1 //===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements decl-related attribute processing.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "clang/Sema/SemaInternal.h"
15 #include "TargetAttributesSema.h"
16 #include "clang/AST/ASTContext.h"
17 #include "clang/AST/CXXInheritance.h"
18 #include "clang/AST/DeclCXX.h"
19 #include "clang/AST/DeclObjC.h"
20 #include "clang/AST/DeclTemplate.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/Mangle.h"
23 #include "clang/Basic/CharInfo.h"
24 #include "clang/Basic/SourceManager.h"
25 #include "clang/Basic/TargetInfo.h"
26 #include "clang/Sema/DeclSpec.h"
27 #include "clang/Sema/DelayedDiagnostic.h"
28 #include "clang/Sema/Lookup.h"
29 #include "clang/Sema/Scope.h"
30 #include "llvm/ADT/StringExtras.h"
31 using namespace clang;
32 using namespace sema;
33
34 /// These constants match the enumerated choices of
35 /// warn_attribute_wrong_decl_type and err_attribute_wrong_decl_type.
36 enum AttributeDeclKind {
37 ExpectedFunction,
38 ExpectedUnion,
39 ExpectedVariableOrFunction,
40 ExpectedFunctionOrMethod,
41 ExpectedParameter,
42 ExpectedFunctionMethodOrBlock,
43 ExpectedFunctionMethodOrClass,
44 ExpectedFunctionMethodOrParameter,
45 ExpectedClass,
46 ExpectedVariable,
47 ExpectedMethod,
48 ExpectedVariableFunctionOrLabel,
49 ExpectedFieldOrGlobalVar,
50 ExpectedStruct,
51 ExpectedVariableFunctionOrTag,
52 ExpectedTLSVar,
53 ExpectedVariableOrField,
54 ExpectedVariableFieldOrTag,
55 ExpectedTypeOrNamespace,
56 ExpectedObjectiveCInterface
57 };
58
59 //===----------------------------------------------------------------------===//
60 // Helper functions
61 //===----------------------------------------------------------------------===//
62
getFunctionType(const Decl * D,bool blocksToo=true)63 static const FunctionType *getFunctionType(const Decl *D,
64 bool blocksToo = true) {
65 QualType Ty;
66 if (const ValueDecl *decl = dyn_cast<ValueDecl>(D))
67 Ty = decl->getType();
68 else if (const FieldDecl *decl = dyn_cast<FieldDecl>(D))
69 Ty = decl->getType();
70 else if (const TypedefNameDecl* decl = dyn_cast<TypedefNameDecl>(D))
71 Ty = decl->getUnderlyingType();
72 else
73 return 0;
74
75 if (Ty->isFunctionPointerType())
76 Ty = Ty->getAs<PointerType>()->getPointeeType();
77 else if (blocksToo && Ty->isBlockPointerType())
78 Ty = Ty->getAs<BlockPointerType>()->getPointeeType();
79
80 return Ty->getAs<FunctionType>();
81 }
82
83 // FIXME: We should provide an abstraction around a method or function
84 // to provide the following bits of information.
85
86 /// isFunction - Return true if the given decl has function
87 /// type (function or function-typed variable).
isFunction(const Decl * D)88 static bool isFunction(const Decl *D) {
89 return getFunctionType(D, false) != NULL;
90 }
91
92 /// isFunctionOrMethod - Return true if the given decl has function
93 /// type (function or function-typed variable) or an Objective-C
94 /// method.
isFunctionOrMethod(const Decl * D)95 static bool isFunctionOrMethod(const Decl *D) {
96 return isFunction(D) || isa<ObjCMethodDecl>(D);
97 }
98
99 /// isFunctionOrMethodOrBlock - Return true if the given decl has function
100 /// type (function or function-typed variable) or an Objective-C
101 /// method or a block.
isFunctionOrMethodOrBlock(const Decl * D)102 static bool isFunctionOrMethodOrBlock(const Decl *D) {
103 if (isFunctionOrMethod(D))
104 return true;
105 // check for block is more involved.
106 if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
107 QualType Ty = V->getType();
108 return Ty->isBlockPointerType();
109 }
110 return isa<BlockDecl>(D);
111 }
112
113 /// Return true if the given decl has a declarator that should have
114 /// been processed by Sema::GetTypeForDeclarator.
hasDeclarator(const Decl * D)115 static bool hasDeclarator(const Decl *D) {
116 // In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
117 return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
118 isa<ObjCPropertyDecl>(D);
119 }
120
121 /// hasFunctionProto - Return true if the given decl has a argument
122 /// information. This decl should have already passed
123 /// isFunctionOrMethod or isFunctionOrMethodOrBlock.
hasFunctionProto(const Decl * D)124 static bool hasFunctionProto(const Decl *D) {
125 if (const FunctionType *FnTy = getFunctionType(D))
126 return isa<FunctionProtoType>(FnTy);
127 else {
128 assert(isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D));
129 return true;
130 }
131 }
132
133 /// getFunctionOrMethodNumArgs - Return number of function or method
134 /// arguments. It is an error to call this on a K&R function (use
135 /// hasFunctionProto first).
getFunctionOrMethodNumArgs(const Decl * D)136 static unsigned getFunctionOrMethodNumArgs(const Decl *D) {
137 if (const FunctionType *FnTy = getFunctionType(D))
138 return cast<FunctionProtoType>(FnTy)->getNumArgs();
139 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
140 return BD->getNumParams();
141 return cast<ObjCMethodDecl>(D)->param_size();
142 }
143
getFunctionOrMethodArgType(const Decl * D,unsigned Idx)144 static QualType getFunctionOrMethodArgType(const Decl *D, unsigned Idx) {
145 if (const FunctionType *FnTy = getFunctionType(D))
146 return cast<FunctionProtoType>(FnTy)->getArgType(Idx);
147 if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
148 return BD->getParamDecl(Idx)->getType();
149
150 return cast<ObjCMethodDecl>(D)->param_begin()[Idx]->getType();
151 }
152
getFunctionOrMethodResultType(const Decl * D)153 static QualType getFunctionOrMethodResultType(const Decl *D) {
154 if (const FunctionType *FnTy = getFunctionType(D))
155 return cast<FunctionProtoType>(FnTy)->getResultType();
156 return cast<ObjCMethodDecl>(D)->getResultType();
157 }
158
isFunctionOrMethodVariadic(const Decl * D)159 static bool isFunctionOrMethodVariadic(const Decl *D) {
160 if (const FunctionType *FnTy = getFunctionType(D)) {
161 const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
162 return proto->isVariadic();
163 } else if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
164 return BD->isVariadic();
165 else {
166 return cast<ObjCMethodDecl>(D)->isVariadic();
167 }
168 }
169
isInstanceMethod(const Decl * D)170 static bool isInstanceMethod(const Decl *D) {
171 if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
172 return MethodDecl->isInstance();
173 return false;
174 }
175
isNSStringType(QualType T,ASTContext & Ctx)176 static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
177 const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
178 if (!PT)
179 return false;
180
181 ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
182 if (!Cls)
183 return false;
184
185 IdentifierInfo* ClsName = Cls->getIdentifier();
186
187 // FIXME: Should we walk the chain of classes?
188 return ClsName == &Ctx.Idents.get("NSString") ||
189 ClsName == &Ctx.Idents.get("NSMutableString");
190 }
191
isCFStringType(QualType T,ASTContext & Ctx)192 static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
193 const PointerType *PT = T->getAs<PointerType>();
194 if (!PT)
195 return false;
196
197 const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
198 if (!RT)
199 return false;
200
201 const RecordDecl *RD = RT->getDecl();
202 if (RD->getTagKind() != TTK_Struct)
203 return false;
204
205 return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
206 }
207
208 /// \brief Check if the attribute has exactly as many args as Num. May
209 /// output an error.
checkAttributeNumArgs(Sema & S,const AttributeList & Attr,unsigned int Num)210 static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
211 unsigned int Num) {
212 if (Attr.getNumArgs() != Num) {
213 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
214 << Attr.getName() << Num;
215 return false;
216 }
217
218 return true;
219 }
220
221
222 /// \brief Check if the attribute has at least as many args as Num. May
223 /// output an error.
checkAttributeAtLeastNumArgs(Sema & S,const AttributeList & Attr,unsigned int Num)224 static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
225 unsigned int Num) {
226 if (Attr.getNumArgs() < Num) {
227 S.Diag(Attr.getLoc(), diag::err_attribute_too_few_arguments) << Num;
228 return false;
229 }
230
231 return true;
232 }
233
234 /// \brief Check if IdxExpr is a valid argument index for a function or
235 /// instance method D. May output an error.
236 ///
237 /// \returns true if IdxExpr is a valid index.
checkFunctionOrMethodArgumentIndex(Sema & S,const Decl * D,StringRef AttrName,SourceLocation AttrLoc,unsigned AttrArgNum,const Expr * IdxExpr,uint64_t & Idx)238 static bool checkFunctionOrMethodArgumentIndex(Sema &S, const Decl *D,
239 StringRef AttrName,
240 SourceLocation AttrLoc,
241 unsigned AttrArgNum,
242 const Expr *IdxExpr,
243 uint64_t &Idx)
244 {
245 assert(isFunctionOrMethod(D));
246
247 // In C++ the implicit 'this' function parameter also counts.
248 // Parameters are counted from one.
249 bool HP = hasFunctionProto(D);
250 bool HasImplicitThisParam = isInstanceMethod(D);
251 bool IV = HP && isFunctionOrMethodVariadic(D);
252 unsigned NumArgs = (HP ? getFunctionOrMethodNumArgs(D) : 0) +
253 HasImplicitThisParam;
254
255 llvm::APSInt IdxInt;
256 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
257 !IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
258 std::string Name = std::string("'") + AttrName.str() + std::string("'");
259 S.Diag(AttrLoc, diag::err_attribute_argument_n_type) << Name.c_str()
260 << AttrArgNum << AANT_ArgumentIntegerConstant << IdxExpr->getSourceRange();
261 return false;
262 }
263
264 Idx = IdxInt.getLimitedValue();
265 if (Idx < 1 || (!IV && Idx > NumArgs)) {
266 S.Diag(AttrLoc, diag::err_attribute_argument_out_of_bounds)
267 << AttrName << AttrArgNum << IdxExpr->getSourceRange();
268 return false;
269 }
270 Idx--; // Convert to zero-based.
271 if (HasImplicitThisParam) {
272 if (Idx == 0) {
273 S.Diag(AttrLoc,
274 diag::err_attribute_invalid_implicit_this_argument)
275 << AttrName << IdxExpr->getSourceRange();
276 return false;
277 }
278 --Idx;
279 }
280
281 return true;
282 }
283
284 ///
285 /// \brief Check if passed in Decl is a field or potentially shared global var
286 /// \return true if the Decl is a field or potentially shared global variable
287 ///
mayBeSharedVariable(const Decl * D)288 static bool mayBeSharedVariable(const Decl *D) {
289 if (isa<FieldDecl>(D))
290 return true;
291 if (const VarDecl *vd = dyn_cast<VarDecl>(D))
292 return vd->hasGlobalStorage() && !vd->getTLSKind();
293
294 return false;
295 }
296
297 /// \brief Check if the passed-in expression is of type int or bool.
isIntOrBool(Expr * Exp)298 static bool isIntOrBool(Expr *Exp) {
299 QualType QT = Exp->getType();
300 return QT->isBooleanType() || QT->isIntegerType();
301 }
302
303
304 // Check to see if the type is a smart pointer of some kind. We assume
305 // it's a smart pointer if it defines both operator-> and operator*.
threadSafetyCheckIsSmartPointer(Sema & S,const RecordType * RT)306 static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
307 DeclContextLookupConstResult Res1 = RT->getDecl()->lookup(
308 S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
309 if (Res1.empty())
310 return false;
311
312 DeclContextLookupConstResult Res2 = RT->getDecl()->lookup(
313 S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
314 if (Res2.empty())
315 return false;
316
317 return true;
318 }
319
320 /// \brief Check if passed in Decl is a pointer type.
321 /// Note that this function may produce an error message.
322 /// \return true if the Decl is a pointer type; false otherwise
threadSafetyCheckIsPointer(Sema & S,const Decl * D,const AttributeList & Attr)323 static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
324 const AttributeList &Attr) {
325 if (const ValueDecl *vd = dyn_cast<ValueDecl>(D)) {
326 QualType QT = vd->getType();
327 if (QT->isAnyPointerType())
328 return true;
329
330 if (const RecordType *RT = QT->getAs<RecordType>()) {
331 // If it's an incomplete type, it could be a smart pointer; skip it.
332 // (We don't want to force template instantiation if we can avoid it,
333 // since that would alter the order in which templates are instantiated.)
334 if (RT->isIncompleteType())
335 return true;
336
337 if (threadSafetyCheckIsSmartPointer(S, RT))
338 return true;
339 }
340
341 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
342 << Attr.getName()->getName() << QT;
343 } else {
344 S.Diag(Attr.getLoc(), diag::err_attribute_can_be_applied_only_to_value_decl)
345 << Attr.getName();
346 }
347 return false;
348 }
349
350 /// \brief Checks that the passed in QualType either is of RecordType or points
351 /// to RecordType. Returns the relevant RecordType, null if it does not exit.
getRecordType(QualType QT)352 static const RecordType *getRecordType(QualType QT) {
353 if (const RecordType *RT = QT->getAs<RecordType>())
354 return RT;
355
356 // Now check if we point to record type.
357 if (const PointerType *PT = QT->getAs<PointerType>())
358 return PT->getPointeeType()->getAs<RecordType>();
359
360 return 0;
361 }
362
363
checkBaseClassIsLockableCallback(const CXXBaseSpecifier * Specifier,CXXBasePath & Path,void * Unused)364 static bool checkBaseClassIsLockableCallback(const CXXBaseSpecifier *Specifier,
365 CXXBasePath &Path, void *Unused) {
366 const RecordType *RT = Specifier->getType()->getAs<RecordType>();
367 if (RT->getDecl()->getAttr<LockableAttr>())
368 return true;
369 return false;
370 }
371
372
373 /// \brief Thread Safety Analysis: Checks that the passed in RecordType
374 /// resolves to a lockable object.
checkForLockableRecord(Sema & S,Decl * D,const AttributeList & Attr,QualType Ty)375 static void checkForLockableRecord(Sema &S, Decl *D, const AttributeList &Attr,
376 QualType Ty) {
377 const RecordType *RT = getRecordType(Ty);
378
379 // Warn if could not get record type for this argument.
380 if (!RT) {
381 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_class)
382 << Attr.getName() << Ty.getAsString();
383 return;
384 }
385
386 // Don't check for lockable if the class hasn't been defined yet.
387 if (RT->isIncompleteType())
388 return;
389
390 // Allow smart pointers to be used as lockable objects.
391 // FIXME -- Check the type that the smart pointer points to.
392 if (threadSafetyCheckIsSmartPointer(S, RT))
393 return;
394
395 // Check if the type is lockable.
396 RecordDecl *RD = RT->getDecl();
397 if (RD->getAttr<LockableAttr>())
398 return;
399
400 // Else check if any base classes are lockable.
401 if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
402 CXXBasePaths BPaths(false, false);
403 if (CRD->lookupInBases(checkBaseClassIsLockableCallback, 0, BPaths))
404 return;
405 }
406
407 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
408 << Attr.getName() << Ty.getAsString();
409 }
410
411 /// \brief Thread Safety Analysis: Checks that all attribute arguments, starting
412 /// from Sidx, resolve to a lockable object.
413 /// \param Sidx The attribute argument index to start checking with.
414 /// \param ParamIdxOk Whether an argument can be indexing into a function
415 /// parameter list.
checkAttrArgsAreLockableObjs(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args,int Sidx=0,bool ParamIdxOk=false)416 static void checkAttrArgsAreLockableObjs(Sema &S, Decl *D,
417 const AttributeList &Attr,
418 SmallVectorImpl<Expr*> &Args,
419 int Sidx = 0,
420 bool ParamIdxOk = false) {
421 for(unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
422 Expr *ArgExp = Attr.getArg(Idx);
423
424 if (ArgExp->isTypeDependent()) {
425 // FIXME -- need to check this again on template instantiation
426 Args.push_back(ArgExp);
427 continue;
428 }
429
430 if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
431 if (StrLit->getLength() == 0 ||
432 StrLit->getString() == StringRef("*")) {
433 // Pass empty strings to the analyzer without warnings.
434 // Treat "*" as the universal lock.
435 Args.push_back(ArgExp);
436 continue;
437 }
438
439 // We allow constant strings to be used as a placeholder for expressions
440 // that are not valid C++ syntax, but warn that they are ignored.
441 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
442 Attr.getName();
443 Args.push_back(ArgExp);
444 continue;
445 }
446
447 QualType ArgTy = ArgExp->getType();
448
449 // A pointer to member expression of the form &MyClass::mu is treated
450 // specially -- we need to look at the type of the member.
451 if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
452 if (UOp->getOpcode() == UO_AddrOf)
453 if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
454 if (DRE->getDecl()->isCXXInstanceMember())
455 ArgTy = DRE->getDecl()->getType();
456
457 // First see if we can just cast to record type, or point to record type.
458 const RecordType *RT = getRecordType(ArgTy);
459
460 // Now check if we index into a record type function param.
461 if(!RT && ParamIdxOk) {
462 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
463 IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
464 if(FD && IL) {
465 unsigned int NumParams = FD->getNumParams();
466 llvm::APInt ArgValue = IL->getValue();
467 uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
468 uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
469 if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
470 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
471 << Attr.getName() << Idx + 1 << NumParams;
472 continue;
473 }
474 ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
475 }
476 }
477
478 checkForLockableRecord(S, D, Attr, ArgTy);
479
480 Args.push_back(ArgExp);
481 }
482 }
483
484 //===----------------------------------------------------------------------===//
485 // Attribute Implementations
486 //===----------------------------------------------------------------------===//
487
488 // FIXME: All this manual attribute parsing code is gross. At the
489 // least add some helper functions to check most argument patterns (#
490 // and types of args).
491
492 enum ThreadAttributeDeclKind {
493 ThreadExpectedFieldOrGlobalVar,
494 ThreadExpectedFunctionOrMethod,
495 ThreadExpectedClassOrStruct
496 };
497
checkGuardedVarAttrCommon(Sema & S,Decl * D,const AttributeList & Attr)498 static bool checkGuardedVarAttrCommon(Sema &S, Decl *D,
499 const AttributeList &Attr) {
500 assert(!Attr.isInvalid());
501
502 if (!checkAttributeNumArgs(S, Attr, 0))
503 return false;
504
505 // D must be either a member field or global (potentially shared) variable.
506 if (!mayBeSharedVariable(D)) {
507 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
508 << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
509 return false;
510 }
511
512 return true;
513 }
514
handleGuardedVarAttr(Sema & S,Decl * D,const AttributeList & Attr)515 static void handleGuardedVarAttr(Sema &S, Decl *D, const AttributeList &Attr) {
516 if (!checkGuardedVarAttrCommon(S, D, Attr))
517 return;
518
519 D->addAttr(::new (S.Context)
520 GuardedVarAttr(Attr.getRange(), S.Context,
521 Attr.getAttributeSpellingListIndex()));
522 }
523
handlePtGuardedVarAttr(Sema & S,Decl * D,const AttributeList & Attr)524 static void handlePtGuardedVarAttr(Sema &S, Decl *D,
525 const AttributeList &Attr) {
526 if (!checkGuardedVarAttrCommon(S, D, Attr))
527 return;
528
529 if (!threadSafetyCheckIsPointer(S, D, Attr))
530 return;
531
532 D->addAttr(::new (S.Context)
533 PtGuardedVarAttr(Attr.getRange(), S.Context,
534 Attr.getAttributeSpellingListIndex()));
535 }
536
checkGuardedByAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,Expr * & Arg)537 static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
538 const AttributeList &Attr,
539 Expr* &Arg) {
540 assert(!Attr.isInvalid());
541
542 if (!checkAttributeNumArgs(S, Attr, 1))
543 return false;
544
545 // D must be either a member field or global (potentially shared) variable.
546 if (!mayBeSharedVariable(D)) {
547 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
548 << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
549 return false;
550 }
551
552 SmallVector<Expr*, 1> Args;
553 // check that all arguments are lockable objects
554 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
555 unsigned Size = Args.size();
556 if (Size != 1)
557 return false;
558
559 Arg = Args[0];
560
561 return true;
562 }
563
handleGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)564 static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
565 Expr *Arg = 0;
566 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
567 return;
568
569 D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg));
570 }
571
handlePtGuardedByAttr(Sema & S,Decl * D,const AttributeList & Attr)572 static void handlePtGuardedByAttr(Sema &S, Decl *D,
573 const AttributeList &Attr) {
574 Expr *Arg = 0;
575 if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
576 return;
577
578 if (!threadSafetyCheckIsPointer(S, D, Attr))
579 return;
580
581 D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
582 S.Context, Arg));
583 }
584
checkLockableAttrCommon(Sema & S,Decl * D,const AttributeList & Attr)585 static bool checkLockableAttrCommon(Sema &S, Decl *D,
586 const AttributeList &Attr) {
587 assert(!Attr.isInvalid());
588
589 if (!checkAttributeNumArgs(S, Attr, 0))
590 return false;
591
592 // FIXME: Lockable structs for C code.
