1081 Flags[ID] = SrcOp;
1082 DstModFlags->addOperand(SrcOp);
1083 continue;
1084 }
1085
1086 // Otherwise, perform a merge.
1087 ConstantInt *DstBehavior = cast<ConstantInt>(DstOp->getOperand(0));
1088 unsigned DstBehaviorValue = DstBehavior->getZExtValue();
1089
1090 // If either flag has override behavior, handle it first.
1091 if (DstBehaviorValue == Module::Override) {
1092 // Diagnose inconsistent flags which both have override behavior.
1093 if (SrcBehaviorValue == Module::Override &&
1094 SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1095 HasErr |= emitError("linking module flags '" + ID->getString() +
1096 "': IDs have conflicting override values");
1097 }
1098 continue;
1099 } else if (SrcBehaviorValue == Module::Override) {
1100 // Update the destination flag to that of the source.
1101 DstOp->replaceOperandWith(0, SrcBehavior);
1102 DstOp->replaceOperandWith(2, SrcOp->getOperand(2));
1103 continue;
1104 }
1105
1106 // Diagnose inconsistent merge behavior types.
1107 if (SrcBehaviorValue != DstBehaviorValue) {
1108 HasErr |= emitError("linking module flags '" + ID->getString() +
1109 "': IDs have conflicting behaviors");
1110 continue;
1111 }
1112
1113 // Perform the merge for standard behavior types.
1114 switch (SrcBehaviorValue) {
1115 case Module::Require:
1116 case Module::Override: assert(0 && "not possible"); break;
1117 case Module::Error: {
1118 // Emit an error if the values differ.
1119 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1120 HasErr |= emitError("linking module flags '" + ID->getString() +
1121 "': IDs have conflicting values");
1122 }
1123 continue;
1124 }
1125 case Module::Warning: {
1126 // Emit a warning if the values differ.
1127 if (SrcOp->getOperand(2) != DstOp->getOperand(2)) {
1128 errs() << "WARNING: linking module flags '" << ID->getString()
1129 << "': IDs have conflicting values";
1130 }
1131 continue;
1132 }
1133 case Module::Append: {
1134 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1135 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1136 unsigned NumOps = DstValue->getNumOperands() + SrcValue->getNumOperands();
1137 Value **VP, **Values = VP = new Value*[NumOps];
1138 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i, ++VP)
1139 *VP = DstValue->getOperand(i);
1140 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i, ++VP)
1141 *VP = SrcValue->getOperand(i);
1142 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1143 ArrayRef<Value*>(Values,
1144 NumOps)));
1145 delete[] Values;
1146 break;
1147 }
1148 case Module::AppendUnique: {
1149 SmallSetVector<Value*, 16> Elts;
1150 MDNode *DstValue = cast<MDNode>(DstOp->getOperand(2));
1151 MDNode *SrcValue = cast<MDNode>(SrcOp->getOperand(2));
1152 for (unsigned i = 0, e = DstValue->getNumOperands(); i != e; ++i)
1153 Elts.insert(DstValue->getOperand(i));
1154 for (unsigned i = 0, e = SrcValue->getNumOperands(); i != e; ++i)
1155 Elts.insert(SrcValue->getOperand(i));
1156 DstOp->replaceOperandWith(2, MDNode::get(DstM->getContext(),
1157 ArrayRef<Value*>(Elts.begin(),
1158 Elts.end())));
1159 break;
1160 }
1161 }
1162 }
1163
1164 // Check all of the requirements.
1165 for (unsigned I = 0, E = Requirements.size(); I != E; ++I) {
1166 MDNode *Requirement = Requirements[I];
1167 MDString *Flag = cast<MDString>(Requirement->getOperand(0));
1168 Value *ReqValue = Requirement->getOperand(1);
1169
1170 MDNode *Op = Flags[Flag];
1171 if (!Op || Op->getOperand(2) != ReqValue) {
1172 HasErr |= emitError("linking module flags '" + Flag->getString() +
1173 "': does not have the required value");
1174 continue;
1175 }
1176 }
1177
1178 return HasErr;
1179 }
1180
run()1181 bool ModuleLinker::run() {
1182 assert(DstM && "Null destination module");
1183 assert(SrcM && "Null source module");
1184
1185 // Inherit the target data from the source module if the destination module
1186 // doesn't have one already.