593 if (!isa<RecordDecl>(D)) {
594 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
595 << Attr.getName() << ThreadExpectedClassOrStruct;
596 return false;
597 }
598
599 return true;
600 }
601
handleLockableAttr(Sema & S,Decl * D,const AttributeList & Attr)602 static void handleLockableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
603 if (!checkLockableAttrCommon(S, D, Attr))
604 return;
605
606 D->addAttr(::new (S.Context) LockableAttr(Attr.getRange(), S.Context));
607 }
608
handleScopedLockableAttr(Sema & S,Decl * D,const AttributeList & Attr)609 static void handleScopedLockableAttr(Sema &S, Decl *D,
610 const AttributeList &Attr) {
611 if (!checkLockableAttrCommon(S, D, Attr))
612 return;
613
614 D->addAttr(::new (S.Context)
615 ScopedLockableAttr(Attr.getRange(), S.Context,
616 Attr.getAttributeSpellingListIndex()));
617 }
618
handleNoThreadSafetyAnalysis(Sema & S,Decl * D,const AttributeList & Attr)619 static void handleNoThreadSafetyAnalysis(Sema &S, Decl *D,
620 const AttributeList &Attr) {
621 assert(!Attr.isInvalid());
622
623 if (!checkAttributeNumArgs(S, Attr, 0))
624 return;
625
626 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
627 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
628 << Attr.getName() << ThreadExpectedFunctionOrMethod;
629 return;
630 }
631
632 D->addAttr(::new (S.Context) NoThreadSafetyAnalysisAttr(Attr.getRange(),
633 S.Context));
634 }
635
handleNoSanitizeAddressAttr(Sema & S,Decl * D,const AttributeList & Attr)636 static void handleNoSanitizeAddressAttr(Sema &S, Decl *D,
637 const AttributeList &Attr) {
638 assert(!Attr.isInvalid());
639
640 if (!checkAttributeNumArgs(S, Attr, 0))
641 return;
642
643 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
644 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
645 << Attr.getName() << ExpectedFunctionOrMethod;
646 return;
647 }
648
649 D->addAttr(::new (S.Context)
650 NoSanitizeAddressAttr(Attr.getRange(), S.Context,
651 Attr.getAttributeSpellingListIndex()));
652 }
653
handleNoSanitizeMemory(Sema & S,Decl * D,const AttributeList & Attr)654 static void handleNoSanitizeMemory(Sema &S, Decl *D,
655 const AttributeList &Attr) {
656 assert(!Attr.isInvalid());
657
658 if (!checkAttributeNumArgs(S, Attr, 0))
659 return;
660
661 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
662 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
663 << Attr.getName() << ExpectedFunctionOrMethod;
664 return;
665 }
666
667 D->addAttr(::new (S.Context) NoSanitizeMemoryAttr(Attr.getRange(),
668 S.Context));
669 }
670
handleNoSanitizeThread(Sema & S,Decl * D,const AttributeList & Attr)671 static void handleNoSanitizeThread(Sema &S, Decl *D,
672 const AttributeList &Attr) {
673 assert(!Attr.isInvalid());
674
675 if (!checkAttributeNumArgs(S, Attr, 0))
676 return;
677
678 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
679 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
680 << Attr.getName() << ExpectedFunctionOrMethod;
681 return;
682 }
683
684 D->addAttr(::new (S.Context) NoSanitizeThreadAttr(Attr.getRange(),
685 S.Context));
686 }
687
checkAcquireOrderAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)688 static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
689 const AttributeList &Attr,
690 SmallVectorImpl<Expr *> &Args) {
691 assert(!Attr.isInvalid());
692
693 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
694 return false;
695
696 // D must be either a member field or global (potentially shared) variable.
697 ValueDecl *VD = dyn_cast<ValueDecl>(D);
698 if (!VD || !mayBeSharedVariable(D)) {
699 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
700 << Attr.getName() << ThreadExpectedFieldOrGlobalVar;
701 return false;
702 }
703
704 // Check that this attribute only applies to lockable types.
705 QualType QT = VD->getType();
706 if (!QT->isDependentType()) {
707 const RecordType *RT = getRecordType(QT);
708 if (!RT || !RT->getDecl()->getAttr<LockableAttr>()) {
709 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
710 << Attr.getName();
711 return false;
712 }
713 }
714
715 // Check that all arguments are lockable objects.
716 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
717 if (Args.empty())
718 return false;
719
720 return true;
721 }
722
handleAcquiredAfterAttr(Sema & S,Decl * D,const AttributeList & Attr)723 static void handleAcquiredAfterAttr(Sema &S, Decl *D,
724 const AttributeList &Attr) {
725 SmallVector<Expr*, 1> Args;
726 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
727 return;
728
729 Expr **StartArg = &Args[0];
730 D->addAttr(::new (S.Context)
731 AcquiredAfterAttr(Attr.getRange(), S.Context,
732 StartArg, Args.size(),
733 Attr.getAttributeSpellingListIndex()));
734 }
735
handleAcquiredBeforeAttr(Sema & S,Decl * D,const AttributeList & Attr)736 static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
737 const AttributeList &Attr) {
738 SmallVector<Expr*, 1> Args;
739 if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
740 return;
741
742 Expr **StartArg = &Args[0];
743 D->addAttr(::new (S.Context)
744 AcquiredBeforeAttr(Attr.getRange(), S.Context,
745 StartArg, Args.size(),
746 Attr.getAttributeSpellingListIndex()));
747 }
748
checkLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)749 static bool checkLockFunAttrCommon(Sema &S, Decl *D,
750 const AttributeList &Attr,
751 SmallVectorImpl<Expr *> &Args) {
752 assert(!Attr.isInvalid());
753
754 // zero or more arguments ok
755
756 // check that the attribute is applied to a function
757 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
758 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
759 << Attr.getName() << ThreadExpectedFunctionOrMethod;
760 return false;
761 }
762
763 // check that all arguments are lockable objects
764 checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
765
766 return true;
767 }
768
handleSharedLockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)769 static void handleSharedLockFunctionAttr(Sema &S, Decl *D,
770 const AttributeList &Attr) {
771 SmallVector<Expr*, 1> Args;
772 if (!checkLockFunAttrCommon(S, D, Attr, Args))
773 return;
774
775 unsigned Size = Args.size();
776 Expr **StartArg = Size == 0 ? 0 : &Args[0];
777 D->addAttr(::new (S.Context)
778 SharedLockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
779 Attr.getAttributeSpellingListIndex()));
780 }
781
handleExclusiveLockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)782 static void handleExclusiveLockFunctionAttr(Sema &S, Decl *D,
783 const AttributeList &Attr) {
784 SmallVector<Expr*, 1> Args;
785 if (!checkLockFunAttrCommon(S, D, Attr, Args))
786 return;
787
788 unsigned Size = Args.size();
789 Expr **StartArg = Size == 0 ? 0 : &Args[0];
790 D->addAttr(::new (S.Context)
791 ExclusiveLockFunctionAttr(Attr.getRange(), S.Context,
792 StartArg, Size,
793 Attr.getAttributeSpellingListIndex()));
794 }
795
handleAssertSharedLockAttr(Sema & S,Decl * D,const AttributeList & Attr)796 static void handleAssertSharedLockAttr(Sema &S, Decl *D,
797 const AttributeList &Attr) {
798 SmallVector<Expr*, 1> Args;
799 if (!checkLockFunAttrCommon(S, D, Attr, Args))
800 return;
801
802 unsigned Size = Args.size();
803 Expr **StartArg = Size == 0 ? 0 : &Args[0];
804 D->addAttr(::new (S.Context)
805 AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
806 Attr.getAttributeSpellingListIndex()));
807 }
808
handleAssertExclusiveLockAttr(Sema & S,Decl * D,const AttributeList & Attr)809 static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
810 const AttributeList &Attr) {
811 SmallVector<Expr*, 1> Args;
812 if (!checkLockFunAttrCommon(S, D, Attr, Args))
813 return;
814
815 unsigned Size = Args.size();
816 Expr **StartArg = Size == 0 ? 0 : &Args[0];
817 D->addAttr(::new (S.Context)
818 AssertExclusiveLockAttr(Attr.getRange(), S.Context,
819 StartArg, Size,
820 Attr.getAttributeSpellingListIndex()));
821 }
822
823
checkTryLockFunAttrCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)824 static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
825 const AttributeList &Attr,
826 SmallVectorImpl<Expr *> &Args) {
827 assert(!Attr.isInvalid());
828
829 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
830 return false;
831
832 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
833 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
834 << Attr.getName() << ThreadExpectedFunctionOrMethod;
835 return false;
836 }
837
838 if (!isIntOrBool(Attr.getArg(0))) {
839 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
840 << Attr.getName() << 1 << AANT_ArgumentIntOrBool;
841 return false;
842 }
843
844 // check that all arguments are lockable objects
845 checkAttrArgsAreLockableObjs(S, D, Attr, Args, 1);
846
847 return true;
848 }
849
handleSharedTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)850 static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
851 const AttributeList &Attr) {
852 SmallVector<Expr*, 2> Args;
853 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
854 return;
855
856 unsigned Size = Args.size();
857 Expr **StartArg = Size == 0 ? 0 : &Args[0];
858 D->addAttr(::new (S.Context)
859 SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
860 Attr.getArg(0), StartArg, Size,
861 Attr.getAttributeSpellingListIndex()));
862 }
863
handleExclusiveTrylockFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)864 static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
865 const AttributeList &Attr) {
866 SmallVector<Expr*, 2> Args;
867 if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
868 return;
869
870 unsigned Size = Args.size();
871 Expr **StartArg = Size == 0 ? 0 : &Args[0];
872 D->addAttr(::new (S.Context)
873 ExclusiveTrylockFunctionAttr(Attr.getRange(), S.Context,
874 Attr.getArg(0), StartArg, Size,
875 Attr.getAttributeSpellingListIndex()));
876 }
877
checkLocksRequiredCommon(Sema & S,Decl * D,const AttributeList & Attr,SmallVectorImpl<Expr * > & Args)878 static bool checkLocksRequiredCommon(Sema &S, Decl *D,
879 const AttributeList &Attr,
880 SmallVectorImpl<Expr *> &Args) {
881 assert(!Attr.isInvalid());
882
883 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
884 return false;
885
886 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
887 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
888 << Attr.getName() << ThreadExpectedFunctionOrMethod;
889 return false;
890 }
891
892 // check that all arguments are lockable objects
893 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
894 if (Args.empty())
895 return false;
896
897 return true;
898 }
899
handleExclusiveLocksRequiredAttr(Sema & S,Decl * D,const AttributeList & Attr)900 static void handleExclusiveLocksRequiredAttr(Sema &S, Decl *D,
901 const AttributeList &Attr) {
902 SmallVector<Expr*, 1> Args;
903 if (!checkLocksRequiredCommon(S, D, Attr, Args))
904 return;
905
906 Expr **StartArg = &Args[0];
907 D->addAttr(::new (S.Context)
908 ExclusiveLocksRequiredAttr(Attr.getRange(), S.Context,
909 StartArg, Args.size(),
910 Attr.getAttributeSpellingListIndex()));
911 }
912
handleSharedLocksRequiredAttr(Sema & S,Decl * D,const AttributeList & Attr)913 static void handleSharedLocksRequiredAttr(Sema &S, Decl *D,
914 const AttributeList &Attr) {
915 SmallVector<Expr*, 1> Args;
916 if (!checkLocksRequiredCommon(S, D, Attr, Args))
917 return;
918
919 Expr **StartArg = &Args[0];
920 D->addAttr(::new (S.Context)
921 SharedLocksRequiredAttr(Attr.getRange(), S.Context,
922 StartArg, Args.size(),
923 Attr.getAttributeSpellingListIndex()));
924 }
925
handleUnlockFunAttr(Sema & S,Decl * D,const AttributeList & Attr)926 static void handleUnlockFunAttr(Sema &S, Decl *D,
927 const AttributeList &Attr) {
928 assert(!Attr.isInvalid());
929
930 // zero or more arguments ok
931
932 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
933 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
934 << Attr.getName() << ThreadExpectedFunctionOrMethod;
935 return;
936 }
937
938 // check that all arguments are lockable objects
939 SmallVector<Expr*, 1> Args;
940 checkAttrArgsAreLockableObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
941 unsigned Size = Args.size();
942 Expr **StartArg = Size == 0 ? 0 : &Args[0];
943
944 D->addAttr(::new (S.Context)
945 UnlockFunctionAttr(Attr.getRange(), S.Context, StartArg, Size,
946 Attr.getAttributeSpellingListIndex()));
947 }
948
handleLockReturnedAttr(Sema & S,Decl * D,const AttributeList & Attr)949 static void handleLockReturnedAttr(Sema &S, Decl *D,
950 const AttributeList &Attr) {
951 assert(!Attr.isInvalid());
952
953 if (!checkAttributeNumArgs(S, Attr, 1))
954 return;
955
956 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
957 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
958 << Attr.getName() << ThreadExpectedFunctionOrMethod;
959 return;
960 }
961
962 // check that the argument is lockable object
963 SmallVector<Expr*, 1> Args;
964 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
965 unsigned Size = Args.size();
966 if (Size == 0)
967 return;
968
969 D->addAttr(::new (S.Context)
970 LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
971 Attr.getAttributeSpellingListIndex()));
972 }
973
handleLocksExcludedAttr(Sema & S,Decl * D,const AttributeList & Attr)974 static void handleLocksExcludedAttr(Sema &S, Decl *D,
975 const AttributeList &Attr) {
976 assert(!Attr.isInvalid());
977
978 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
979 return;
980
981 if (!isa<FunctionDecl>(D) && !isa<FunctionTemplateDecl>(D)) {
982 S.Diag(Attr.getLoc(), diag::warn_thread_attribute_wrong_decl_type)
983 << Attr.getName() << ThreadExpectedFunctionOrMethod;
984 return;
985 }
986
987 // check that all arguments are lockable objects
988 SmallVector<Expr*, 1> Args;
989 checkAttrArgsAreLockableObjs(S, D, Attr, Args);
990 unsigned Size = Args.size();
991 if (Size == 0)
992 return;
993 Expr **StartArg = &Args[0];
994
995 D->addAttr(::new (S.Context)
996 LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
997 Attr.getAttributeSpellingListIndex()));
998 }
999
1000
handleExtVectorTypeAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)1001 static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
1002 const AttributeList &Attr) {
1003 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
1004 if (TD == 0) {
1005 // __attribute__((ext_vector_type(N))) can only be applied to typedefs
1006 // and type-ids.
1007 S.Diag(Attr.getLoc(), diag::err_typecheck_ext_vector_not_typedef);
1008 return;
1009 }
1010
1011 // Remember this typedef decl, we will need it later for diagnostics.
1012 S.ExtVectorDecls.push_back(TD);
1013 }
1014
handlePackedAttr(Sema & S,Decl * D,const AttributeList & Attr)1015 static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1016 // check the attribute arguments.
1017 if (!checkAttributeNumArgs(S, Attr, 0))
1018 return;
1019
1020 if (TagDecl *TD = dyn_cast<TagDecl>(D))
1021 TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context));
1022 else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
1023 // If the alignment is less than or equal to 8 bits, the packed attribute
1024 // has no effect.
1025 if (!FD->getType()->isDependentType() &&
1026 !FD->getType()->isIncompleteType() &&
1027 S.Context.getTypeAlign(FD->getType()) <= 8)
1028 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored_for_field_of_type)
1029 << Attr.getName() << FD->getType();
1030 else
1031 FD->addAttr(::new (S.Context)
1032 PackedAttr(Attr.getRange(), S.Context,
1033 Attr.getAttributeSpellingListIndex()));
1034 } else
1035 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1036 }
1037
handleMsStructAttr(Sema & S,Decl * D,const AttributeList & Attr)1038 static void handleMsStructAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1039 if (RecordDecl *RD = dyn_cast<RecordDecl>(D))
1040 RD->addAttr(::new (S.Context)
1041 MsStructAttr(Attr.getRange(), S.Context,
1042 Attr.getAttributeSpellingListIndex()));
1043 else
1044 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
1045 }
1046
handleIBAction(Sema & S,Decl * D,const AttributeList & Attr)1047 static void handleIBAction(Sema &S, Decl *D, const AttributeList &Attr) {
1048 // check the attribute arguments.
1049 if (!checkAttributeNumArgs(S, Attr, 0))
1050 return;
1051
1052 // The IBAction attributes only apply to instance methods.
1053 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
1054 if (MD->isInstanceMethod()) {
1055 D->addAttr(::new (S.Context)
1056 IBActionAttr(Attr.getRange(), S.Context,
1057 Attr.getAttributeSpellingListIndex()));
1058 return;
1059 }
1060
1061 S.Diag(Attr.getLoc(), diag::warn_attribute_ibaction) << Attr.getName();
1062 }
1063
checkIBOutletCommon(Sema & S,Decl * D,const AttributeList & Attr)1064 static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
1065 // The IBOutlet/IBOutletCollection attributes only apply to instance
1066 // variables or properties of Objective-C classes. The outlet must also
1067 // have an object reference type.
1068 if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
1069 if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
1070 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1071 << Attr.getName() << VD->getType() << 0;
1072 return false;
1073 }
1074 }
1075 else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
1076 if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
1077 S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
1078 << Attr.getName() << PD->getType() << 1;
1079 return false;
1080 }
1081 }
1082 else {
1083 S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
1084 return false;
1085 }
1086
1087 return true;
1088 }
1089
handleIBOutlet(Sema & S,Decl * D,const AttributeList & Attr)1090 static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
1091 // check the attribute arguments.
1092 if (!checkAttributeNumArgs(S, Attr, 0))
1093 return;
1094
1095 if (!checkIBOutletCommon(S, D, Attr))
1096 return;
1097
1098 D->addAttr(::new (S.Context)
1099 IBOutletAttr(Attr.getRange(), S.Context,
1100 Attr.getAttributeSpellingListIndex()));
1101 }
1102
handleIBOutletCollection(Sema & S,Decl * D,const AttributeList & Attr)1103 static void handleIBOutletCollection(Sema &S, Decl *D,
1104 const AttributeList &Attr) {
1105
1106 // The iboutletcollection attribute can have zero or one arguments.
1107 if (Attr.getParameterName() && Attr.getNumArgs() > 0) {
1108 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1109 << Attr.getName() << 1;
1110 return;
1111 }
1112
1113 if (!checkIBOutletCommon(S, D, Attr))
1114 return;
1115
1116 IdentifierInfo *II = Attr.getParameterName();
1117 if (!II)
1118 II = &S.Context.Idents.get("NSObject");
1119
1120 ParsedType TypeRep = S.getTypeName(*II, Attr.getLoc(),
1121 S.getScopeForContext(D->getDeclContext()->getParent()));
1122 if (!TypeRep) {
1123 S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
1124 return;
1125 }
1126 QualType QT = TypeRep.get();
1127 // Diagnose use of non-object type in iboutletcollection attribute.
1128 // FIXME. Gnu attribute extension ignores use of builtin types in
1129 // attributes. So, __attribute__((iboutletcollection(char))) will be
1130 // treated as __attribute__((iboutletcollection())).
1131 if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
1132 S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << II;
1133 return;
1134 }
1135 D->addAttr(::new (S.Context)
1136 IBOutletCollectionAttr(Attr.getRange(),S.Context,
1137 QT, Attr.getParameterLoc(),
1138 Attr.getAttributeSpellingListIndex()));
1139 }
1140
possibleTransparentUnionPointerType(QualType & T)1141 static void possibleTransparentUnionPointerType(QualType &T) {
1142 if (const RecordType *UT = T->getAsUnionType())
1143 if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
1144 RecordDecl *UD = UT->getDecl();
1145 for (RecordDecl::field_iterator it = UD->field_begin(),
1146 itend = UD->field_end(); it != itend; ++it) {
1147 QualType QT = it->getType();
1148 if (QT->isAnyPointerType() || QT->isBlockPointerType()) {
1149 T = QT;
1150 return;
1151 }
1152 }
1153 }
1154 }
1155
handleAllocSizeAttr(Sema & S,Decl * D,const AttributeList & Attr)1156 static void handleAllocSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1157 if (!isFunctionOrMethod(D)) {
1158 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1159 << Attr.getName() << ExpectedFunctionOrMethod;
1160 return;
1161 }
1162
1163 if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
1164 return;
1165
1166 SmallVector<unsigned, 8> SizeArgs;
1167 for (unsigned i = 0; i < Attr.getNumArgs(); ++i) {
1168 Expr *Ex = Attr.getArg(i);
1169 uint64_t Idx;
1170 if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(),
1171 Attr.getLoc(), i + 1, Ex, Idx))
1172 return;
1173
1174 // check if the function argument is of an integer type
1175 QualType T = getFunctionOrMethodArgType(D, Idx).getNonReferenceType();
1176 if (!T->isIntegerType()) {
1177 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
1178 << Attr.getName() << AANT_ArgumentIntegerConstant
1179 << Ex->getSourceRange();
1180 return;
1181 }
1182 SizeArgs.push_back(Idx);
1183 }
1184
1185 // check if the function returns a pointer
1186 if (!getFunctionType(D)->getResultType()->isAnyPointerType()) {
1187 S.Diag(Attr.getLoc(), diag::warn_ns_attribute_wrong_return_type)
1188 << Attr.getName() << 0 /*function*/<< 1 /*pointer*/ << D->getSourceRange();
1189 }
1190
1191 D->addAttr(::new (S.Context)
1192 AllocSizeAttr(Attr.getRange(), S.Context,
1193 SizeArgs.data(), SizeArgs.size(),
1194 Attr.getAttributeSpellingListIndex()));
1195 }
1196
handleNonNullAttr(Sema & S,Decl * D,const AttributeList & Attr)1197 static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1198 // GCC ignores the nonnull attribute on K&R style function prototypes, so we
1199 // ignore it as well
1200 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
1201 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1202 << Attr.getName() << ExpectedFunction;
1203 return;
1204 }
1205
1206 SmallVector<unsigned, 8> NonNullArgs;
1207 for (unsigned i = 0; i < Attr.getNumArgs(); ++i) {
1208 Expr *Ex = Attr.getArg(i);
1209 uint64_t Idx;
1210 if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(),
1211 Attr.getLoc(), i + 1, Ex, Idx))
1212 return;
1213
1214 // Is the function argument a pointer type?
1215 QualType T = getFunctionOrMethodArgType(D, Idx).getNonReferenceType();
1216 possibleTransparentUnionPointerType(T);
1217
1218 if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1219 // FIXME: Should also highlight argument in decl.
1220 S.Diag(Attr.getLoc(), diag::warn_nonnull_pointers_only)
1221 << "nonnull" << Ex->getSourceRange();
1222 continue;
1223 }
1224
1225 NonNullArgs.push_back(Idx);
1226 }
1227
1228 // If no arguments were specified to __attribute__((nonnull)) then all pointer
1229 // arguments have a nonnull attribute.
1230 if (NonNullArgs.empty()) {
1231 for (unsigned i = 0, e = getFunctionOrMethodNumArgs(D); i != e; ++i) {
1232 QualType T = getFunctionOrMethodArgType(D, i).getNonReferenceType();
1233 possibleTransparentUnionPointerType(T);
1234 if (T->isAnyPointerType() || T->isBlockPointerType())
1235 NonNullArgs.push_back(i);
1236 }
1237
1238 // No pointer arguments?
1239 if (NonNullArgs.empty()) {
1240 // Warn the trivial case only if attribute is not coming from a
1241 // macro instantiation.
1242 if (Attr.getLoc().isFileID())
1243 S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
1244 return;
1245 }
1246 }
1247
1248 unsigned *start = &NonNullArgs[0];
1249 unsigned size = NonNullArgs.size();
1250 llvm::array_pod_sort(start, start + size);
1251 D->addAttr(::new (S.Context)
1252 NonNullAttr(Attr.getRange(), S.Context, start, size,
1253 Attr.getAttributeSpellingListIndex()));
1254 }
1255
handleOwnershipAttr(Sema & S,Decl * D,const AttributeList & AL)1256 static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
1257 // This attribute must be applied to a function declaration.
1258 // The first argument to the attribute must be a string,
1259 // the name of the resource, for example "malloc".
1260 // The following arguments must be argument indexes, the arguments must be
1261 // of integer type for Returns, otherwise of pointer type.
1262 // The difference between Holds and Takes is that a pointer may still be used
1263 // after being held. free() should be __attribute((ownership_takes)), whereas
1264 // a list append function may well be __attribute((ownership_holds)).
1265
1266 if (!AL.getParameterName()) {
1267 S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
1268 << AL.getName()->getName() << 1 << AANT_ArgumentString;
1269 return;
1270 }
1271 // Figure out our Kind, and check arguments while we're at it.
1272 OwnershipAttr::OwnershipKind K;
1273 switch (AL.getKind()) {
1274 case AttributeList::AT_ownership_takes:
1275 K = OwnershipAttr::Takes;
1276 if (AL.getNumArgs() < 1) {
1277 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1278 << AL.getName() << 2;
1279 return;
1280 }
1281 break;
1282 case AttributeList::AT_ownership_holds:
1283 K = OwnershipAttr::Holds;
1284 if (AL.getNumArgs() < 1) {
1285 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1286 << AL.getName() << 2;
1287 return;
1288 }
1289 break;
1290 case AttributeList::AT_ownership_returns:
1291 K = OwnershipAttr::Returns;
1292 if (AL.getNumArgs() > 1) {
1293 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1294 << AL.getName() << AL.getNumArgs() + 1;
1295 return;
1296 }
1297 break;
1298 default:
1299 // This should never happen given how we are called.
1300 llvm_unreachable("Unknown ownership attribute");
1301 }
1302
1303 if (!isFunction(D) || !hasFunctionProto(D)) {
1304 S.Diag(AL.getLoc(), diag::warn_attribute_wrong_decl_type)
1305 << AL.getName() << ExpectedFunction;
1306 return;
1307 }
1308
1309 StringRef Module = AL.getParameterName()->getName();
1310
1311 // Normalize the argument, __foo__ becomes foo.
1312 if (Module.startswith("__") && Module.endswith("__"))
1313 Module = Module.substr(2, Module.size() - 4);
1314
1315
1316 SmallVector<unsigned, 8> OwnershipArgs;
1317 for (unsigned i = 0; i < AL.getNumArgs(); ++i) {
1318 Expr *Ex = AL.getArg(i);
1319 uint64_t Idx;
1320 if (!checkFunctionOrMethodArgumentIndex(S, D, AL.getName()->getName(),
1321 AL.getLoc(), i + 1, Ex, Idx))
1322 return;
1323
1324 switch (K) {
1325 case OwnershipAttr::Takes:
1326 case OwnershipAttr::Holds: {
1327 // Is the function argument a pointer type?
1328 QualType T = getFunctionOrMethodArgType(D, Idx);
1329 if (!T->isAnyPointerType() && !T->isBlockPointerType()) {
1330 // FIXME: Should also highlight argument in decl.
1331 S.Diag(AL.getLoc(), diag::err_ownership_type)
1332 << ((K==OwnershipAttr::Takes)?"ownership_takes":"ownership_holds")
1333 << "pointer"
1334 << Ex->getSourceRange();
1335 continue;
1336 }
1337 break;
1338 }
1339 case OwnershipAttr::Returns: {
1340 if (AL.getNumArgs() > 1) {
1341 // Is the function argument an integer type?
1342 Expr *IdxExpr = AL.getArg(0);
1343 llvm::APSInt ArgNum(32);
1344 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent()
1345 || !IdxExpr->isIntegerConstantExpr(ArgNum, S.Context)) {
1346 S.Diag(AL.getLoc(), diag::err_ownership_type)
1347 << "ownership_returns" << "integer"
1348 << IdxExpr->getSourceRange();
1349 return;
1350 }
1351 }
1352 break;
1353 }
1354 } // switch
1355
1356 // Check we don't have a conflict with another ownership attribute.
1357 for (specific_attr_iterator<OwnershipAttr>
1358 i = D->specific_attr_begin<OwnershipAttr>(),
1359 e = D->specific_attr_end<OwnershipAttr>();
1360 i != e; ++i) {
1361 if ((*i)->getOwnKind() != K) {
1362 for (const unsigned *I = (*i)->args_begin(), *E = (*i)->args_end();
1363 I!=E; ++I) {
1364 if (Idx == *I) {
1365 S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
1366 << AL.getName()->getName() << "ownership_*";
1367 }
1368 }
1369 }
1370 }
1371 OwnershipArgs.push_back(Idx);
1372 }
1373
1374 unsigned* start = OwnershipArgs.data();
1375 unsigned size = OwnershipArgs.size();
1376 llvm::array_pod_sort(start, start + size);
1377
1378 if (K != OwnershipAttr::Returns && OwnershipArgs.empty()) {
1379 S.Diag(AL.getLoc(), diag::err_attribute_wrong_number_arguments)
1380 << AL.getName() << 2;
1381 return;
1382 }
1383
1384 D->addAttr(::new (S.Context)
1385 OwnershipAttr(AL.getLoc(), S.Context, K, Module, start, size,
1386 AL.getAttributeSpellingListIndex()));
1387 }
1388
handleWeakRefAttr(Sema & S,Decl * D,const AttributeList & Attr)1389 static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1390 // Check the attribute arguments.
1391 if (Attr.getNumArgs() > 1) {
1392 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1393 << Attr.getName() << 1;
1394 return;
1395 }
1396
1397 if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
1398 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1399 << Attr.getName() << ExpectedVariableOrFunction;
1400 return;
1401 }
1402
1403 NamedDecl *nd = cast<NamedDecl>(D);
1404
1405 // gcc rejects
1406 // class c {
1407 // static int a __attribute__((weakref ("v2")));
1408 // static int b() __attribute__((weakref ("f3")));
1409 // };
1410 // and ignores the attributes of
1411 // void f(void) {
1412 // static int a __attribute__((weakref ("v2")));
1413 // }
1414 // we reject them
1415 const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
1416 if (!Ctx->isFileContext()) {
1417 S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context) <<
1418 nd->getNameAsString();
1419 return;
1420 }
1421
1422 // The GCC manual says
1423 //
1424 // At present, a declaration to which `weakref' is attached can only
1425 // be `static'.
1426 //
1427 // It also says
1428 //
1429 // Without a TARGET,
1430 // given as an argument to `weakref' or to `alias', `weakref' is
1431 // equivalent to `weak'.
1432 //
1433 // gcc 4.4.1 will accept
1434 // int a7 __attribute__((weakref));
1435 // as
1436 // int a7 __attribute__((weak));
1437 // This looks like a bug in gcc. We reject that for now. We should revisit
1438 // it if this behaviour is actually used.
1439
1440 // GCC rejects
1441 // static ((alias ("y"), weakref)).
1442 // Should we? How to check that weakref is before or after alias?
1443
1444 if (Attr.getNumArgs() == 1) {
1445 Expr *Arg = Attr.getArg(0);
1446 Arg = Arg->IgnoreParenCasts();
1447 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1448
1449 if (!Str || !Str->isAscii()) {
1450 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
1451 << Attr.getName() << 1 << AANT_ArgumentString;
1452 return;
1453 }
1454 // GCC will accept anything as the argument of weakref. Should we
1455 // check for an existing decl?
1456 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1457 Str->getString()));
1458 }
1459
1460 D->addAttr(::new (S.Context)
1461 WeakRefAttr(Attr.getRange(), S.Context,
1462 Attr.getAttributeSpellingListIndex()));
1463 }
1464
handleAliasAttr(Sema & S,Decl * D,const AttributeList & Attr)1465 static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1466 // check the attribute arguments.
1467 if (!checkAttributeNumArgs(S, Attr, 1))
1468 return;
1469
1470 Expr *Arg = Attr.getArg(0);
1471 Arg = Arg->IgnoreParenCasts();
1472 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1473
1474 if (!Str || !Str->isAscii()) {
1475 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
1476 << Attr.getName() << AANT_ArgumentString;
1477 return;
1478 }
1479
1480 if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
1481 S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
1482 return;
1483 }
1484
1485 // FIXME: check if target symbol exists in current file
1486
1487 D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context,
1488 Str->getString(),
1489 Attr.getAttributeSpellingListIndex()));
1490 }
1491
handleMinSizeAttr(Sema & S,Decl * D,const AttributeList & Attr)1492 static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1493 // Check the attribute arguments.
1494 if (!checkAttributeNumArgs(S, Attr, 0))
1495 return;
1496
1497 if (!isa<FunctionDecl>(D) && !isa<ObjCMethodDecl>(D)) {
1498 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1499 << Attr.getName() << ExpectedFunctionOrMethod;
1500 return;
1501 }
1502
1503 D->addAttr(::new (S.Context)
1504 MinSizeAttr(Attr.getRange(), S.Context,
1505 Attr.getAttributeSpellingListIndex()));
1506 }
1507
handleColdAttr(Sema & S,Decl * D,const AttributeList & Attr)1508 static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1509 // Check the attribute arguments.
1510 if (!checkAttributeNumArgs(S, Attr, 0))
1511 return;
1512
1513 if (!isa<FunctionDecl>(D)) {
1514 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1515 << Attr.getName() << ExpectedFunction;
1516 return;
1517 }
1518
1519 if (D->hasAttr<HotAttr>()) {
1520 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1521 << Attr.getName() << "hot";
1522 return;
1523 }
1524
1525 D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
1526 Attr.getAttributeSpellingListIndex()));
1527 }
1528
handleHotAttr(Sema & S,Decl * D,const AttributeList & Attr)1529 static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1530 // Check the attribute arguments.
1531 if (!checkAttributeNumArgs(S, Attr, 0))
1532 return;
1533
1534 if (!isa<FunctionDecl>(D)) {
1535 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1536 << Attr.getName() << ExpectedFunction;
1537 return;
1538 }
1539
1540 if (D->hasAttr<ColdAttr>()) {
1541 S.Diag(Attr.getLoc(), diag::err_attributes_are_not_compatible)
1542 << Attr.getName() << "cold";
1543 return;
1544 }
1545
1546 D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
1547 Attr.getAttributeSpellingListIndex()));
1548 }
1549
handleNakedAttr(Sema & S,Decl * D,const AttributeList & Attr)1550 static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1551 // Check the attribute arguments.
1552 if (!checkAttributeNumArgs(S, Attr, 0))
1553 return;
1554
1555 if (!isa<FunctionDecl>(D)) {
1556 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1557 << Attr.getName() << ExpectedFunction;
1558 return;
1559 }
1560
1561 D->addAttr(::new (S.Context)
1562 NakedAttr(Attr.getRange(), S.Context,
1563 Attr.getAttributeSpellingListIndex()));
1564 }
1565
handleAlwaysInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)1566 static void handleAlwaysInlineAttr(Sema &S, Decl *D,
1567 const AttributeList &Attr) {
1568 // Check the attribute arguments.
1569 if (Attr.hasParameterOrArguments()) {
1570 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1571 << Attr.getName() << 0;
1572 return;
1573 }
1574
1575 if (!isa<FunctionDecl>(D)) {
1576 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1577 << Attr.getName() << ExpectedFunction;
1578 return;
1579 }
1580
1581 D->addAttr(::new (S.Context)
1582 AlwaysInlineAttr(Attr.getRange(), S.Context,
1583 Attr.getAttributeSpellingListIndex()));
1584 }
1585
handleTLSModelAttr(Sema & S,Decl * D,const AttributeList & Attr)1586 static void handleTLSModelAttr(Sema &S, Decl *D,
1587 const AttributeList &Attr) {
1588 // Check the attribute arguments.
1589 if (!checkAttributeNumArgs(S, Attr, 1))
1590 return;
1591
1592 Expr *Arg = Attr.getArg(0);
1593 Arg = Arg->IgnoreParenCasts();
1594 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
1595
1596 // Check that it is a string.
1597 if (!Str) {
1598 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
1599 << Attr.getName() << AANT_ArgumentString;
1600 return;
1601 }
1602
1603 if (!isa<VarDecl>(D) || !cast<VarDecl>(D)->getTLSKind()) {
1604 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1605 << Attr.getName() << ExpectedTLSVar;
1606 return;
1607 }
1608
1609 // Check that the value.
1610 StringRef Model = Str->getString();
1611 if (Model != "global-dynamic" && Model != "local-dynamic"
1612 && Model != "initial-exec" && Model != "local-exec") {
1613 S.Diag(Attr.getLoc(), diag::err_attr_tlsmodel_arg);
1614 return;
1615 }
1616
1617 D->addAttr(::new (S.Context)
1618 TLSModelAttr(Attr.getRange(), S.Context, Model,
1619 Attr.getAttributeSpellingListIndex()));
1620 }
1621
handleMallocAttr(Sema & S,Decl * D,const AttributeList & Attr)1622 static void handleMallocAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1623 // Check the attribute arguments.
1624 if (Attr.hasParameterOrArguments()) {
1625 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1626 << Attr.getName() << 0;
1627 return;
1628 }
1629
1630 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
1631 QualType RetTy = FD->getResultType();
1632 if (RetTy->isAnyPointerType() || RetTy->isBlockPointerType()) {
1633 D->addAttr(::new (S.Context)
1634 MallocAttr(Attr.getRange(), S.Context,
1635 Attr.getAttributeSpellingListIndex()));
1636 return;
1637 }
1638 }
1639
1640 S.Diag(Attr.getLoc(), diag::warn_attribute_malloc_pointer_only);
1641 }
1642
handleMayAliasAttr(Sema & S,Decl * D,const AttributeList & Attr)1643 static void handleMayAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1644 // check the attribute arguments.
1645 if (!checkAttributeNumArgs(S, Attr, 0))
1646 return;
1647
1648 D->addAttr(::new (S.Context)
1649 MayAliasAttr(Attr.getRange(), S.Context,
1650 Attr.getAttributeSpellingListIndex()));
1651 }
1652
handleNoCommonAttr(Sema & S,Decl * D,const AttributeList & Attr)1653 static void handleNoCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1654 assert(!Attr.isInvalid());
1655 if (isa<VarDecl>(D))
1656 D->addAttr(::new (S.Context)
1657 NoCommonAttr(Attr.getRange(), S.Context,
1658 Attr.getAttributeSpellingListIndex()));
1659 else
1660 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1661 << Attr.getName() << ExpectedVariable;
1662 }
1663
handleCommonAttr(Sema & S,Decl * D,const AttributeList & Attr)1664 static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1665 assert(!Attr.isInvalid());
1666
1667 if (S.LangOpts.CPlusPlus) {
1668 S.Diag(Attr.getLoc(), diag::err_common_not_supported_cplusplus);
1669 return;
1670 }
1671
1672 if (isa<VarDecl>(D))
1673 D->addAttr(::new (S.Context)
1674 CommonAttr(Attr.getRange(), S.Context,
1675 Attr.getAttributeSpellingListIndex()));
1676 else
1677 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1678 << Attr.getName() << ExpectedVariable;
1679 }
1680
handleNoReturnAttr(Sema & S,Decl * D,const AttributeList & attr)1681 static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
1682 if (hasDeclarator(D)) return;
1683
1684 if (S.CheckNoReturnAttr(attr)) return;
1685
1686 if (!isa<ObjCMethodDecl>(D)) {
1687 S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1688 << attr.getName() << ExpectedFunctionOrMethod;
1689 return;
1690 }
1691
1692 D->addAttr(::new (S.Context)
1693 NoReturnAttr(attr.getRange(), S.Context,
1694 attr.getAttributeSpellingListIndex()));
1695 }
1696
CheckNoReturnAttr(const AttributeList & attr)1697 bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
1698 if (attr.hasParameterOrArguments()) {
1699 Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1700 << attr.getName() << 0;
1701 attr.setInvalid();
1702 return true;
1703 }
1704
1705 return false;
1706 }
1707
handleAnalyzerNoReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1708 static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
1709 const AttributeList &Attr) {
1710
1711 // The checking path for 'noreturn' and 'analyzer_noreturn' are different
1712 // because 'analyzer_noreturn' does not impact the type.
1713
1714 if(!checkAttributeNumArgs(S, Attr, 0))
1715 return;
1716
1717 if (!isFunctionOrMethod(D) && !isa<BlockDecl>(D)) {
1718 ValueDecl *VD = dyn_cast<ValueDecl>(D);
1719 if (VD == 0 || (!VD->getType()->isBlockPointerType()
1720 && !VD->getType()->isFunctionPointerType())) {
1721 S.Diag(Attr.getLoc(),
1722 Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
1723 : diag::warn_attribute_wrong_decl_type)
1724 << Attr.getName() << ExpectedFunctionMethodOrBlock;
1725 return;
1726 }
1727 }
1728
1729 D->addAttr(::new (S.Context)
1730 AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
1731 Attr.getAttributeSpellingListIndex()));
1732 }
1733
handleCXX11NoReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1734 static void handleCXX11NoReturnAttr(Sema &S, Decl *D,
1735 const AttributeList &Attr) {
1736 // C++11 [dcl.attr.noreturn]p1:
1737 // The attribute may be applied to the declarator-id in a function
1738 // declaration.
1739 FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
1740 if (!FD) {
1741 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1742 << Attr.getName() << ExpectedFunctionOrMethod;
1743 return;
1744 }
1745
1746 D->addAttr(::new (S.Context)
1747 CXX11NoReturnAttr(Attr.getRange(), S.Context,
1748 Attr.getAttributeSpellingListIndex()));
1749 }
1750
1751 // PS3 PPU-specific.
handleVecReturnAttr(Sema & S,Decl * D,const AttributeList & Attr)1752 static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1753 /*
1754 Returning a Vector Class in Registers
1755
1756 According to the PPU ABI specifications, a class with a single member of
1757 vector type is returned in memory when used as the return value of a function.
1758 This results in inefficient code when implementing vector classes. To return
1759 the value in a single vector register, add the vecreturn attribute to the
1760 class definition. This attribute is also applicable to struct types.
1761
1762 Example:
1763
1764 struct Vector
1765 {
1766 __vector float xyzw;
1767 } __attribute__((vecreturn));
1768
1769 Vector Add(Vector lhs, Vector rhs)
1770 {
1771 Vector result;
1772 result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
1773 return result; // This will be returned in a register
1774 }
1775 */
1776 if (!isa<RecordDecl>(D)) {
1777 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1778 << Attr.getName() << ExpectedClass;
1779 return;
1780 }
1781
1782 if (D->getAttr<VecReturnAttr>()) {
1783 S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << "vecreturn";
1784 return;
1785 }
1786
1787 RecordDecl *record = cast<RecordDecl>(D);
1788 int count = 0;
1789
1790 if (!isa<CXXRecordDecl>(record)) {
1791 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1792 return;
1793 }
1794
1795 if (!cast<CXXRecordDecl>(record)->isPOD()) {
1796 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
1797 return;
1798 }
1799
1800 for (RecordDecl::field_iterator iter = record->field_begin();
1801 iter != record->field_end(); iter++) {
1802 if ((count == 1) || !iter->getType()->isVectorType()) {
1803 S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
1804 return;
1805 }
1806 count++;
1807 }
1808
1809 D->addAttr(::new (S.Context)
1810 VecReturnAttr(Attr.getRange(), S.Context,
1811 Attr.getAttributeSpellingListIndex()));
1812 }
1813
handleDependencyAttr(Sema & S,Scope * Scope,Decl * D,const AttributeList & Attr)1814 static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
1815 const AttributeList &Attr) {
1816 if (isa<ParmVarDecl>(D)) {
1817 // [[carries_dependency]] can only be applied to a parameter if it is a
1818 // parameter of a function declaration or lambda.
1819 if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
1820 S.Diag(Attr.getLoc(),
1821 diag::err_carries_dependency_param_not_function_decl);
1822 return;
1823 }
1824 } else if (!isa<FunctionDecl>(D)) {
1825 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
1826 << Attr.getName() << ExpectedFunctionMethodOrParameter;
1827 return;
1828 }
1829
1830 D->addAttr(::new (S.Context) CarriesDependencyAttr(
1831 Attr.getRange(), S.Context,
1832 Attr.getAttributeSpellingListIndex()));
1833 }
1834
handleUnusedAttr(Sema & S,Decl * D,const AttributeList & Attr)1835 static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1836 // check the attribute arguments.
1837 if (Attr.hasParameterOrArguments()) {
1838 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1839 << Attr.getName() << 0;
1840 return;
1841 }
1842
1843 if (!isa<VarDecl>(D) && !isa<ObjCIvarDecl>(D) && !isFunctionOrMethod(D) &&
1844 !isa<TypeDecl>(D) && !isa<LabelDecl>(D) && !isa<FieldDecl>(D)) {
1845 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1846 << Attr.getName() << ExpectedVariableFunctionOrLabel;
1847 return;
1848 }
1849
1850 D->addAttr(::new (S.Context)
1851 UnusedAttr(Attr.getRange(), S.Context,
1852 Attr.getAttributeSpellingListIndex()));
1853 }
1854
handleReturnsTwiceAttr(Sema & S,Decl * D,const AttributeList & Attr)1855 static void handleReturnsTwiceAttr(Sema &S, Decl *D,
1856 const AttributeList &Attr) {
1857 // check the attribute arguments.
1858 if (Attr.hasParameterOrArguments()) {
1859 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1860 << Attr.getName() << 0;
1861 return;
1862 }
1863
1864 if (!isa<FunctionDecl>(D)) {
1865 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1866 << Attr.getName() << ExpectedFunction;
1867 return;
1868 }
1869
1870 D->addAttr(::new (S.Context)
1871 ReturnsTwiceAttr(Attr.getRange(), S.Context,
1872 Attr.getAttributeSpellingListIndex()));
1873 }
1874
handleUsedAttr(Sema & S,Decl * D,const AttributeList & Attr)1875 static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1876 // check the attribute arguments.
1877 if (Attr.hasParameterOrArguments()) {
1878 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
1879 << Attr.getName() << 0;
1880 return;
1881 }
1882
1883 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
1884 if (VD->hasLocalStorage() || VD->hasExternalStorage()) {
1885 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "used";
1886 return;
1887 }
1888 } else if (!isFunctionOrMethod(D)) {
1889 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1890 << Attr.getName() << ExpectedVariableOrFunction;
1891 return;
1892 }
1893
1894 D->addAttr(::new (S.Context)
1895 UsedAttr(Attr.getRange(), S.Context,
1896 Attr.getAttributeSpellingListIndex()));
1897 }
1898
handleConstructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1899 static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1900 // check the attribute arguments.