1187 if (DstM->getDataLayout().empty() && !SrcM->getDataLayout().empty())
1188 DstM->setDataLayout(SrcM->getDataLayout());
1189
1190 // Copy the target triple from the source to dest if the dest's is empty.
1191 if (DstM->getTargetTriple().empty() && !SrcM->getTargetTriple().empty())
1192 DstM->setTargetTriple(SrcM->getTargetTriple());
1193
1194 if (!SrcM->getDataLayout().empty() && !DstM->getDataLayout().empty() &&
1195 SrcM->getDataLayout() != DstM->getDataLayout())
1196 errs() << "WARNING: Linking two modules of different data layouts!\n";
1197 if (!SrcM->getTargetTriple().empty() &&
1198 DstM->getTargetTriple() != SrcM->getTargetTriple()) {
1199 errs() << "WARNING: Linking two modules of different target triples: ";
1200 if (!SrcM->getModuleIdentifier().empty())
1201 errs() << SrcM->getModuleIdentifier() << ": ";
1202 errs() << "'" << SrcM->getTargetTriple() << "' and '"
1203 << DstM->getTargetTriple() << "'\n";
1204 }
1205
1206 // Append the module inline asm string.
1207 if (!SrcM->getModuleInlineAsm().empty()) {
1208 if (DstM->getModuleInlineAsm().empty())
1209 DstM->setModuleInlineAsm(SrcM->getModuleInlineAsm());
1210 else
1211 DstM->setModuleInlineAsm(DstM->getModuleInlineAsm()+"\n"+
1212 SrcM->getModuleInlineAsm());
1213 }
1214
1215 // Loop over all of the linked values to compute type mappings.
1216 computeTypeMapping();
1217
1218 // Insert all of the globals in src into the DstM module... without linking
1219 // initializers (which could refer to functions not yet mapped over).
1220 for (Module::global_iterator I = SrcM->global_begin(),
1221 E = SrcM->global_end(); I != E; ++I)
1222 if (linkGlobalProto(I))
1223 return true;
1224
1225 // Link the functions together between the two modules, without doing function
1226 // bodies... this just adds external function prototypes to the DstM
1227 // function... We do this so that when we begin processing function bodies,
1228 // all of the global values that may be referenced are available in our
1229 // ValueMap.
1230 for (Module::iterator I = SrcM->begin(), E = SrcM->end(); I != E; ++I)
1231 if (linkFunctionProto(I))
1232 return true;
1233
1234 // If there were any aliases, link them now.
1235 for (Module::alias_iterator I = SrcM->alias_begin(),
1236 E = SrcM->alias_end(); I != E; ++I)
1237 if (linkAliasProto(I))
1238 return true;
1239
1240 for (unsigned i = 0, e = AppendingVars.size(); i != e; ++i)
1241 linkAppendingVarInit(AppendingVars[i]);
1242
1243 // Update the initializers in the DstM module now that all globals that may
1244 // be referenced are in DstM.
1245 linkGlobalInits();
1246
1247 // Link in the function bodies that are defined in the source module into
1248 // DstM.
1249 for (Module::iterator SF = SrcM->begin(), E = SrcM->end(); SF != E; ++SF) {
1250 // Skip if not linking from source.
1251 if (DoNotLinkFromSource.count(SF)) continue;
1252
1253 // Skip if no body (function is external) or materialize.
1254 if (SF->isDeclaration()) {
1255 if (!SF->isMaterializable())
1256 continue;
1257 if (SF->Materialize(&ErrorMsg))
1258 return true;
1259 }
1260
1261 linkFunctionBody(cast<Function>(ValueMap[SF]), SF);
1262 SF->Dematerialize();
1263 }
1264
1265 // Resolve all uses of aliases with aliasees.
1266 linkAliasBodies();
1267
1268 // Remap all of the named MDNodes in Src into the DstM module. We do this
1269 // after linking GlobalValues so that MDNodes that reference GlobalValues
1270 // are properly remapped.