1901 if (Attr.getNumArgs() > 1) {
1902 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1903 return;
1904 }
1905
1906 int priority = 65535; // FIXME: Do not hardcode such constants.
1907 if (Attr.getNumArgs() > 0) {
1908 Expr *E = Attr.getArg(0);
1909 llvm::APSInt Idx(32);
1910 if (E->isTypeDependent() || E->isValueDependent() ||
1911 !E->isIntegerConstantExpr(Idx, S.Context)) {
1912 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
1913 << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
1914 << E->getSourceRange();
1915 return;
1916 }
1917 priority = Idx.getZExtValue();
1918 }
1919
1920 if (!isa<FunctionDecl>(D)) {
1921 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1922 << Attr.getName() << ExpectedFunction;
1923 return;
1924 }
1925
1926 D->addAttr(::new (S.Context)
1927 ConstructorAttr(Attr.getRange(), S.Context, priority,
1928 Attr.getAttributeSpellingListIndex()));
1929 }
1930
handleDestructorAttr(Sema & S,Decl * D,const AttributeList & Attr)1931 static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
1932 // check the attribute arguments.
1933 if (Attr.getNumArgs() > 1) {
1934 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1935 return;
1936 }
1937
1938 int priority = 65535; // FIXME: Do not hardcode such constants.
1939 if (Attr.getNumArgs() > 0) {
1940 Expr *E = Attr.getArg(0);
1941 llvm::APSInt Idx(32);
1942 if (E->isTypeDependent() || E->isValueDependent() ||
1943 !E->isIntegerConstantExpr(Idx, S.Context)) {
1944 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
1945 << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
1946 << E->getSourceRange();
1947 return;
1948 }
1949 priority = Idx.getZExtValue();
1950 }
1951
1952 if (!isa<FunctionDecl>(D)) {
1953 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
1954 << Attr.getName() << ExpectedFunction;
1955 return;
1956 }
1957
1958 D->addAttr(::new (S.Context)
1959 DestructorAttr(Attr.getRange(), S.Context, priority,
1960 Attr.getAttributeSpellingListIndex()));
1961 }
1962
1963 template <typename AttrTy>
handleAttrWithMessage(Sema & S,Decl * D,const AttributeList & Attr)1964 static void handleAttrWithMessage(Sema &S, Decl *D,
1965 const AttributeList &Attr) {
1966 unsigned NumArgs = Attr.getNumArgs();
1967 if (NumArgs > 1) {
1968 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 1;
1969 return;
1970 }
1971
1972 // Handle the case where the attribute has a text message.
1973 StringRef Str;
1974 if (NumArgs == 1) {
1975 StringLiteral *SE = dyn_cast<StringLiteral>(Attr.getArg(0));
1976 if (!SE) {
1977 S.Diag(Attr.getArg(0)->getLocStart(), diag::err_attribute_argument_type)
1978 << Attr.getName() << AANT_ArgumentString;
1979 return;
1980 }
1981 Str = SE->getString();
1982 }
1983
1984 D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
1985 Attr.getAttributeSpellingListIndex()));
1986 }
1987
handleArcWeakrefUnavailableAttr(Sema & S,Decl * D,const AttributeList & Attr)1988 static void handleArcWeakrefUnavailableAttr(Sema &S, Decl *D,
1989 const AttributeList &Attr) {
1990 if (!checkAttributeNumArgs(S, Attr, 0))
1991 return;
1992
1993 D->addAttr(::new (S.Context)
1994 ArcWeakrefUnavailableAttr(Attr.getRange(), S.Context,
1995 Attr.getAttributeSpellingListIndex()));
1996 }
1997
handleObjCRootClassAttr(Sema & S,Decl * D,const AttributeList & Attr)1998 static void handleObjCRootClassAttr(Sema &S, Decl *D,
1999 const AttributeList &Attr) {
2000 if (!isa<ObjCInterfaceDecl>(D)) {
2001 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
2002 << Attr.getName() << ExpectedObjectiveCInterface;
2003 return;
2004 }
2005
2006 if (!checkAttributeNumArgs(S, Attr, 0))
2007 return;
2008
2009 D->addAttr(::new (S.Context)
2010 ObjCRootClassAttr(Attr.getRange(), S.Context,
2011 Attr.getAttributeSpellingListIndex()));
2012 }
2013
handleObjCRequiresPropertyDefsAttr(Sema & S,Decl * D,const AttributeList & Attr)2014 static void handleObjCRequiresPropertyDefsAttr(Sema &S, Decl *D,
2015 const AttributeList &Attr) {
2016 if (!isa<ObjCInterfaceDecl>(D)) {
2017 S.Diag(Attr.getLoc(), diag::err_suppress_autosynthesis);
2018 return;
2019 }
2020
2021 if (!checkAttributeNumArgs(S, Attr, 0))
2022 return;
2023
2024 D->addAttr(::new (S.Context)
2025 ObjCRequiresPropertyDefsAttr(Attr.getRange(), S.Context,
2026 Attr.getAttributeSpellingListIndex()));
2027 }
2028
checkAvailabilityAttr(Sema & S,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted)2029 static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
2030 IdentifierInfo *Platform,
2031 VersionTuple Introduced,
2032 VersionTuple Deprecated,
2033 VersionTuple Obsoleted) {
2034 StringRef PlatformName
2035 = AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2036 if (PlatformName.empty())
2037 PlatformName = Platform->getName();
2038
2039 // Ensure that Introduced <= Deprecated <= Obsoleted (although not all
2040 // of these steps are needed).
2041 if (!Introduced.empty() && !Deprecated.empty() &&
2042 !(Introduced <= Deprecated)) {
2043 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2044 << 1 << PlatformName << Deprecated.getAsString()
2045 << 0 << Introduced.getAsString();
2046 return true;
2047 }
2048
2049 if (!Introduced.empty() && !Obsoleted.empty() &&
2050 !(Introduced <= Obsoleted)) {
2051 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2052 << 2 << PlatformName << Obsoleted.getAsString()
2053 << 0 << Introduced.getAsString();
2054 return true;
2055 }
2056
2057 if (!Deprecated.empty() && !Obsoleted.empty() &&
2058 !(Deprecated <= Obsoleted)) {
2059 S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
2060 << 2 << PlatformName << Obsoleted.getAsString()
2061 << 1 << Deprecated.getAsString();
2062 return true;
2063 }
2064
2065 return false;
2066 }
2067
2068 /// \brief Check whether the two versions match.
2069 ///
2070 /// If either version tuple is empty, then they are assumed to match. If
2071 /// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
versionsMatch(const VersionTuple & X,const VersionTuple & Y,bool BeforeIsOkay)2072 static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
2073 bool BeforeIsOkay) {
2074 if (X.empty() || Y.empty())
2075 return true;
2076
2077 if (X == Y)
2078 return true;
2079
2080 if (BeforeIsOkay && X < Y)
2081 return true;
2082
2083 return false;
2084 }
2085
mergeAvailabilityAttr(NamedDecl * D,SourceRange Range,IdentifierInfo * Platform,VersionTuple Introduced,VersionTuple Deprecated,VersionTuple Obsoleted,bool IsUnavailable,StringRef Message,bool Override,unsigned AttrSpellingListIndex)2086 AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
2087 IdentifierInfo *Platform,
2088 VersionTuple Introduced,
2089 VersionTuple Deprecated,
2090 VersionTuple Obsoleted,
2091 bool IsUnavailable,
2092 StringRef Message,
2093 bool Override,
2094 unsigned AttrSpellingListIndex) {
2095 VersionTuple MergedIntroduced = Introduced;
2096 VersionTuple MergedDeprecated = Deprecated;
2097 VersionTuple MergedObsoleted = Obsoleted;
2098 bool FoundAny = false;
2099
2100 if (D->hasAttrs()) {
2101 AttrVec &Attrs = D->getAttrs();
2102 for (unsigned i = 0, e = Attrs.size(); i != e;) {
2103 const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
2104 if (!OldAA) {
2105 ++i;
2106 continue;
2107 }
2108
2109 IdentifierInfo *OldPlatform = OldAA->getPlatform();
2110 if (OldPlatform != Platform) {
2111 ++i;
2112 continue;
2113 }
2114
2115 FoundAny = true;
2116 VersionTuple OldIntroduced = OldAA->getIntroduced();
2117 VersionTuple OldDeprecated = OldAA->getDeprecated();
2118 VersionTuple OldObsoleted = OldAA->getObsoleted();
2119 bool OldIsUnavailable = OldAA->getUnavailable();
2120
2121 if (!versionsMatch(OldIntroduced, Introduced, Override) ||
2122 !versionsMatch(Deprecated, OldDeprecated, Override) ||
2123 !versionsMatch(Obsoleted, OldObsoleted, Override) ||
2124 !(OldIsUnavailable == IsUnavailable ||
2125 (Override && !OldIsUnavailable && IsUnavailable))) {
2126 if (Override) {
2127 int Which = -1;
2128 VersionTuple FirstVersion;
2129 VersionTuple SecondVersion;
2130 if (!versionsMatch(OldIntroduced, Introduced, Override)) {
2131 Which = 0;
2132 FirstVersion = OldIntroduced;
2133 SecondVersion = Introduced;
2134 } else if (!versionsMatch(Deprecated, OldDeprecated, Override)) {
2135 Which = 1;
2136 FirstVersion = Deprecated;
2137 SecondVersion = OldDeprecated;
2138 } else if (!versionsMatch(Obsoleted, OldObsoleted, Override)) {
2139 Which = 2;
2140 FirstVersion = Obsoleted;
2141 SecondVersion = OldObsoleted;
2142 }
2143
2144 if (Which == -1) {
2145 Diag(OldAA->getLocation(),
2146 diag::warn_mismatched_availability_override_unavail)
2147 << AvailabilityAttr::getPrettyPlatformName(Platform->getName());
2148 } else {
2149 Diag(OldAA->getLocation(),
2150 diag::warn_mismatched_availability_override)
2151 << Which
2152 << AvailabilityAttr::getPrettyPlatformName(Platform->getName())
2153 << FirstVersion.getAsString() << SecondVersion.getAsString();
2154 }
2155 Diag(Range.getBegin(), diag::note_overridden_method);
2156 } else {
2157 Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
2158 Diag(Range.getBegin(), diag::note_previous_attribute);
2159 }
2160
2161 Attrs.erase(Attrs.begin() + i);
2162 --e;
2163 continue;
2164 }
2165
2166 VersionTuple MergedIntroduced2 = MergedIntroduced;
2167 VersionTuple MergedDeprecated2 = MergedDeprecated;
2168 VersionTuple MergedObsoleted2 = MergedObsoleted;
2169
2170 if (MergedIntroduced2.empty())
2171 MergedIntroduced2 = OldIntroduced;
2172 if (MergedDeprecated2.empty())
2173 MergedDeprecated2 = OldDeprecated;
2174 if (MergedObsoleted2.empty())
2175 MergedObsoleted2 = OldObsoleted;
2176
2177 if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
2178 MergedIntroduced2, MergedDeprecated2,
2179 MergedObsoleted2)) {
2180 Attrs.erase(Attrs.begin() + i);
2181 --e;
2182 continue;
2183 }
2184
2185 MergedIntroduced = MergedIntroduced2;
2186 MergedDeprecated = MergedDeprecated2;
2187 MergedObsoleted = MergedObsoleted2;
2188 ++i;
2189 }
2190 }
2191
2192 if (FoundAny &&
2193 MergedIntroduced == Introduced &&
2194 MergedDeprecated == Deprecated &&
2195 MergedObsoleted == Obsoleted)
2196 return NULL;
2197
2198 // Only create a new attribute if !Override, but we want to do
2199 // the checking.
2200 if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
2201 MergedDeprecated, MergedObsoleted) &&
2202 !Override) {
2203 return ::new (Context) AvailabilityAttr(Range, Context, Platform,
2204 Introduced, Deprecated,
2205 Obsoleted, IsUnavailable, Message,
2206 AttrSpellingListIndex);
2207 }
2208 return NULL;
2209 }
2210
handleAvailabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)2211 static void handleAvailabilityAttr(Sema &S, Decl *D,
2212 const AttributeList &Attr) {
2213 IdentifierInfo *Platform = Attr.getParameterName();
2214 SourceLocation PlatformLoc = Attr.getParameterLoc();
2215 unsigned Index = Attr.getAttributeSpellingListIndex();
2216
2217 if (AvailabilityAttr::getPrettyPlatformName(Platform->getName()).empty())
2218 S.Diag(PlatformLoc, diag::warn_availability_unknown_platform)
2219 << Platform;
2220
2221 NamedDecl *ND = dyn_cast<NamedDecl>(D);
2222 if (!ND) {
2223 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2224 return;
2225 }
2226
2227 AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
2228 AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
2229 AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
2230 bool IsUnavailable = Attr.getUnavailableLoc().isValid();
2231 StringRef Str;
2232 const StringLiteral *SE =
2233 dyn_cast_or_null<const StringLiteral>(Attr.getMessageExpr());
2234 if (SE)
2235 Str = SE->getString();
2236
2237 AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(),
2238 Platform,
2239 Introduced.Version,
2240 Deprecated.Version,
2241 Obsoleted.Version,
2242 IsUnavailable, Str,
2243 /*Override=*/false,
2244 Index);
2245 if (NewAttr)
2246 D->addAttr(NewAttr);
2247 }
2248
2249 template <class T>
mergeVisibilityAttr(Sema & S,Decl * D,SourceRange range,typename T::VisibilityType value,unsigned attrSpellingListIndex)2250 static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
2251 typename T::VisibilityType value,
2252 unsigned attrSpellingListIndex) {
2253 T *existingAttr = D->getAttr<T>();
2254 if (existingAttr) {
2255 typename T::VisibilityType existingValue = existingAttr->getVisibility();
2256 if (existingValue == value)
2257 return NULL;
2258 S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
2259 S.Diag(range.getBegin(), diag::note_previous_attribute);
2260 D->dropAttr<T>();
2261 }
2262 return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
2263 }
2264
mergeVisibilityAttr(Decl * D,SourceRange Range,VisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)2265 VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
2266 VisibilityAttr::VisibilityType Vis,
2267 unsigned AttrSpellingListIndex) {
2268 return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
2269 AttrSpellingListIndex);
2270 }
2271
mergeTypeVisibilityAttr(Decl * D,SourceRange Range,TypeVisibilityAttr::VisibilityType Vis,unsigned AttrSpellingListIndex)2272 TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
2273 TypeVisibilityAttr::VisibilityType Vis,
2274 unsigned AttrSpellingListIndex) {
2275 return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
2276 AttrSpellingListIndex);
2277 }
2278
handleVisibilityAttr(Sema & S,Decl * D,const AttributeList & Attr,bool isTypeVisibility)2279 static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
2280 bool isTypeVisibility) {
2281 // Visibility attributes don't mean anything on a typedef.
2282 if (isa<TypedefNameDecl>(D)) {
2283 S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
2284 << Attr.getName();
2285 return;
2286 }
2287
2288 // 'type_visibility' can only go on a type or namespace.
2289 if (isTypeVisibility &&
2290 !(isa<TagDecl>(D) ||
2291 isa<ObjCInterfaceDecl>(D) ||
2292 isa<NamespaceDecl>(D))) {
2293 S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
2294 << Attr.getName() << ExpectedTypeOrNamespace;
2295 return;
2296 }
2297
2298 // check the attribute arguments.
2299 if (!checkAttributeNumArgs(S, Attr, 1))
2300 return;
2301
2302 Expr *Arg = Attr.getArg(0);
2303 Arg = Arg->IgnoreParenCasts();
2304 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
2305
2306 if (!Str || !Str->isAscii()) {
2307 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
2308 << Attr.getName() << AANT_ArgumentString;
2309 return;
2310 }
2311
2312 StringRef TypeStr = Str->getString();
2313 VisibilityAttr::VisibilityType type;
2314
2315 if (TypeStr == "default")
2316 type = VisibilityAttr::Default;
2317 else if (TypeStr == "hidden")
2318 type = VisibilityAttr::Hidden;
2319 else if (TypeStr == "internal")
2320 type = VisibilityAttr::Hidden; // FIXME
2321 else if (TypeStr == "protected") {
2322 // Complain about attempts to use protected visibility on targets
2323 // (like Darwin) that don't support it.
2324 if (!S.Context.getTargetInfo().hasProtectedVisibility()) {
2325 S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
2326 type = VisibilityAttr::Default;
2327 } else {
2328 type = VisibilityAttr::Protected;
2329 }
2330 } else {
2331 S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_visibility) << TypeStr;
2332 return;
2333 }
2334
2335 unsigned Index = Attr.getAttributeSpellingListIndex();
2336 clang::Attr *newAttr;
2337 if (isTypeVisibility) {
2338 newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
2339 (TypeVisibilityAttr::VisibilityType) type,
2340 Index);
2341 } else {
2342 newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
2343 }
2344 if (newAttr)
2345 D->addAttr(newAttr);
2346 }
2347
handleObjCMethodFamilyAttr(Sema & S,Decl * decl,const AttributeList & Attr)2348 static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
2349 const AttributeList &Attr) {
2350 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(decl);
2351 if (!method) {
2352 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
2353 << ExpectedMethod;
2354 return;
2355 }
2356
2357 if (Attr.getNumArgs() != 0 || !Attr.getParameterName()) {
2358 if (!Attr.getParameterName() && Attr.getNumArgs() == 1) {
2359 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2360 << Attr.getName() << 1 << AANT_ArgumentString;
2361 } else {
2362 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2363 << Attr.getName() << 0;
2364 }
2365 Attr.setInvalid();
2366 return;
2367 }
2368
2369 StringRef param = Attr.getParameterName()->getName();
2370 ObjCMethodFamilyAttr::FamilyKind family;
2371 if (param == "none")
2372 family = ObjCMethodFamilyAttr::OMF_None;
2373 else if (param == "alloc")
2374 family = ObjCMethodFamilyAttr::OMF_alloc;
2375 else if (param == "copy")
2376 family = ObjCMethodFamilyAttr::OMF_copy;
2377 else if (param == "init")
2378 family = ObjCMethodFamilyAttr::OMF_init;
2379 else if (param == "mutableCopy")
2380 family = ObjCMethodFamilyAttr::OMF_mutableCopy;
2381 else if (param == "new")
2382 family = ObjCMethodFamilyAttr::OMF_new;
2383 else {
2384 // Just warn and ignore it. This is future-proof against new
2385 // families being used in system headers.
2386 S.Diag(Attr.getParameterLoc(), diag::warn_unknown_method_family);
2387 return;
2388 }
2389
2390 if (family == ObjCMethodFamilyAttr::OMF_init &&
2391 !method->getResultType()->isObjCObjectPointerType()) {
2392 S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
2393 << method->getResultType();
2394 // Ignore the attribute.
2395 return;
2396 }
2397
2398 method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
2399 S.Context, family));
2400 }
2401
handleObjCExceptionAttr(Sema & S,Decl * D,const AttributeList & Attr)2402 static void handleObjCExceptionAttr(Sema &S, Decl *D,
2403 const AttributeList &Attr) {
2404 if (!checkAttributeNumArgs(S, Attr, 0))
2405 return;
2406
2407 ObjCInterfaceDecl *OCI = dyn_cast<ObjCInterfaceDecl>(D);
2408 if (OCI == 0) {
2409 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
2410 << Attr.getName() << ExpectedObjectiveCInterface;
2411 return;
2412 }
2413
2414 D->addAttr(::new (S.Context)
2415 ObjCExceptionAttr(Attr.getRange(), S.Context,
2416 Attr.getAttributeSpellingListIndex()));
2417 }
2418
handleObjCNSObject(Sema & S,Decl * D,const AttributeList & Attr)2419 static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
2420 if (!checkAttributeNumArgs(S, Attr, 0))
2421 return;
2422 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
2423 QualType T = TD->getUnderlyingType();
2424 if (!T->isCARCBridgableType()) {
2425 S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
2426 return;
2427 }
2428 }
2429 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
2430 QualType T = PD->getType();
2431 if (!T->isCARCBridgableType()) {
2432 S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
2433 return;
2434 }
2435 }
2436 else {
2437 // It is okay to include this attribute on properties, e.g.:
2438 //
2439 // @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
2440 //
2441 // In this case it follows tradition and suppresses an error in the above
2442 // case.
2443 S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
2444 }
2445 D->addAttr(::new (S.Context)
2446 ObjCNSObjectAttr(Attr.getRange(), S.Context,
2447 Attr.getAttributeSpellingListIndex()));
2448 }
2449
2450 static void
handleOverloadableAttr(Sema & S,Decl * D,const AttributeList & Attr)2451 handleOverloadableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2452 if (!checkAttributeNumArgs(S, Attr, 0))
2453 return;
2454
2455 if (!isa<FunctionDecl>(D)) {
2456 S.Diag(Attr.getLoc(), diag::err_attribute_overloadable_not_function);
2457 return;
2458 }
2459
2460 D->addAttr(::new (S.Context)
2461 OverloadableAttr(Attr.getRange(), S.Context,
2462 Attr.getAttributeSpellingListIndex()));
2463 }
2464
handleBlocksAttr(Sema & S,Decl * D,const AttributeList & Attr)2465 static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2466 if (!Attr.getParameterName()) {
2467 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2468 << Attr.getName() << 1 << AANT_ArgumentString;
2469 return;
2470 }
2471
2472 if (Attr.getNumArgs() != 0) {
2473 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2474 << Attr.getName() << 1;
2475 return;
2476 }
2477
2478 BlocksAttr::BlockType type;
2479 if (Attr.getParameterName()->isStr("byref"))
2480 type = BlocksAttr::ByRef;
2481 else {
2482 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
2483 << "blocks" << Attr.getParameterName();
2484 return;
2485 }
2486
2487 D->addAttr(::new (S.Context)
2488 BlocksAttr(Attr.getRange(), S.Context, type,
2489 Attr.getAttributeSpellingListIndex()));
2490 }
2491
handleSentinelAttr(Sema & S,Decl * D,const AttributeList & Attr)2492 static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2493 // check the attribute arguments.
2494 if (Attr.getNumArgs() > 2) {
2495 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
2496 return;
2497 }
2498
2499 unsigned sentinel = 0;
2500 if (Attr.getNumArgs() > 0) {
2501 Expr *E = Attr.getArg(0);
2502 llvm::APSInt Idx(32);
2503 if (E->isTypeDependent() || E->isValueDependent() ||
2504 !E->isIntegerConstantExpr(Idx, S.Context)) {
2505 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2506 << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
2507 << E->getSourceRange();
2508 return;
2509 }
2510
2511 if (Idx.isSigned() && Idx.isNegative()) {
2512 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
2513 << E->getSourceRange();
2514 return;
2515 }
2516
2517 sentinel = Idx.getZExtValue();
2518 }
2519
2520 unsigned nullPos = 0;
2521 if (Attr.getNumArgs() > 1) {
2522 Expr *E = Attr.getArg(1);
2523 llvm::APSInt Idx(32);
2524 if (E->isTypeDependent() || E->isValueDependent() ||
2525 !E->isIntegerConstantExpr(Idx, S.Context)) {
2526 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
2527 << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
2528 << E->getSourceRange();
2529 return;
2530 }
2531 nullPos = Idx.getZExtValue();
2532
2533 if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
2534 // FIXME: This error message could be improved, it would be nice
2535 // to say what the bounds actually are.
2536 S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
2537 << E->getSourceRange();
2538 return;
2539 }
2540 }
2541
2542 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
2543 const FunctionType *FT = FD->getType()->castAs<FunctionType>();
2544 if (isa<FunctionNoProtoType>(FT)) {
2545 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
2546 return;
2547 }
2548
2549 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2550 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2551 return;
2552 }
2553 } else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
2554 if (!MD->isVariadic()) {
2555 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
2556 return;
2557 }
2558 } else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
2559 if (!BD->isVariadic()) {
2560 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
2561 return;
2562 }
2563 } else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
2564 QualType Ty = V->getType();
2565 if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
2566 const FunctionType *FT = Ty->isFunctionPointerType() ? getFunctionType(D)
2567 : Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
2568 if (!cast<FunctionProtoType>(FT)->isVariadic()) {
2569 int m = Ty->isFunctionPointerType() ? 0 : 1;
2570 S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
2571 return;
2572 }
2573 } else {
2574 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2575 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2576 return;
2577 }
2578 } else {
2579 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2580 << Attr.getName() << ExpectedFunctionMethodOrBlock;
2581 return;
2582 }
2583 D->addAttr(::new (S.Context)
2584 SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
2585 Attr.getAttributeSpellingListIndex()));
2586 }
2587
handleWarnUnusedAttr(Sema & S,Decl * D,const AttributeList & Attr)2588 static void handleWarnUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2589 // Check the attribute arguments.
2590 if (!checkAttributeNumArgs(S, Attr, 0))
2591 return;
2592
2593 if (RecordDecl *RD = dyn_cast<RecordDecl>(D))
2594 RD->addAttr(::new (S.Context) WarnUnusedAttr(Attr.getRange(), S.Context));
2595 else
2596 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
2597 }
2598
handleWarnUnusedResult(Sema & S,Decl * D,const AttributeList & Attr)2599 static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
2600 // check the attribute arguments.
2601 if (!checkAttributeNumArgs(S, Attr, 0))
2602 return;
2603
2604 if (!isFunction(D) && !isa<ObjCMethodDecl>(D) && !isa<CXXRecordDecl>(D)) {
2605 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2606 << Attr.getName() << ExpectedFunctionMethodOrClass;
2607 return;
2608 }
2609
2610 if (isFunction(D) && getFunctionType(D)->getResultType()->isVoidType()) {
2611 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2612 << Attr.getName() << 0;
2613 return;
2614 }
2615 if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
2616 if (MD->getResultType()->isVoidType()) {
2617 S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
2618 << Attr.getName() << 1;
2619 return;
2620 }
2621
2622 D->addAttr(::new (S.Context)
2623 WarnUnusedResultAttr(Attr.getRange(), S.Context,
2624 Attr.getAttributeSpellingListIndex()));
2625 }
2626
handleWeakAttr(Sema & S,Decl * D,const AttributeList & Attr)2627 static void handleWeakAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2628 // check the attribute arguments.
2629 if (Attr.hasParameterOrArguments()) {
2630 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2631 << Attr.getName() << 0;
2632 return;
2633 }
2634
2635 if (!isa<VarDecl>(D) && !isa<FunctionDecl>(D)) {
2636 if (isa<CXXRecordDecl>(D)) {
2637 D->addAttr(::new (S.Context) WeakAttr(Attr.getRange(), S.Context));
2638 return;
2639 }
2640 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2641 << Attr.getName() << ExpectedVariableOrFunction;
2642 return;
2643 }
2644
2645 NamedDecl *nd = cast<NamedDecl>(D);
2646
2647 nd->addAttr(::new (S.Context)
2648 WeakAttr(Attr.getRange(), S.Context,
2649 Attr.getAttributeSpellingListIndex()));
2650 }
2651
handleWeakImportAttr(Sema & S,Decl * D,const AttributeList & Attr)2652 static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2653 // check the attribute arguments.
2654 if (!checkAttributeNumArgs(S, Attr, 0))
2655 return;
2656
2657
2658 // weak_import only applies to variable & function declarations.
2659 bool isDef = false;
2660 if (!D->canBeWeakImported(isDef)) {
2661 if (isDef)
2662 S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
2663 << "weak_import";
2664 else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
2665 (S.Context.getTargetInfo().getTriple().isOSDarwin() &&
2666 (isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
2667 // Nothing to warn about here.
2668 } else
2669 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2670 << Attr.getName() << ExpectedVariableOrFunction;
2671
2672 return;
2673 }
2674
2675 D->addAttr(::new (S.Context)
2676 WeakImportAttr(Attr.getRange(), S.Context,
2677 Attr.getAttributeSpellingListIndex()));
2678 }
2679
2680 // Handles reqd_work_group_size and work_group_size_hint.
handleWorkGroupSize(Sema & S,Decl * D,const AttributeList & Attr)2681 static void handleWorkGroupSize(Sema &S, Decl *D,
2682 const AttributeList &Attr) {
2683 assert(Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
2684 || Attr.getKind() == AttributeList::AT_WorkGroupSizeHint);
2685
2686 // Attribute has 3 arguments.
2687 if (!checkAttributeNumArgs(S, Attr, 3)) return;
2688
2689 unsigned WGSize[3];
2690 for (unsigned i = 0; i < 3; ++i) {
2691 Expr *E = Attr.getArg(i);
2692 llvm::APSInt ArgNum(32);
2693 if (E->isTypeDependent() || E->isValueDependent() ||
2694 !E->isIntegerConstantExpr(ArgNum, S.Context)) {
2695 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
2696 << Attr.getName() << AANT_ArgumentIntegerConstant
2697 << E->getSourceRange();
2698 return;
2699 }
2700 WGSize[i] = (unsigned) ArgNum.getZExtValue();
2701 }
2702
2703 if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize
2704 && D->hasAttr<ReqdWorkGroupSizeAttr>()) {
2705 ReqdWorkGroupSizeAttr *A = D->getAttr<ReqdWorkGroupSizeAttr>();
2706 if (!(A->getXDim() == WGSize[0] &&
2707 A->getYDim() == WGSize[1] &&
2708 A->getZDim() == WGSize[2])) {
2709 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
2710 Attr.getName();
2711 }
2712 }
2713
2714 if (Attr.getKind() == AttributeList::AT_WorkGroupSizeHint
2715 && D->hasAttr<WorkGroupSizeHintAttr>()) {
2716 WorkGroupSizeHintAttr *A = D->getAttr<WorkGroupSizeHintAttr>();
2717 if (!(A->getXDim() == WGSize[0] &&
2718 A->getYDim() == WGSize[1] &&
2719 A->getZDim() == WGSize[2])) {
2720 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) <<
2721 Attr.getName();
2722 }
2723 }
2724
2725 if (Attr.getKind() == AttributeList::AT_ReqdWorkGroupSize)
2726 D->addAttr(::new (S.Context)
2727 ReqdWorkGroupSizeAttr(Attr.getRange(), S.Context,
2728 WGSize[0], WGSize[1], WGSize[2],
2729 Attr.getAttributeSpellingListIndex()));
2730 else
2731 D->addAttr(::new (S.Context)
2732 WorkGroupSizeHintAttr(Attr.getRange(), S.Context,
2733 WGSize[0], WGSize[1], WGSize[2],
2734 Attr.getAttributeSpellingListIndex()));
2735 }
2736
handleVecTypeHint(Sema & S,Decl * D,const AttributeList & Attr)2737 static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
2738 assert(Attr.getKind() == AttributeList::AT_VecTypeHint);
2739
2740 // Attribute has 1 argument.
2741 if (!checkAttributeNumArgs(S, Attr, 1))
2742 return;
2743
2744 QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg());
2745
2746 if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
2747 (ParmType->isBooleanType() ||
2748 !ParmType->isIntegralType(S.getASTContext()))) {
2749 S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
2750 << ParmType;
2751 return;
2752 }
2753
2754 if (Attr.getKind() == AttributeList::AT_VecTypeHint &&
2755 D->hasAttr<VecTypeHintAttr>()) {
2756 VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>();
2757 if (A->getTypeHint() != ParmType) {
2758 S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
2759 return;
2760 }
2761 }
2762
2763 D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
2764 ParmType, Attr.getLoc()));
2765 }
2766
handleEndianAttr(Sema & S,Decl * D,const AttributeList & Attr)2767 static void handleEndianAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2768 if (!dyn_cast<VarDecl>(D))
2769 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type) << "endian"
2770 << 9;
2771 StringRef EndianType = Attr.getParameterName()->getName();
2772 if (EndianType != "host" && EndianType != "device")
2773 S.Diag(Attr.getLoc(), diag::warn_attribute_unknown_endian) << EndianType;
2774 }
2775
mergeSectionAttr(Decl * D,SourceRange Range,StringRef Name,unsigned AttrSpellingListIndex)2776 SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
2777 StringRef Name,
2778 unsigned AttrSpellingListIndex) {
2779 if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
2780 if (ExistingAttr->getName() == Name)
2781 return NULL;
2782 Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
2783 Diag(Range.getBegin(), diag::note_previous_attribute);
2784 return NULL;
2785 }
2786 return ::new (Context) SectionAttr(Range, Context, Name,
2787 AttrSpellingListIndex);
2788 }
2789
handleSectionAttr(Sema & S,Decl * D,const AttributeList & Attr)2790 static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2791 // Attribute has no arguments.
2792 if (!checkAttributeNumArgs(S, Attr, 1))
2793 return;
2794
2795 // Make sure that there is a string literal as the sections's single
2796 // argument.
2797 Expr *ArgExpr = Attr.getArg(0);
2798 StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
2799 if (!SE) {
2800 S.Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
2801 << Attr.getName() << AANT_ArgumentString;
2802 return;
2803 }
2804
2805 // If the target wants to validate the section specifier, make it happen.
2806 std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(SE->getString());
2807 if (!Error.empty()) {
2808 S.Diag(SE->getLocStart(), diag::err_attribute_section_invalid_for_target)
2809 << Error;
2810 return;
2811 }
2812
2813 // This attribute cannot be applied to local variables.
2814 if (isa<VarDecl>(D) && cast<VarDecl>(D)->hasLocalStorage()) {
2815 S.Diag(SE->getLocStart(), diag::err_attribute_section_local_variable);
2816 return;
2817 }
2818
2819 unsigned Index = Attr.getAttributeSpellingListIndex();
2820 SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(),
2821 SE->getString(), Index);
2822 if (NewAttr)
2823 D->addAttr(NewAttr);
2824 }
2825
2826
handleNothrowAttr(Sema & S,Decl * D,const AttributeList & Attr)2827 static void handleNothrowAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2828 // check the attribute arguments.
2829 if (Attr.hasParameterOrArguments()) {
2830 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2831 << Attr.getName() << 0;
2832 return;
2833 }
2834
2835 if (NoThrowAttr *Existing = D->getAttr<NoThrowAttr>()) {
2836 if (Existing->getLocation().isInvalid())
2837 Existing->setRange(Attr.getRange());
2838 } else {
2839 D->addAttr(::new (S.Context)
2840 NoThrowAttr(Attr.getRange(), S.Context,
2841 Attr.getAttributeSpellingListIndex()));
2842 }
2843 }
2844
handleConstAttr(Sema & S,Decl * D,const AttributeList & Attr)2845 static void handleConstAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2846 // check the attribute arguments.
2847 if (Attr.hasParameterOrArguments()) {
2848 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2849 << Attr.getName() << 0;
2850 return;
2851 }
2852
2853 if (ConstAttr *Existing = D->getAttr<ConstAttr>()) {
2854 if (Existing->getLocation().isInvalid())
2855 Existing->setRange(Attr.getRange());
2856 } else {
2857 D->addAttr(::new (S.Context)
2858 ConstAttr(Attr.getRange(), S.Context,
2859 Attr.getAttributeSpellingListIndex() ));
2860 }
2861 }
2862
handlePureAttr(Sema & S,Decl * D,const AttributeList & Attr)2863 static void handlePureAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2864 // check the attribute arguments.
2865 if (!checkAttributeNumArgs(S, Attr, 0))
2866 return;
2867
2868 D->addAttr(::new (S.Context)
2869 PureAttr(Attr.getRange(), S.Context,
2870 Attr.getAttributeSpellingListIndex()));
2871 }
2872
handleCleanupAttr(Sema & S,Decl * D,const AttributeList & Attr)2873 static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2874 if (!Attr.getParameterName()) {
2875 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2876 << Attr.getName() << 1;
2877 return;
2878 }
2879
2880 if (Attr.getNumArgs() != 0) {
2881 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
2882 << Attr.getName() << 1;
2883 return;
2884 }
2885
2886 VarDecl *VD = dyn_cast<VarDecl>(D);
2887
2888 if (!VD || !VD->hasLocalStorage()) {
2889 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "cleanup";
2890 return;
2891 }
2892
2893 // Look up the function
2894 // FIXME: Lookup probably isn't looking in the right place
2895 NamedDecl *CleanupDecl
2896 = S.LookupSingleName(S.TUScope, Attr.getParameterName(),
2897 Attr.getParameterLoc(), Sema::LookupOrdinaryName);
2898 if (!CleanupDecl) {
2899 S.Diag(Attr.getParameterLoc(), diag::err_attribute_cleanup_arg_not_found) <<
2900 Attr.getParameterName();
2901 return;
2902 }
2903
2904 FunctionDecl *FD = dyn_cast<FunctionDecl>(CleanupDecl);
2905 if (!FD) {
2906 S.Diag(Attr.getParameterLoc(),
2907 diag::err_attribute_cleanup_arg_not_function)
2908 << Attr.getParameterName();
2909 return;
2910 }
2911
2912 if (FD->getNumParams() != 1) {
2913 S.Diag(Attr.getParameterLoc(),
2914 diag::err_attribute_cleanup_func_must_take_one_arg)
2915 << Attr.getParameterName();
2916 return;
2917 }
2918
2919 // We're currently more strict than GCC about what function types we accept.
2920 // If this ever proves to be a problem it should be easy to fix.
2921 QualType Ty = S.Context.getPointerType(VD->getType());
2922 QualType ParamTy = FD->getParamDecl(0)->getType();
2923 if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
2924 ParamTy, Ty) != Sema::Compatible) {
2925 S.Diag(Attr.getParameterLoc(),
2926 diag::err_attribute_cleanup_func_arg_incompatible_type) <<
2927 Attr.getParameterName() << ParamTy << Ty;
2928 return;
2929 }
2930
2931 D->addAttr(::new (S.Context)
2932 CleanupAttr(Attr.getRange(), S.Context, FD,
2933 Attr.getAttributeSpellingListIndex()));
2934 S.MarkFunctionReferenced(Attr.getParameterLoc(), FD);
2935 S.DiagnoseUseOfDecl(FD, Attr.getParameterLoc());
2936 }
2937
2938 /// Handle __attribute__((format_arg((idx)))) attribute based on
2939 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatArgAttr(Sema & S,Decl * D,const AttributeList & Attr)2940 static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
2941 if (!checkAttributeNumArgs(S, Attr, 1))
2942 return;
2943
2944 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
2945 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
2946 << Attr.getName() << ExpectedFunction;
2947 return;
2948 }
2949
2950 Expr *IdxExpr = Attr.getArg(0);
2951 uint64_t ArgIdx;
2952 if (!checkFunctionOrMethodArgumentIndex(S, D, Attr.getName()->getName(),
2953 Attr.getLoc(), 1, IdxExpr, ArgIdx))
2954 return;
2955
2956 // make sure the format string is really a string
2957 QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
2958
2959 bool not_nsstring_type = !isNSStringType(Ty, S.Context);
2960 if (not_nsstring_type &&
2961 !isCFStringType(Ty, S.Context) &&
2962 (!Ty->isPointerType() ||
2963 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2964 // FIXME: Should highlight the actual expression that has the wrong type.
2965 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
2966 << (not_nsstring_type ? "a string type" : "an NSString")
2967 << IdxExpr->getSourceRange();
2968 return;
2969 }
2970 Ty = getFunctionOrMethodResultType(D);
2971 if (!isNSStringType(Ty, S.Context) &&
2972 !isCFStringType(Ty, S.Context) &&
2973 (!Ty->isPointerType() ||
2974 !Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
2975 // FIXME: Should highlight the actual expression that has the wrong type.
2976 S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
2977 << (not_nsstring_type ? "string type" : "NSString")
2978 << IdxExpr->getSourceRange();
2979 return;
2980 }
2981
2982 // We cannot use the ArgIdx returned from checkFunctionOrMethodArgumentIndex
2983 // because that has corrected for the implicit this parameter, and is zero-
2984 // based. The attribute expects what the user wrote explicitly.
2985 llvm::APSInt Val;
2986 IdxExpr->EvaluateAsInt(Val, S.Context);
2987
2988 D->addAttr(::new (S.Context)
2989 FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
2990 Attr.getAttributeSpellingListIndex()));
2991 }
2992
2993 enum FormatAttrKind {
2994 CFStringFormat,
2995 NSStringFormat,
2996 StrftimeFormat,
2997 SupportedFormat,
2998 IgnoredFormat,
2999 InvalidFormat
3000 };
3001
3002 /// getFormatAttrKind - Map from format attribute names to supported format
3003 /// types.
getFormatAttrKind(StringRef Format)3004 static FormatAttrKind getFormatAttrKind(StringRef Format) {
3005 return llvm::StringSwitch<FormatAttrKind>(Format)
3006 // Check for formats that get handled specially.
3007 .Case("NSString", NSStringFormat)
3008 .Case("CFString", CFStringFormat)
3009 .Case("strftime", StrftimeFormat)
3010
3011 // Otherwise, check for supported formats.
3012 .Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
3013 .Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
3014 .Case("kprintf", SupportedFormat) // OpenBSD.
3015
3016 .Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
3017 .Default(InvalidFormat);
3018 }
3019
3020 /// Handle __attribute__((init_priority(priority))) attributes based on
3021 /// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
handleInitPriorityAttr(Sema & S,Decl * D,const AttributeList & Attr)3022 static void handleInitPriorityAttr(Sema &S, Decl *D,
3023 const AttributeList &Attr) {
3024 if (!S.getLangOpts().CPlusPlus) {
3025 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
3026 return;
3027 }
3028
3029 if (!isa<VarDecl>(D) || S.getCurFunctionOrMethodDecl()) {
3030 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
3031 Attr.setInvalid();
3032 return;
3033 }
3034 QualType T = dyn_cast<VarDecl>(D)->getType();
3035 if (S.Context.getAsArrayType(T))
3036 T = S.Context.getBaseElementType(T);
3037 if (!T->getAs<RecordType>()) {
3038 S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
3039 Attr.setInvalid();
3040 return;
3041 }
3042
3043 if (!checkAttributeNumArgs(S, Attr, 1)) {
3044 Attr.setInvalid();
3045 return;
3046 }
3047 Expr *priorityExpr = Attr.getArg(0);
3048
3049 llvm::APSInt priority(32);
3050 if (priorityExpr->isTypeDependent() || priorityExpr->isValueDependent() ||
3051 !priorityExpr->isIntegerConstantExpr(priority, S.Context)) {
3052 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3053 << Attr.getName() << AANT_ArgumentIntegerConstant
3054 << priorityExpr->getSourceRange();
3055 Attr.setInvalid();
3056 return;
3057 }
3058 unsigned prioritynum = priority.getZExtValue();
3059 if (prioritynum < 101 || prioritynum > 65535) {
3060 S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
3061 << priorityExpr->getSourceRange();
3062 Attr.setInvalid();
3063 return;
3064 }
3065 D->addAttr(::new (S.Context)
3066 InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
3067 Attr.getAttributeSpellingListIndex()));
3068 }
3069
mergeFormatAttr(Decl * D,SourceRange Range,StringRef Format,int FormatIdx,int FirstArg,unsigned AttrSpellingListIndex)3070 FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range, StringRef Format,
3071 int FormatIdx, int FirstArg,
3072 unsigned AttrSpellingListIndex) {
3073 // Check whether we already have an equivalent format attribute.
3074 for (specific_attr_iterator<FormatAttr>
3075 i = D->specific_attr_begin<FormatAttr>(),
3076 e = D->specific_attr_end<FormatAttr>();
3077 i != e ; ++i) {
3078 FormatAttr *f = *i;
3079 if (f->getType() == Format &&
3080 f->getFormatIdx() == FormatIdx &&
3081 f->getFirstArg() == FirstArg) {
3082 // If we don't have a valid location for this attribute, adopt the
3083 // location.
3084 if (f->getLocation().isInvalid())
3085 f->setRange(Range);
3086 return NULL;
3087 }
3088 }
3089
3090 return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx, FirstArg,
3091 AttrSpellingListIndex);
3092 }
3093
3094 /// Handle __attribute__((format(type,idx,firstarg))) attributes based on
3095 /// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
handleFormatAttr(Sema & S,Decl * D,const AttributeList & Attr)3096 static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3097
3098 if (!Attr.getParameterName()) {
3099 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3100 << Attr.getName() << 1 << AANT_ArgumentString;
3101 return;
3102 }
3103
3104 if (Attr.getNumArgs() != 2) {
3105 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3106 << Attr.getName() << 3;
3107 return;
3108 }
3109
3110 if (!isFunctionOrMethodOrBlock(D) || !hasFunctionProto(D)) {
3111 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3112 << Attr.getName() << ExpectedFunction;
3113 return;
3114 }
3115
3116 // In C++ the implicit 'this' function parameter also counts, and they are
3117 // counted from one.