1271 linkNamedMDNodes();
1272
1273 // Merge the module flags into the DstM module.
1274 if (linkModuleFlagsMetadata())
1275 return true;
1276
1277 // Process vector of lazily linked in functions.
1278 bool LinkedInAnyFunctions;
1279 do {
1280 LinkedInAnyFunctions = false;
1281
1282 for(std::vector<Function*>::iterator I = LazilyLinkFunctions.begin(),
1283 E = LazilyLinkFunctions.end(); I != E; ++I) {
1284 Function *SF = *I;
1285 if (!SF)
1286 continue;
1287
1288 Function *DF = cast<Function>(ValueMap[SF]);
1289
1290 // Materialize if necessary.
1291 if (SF->isDeclaration()) {
1292 if (!SF->isMaterializable())
1293 continue;
1294 if (SF->Materialize(&ErrorMsg))
1295 return true;
1296 }
1297
1298 // Erase from vector *before* the function body is linked - linkFunctionBody could
1299 // invalidate I.
1300 LazilyLinkFunctions.erase(I);
1301
1302 // Link in function body.
1303 linkFunctionBody(DF, SF);
1304 SF->Dematerialize();
1305
1306 // Set flag to indicate we may have more functions to lazily link in
1307 // since we linked in a function.
1308 LinkedInAnyFunctions = true;
1309 break;
1310 }
1311 } while (LinkedInAnyFunctions);
1312
1313 // Now that all of the types from the source are used, resolve any structs
1314 // copied over to the dest that didn't exist there.
1315 TypeMap.linkDefinedTypeBodies();
1316
1317 return false;
1318 }
1319
Linker(Module * M)1320 Linker::Linker(Module *M) : Composite(M) {
1321 TypeFinder StructTypes;
1322 StructTypes.run(*M, true);
1323 IdentifiedStructTypes.insert(StructTypes.begin(), StructTypes.end());
1324 }
1325
~Linker()1326 Linker::~Linker() {
1327 }
1328
linkInModule(Module * Src,unsigned Mode,std::string * ErrorMsg)1329 bool Linker::linkInModule(Module *Src, unsigned Mode, std::string *ErrorMsg) {
1330 ModuleLinker TheLinker(Composite, IdentifiedStructTypes, Src, Mode);
1331 if (TheLinker.run()) {
1332 if (ErrorMsg)
1333 *ErrorMsg = TheLinker.ErrorMsg;
1334 return true;
1335 }
1336 return false;
1337 }
1338
1339 //===----------------------------------------------------------------------===//
1340 // LinkModules entrypoint.
1341 //===----------------------------------------------------------------------===//
1342
1343 /// LinkModules - This function links two modules together, with the resulting
1344 /// Dest module modified to be the composite of the two input modules. If an
1345 /// error occurs, true is returned and ErrorMsg (if not null) is set to indicate
1346 /// the problem. Upon failure, the Dest module could be in a modified state,
1347 /// and shouldn't be relied on to be consistent.
LinkModules(Module * Dest,Module * Src,unsigned Mode,std::string * ErrorMsg)1348 bool Linker::LinkModules(Module *Dest, Module *Src, unsigned Mode,
1349 std::string *ErrorMsg) {
1350 Linker L(Dest);
1351 return L.linkInModule(Src, Mode, ErrorMsg);
1352 }
1353
1354 //===----------------------------------------------------------------------===//
1355 // C API.
1356 //===----------------------------------------------------------------------===//
1357
LLVMLinkModules(LLVMModuleRef Dest,LLVMModuleRef Src,LLVMLinkerMode Mode,char ** OutMessages)1358 LLVMBool LLVMLinkModules(LLVMModuleRef Dest, LLVMModuleRef Src,
1359 LLVMLinkerMode Mode, char **OutMessages) {
1360 std::string Messages;
1361 LLVMBool Result = Linker::LinkModules(unwrap(Dest), unwrap(Src),
1362 Mode, OutMessages? &Messages : 0);
1363 if (OutMessages)
1364 *OutMessages = strdup(Messages.c_str());
1365 return Result;
1366 }
1367