3118 bool HasImplicitThisParam = isInstanceMethod(D);
3119 unsigned NumArgs = getFunctionOrMethodNumArgs(D) + HasImplicitThisParam;
3120 unsigned FirstIdx = 1;
3121
3122 StringRef Format = Attr.getParameterName()->getName();
3123
3124 // Normalize the argument, __foo__ becomes foo.
3125 if (Format.startswith("__") && Format.endswith("__"))
3126 Format = Format.substr(2, Format.size() - 4);
3127
3128 // Check for supported formats.
3129 FormatAttrKind Kind = getFormatAttrKind(Format);
3130
3131 if (Kind == IgnoredFormat)
3132 return;
3133
3134 if (Kind == InvalidFormat) {
3135 S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
3136 << "format" << Attr.getParameterName()->getName();
3137 return;
3138 }
3139
3140 // checks for the 2nd argument
3141 Expr *IdxExpr = Attr.getArg(0);
3142 llvm::APSInt Idx(32);
3143 if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
3144 !IdxExpr->isIntegerConstantExpr(Idx, S.Context)) {
3145 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3146 << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
3147 << IdxExpr->getSourceRange();
3148 return;
3149 }
3150
3151 if (Idx.getZExtValue() < FirstIdx || Idx.getZExtValue() > NumArgs) {
3152 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
3153 << "format" << 2 << IdxExpr->getSourceRange();
3154 return;
3155 }
3156
3157 // FIXME: Do we need to bounds check?
3158 unsigned ArgIdx = Idx.getZExtValue() - 1;
3159
3160 if (HasImplicitThisParam) {
3161 if (ArgIdx == 0) {
3162 S.Diag(Attr.getLoc(),
3163 diag::err_format_attribute_implicit_this_format_string)
3164 << IdxExpr->getSourceRange();
3165 return;
3166 }
3167 ArgIdx--;
3168 }
3169
3170 // make sure the format string is really a string
3171 QualType Ty = getFunctionOrMethodArgType(D, ArgIdx);
3172
3173 if (Kind == CFStringFormat) {
3174 if (!isCFStringType(Ty, S.Context)) {
3175 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
3176 << "a CFString" << IdxExpr->getSourceRange();
3177 return;
3178 }
3179 } else if (Kind == NSStringFormat) {
3180 // FIXME: do we need to check if the type is NSString*? What are the
3181 // semantics?
3182 if (!isNSStringType(Ty, S.Context)) {
3183 // FIXME: Should highlight the actual expression that has the wrong type.
3184 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
3185 << "an NSString" << IdxExpr->getSourceRange();
3186 return;
3187 }
3188 } else if (!Ty->isPointerType() ||
3189 !Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
3190 // FIXME: Should highlight the actual expression that has the wrong type.
3191 S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
3192 << "a string type" << IdxExpr->getSourceRange();
3193 return;
3194 }
3195
3196 // check the 3rd argument
3197 Expr *FirstArgExpr = Attr.getArg(1);
3198 llvm::APSInt FirstArg(32);
3199 if (FirstArgExpr->isTypeDependent() || FirstArgExpr->isValueDependent() ||
3200 !FirstArgExpr->isIntegerConstantExpr(FirstArg, S.Context)) {
3201 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
3202 << Attr.getName() << 3 << AANT_ArgumentIntegerConstant
3203 << FirstArgExpr->getSourceRange();
3204 return;
3205 }
3206
3207 // check if the function is variadic if the 3rd argument non-zero
3208 if (FirstArg != 0) {
3209 if (isFunctionOrMethodVariadic(D)) {
3210 ++NumArgs; // +1 for ...
3211 } else {
3212 S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
3213 return;
3214 }
3215 }
3216
3217 // strftime requires FirstArg to be 0 because it doesn't read from any
3218 // variable the input is just the current time + the format string.
3219 if (Kind == StrftimeFormat) {
3220 if (FirstArg != 0) {
3221 S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
3222 << FirstArgExpr->getSourceRange();
3223 return;
3224 }
3225 // if 0 it disables parameter checking (to use with e.g. va_list)
3226 } else if (FirstArg != 0 && FirstArg != NumArgs) {
3227 S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
3228 << "format" << 3 << FirstArgExpr->getSourceRange();
3229 return;
3230 }
3231
3232 FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), Format,
3233 Idx.getZExtValue(),
3234 FirstArg.getZExtValue(),
3235 Attr.getAttributeSpellingListIndex());
3236 if (NewAttr)
3237 D->addAttr(NewAttr);
3238 }
3239
handleTransparentUnionAttr(Sema & S,Decl * D,const AttributeList & Attr)3240 static void handleTransparentUnionAttr(Sema &S, Decl *D,
3241 const AttributeList &Attr) {
3242 // check the attribute arguments.
3243 if (!checkAttributeNumArgs(S, Attr, 0))
3244 return;
3245
3246
3247 // Try to find the underlying union declaration.
3248 RecordDecl *RD = 0;
3249 TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
3250 if (TD && TD->getUnderlyingType()->isUnionType())
3251 RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
3252 else
3253 RD = dyn_cast<RecordDecl>(D);
3254
3255 if (!RD || !RD->isUnion()) {
3256 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3257 << Attr.getName() << ExpectedUnion;
3258 return;
3259 }
3260
3261 if (!RD->isCompleteDefinition()) {
3262 S.Diag(Attr.getLoc(),
3263 diag::warn_transparent_union_attribute_not_definition);
3264 return;
3265 }
3266
3267 RecordDecl::field_iterator Field = RD->field_begin(),
3268 FieldEnd = RD->field_end();
3269 if (Field == FieldEnd) {
3270 S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
3271 return;
3272 }
3273
3274 FieldDecl *FirstField = *Field;
3275 QualType FirstType = FirstField->getType();
3276 if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
3277 S.Diag(FirstField->getLocation(),
3278 diag::warn_transparent_union_attribute_floating)
3279 << FirstType->isVectorType() << FirstType;
3280 return;
3281 }
3282
3283 uint64_t FirstSize = S.Context.getTypeSize(FirstType);
3284 uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
3285 for (; Field != FieldEnd; ++Field) {
3286 QualType FieldType = Field->getType();
3287 if (S.Context.getTypeSize(FieldType) != FirstSize ||
3288 S.Context.getTypeAlign(FieldType) != FirstAlign) {
3289 // Warn if we drop the attribute.
3290 bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
3291 unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
3292 : S.Context.getTypeAlign(FieldType);
3293 S.Diag(Field->getLocation(),
3294 diag::warn_transparent_union_attribute_field_size_align)
3295 << isSize << Field->getDeclName() << FieldBits;
3296 unsigned FirstBits = isSize? FirstSize : FirstAlign;
3297 S.Diag(FirstField->getLocation(),
3298 diag::note_transparent_union_first_field_size_align)
3299 << isSize << FirstBits;
3300 return;
3301 }
3302 }
3303
3304 RD->addAttr(::new (S.Context)
3305 TransparentUnionAttr(Attr.getRange(), S.Context,
3306 Attr.getAttributeSpellingListIndex()));
3307 }
3308
handleAnnotateAttr(Sema & S,Decl * D,const AttributeList & Attr)3309 static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3310 // check the attribute arguments.
3311 if (!checkAttributeNumArgs(S, Attr, 1))
3312 return;
3313
3314 Expr *ArgExpr = Attr.getArg(0);
3315 StringLiteral *SE = dyn_cast<StringLiteral>(ArgExpr);
3316
3317 // Make sure that there is a string literal as the annotation's single
3318 // argument.
3319 if (!SE) {
3320 S.Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
3321 << Attr.getName() << AANT_ArgumentString;
3322 return;
3323 }
3324
3325 // Don't duplicate annotations that are already set.
3326 for (specific_attr_iterator<AnnotateAttr>
3327 i = D->specific_attr_begin<AnnotateAttr>(),
3328 e = D->specific_attr_end<AnnotateAttr>(); i != e; ++i) {
3329 if ((*i)->getAnnotation() == SE->getString())
3330 return;
3331 }
3332
3333 D->addAttr(::new (S.Context)
3334 AnnotateAttr(Attr.getRange(), S.Context, SE->getString(),
3335 Attr.getAttributeSpellingListIndex()));
3336 }
3337
handleAlignedAttr(Sema & S,Decl * D,const AttributeList & Attr)3338 static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3339 // check the attribute arguments.
3340 if (Attr.getNumArgs() > 1) {
3341 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3342 << Attr.getName() << 1;
3343 return;
3344 }
3345
3346 if (Attr.getNumArgs() == 0) {
3347 D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
3348 true, 0, Attr.getAttributeSpellingListIndex()));
3349 return;
3350 }
3351
3352 Expr *E = Attr.getArg(0);
3353 if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
3354 S.Diag(Attr.getEllipsisLoc(),
3355 diag::err_pack_expansion_without_parameter_packs);
3356 return;
3357 }
3358
3359 if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
3360 return;
3361
3362 S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
3363 Attr.isPackExpansion());
3364 }
3365
AddAlignedAttr(SourceRange AttrRange,Decl * D,Expr * E,unsigned SpellingListIndex,bool IsPackExpansion)3366 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
3367 unsigned SpellingListIndex, bool IsPackExpansion) {
3368 AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
3369 SourceLocation AttrLoc = AttrRange.getBegin();
3370
3371 // C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
3372 if (TmpAttr.isAlignas()) {
3373 // C++11 [dcl.align]p1:
3374 // An alignment-specifier may be applied to a variable or to a class
3375 // data member, but it shall not be applied to a bit-field, a function
3376 // parameter, the formal parameter of a catch clause, or a variable
3377 // declared with the register storage class specifier. An
3378 // alignment-specifier may also be applied to the declaration of a class
3379 // or enumeration type.
3380 // C11 6.7.5/2:
3381 // An alignment attribute shall not be specified in a declaration of
3382 // a typedef, or a bit-field, or a function, or a parameter, or an
3383 // object declared with the register storage-class specifier.
3384 int DiagKind = -1;
3385 if (isa<ParmVarDecl>(D)) {
3386 DiagKind = 0;
3387 } else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
3388 if (VD->getStorageClass() == SC_Register)
3389 DiagKind = 1;
3390 if (VD->isExceptionVariable())
3391 DiagKind = 2;
3392 } else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
3393 if (FD->isBitField())
3394 DiagKind = 3;
3395 } else if (!isa<TagDecl>(D)) {
3396 Diag(AttrLoc, diag::err_attribute_wrong_decl_type)
3397 << (TmpAttr.isC11() ? "'_Alignas'" : "'alignas'")
3398 << (TmpAttr.isC11() ? ExpectedVariableOrField
3399 : ExpectedVariableFieldOrTag);
3400 return;
3401 }
3402 if (DiagKind != -1) {
3403 Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
3404 << TmpAttr.isC11() << DiagKind;
3405 return;
3406 }
3407 }
3408
3409 if (E->isTypeDependent() || E->isValueDependent()) {
3410 // Save dependent expressions in the AST to be instantiated.
3411 AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
3412 AA->setPackExpansion(IsPackExpansion);
3413 D->addAttr(AA);
3414 return;
3415 }
3416
3417 // FIXME: Cache the number on the Attr object?
3418 llvm::APSInt Alignment(32);
3419 ExprResult ICE
3420 = VerifyIntegerConstantExpression(E, &Alignment,
3421 diag::err_aligned_attribute_argument_not_int,
3422 /*AllowFold*/ false);
3423 if (ICE.isInvalid())
3424 return;
3425
3426 // C++11 [dcl.align]p2:
3427 // -- if the constant expression evaluates to zero, the alignment
3428 // specifier shall have no effect
3429 // C11 6.7.5p6:
3430 // An alignment specification of zero has no effect.
3431 if (!(TmpAttr.isAlignas() && !Alignment) &&
3432 !llvm::isPowerOf2_64(Alignment.getZExtValue())) {
3433 Diag(AttrLoc, diag::err_attribute_aligned_not_power_of_two)
3434 << E->getSourceRange();
3435 return;
3436 }
3437
3438 if (TmpAttr.isDeclspec()) {
3439 // We've already verified it's a power of 2, now let's make sure it's
3440 // 8192 or less.
3441 if (Alignment.getZExtValue() > 8192) {
3442 Diag(AttrLoc, diag::err_attribute_aligned_greater_than_8192)
3443 << E->getSourceRange();
3444 return;
3445 }
3446 }
3447
3448 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
3449 ICE.take(), SpellingListIndex);
3450 AA->setPackExpansion(IsPackExpansion);
3451 D->addAttr(AA);
3452 }
3453
AddAlignedAttr(SourceRange AttrRange,Decl * D,TypeSourceInfo * TS,unsigned SpellingListIndex,bool IsPackExpansion)3454 void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
3455 unsigned SpellingListIndex, bool IsPackExpansion) {
3456 // FIXME: Cache the number on the Attr object if non-dependent?
3457 // FIXME: Perform checking of type validity
3458 AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
3459 SpellingListIndex);
3460 AA->setPackExpansion(IsPackExpansion);
3461 D->addAttr(AA);
3462 }
3463
CheckAlignasUnderalignment(Decl * D)3464 void Sema::CheckAlignasUnderalignment(Decl *D) {
3465 assert(D->hasAttrs() && "no attributes on decl");
3466
3467 QualType Ty;
3468 if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3469 Ty = VD->getType();
3470 else
3471 Ty = Context.getTagDeclType(cast<TagDecl>(D));
3472 if (Ty->isDependentType() || Ty->isIncompleteType())
3473 return;
3474
3475 // C++11 [dcl.align]p5, C11 6.7.5/4:
3476 // The combined effect of all alignment attributes in a declaration shall
3477 // not specify an alignment that is less strict than the alignment that
3478 // would otherwise be required for the entity being declared.
3479 AlignedAttr *AlignasAttr = 0;
3480 unsigned Align = 0;
3481 for (specific_attr_iterator<AlignedAttr>
3482 I = D->specific_attr_begin<AlignedAttr>(),
3483 E = D->specific_attr_end<AlignedAttr>(); I != E; ++I) {
3484 if (I->isAlignmentDependent())
3485 return;
3486 if (I->isAlignas())
3487 AlignasAttr = *I;
3488 Align = std::max(Align, I->getAlignment(Context));
3489 }
3490
3491 if (AlignasAttr && Align) {
3492 CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
3493 CharUnits NaturalAlign = Context.getTypeAlignInChars(Ty);
3494 if (NaturalAlign > RequestedAlign)
3495 Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
3496 << Ty << (unsigned)NaturalAlign.getQuantity();
3497 }
3498 }
3499
3500 /// handleModeAttr - This attribute modifies the width of a decl with primitive
3501 /// type.
3502 ///
3503 /// Despite what would be logical, the mode attribute is a decl attribute, not a
3504 /// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
3505 /// HImode, not an intermediate pointer.
handleModeAttr(Sema & S,Decl * D,const AttributeList & Attr)3506 static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3507 // This attribute isn't documented, but glibc uses it. It changes
3508 // the width of an int or unsigned int to the specified size.
3509
3510 // Check that there aren't any arguments
3511 if (!checkAttributeNumArgs(S, Attr, 0))
3512 return;
3513
3514
3515 IdentifierInfo *Name = Attr.getParameterName();
3516 if (!Name) {
3517 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
3518 << AANT_ArgumentIdentifier;
3519 return;
3520 }
3521
3522 StringRef Str = Attr.getParameterName()->getName();
3523
3524 // Normalize the attribute name, __foo__ becomes foo.
3525 if (Str.startswith("__") && Str.endswith("__"))
3526 Str = Str.substr(2, Str.size() - 4);
3527
3528 unsigned DestWidth = 0;
3529 bool IntegerMode = true;
3530 bool ComplexMode = false;
3531 switch (Str.size()) {
3532 case 2:
3533 switch (Str[0]) {
3534 case 'Q': DestWidth = 8; break;
3535 case 'H': DestWidth = 16; break;
3536 case 'S': DestWidth = 32; break;
3537 case 'D': DestWidth = 64; break;
3538 case 'X': DestWidth = 96; break;
3539 case 'T': DestWidth = 128; break;
3540 }
3541 if (Str[1] == 'F') {
3542 IntegerMode = false;
3543 } else if (Str[1] == 'C') {
3544 IntegerMode = false;
3545 ComplexMode = true;
3546 } else if (Str[1] != 'I') {
3547 DestWidth = 0;
3548 }
3549 break;
3550 case 4:
3551 // FIXME: glibc uses 'word' to define register_t; this is narrower than a
3552 // pointer on PIC16 and other embedded platforms.
3553 if (Str == "word")
3554 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3555 else if (Str == "byte")
3556 DestWidth = S.Context.getTargetInfo().getCharWidth();
3557 break;
3558 case 7:
3559 if (Str == "pointer")
3560 DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
3561 break;
3562 case 11:
3563 if (Str == "unwind_word")
3564 DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
3565 break;
3566 }
3567
3568 QualType OldTy;
3569 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3570 OldTy = TD->getUnderlyingType();
3571 else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
3572 OldTy = VD->getType();
3573 else {
3574 S.Diag(D->getLocation(), diag::err_attr_wrong_decl)
3575 << "mode" << Attr.getRange();
3576 return;
3577 }
3578
3579 if (!OldTy->getAs<BuiltinType>() && !OldTy->isComplexType())
3580 S.Diag(Attr.getLoc(), diag::err_mode_not_primitive);
3581 else if (IntegerMode) {
3582 if (!OldTy->isIntegralOrEnumerationType())
3583 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3584 } else if (ComplexMode) {
3585 if (!OldTy->isComplexType())
3586 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3587 } else {
3588 if (!OldTy->isFloatingType())
3589 S.Diag(Attr.getLoc(), diag::err_mode_wrong_type);
3590 }
3591
3592 // FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
3593 // and friends, at least with glibc.
3594 // FIXME: Make sure 32/64-bit integers don't get defined to types of the wrong
3595 // width on unusual platforms.
3596 // FIXME: Make sure floating-point mappings are accurate
3597 // FIXME: Support XF and TF types
3598 QualType NewTy;
3599 switch (DestWidth) {
3600 case 0:
3601 S.Diag(Attr.getLoc(), diag::err_unknown_machine_mode) << Name;
3602 return;
3603 default:
3604 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3605 return;
3606 case 8:
3607 if (!IntegerMode) {
3608 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3609 return;
3610 }
3611 if (OldTy->isSignedIntegerType())
3612 NewTy = S.Context.SignedCharTy;
3613 else
3614 NewTy = S.Context.UnsignedCharTy;
3615 break;
3616 case 16:
3617 if (!IntegerMode) {
3618 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3619 return;
3620 }
3621 if (OldTy->isSignedIntegerType())
3622 NewTy = S.Context.ShortTy;
3623 else
3624 NewTy = S.Context.UnsignedShortTy;
3625 break;
3626 case 32:
3627 if (!IntegerMode)
3628 NewTy = S.Context.FloatTy;
3629 else if (OldTy->isSignedIntegerType())
3630 NewTy = S.Context.IntTy;
3631 else
3632 NewTy = S.Context.UnsignedIntTy;
3633 break;
3634 case 64:
3635 if (!IntegerMode)
3636 NewTy = S.Context.DoubleTy;
3637 else if (OldTy->isSignedIntegerType())
3638 if (S.Context.getTargetInfo().getLongWidth() == 64)
3639 NewTy = S.Context.LongTy;
3640 else
3641 NewTy = S.Context.LongLongTy;
3642 else
3643 if (S.Context.getTargetInfo().getLongWidth() == 64)
3644 NewTy = S.Context.UnsignedLongTy;
3645 else
3646 NewTy = S.Context.UnsignedLongLongTy;
3647 break;
3648 case 96:
3649 NewTy = S.Context.LongDoubleTy;
3650 break;
3651 case 128:
3652 if (!IntegerMode && &S.Context.getTargetInfo().getLongDoubleFormat() !=
3653 &llvm::APFloat::PPCDoubleDouble) {
3654 S.Diag(Attr.getLoc(), diag::err_unsupported_machine_mode) << Name;
3655 return;
3656 }
3657 if (IntegerMode) {
3658 if (OldTy->isSignedIntegerType())
3659 NewTy = S.Context.Int128Ty;
3660 else
3661 NewTy = S.Context.UnsignedInt128Ty;
3662 } else
3663 NewTy = S.Context.LongDoubleTy;
3664 break;
3665 }
3666
3667 if (ComplexMode) {
3668 NewTy = S.Context.getComplexType(NewTy);
3669 }
3670
3671 // Install the new type.
3672 if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
3673 TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
3674 else
3675 cast<ValueDecl>(D)->setType(NewTy);
3676
3677 D->addAttr(::new (S.Context)
3678 ModeAttr(Attr.getRange(), S.Context, Name,
3679 Attr.getAttributeSpellingListIndex()));
3680 }
3681
handleNoDebugAttr(Sema & S,Decl * D,const AttributeList & Attr)3682 static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3683 // check the attribute arguments.
3684 if (!checkAttributeNumArgs(S, Attr, 0))
3685 return;
3686
3687 if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
3688 if (!VD->hasGlobalStorage())
3689 S.Diag(Attr.getLoc(),
3690 diag::warn_attribute_requires_functions_or_static_globals)
3691 << Attr.getName();
3692 } else if (!isFunctionOrMethod(D)) {
3693 S.Diag(Attr.getLoc(),
3694 diag::warn_attribute_requires_functions_or_static_globals)
3695 << Attr.getName();
3696 return;
3697 }
3698
3699 D->addAttr(::new (S.Context)
3700 NoDebugAttr(Attr.getRange(), S.Context,
3701 Attr.getAttributeSpellingListIndex()));
3702 }
3703
handleNoInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3704 static void handleNoInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3705 // check the attribute arguments.
3706 if (!checkAttributeNumArgs(S, Attr, 0))
3707 return;
3708
3709
3710 if (!isa<FunctionDecl>(D)) {
3711 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3712 << Attr.getName() << ExpectedFunction;
3713 return;
3714 }
3715
3716 D->addAttr(::new (S.Context)
3717 NoInlineAttr(Attr.getRange(), S.Context,
3718 Attr.getAttributeSpellingListIndex()));
3719 }
3720
handleNoInstrumentFunctionAttr(Sema & S,Decl * D,const AttributeList & Attr)3721 static void handleNoInstrumentFunctionAttr(Sema &S, Decl *D,
3722 const AttributeList &Attr) {
3723 // check the attribute arguments.
3724 if (!checkAttributeNumArgs(S, Attr, 0))
3725 return;
3726
3727
3728 if (!isa<FunctionDecl>(D)) {
3729 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3730 << Attr.getName() << ExpectedFunction;
3731 return;
3732 }
3733
3734 D->addAttr(::new (S.Context)
3735 NoInstrumentFunctionAttr(Attr.getRange(), S.Context,
3736 Attr.getAttributeSpellingListIndex()));
3737 }
3738
handleKernelAttr(Sema & S,Decl * D,const AttributeList & Attr)3739 static void handleKernelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3740 if (S.LangOpts.Renderscript) {
3741 D->addAttr(::new (S.Context) KernelAttr(Attr.getRange(), S.Context));
3742 } else {
3743 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "kernel";
3744 }
3745 }
3746
handleConstantAttr(Sema & S,Decl * D,const AttributeList & Attr)3747 static void handleConstantAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3748 if (S.LangOpts.CUDA) {
3749 // check the attribute arguments.
3750 if (Attr.hasParameterOrArguments()) {
3751 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3752 << Attr.getName() << 0;
3753 return;
3754 }
3755
3756 if (!isa<VarDecl>(D)) {
3757 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3758 << Attr.getName() << ExpectedVariable;
3759 return;
3760 }
3761
3762 D->addAttr(::new (S.Context)
3763 CUDAConstantAttr(Attr.getRange(), S.Context,
3764 Attr.getAttributeSpellingListIndex()));
3765 } else {
3766 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "constant";
3767 }
3768 }
3769
handleDeviceAttr(Sema & S,Decl * D,const AttributeList & Attr)3770 static void handleDeviceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3771 if (S.LangOpts.CUDA) {
3772 // check the attribute arguments.
3773 if (Attr.getNumArgs() != 0) {
3774 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3775 << Attr.getName() << 0;
3776 return;
3777 }
3778
3779 if (!isa<FunctionDecl>(D) && !isa<VarDecl>(D)) {
3780 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3781 << Attr.getName() << ExpectedVariableOrFunction;
3782 return;
3783 }
3784
3785 D->addAttr(::new (S.Context)
3786 CUDADeviceAttr(Attr.getRange(), S.Context,
3787 Attr.getAttributeSpellingListIndex()));
3788 } else {
3789 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "device";
3790 }
3791 }
3792
handleGlobalAttr(Sema & S,Decl * D,const AttributeList & Attr)3793 static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3794 if (S.LangOpts.CUDA) {
3795 // check the attribute arguments.
3796 if (!checkAttributeNumArgs(S, Attr, 0))
3797 return;
3798
3799 if (!isa<FunctionDecl>(D)) {
3800 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3801 << Attr.getName() << ExpectedFunction;
3802 return;
3803 }
3804
3805 FunctionDecl *FD = cast<FunctionDecl>(D);
3806 if (!FD->getResultType()->isVoidType()) {
3807 TypeLoc TL = FD->getTypeSourceInfo()->getTypeLoc().IgnoreParens();
3808 if (FunctionTypeLoc FTL = TL.getAs<FunctionTypeLoc>()) {
3809 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3810 << FD->getType()
3811 << FixItHint::CreateReplacement(FTL.getResultLoc().getSourceRange(),
3812 "void");
3813 } else {
3814 S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
3815 << FD->getType();
3816 }
3817 return;
3818 }
3819
3820 D->addAttr(::new (S.Context)
3821 CUDAGlobalAttr(Attr.getRange(), S.Context,
3822 Attr.getAttributeSpellingListIndex()));
3823 } else {
3824 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "global";
3825 }
3826 }
3827
handleHostAttr(Sema & S,Decl * D,const AttributeList & Attr)3828 static void handleHostAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3829 if (S.LangOpts.CUDA) {
3830 // check the attribute arguments.
3831 if (!checkAttributeNumArgs(S, Attr, 0))
3832 return;
3833
3834
3835 if (!isa<FunctionDecl>(D)) {
3836 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3837 << Attr.getName() << ExpectedFunction;
3838 return;
3839 }
3840
3841 D->addAttr(::new (S.Context)
3842 CUDAHostAttr(Attr.getRange(), S.Context,
3843 Attr.getAttributeSpellingListIndex()));
3844 } else {
3845 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "host";
3846 }
3847 }
3848
handleSharedAttr(Sema & S,Decl * D,const AttributeList & Attr)3849 static void handleSharedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3850 if (S.LangOpts.CUDA) {
3851 // check the attribute arguments.
3852 if (!checkAttributeNumArgs(S, Attr, 0))
3853 return;
3854
3855 if (!isa<VarDecl>(D)) {
3856 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3857 << Attr.getName() << ExpectedVariable;
3858 return;
3859 }
3860
3861 D->addAttr(::new (S.Context)
3862 CUDASharedAttr(Attr.getRange(), S.Context,
3863 Attr.getAttributeSpellingListIndex()));
3864 } else {
3865 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "shared";
3866 }
3867 }
3868
handleGNUInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)3869 static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3870 // check the attribute arguments.
3871 if (!checkAttributeNumArgs(S, Attr, 0))
3872 return;
3873
3874 FunctionDecl *Fn = dyn_cast<FunctionDecl>(D);
3875 if (Fn == 0) {
3876 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3877 << Attr.getName() << ExpectedFunction;
3878 return;
3879 }
3880
3881 if (!Fn->isInlineSpecified()) {
3882 S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
3883 return;
3884 }
3885
3886 D->addAttr(::new (S.Context)
3887 GNUInlineAttr(Attr.getRange(), S.Context,
3888 Attr.getAttributeSpellingListIndex()));
3889 }
3890
handleCallConvAttr(Sema & S,Decl * D,const AttributeList & Attr)3891 static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
3892 if (hasDeclarator(D)) return;
3893
3894 const FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
3895 // Diagnostic is emitted elsewhere: here we store the (valid) Attr
3896 // in the Decl node for syntactic reasoning, e.g., pretty-printing.
3897 CallingConv CC;
3898 if (S.CheckCallingConvAttr(Attr, CC, FD))
3899 return;
3900
3901 if (!isa<ObjCMethodDecl>(D)) {
3902 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
3903 << Attr.getName() << ExpectedFunctionOrMethod;
3904 return;
3905 }
3906
3907 switch (Attr.getKind()) {
3908 case AttributeList::AT_FastCall:
3909 D->addAttr(::new (S.Context)
3910 FastCallAttr(Attr.getRange(), S.Context,
3911 Attr.getAttributeSpellingListIndex()));
3912 return;
3913 case AttributeList::AT_StdCall:
3914 D->addAttr(::new (S.Context)
3915 StdCallAttr(Attr.getRange(), S.Context,
3916 Attr.getAttributeSpellingListIndex()));
3917 return;
3918 case AttributeList::AT_ThisCall:
3919 D->addAttr(::new (S.Context)
3920 ThisCallAttr(Attr.getRange(), S.Context,
3921 Attr.getAttributeSpellingListIndex()));
3922 return;
3923 case AttributeList::AT_CDecl:
3924 D->addAttr(::new (S.Context)
3925 CDeclAttr(Attr.getRange(), S.Context,
3926 Attr.getAttributeSpellingListIndex()));
3927 return;
3928 case AttributeList::AT_Pascal:
3929 D->addAttr(::new (S.Context)
3930 PascalAttr(Attr.getRange(), S.Context,
3931 Attr.getAttributeSpellingListIndex()));
3932 return;
3933 case AttributeList::AT_Pcs: {
3934 PcsAttr::PCSType PCS;
3935 switch (CC) {
3936 case CC_AAPCS:
3937 PCS = PcsAttr::AAPCS;
3938 break;
3939 case CC_AAPCS_VFP:
3940 PCS = PcsAttr::AAPCS_VFP;
3941 break;
3942 default:
3943 llvm_unreachable("unexpected calling convention in pcs attribute");
3944 }
3945
3946 D->addAttr(::new (S.Context)
3947 PcsAttr(Attr.getRange(), S.Context, PCS,
3948 Attr.getAttributeSpellingListIndex()));
3949 return;
3950 }
3951 case AttributeList::AT_PnaclCall:
3952 D->addAttr(::new (S.Context)
3953 PnaclCallAttr(Attr.getRange(), S.Context,
3954 Attr.getAttributeSpellingListIndex()));
3955 return;
3956 case AttributeList::AT_IntelOclBicc:
3957 D->addAttr(::new (S.Context)
3958 IntelOclBiccAttr(Attr.getRange(), S.Context,
3959 Attr.getAttributeSpellingListIndex()));
3960 return;
3961
3962 default:
3963 llvm_unreachable("unexpected attribute kind");
3964 }
3965 }
3966
handleOpenCLKernelAttr(Sema & S,Decl * D,const AttributeList & Attr)3967 static void handleOpenCLKernelAttr(Sema &S, Decl *D, const AttributeList &Attr){
3968 assert(!Attr.isInvalid());
3969 D->addAttr(::new (S.Context) OpenCLKernelAttr(Attr.getRange(), S.Context));
3970 }
3971
handleOpenCLImageAccessAttr(Sema & S,Decl * D,const AttributeList & Attr)3972 static void handleOpenCLImageAccessAttr(Sema &S, Decl *D, const AttributeList &Attr){
3973 assert(!Attr.isInvalid());
3974
3975 Expr *E = Attr.getArg(0);
3976 llvm::APSInt ArgNum(32);
3977 if (E->isTypeDependent() || E->isValueDependent() ||
3978 !E->isIntegerConstantExpr(ArgNum, S.Context)) {
3979 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
3980 << Attr.getName() << AANT_ArgumentIntegerConstant
3981 << E->getSourceRange();
3982 return;
3983 }
3984
3985 D->addAttr(::new (S.Context) OpenCLImageAccessAttr(
3986 Attr.getRange(), S.Context, ArgNum.getZExtValue()));
3987 }
3988
CheckCallingConvAttr(const AttributeList & attr,CallingConv & CC,const FunctionDecl * FD)3989 bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
3990 const FunctionDecl *FD) {
3991 if (attr.isInvalid())
3992 return true;
3993
3994 unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
3995 if (attr.getNumArgs() != ReqArgs || attr.getParameterName()) {
3996 Diag(attr.getLoc(), diag::err_attribute_wrong_number_arguments)
3997 << attr.getName() << ReqArgs;
3998 attr.setInvalid();
3999 return true;
4000 }
4001
4002 // TODO: diagnose uses of these conventions on the wrong target. Or, better
4003 // move to TargetAttributesSema one day.
4004 switch (attr.getKind()) {
4005 case AttributeList::AT_CDecl: CC = CC_C; break;
4006 case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
4007 case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
4008 case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
4009 case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
4010 case AttributeList::AT_Pcs: {
4011 Expr *Arg = attr.getArg(0);
4012 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
4013 if (!Str || !Str->isAscii()) {
4014 Diag(attr.getLoc(), diag::err_attribute_argument_type) << attr.getName()
4015 << AANT_ArgumentString;
4016 attr.setInvalid();
4017 return true;
4018 }
4019
4020 StringRef StrRef = Str->getString();
4021 if (StrRef == "aapcs") {
4022 CC = CC_AAPCS;
4023 break;
4024 } else if (StrRef == "aapcs-vfp") {
4025 CC = CC_AAPCS_VFP;
4026 break;
4027 }
4028
4029 attr.setInvalid();
4030 Diag(attr.getLoc(), diag::err_invalid_pcs);
4031 return true;
4032 }
4033 case AttributeList::AT_PnaclCall: CC = CC_PnaclCall; break;
4034 case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
4035 default: llvm_unreachable("unexpected attribute kind");
4036 }
4037
4038 const TargetInfo &TI = Context.getTargetInfo();
4039 TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
4040 if (A == TargetInfo::CCCR_Warning) {
4041 Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
4042
4043 TargetInfo::CallingConvMethodType MT = TargetInfo::CCMT_Unknown;
4044 if (FD)
4045 MT = FD->isCXXInstanceMember() ? TargetInfo::CCMT_Member :
4046 TargetInfo::CCMT_NonMember;
4047 CC = TI.getDefaultCallingConv(MT);
4048 }
4049
4050 return false;
4051 }
4052
handleRegparmAttr(Sema & S,Decl * D,const AttributeList & Attr)4053 static void handleRegparmAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4054 if (hasDeclarator(D)) return;
4055
4056 unsigned numParams;
4057 if (S.CheckRegparmAttr(Attr, numParams))
4058 return;
4059
4060 if (!isa<ObjCMethodDecl>(D)) {
4061 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
4062 << Attr.getName() << ExpectedFunctionOrMethod;
4063 return;
4064 }
4065
4066 D->addAttr(::new (S.Context)
4067 RegparmAttr(Attr.getRange(), S.Context, numParams,
4068 Attr.getAttributeSpellingListIndex()));
4069 }
4070
4071 /// Checks a regparm attribute, returning true if it is ill-formed and
4072 /// otherwise setting numParams to the appropriate value.
CheckRegparmAttr(const AttributeList & Attr,unsigned & numParams)4073 bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
4074 if (Attr.isInvalid())
4075 return true;
4076
4077 if (!checkAttributeNumArgs(*this, Attr, 1)) {
4078 Attr.setInvalid();
4079 return true;
4080 }
4081
4082 Expr *NumParamsExpr = Attr.getArg(0);
4083 llvm::APSInt NumParams(32);
4084 if (NumParamsExpr->isTypeDependent() || NumParamsExpr->isValueDependent() ||
4085 !NumParamsExpr->isIntegerConstantExpr(NumParams, Context)) {
4086 Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4087 << Attr.getName() << AANT_ArgumentIntegerConstant
4088 << NumParamsExpr->getSourceRange();
4089 Attr.setInvalid();
4090 return true;
4091 }
4092
4093 if (Context.getTargetInfo().getRegParmMax() == 0) {
4094 Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
4095 << NumParamsExpr->getSourceRange();
4096 Attr.setInvalid();
4097 return true;
4098 }
4099
4100 numParams = NumParams.getZExtValue();
4101 if (numParams > Context.getTargetInfo().getRegParmMax()) {
4102 Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
4103 << Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
4104 Attr.setInvalid();
4105 return true;
4106 }
4107
4108 return false;
4109 }
4110
handleLaunchBoundsAttr(Sema & S,Decl * D,const AttributeList & Attr)4111 static void handleLaunchBoundsAttr(Sema &S, Decl *D, const AttributeList &Attr){
4112 if (S.LangOpts.CUDA) {
4113 // check the attribute arguments.
4114 if (Attr.getNumArgs() != 1 && Attr.getNumArgs() != 2) {
4115 // FIXME: 0 is not okay.
4116 S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments) << 2;
4117 return;
4118 }
4119
4120 if (!isFunctionOrMethod(D)) {
4121 S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
4122 << Attr.getName() << ExpectedFunctionOrMethod;
4123 return;
4124 }
4125
4126 Expr *MaxThreadsExpr = Attr.getArg(0);
4127 llvm::APSInt MaxThreads(32);
4128 if (MaxThreadsExpr->isTypeDependent() ||
4129 MaxThreadsExpr->isValueDependent() ||
4130 !MaxThreadsExpr->isIntegerConstantExpr(MaxThreads, S.Context)) {
4131 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
4132 << Attr.getName() << 1 << AANT_ArgumentIntegerConstant
4133 << MaxThreadsExpr->getSourceRange();
4134 return;
4135 }
4136
4137 llvm::APSInt MinBlocks(32);
4138 if (Attr.getNumArgs() > 1) {
4139 Expr *MinBlocksExpr = Attr.getArg(1);
4140 if (MinBlocksExpr->isTypeDependent() ||
4141 MinBlocksExpr->isValueDependent() ||
4142 !MinBlocksExpr->isIntegerConstantExpr(MinBlocks, S.Context)) {
4143 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
4144 << Attr.getName() << 2 << AANT_ArgumentIntegerConstant
4145 << MinBlocksExpr->getSourceRange();
4146 return;
4147 }
4148 }
4149
4150 D->addAttr(::new (S.Context)
4151 CUDALaunchBoundsAttr(Attr.getRange(), S.Context,
4152 MaxThreads.getZExtValue(),
4153 MinBlocks.getZExtValue(),
4154 Attr.getAttributeSpellingListIndex()));
4155 } else {
4156 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << "launch_bounds";
4157 }
4158 }
4159
handleArgumentWithTypeTagAttr(Sema & S,Decl * D,const AttributeList & Attr)4160 static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
4161 const AttributeList &Attr) {
4162 StringRef AttrName = Attr.getName()->getName();
4163 if (!Attr.getParameterName()) {
4164 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
4165 << Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
4166 return;
4167 }
4168
4169 if (Attr.getNumArgs() != 2) {
4170 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
4171 << Attr.getName() << /* required args = */ 3;
4172 return;
4173 }
4174
4175 IdentifierInfo *ArgumentKind = Attr.getParameterName();
4176
4177 if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
4178 S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
4179 << Attr.getName() << ExpectedFunctionOrMethod;
4180 return;
4181 }
4182
4183 uint64_t ArgumentIdx;
4184 if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
4185 Attr.getLoc(), 2,
4186 Attr.getArg(0), ArgumentIdx))
4187 return;
4188
4189 uint64_t TypeTagIdx;
4190 if (!checkFunctionOrMethodArgumentIndex(S, D, AttrName,
4191 Attr.getLoc(), 3,
4192 Attr.getArg(1), TypeTagIdx))
4193 return;
4194
4195 bool IsPointer = (AttrName == "pointer_with_type_tag");
4196 if (IsPointer) {
4197 // Ensure that buffer has a pointer type.
4198 QualType BufferTy = getFunctionOrMethodArgType(D, ArgumentIdx);
4199 if (!BufferTy->isPointerType()) {
4200 S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
4201 << Attr.getName();
4202 }
4203 }
4204
4205 D->addAttr(::new (S.Context)
4206 ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
4207 ArgumentIdx, TypeTagIdx, IsPointer,
4208 Attr.getAttributeSpellingListIndex()));
4209 }
4210
handleTypeTagForDatatypeAttr(Sema & S,Decl * D,const AttributeList & Attr)4211 static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
4212 const AttributeList &Attr) {
4213 IdentifierInfo *PointerKind = Attr.getParameterName();
4214 if (!PointerKind) {
4215 S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
4216 << Attr.getName() << 1 << AANT_ArgumentIdentifier;
4217 return;
4218 }
4219
4220 QualType MatchingCType = S.GetTypeFromParser(Attr.getMatchingCType(), NULL);
4221
4222 D->addAttr(::new (S.Context)
4223 TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
4224 MatchingCType,
4225 Attr.getLayoutCompatible(),
4226 Attr.getMustBeNull(),
4227 Attr.getAttributeSpellingListIndex()));
4228 }
4229
4230 //===----------------------------------------------------------------------===//
4231 // Checker-specific attribute handlers.
4232 //===----------------------------------------------------------------------===//
4233
isValidSubjectOfNSAttribute(Sema & S,QualType type)4234 static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
4235 return type->isDependentType() ||
4236 type->isObjCObjectPointerType() ||
4237 S.Context.isObjCNSObjectType(type);
4238 }
isValidSubjectOfCFAttribute(Sema & S,QualType type)4239 static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
4240 return type->isDependentType() ||
4241 type->isPointerType() ||
4242 isValidSubjectOfNSAttribute(S, type);
4243 }
4244
handleNSConsumedAttr(Sema & S,Decl * D,const AttributeList & Attr)4245 static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4246 ParmVarDecl *param = dyn_cast<ParmVarDecl>(D);
4247 if (!param) {
4248 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4249 << Attr.getRange() << Attr.getName() << ExpectedParameter;
4250 return;
4251 }
4252
4253 bool typeOK, cf;
4254 if (Attr.getKind() == AttributeList::AT_NSConsumed) {
4255 typeOK = isValidSubjectOfNSAttribute(S, param->getType());
4256 cf = false;
4257 } else {
4258 typeOK = isValidSubjectOfCFAttribute(S, param->getType());
4259 cf = true;
4260 }
4261
4262 if (!typeOK) {
4263 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
4264 << Attr.getRange() << Attr.getName() << cf;
4265 return;
4266 }
4267
4268 if (cf)
4269 param->addAttr(::new (S.Context)
4270 CFConsumedAttr(Attr.getRange(), S.Context,
4271 Attr.getAttributeSpellingListIndex()));
4272 else
4273 param->addAttr(::new (S.Context)
4274 NSConsumedAttr(Attr.getRange(), S.Context,
4275 Attr.getAttributeSpellingListIndex()));
4276 }
4277
handleNSConsumesSelfAttr(Sema & S,Decl * D,const AttributeList & Attr)4278 static void handleNSConsumesSelfAttr(Sema &S, Decl *D,
4279 const AttributeList &Attr) {
4280 if (!isa<ObjCMethodDecl>(D)) {
4281 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4282 << Attr.getRange() << Attr.getName() << ExpectedMethod;
4283 return;
4284 }
4285
4286 D->addAttr(::new (S.Context)
4287 NSConsumesSelfAttr(Attr.getRange(), S.Context,
4288 Attr.getAttributeSpellingListIndex()));
4289 }
4290
handleNSReturnsRetainedAttr(Sema & S,Decl * D,const AttributeList & Attr)4291 static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
4292 const AttributeList &Attr) {
4293
4294 QualType returnType;
4295
4296 if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
4297 returnType = MD->getResultType();
4298 else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
4299 (Attr.getKind() == AttributeList::AT_NSReturnsRetained))
4300 return; // ignore: was handled as a type attribute
4301 else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
4302 returnType = PD->getType();
4303 else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
4304 returnType = FD->getResultType();
4305 else {
4306 S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
4307 << Attr.getRange() << Attr.getName()
4308 << ExpectedFunctionOrMethod;
4309 return;
4310 }
4311
4312 bool typeOK;
4313 bool cf;
4314 switch (Attr.getKind()) {
4315 default: llvm_unreachable("invalid ownership attribute");
4316 case AttributeList::AT_NSReturnsAutoreleased:
4317 case AttributeList::AT_NSReturnsRetained:
4318 case AttributeList::AT_NSReturnsNotRetained:
4319 typeOK = isValidSubjectOfNSAttribute(S, returnType);
4320 cf = false;
4321 break;
4322
4323 case AttributeList::AT_CFReturnsRetained:
4324 case AttributeList::AT_CFReturnsNotRetained:
4325 typeOK = isValidSubjectOfCFAttribute(S, returnType);
4326 cf = true;
4327 break;
4328 }
4329
4330 if (!typeOK) {
4331 S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4332 << Attr.getRange() << Attr.getName() << isa<ObjCMethodDecl>(D) << cf;
4333 return;
4334 }
4335
4336 switch (Attr.getKind()) {
4337 default:
4338 llvm_unreachable("invalid ownership attribute");
4339 case AttributeList::AT_NSReturnsAutoreleased:
4340 D->addAttr(::new (S.Context)
4341 NSReturnsAutoreleasedAttr(Attr.getRange(), S.Context,
4342 Attr.getAttributeSpellingListIndex()));
4343 return;
4344 case AttributeList::AT_CFReturnsNotRetained:
4345 D->addAttr(::new (S.Context)
4346 CFReturnsNotRetainedAttr(Attr.getRange(), S.Context,
4347 Attr.getAttributeSpellingListIndex()));
4348 return;
4349 case AttributeList::AT_NSReturnsNotRetained:
4350 D->addAttr(::new (S.Context)
4351 NSReturnsNotRetainedAttr(Attr.getRange(), S.Context,
4352 Attr.getAttributeSpellingListIndex()));
4353 return;
4354 case AttributeList::AT_CFReturnsRetained:
4355 D->addAttr(::new (S.Context)
4356 CFReturnsRetainedAttr(Attr.getRange(), S.Context,
4357 Attr.getAttributeSpellingListIndex()));
4358 return;
4359 case AttributeList::AT_NSReturnsRetained:
4360 D->addAttr(::new (S.Context)
4361 NSReturnsRetainedAttr(Attr.getRange(), S.Context,
4362 Attr.getAttributeSpellingListIndex()));
4363 return;
4364 };
4365 }
4366
handleObjCReturnsInnerPointerAttr(Sema & S,Decl * D,const AttributeList & attr)4367 static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
4368 const AttributeList &attr) {
4369 SourceLocation loc = attr.getLoc();
4370
4371 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
4372
4373 if (!method) {
4374 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4375 << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
4376 return;
4377 }
4378
4379 // Check that the method returns a normal pointer.
4380 QualType resultType = method->getResultType();
4381
4382 if (!resultType->isReferenceType() &&
4383 (!resultType->isPointerType() || resultType->isObjCRetainableType())) {
4384 S.Diag(method->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
4385 << SourceRange(loc)
4386 << attr.getName() << /*method*/ 1 << /*non-retainable pointer*/ 2;
4387
4388 // Drop the attribute.
4389 return;
4390 }
4391
4392 method->addAttr(::new (S.Context)
4393 ObjCReturnsInnerPointerAttr(attr.getRange(), S.Context,
4394 attr.getAttributeSpellingListIndex()));
4395 }
4396
handleObjCRequiresSuperAttr(Sema & S,Decl * D,const AttributeList & attr)4397 static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
4398 const AttributeList &attr) {
4399 SourceLocation loc = attr.getLoc();
4400 ObjCMethodDecl *method = dyn_cast<ObjCMethodDecl>(D);
4401
4402 if (!method) {
4403 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4404 << SourceRange(loc, loc) << attr.getName() << ExpectedMethod;
4405 return;
4406 }
4407 DeclContext *DC = method->getDeclContext();
4408 if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
4409 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4410 << attr.getName() << 0;
4411 S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
4412 return;
4413 }
4414 if (method->getMethodFamily() == OMF_dealloc) {
4415 S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
4416 << attr.getName() << 1;
4417 return;
4418 }
4419
4420 method->addAttr(::new (S.Context)
4421 ObjCRequiresSuperAttr(attr.getRange(), S.Context,
4422 attr.getAttributeSpellingListIndex()));
4423 }
4424
4425 /// Handle cf_audited_transfer and cf_unknown_transfer.
handleCFTransferAttr(Sema & S,Decl * D,const AttributeList & A)4426 static void handleCFTransferAttr(Sema &S, Decl *D, const AttributeList &A) {
4427 if (!isa<FunctionDecl>(D)) {
4428 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4429 << A.getRange() << A.getName() << ExpectedFunction;
4430 return;
4431 }
4432
4433 bool IsAudited = (A.getKind() == AttributeList::AT_CFAuditedTransfer);
4434
4435 // Check whether there's a conflicting attribute already present.
4436 Attr *Existing;
4437 if (IsAudited) {
4438 Existing = D->getAttr<CFUnknownTransferAttr>();
4439 } else {
4440 Existing = D->getAttr<CFAuditedTransferAttr>();
4441 }
4442 if (Existing) {
4443 S.Diag(D->getLocStart(), diag::err_attributes_are_not_compatible)
4444 << A.getName()
4445 << (IsAudited ? "cf_unknown_transfer" : "cf_audited_transfer")
4446 << A.getRange() << Existing->getRange();
4447 return;
4448 }
4449
4450 // All clear; add the attribute.
4451 if (IsAudited) {
4452 D->addAttr(::new (S.Context)
4453 CFAuditedTransferAttr(A.getRange(), S.Context,
4454 A.getAttributeSpellingListIndex()));
4455 } else {
4456 D->addAttr(::new (S.Context)
4457 CFUnknownTransferAttr(A.getRange(), S.Context,
4458 A.getAttributeSpellingListIndex()));
4459 }
4460 }
4461
handleNSBridgedAttr(Sema & S,Scope * Sc,Decl * D,const AttributeList & Attr)4462 static void handleNSBridgedAttr(Sema &S, Scope *Sc, Decl *D,
4463 const AttributeList &Attr) {
4464 RecordDecl *RD = dyn_cast<RecordDecl>(D);
4465 if (!RD || RD->isUnion()) {
4466 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4467 << Attr.getRange() << Attr.getName() << ExpectedStruct;
4468 }
4469
4470 IdentifierInfo *ParmName = Attr.getParameterName();
4471
4472 // In Objective-C, verify that the type names an Objective-C type.
4473 // We don't want to check this outside of ObjC because people sometimes
4474 // do crazy C declarations of Objective-C types.
4475 if (ParmName && S.getLangOpts().ObjC1) {
4476 // Check for an existing type with this name.
4477 LookupResult R(S, DeclarationName(ParmName), Attr.getParameterLoc(),
4478 Sema::LookupOrdinaryName);
4479 if (S.LookupName(R, Sc)) {
4480 NamedDecl *Target = R.getFoundDecl();
4481 if (Target && !isa<ObjCInterfaceDecl>(Target)) {
4482 S.Diag(D->getLocStart(), diag::err_ns_bridged_not_interface);
4483 S.Diag(Target->getLocStart(), diag::note_declared_at);
4484 }
4485 }
4486 }
4487
4488 D->addAttr(::new (S.Context)
4489 NSBridgedAttr(Attr.getRange(), S.Context, ParmName,
4490 Attr.getAttributeSpellingListIndex()));
4491 }
4492
handleObjCOwnershipAttr(Sema & S,Decl * D,const AttributeList & Attr)4493 static void handleObjCOwnershipAttr(Sema &S, Decl *D,
4494 const AttributeList &Attr) {
4495 if (hasDeclarator(D)) return;
4496
4497 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4498 << Attr.getRange() << Attr.getName() << ExpectedVariable;
4499 }
4500
handleObjCPreciseLifetimeAttr(Sema & S,Decl * D,const AttributeList & Attr)4501 static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
4502 const AttributeList &Attr) {
4503 if (!isa<VarDecl>(D) && !isa<FieldDecl>(D)) {
4504 S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
4505 << Attr.getRange() << Attr.getName() << ExpectedVariable;
4506 return;
4507 }
4508
4509 ValueDecl *vd = cast<ValueDecl>(D);
4510 QualType type = vd->getType();
4511
4512 if (!type->isDependentType() &&
4513 !type->isObjCLifetimeType()) {
4514 S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
4515 << type;
4516 return;
4517 }
4518
4519 Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
4520
4521 // If we have no lifetime yet, check the lifetime we're presumably
4522 // going to infer.
4523 if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
4524 lifetime = type->getObjCARCImplicitLifetime();
4525
4526 switch (lifetime) {
4527 case Qualifiers::OCL_None:
4528 assert(type->isDependentType() &&
4529 "didn't infer lifetime for non-dependent type?");
4530 break;
4531
4532 case Qualifiers::OCL_Weak: // meaningful
4533 case Qualifiers::OCL_Strong: // meaningful
4534 break;
4535
4536 case Qualifiers::OCL_ExplicitNone:
4537 case Qualifiers::OCL_Autoreleasing:
4538 S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
4539 << (lifetime == Qualifiers::OCL_Autoreleasing);
4540 break;
4541 }
4542
4543 D->addAttr(::new (S.Context)
4544 ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
4545 Attr.getAttributeSpellingListIndex()));
4546 }
4547
4548 //===----------------------------------------------------------------------===//
4549 // Microsoft specific attribute handlers.
4550 //===----------------------------------------------------------------------===//
4551
4552 // Check if MS extensions or some other language extensions are enabled. If
4553 // not, issue a diagnostic that the given attribute is unused.
checkMicrosoftExt(Sema & S,const AttributeList & Attr,bool OtherExtension=false)4554 static bool checkMicrosoftExt(Sema &S, const AttributeList &Attr,
4555 bool OtherExtension = false) {
4556 if (S.LangOpts.MicrosoftExt || OtherExtension)
4557 return true;
4558 S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
4559 return false;
4560 }
4561
handleUuidAttr(Sema & S,Decl * D,const AttributeList & Attr)4562 static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4563 if (!checkMicrosoftExt(S, Attr, S.LangOpts.Borland))
4564 return;
4565
4566 // check the attribute arguments.
4567 if (!checkAttributeNumArgs(S, Attr, 1))
4568 return;
4569
4570 Expr *Arg = Attr.getArg(0);
4571 StringLiteral *Str = dyn_cast<StringLiteral>(Arg);
4572 if (!Str || !Str->isAscii()) {
4573 S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
4574 << Attr.getName() << AANT_ArgumentString;
4575 return;
4576 }
4577
4578 StringRef StrRef = Str->getString();
4579
4580 bool IsCurly = StrRef.size() > 1 && StrRef.front() == '{' &&
4581 StrRef.back() == '}';
4582
4583 // Validate GUID length.
4584 if (IsCurly && StrRef.size() != 38) {
4585 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4586 return;
4587 }
4588 if (!IsCurly && StrRef.size() != 36) {
4589 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4590 return;
4591 }
4592
4593 // GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
4594 // "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}"
4595 StringRef::iterator I = StrRef.begin();
4596 if (IsCurly) // Skip the optional '{'
4597 ++I;
4598
4599 for (int i = 0; i < 36; ++i) {
4600 if (i == 8 || i == 13 || i == 18 || i == 23) {
4601 if (*I != '-') {
4602 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4603 return;
4604 }
4605 } else if (!isHexDigit(*I)) {
4606 S.Diag(Attr.getLoc(), diag::err_attribute_uuid_malformed_guid);
4607 return;
4608 }
4609 I++;
4610 }
4611
4612 D->addAttr(::new (S.Context)
4613 UuidAttr(Attr.getRange(), S.Context, Str->getString(),
4614 Attr.getAttributeSpellingListIndex()));
4615 }
4616
handleInheritanceAttr(Sema & S,Decl * D,const AttributeList & Attr)4617 static void handleInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4618 if (!checkMicrosoftExt(S, Attr))
4619 return;
4620
4621 AttributeList::Kind Kind = Attr.getKind();
4622 if (Kind == AttributeList::AT_SingleInheritance)
4623 D->addAttr(
4624 ::new (S.Context)
4625 SingleInheritanceAttr(Attr.getRange(), S.Context,
4626 Attr.getAttributeSpellingListIndex()));
4627 else if (Kind == AttributeList::AT_MultipleInheritance)
4628 D->addAttr(
4629 ::new (S.Context)
4630 MultipleInheritanceAttr(Attr.getRange(), S.Context,
4631 Attr.getAttributeSpellingListIndex()));
4632 else if (Kind == AttributeList::AT_VirtualInheritance)
4633 D->addAttr(
4634 ::new (S.Context)
4635 VirtualInheritanceAttr(Attr.getRange(), S.Context,
4636 Attr.getAttributeSpellingListIndex()));
4637 }
4638
handlePortabilityAttr(Sema & S,Decl * D,const AttributeList & Attr)4639 static void handlePortabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4640 if (!checkMicrosoftExt(S, Attr))
4641 return;
4642
4643 AttributeList::Kind Kind = Attr.getKind();
4644 if (Kind == AttributeList::AT_Win64)
4645 D->addAttr(
4646 ::new (S.Context) Win64Attr(Attr.getRange(), S.Context,
4647 Attr.getAttributeSpellingListIndex()));
4648 }
4649
handleForceInlineAttr(Sema & S,Decl * D,const AttributeList & Attr)4650 static void handleForceInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4651 if (!checkMicrosoftExt(S, Attr))
4652 return;
4653 D->addAttr(::new (S.Context)
4654 ForceInlineAttr(Attr.getRange(), S.Context,
4655 Attr.getAttributeSpellingListIndex()));
4656 }
4657
handleSelectAnyAttr(Sema & S,Decl * D,const AttributeList & Attr)4658 static void handleSelectAnyAttr(Sema &S, Decl *D, const AttributeList &Attr) {
4659 if (!checkMicrosoftExt(S, Attr))
4660 return;
4661 // Check linkage after possibly merging declaratinos. See
4662 // checkAttributesAfterMerging().
4663 D->addAttr(::new (S.Context)
4664 SelectAnyAttr(Attr.getRange(), S.Context,
4665 Attr.getAttributeSpellingListIndex()));
4666 }
4667
4668 //===----------------------------------------------------------------------===//
4669 // Top Level Sema Entry Points
4670 //===----------------------------------------------------------------------===//
4671
ProcessNonInheritableDeclAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)4672 static void ProcessNonInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
4673 const AttributeList &Attr) {
4674 switch (Attr.getKind()) {
4675 case AttributeList::AT_CUDADevice: handleDeviceAttr (S, D, Attr); break;
4676 case AttributeList::AT_CUDAHost: handleHostAttr (S, D, Attr); break;
4677 case AttributeList::AT_Overloadable:handleOverloadableAttr(S, D, Attr); break;
4678 case AttributeList::AT_Kernel: handleKernelAttr (S, D, Attr); break;
4679 default:
4680 break;
4681 }
4682 }
4683
ProcessInheritableDeclAttr(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr)4684 static void ProcessInheritableDeclAttr(Sema &S, Scope *scope, Decl *D,
4685 const AttributeList &Attr) {
4686 switch (Attr.getKind()) {
4687 case AttributeList::AT_IBAction: handleIBAction(S, D, Attr); break;
4688 case AttributeList::AT_IBOutlet: handleIBOutlet(S, D, Attr); break;
4689 case AttributeList::AT_IBOutletCollection:
4690 handleIBOutletCollection(S, D, Attr); break;
4691 case AttributeList::AT_AddressSpace:
4692 case AttributeList::AT_ObjCGC:
4693 case AttributeList::AT_VectorSize:
4694 case AttributeList::AT_NeonVectorType:
4695 case AttributeList::AT_NeonPolyVectorType:
4696 case AttributeList::AT_Ptr32:
4697 case AttributeList::AT_Ptr64:
4698 case AttributeList::AT_SPtr:
4699 case AttributeList::AT_UPtr:
4700 // Ignore these, these are type attributes, handled by
4701 // ProcessTypeAttributes.
4702 break;
4703 case AttributeList::AT_CUDADevice:
4704 case AttributeList::AT_CUDAHost:
4705 case AttributeList::AT_Overloadable:
4706 case AttributeList::AT_Kernel:
4707 // Ignore, this is a non-inheritable attribute, handled
4708 // by ProcessNonInheritableDeclAttr.
4709 break;
4710 case AttributeList::AT_Alias: handleAliasAttr (S, D, Attr); break;
4711 case AttributeList::AT_Aligned: handleAlignedAttr (S, D, Attr); break;
4712 case AttributeList::AT_AllocSize: handleAllocSizeAttr (S, D, Attr); break;
4713 case AttributeList::AT_AlwaysInline:
4714 handleAlwaysInlineAttr (S, D, Attr); break;
4715 case AttributeList::AT_AnalyzerNoReturn:
4716 handleAnalyzerNoReturnAttr (S, D, Attr); break;
4717 case AttributeList::AT_TLSModel: handleTLSModelAttr (S, D, Attr); break;
4718 case AttributeList::AT_Annotate: handleAnnotateAttr (S, D, Attr); break;
4719 case AttributeList::AT_Availability:handleAvailabilityAttr(S, D, Attr); break;
4720 case AttributeList::AT_CarriesDependency:
4721 handleDependencyAttr(S, scope, D, Attr);
4722 break;
4723 case AttributeList::AT_Common: handleCommonAttr (S, D, Attr); break;
4724 case AttributeList::AT_CUDAConstant:handleConstantAttr (S, D, Attr); break;
4725 case AttributeList::AT_Constructor: handleConstructorAttr (S, D, Attr); break;
4726 case AttributeList::AT_CXX11NoReturn:
4727 handleCXX11NoReturnAttr(S, D, Attr);
4728 break;
4729 case AttributeList::AT_Deprecated:
4730 handleAttrWithMessage<DeprecatedAttr>(S, D, Attr);
4731 break;
4732 case AttributeList::AT_Destructor: handleDestructorAttr (S, D, Attr); break;
4733 case AttributeList::AT_ExtVectorType:
4734 handleExtVectorTypeAttr(S, scope, D, Attr);
4735 break;
4736 case AttributeList::AT_MinSize:
4737 handleMinSizeAttr(S, D, Attr);
4738 break;
4739 case AttributeList::AT_Format: handleFormatAttr (S, D, Attr); break;
4740 case AttributeList::AT_FormatArg: handleFormatArgAttr (S, D, Attr); break;
4741 case AttributeList::AT_CUDAGlobal: handleGlobalAttr (S, D, Attr); break;
4742 case AttributeList::AT_GNUInline: handleGNUInlineAttr (S, D, Attr); break;
4743 case AttributeList::AT_CUDALaunchBounds:
4744 handleLaunchBoundsAttr(S, D, Attr);
4745 break;
4746 case AttributeList::AT_Mode: handleModeAttr (S, D, Attr); break;
4747 case AttributeList::AT_Malloc: handleMallocAttr (S, D, Attr); break;
4748 case AttributeList::AT_MayAlias: handleMayAliasAttr (S, D, Attr); break;
4749 case AttributeList::AT_NoCommon: handleNoCommonAttr (S, D, Attr); break;
4750 case AttributeList::AT_NonNull: handleNonNullAttr (S, D, Attr); break;
4751 case AttributeList::AT_ownership_returns:
4752 case AttributeList::AT_ownership_takes:
4753 case AttributeList::AT_ownership_holds:
4754 handleOwnershipAttr (S, D, Attr); break;
4755 case AttributeList::AT_Cold: handleColdAttr (S, D, Attr); break;
4756 case AttributeList::AT_Hot: handleHotAttr (S, D, Attr); break;
4757 case AttributeList::AT_Naked: handleNakedAttr (S, D, Attr); break;
4758 case AttributeList::AT_NoReturn: handleNoReturnAttr (S, D, Attr); break;
4759 case AttributeList::AT_NoThrow: handleNothrowAttr (S, D, Attr); break;
4760 case AttributeList::AT_CUDAShared: handleSharedAttr (S, D, Attr); break;
4761 case AttributeList::AT_VecReturn: handleVecReturnAttr (S, D, Attr); break;
4762
4763 case AttributeList::AT_ObjCOwnership:
4764 handleObjCOwnershipAttr(S, D, Attr); break;
4765 case AttributeList::AT_ObjCPreciseLifetime:
4766 handleObjCPreciseLifetimeAttr(S, D, Attr); break;
4767
4768 case AttributeList::AT_ObjCReturnsInnerPointer:
4769 handleObjCReturnsInnerPointerAttr(S, D, Attr); break;
4770
4771 case AttributeList::AT_ObjCRequiresSuper:
4772 handleObjCRequiresSuperAttr(S, D, Attr); break;
4773
4774 case AttributeList::AT_NSBridged:
4775 handleNSBridgedAttr(S, scope, D, Attr); break;
4776
4777 case AttributeList::AT_CFAuditedTransfer:
4778 case AttributeList::AT_CFUnknownTransfer:
4779 handleCFTransferAttr(S, D, Attr); break;
4780
4781 // Checker-specific.
4782 case AttributeList::AT_CFConsumed:
4783 case AttributeList::AT_NSConsumed: handleNSConsumedAttr (S, D, Attr); break;
4784 case AttributeList::AT_NSConsumesSelf:
4785 handleNSConsumesSelfAttr(S, D, Attr); break;
4786
4787 case AttributeList::AT_NSReturnsAutoreleased:
4788 case AttributeList::AT_NSReturnsNotRetained:
4789 case AttributeList::AT_CFReturnsNotRetained:
4790 case AttributeList::AT_NSReturnsRetained:
4791 case AttributeList::AT_CFReturnsRetained:
4792 handleNSReturnsRetainedAttr(S, D, Attr); break;
4793
4794 case AttributeList::AT_WorkGroupSizeHint:
4795 case AttributeList::AT_ReqdWorkGroupSize:
4796 handleWorkGroupSize(S, D, Attr); break;
4797
4798 case AttributeList::AT_VecTypeHint:
4799 handleVecTypeHint(S, D, Attr); break;
4800
4801 case AttributeList::AT_Endian:
4802 handleEndianAttr(S, D, Attr);
4803 break;
4804
4805 case AttributeList::AT_InitPriority:
4806 handleInitPriorityAttr(S, D, Attr); break;
4807
4808 case AttributeList::AT_Packed: handlePackedAttr (S, D, Attr); break;
4809 case AttributeList::AT_Section: handleSectionAttr (S, D, Attr); break;
4810 case AttributeList::AT_Unavailable:
4811 handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
4812 break;
4813 case AttributeList::AT_ArcWeakrefUnavailable:
4814 handleArcWeakrefUnavailableAttr (S, D, Attr);
4815 break;
4816 case AttributeList::AT_ObjCRootClass:
4817 handleObjCRootClassAttr(S, D, Attr);
4818 break;
4819 case AttributeList::AT_ObjCRequiresPropertyDefs:
4820 handleObjCRequiresPropertyDefsAttr (S, D, Attr);
4821 break;
4822 case AttributeList::AT_Unused: handleUnusedAttr (S, D, Attr); break;
4823 case AttributeList::AT_ReturnsTwice:
4824 handleReturnsTwiceAttr(S, D, Attr);
4825 break;
4826 case AttributeList::AT_Used: handleUsedAttr (S, D, Attr); break;
4827 case AttributeList::AT_Visibility:
4828 handleVisibilityAttr(S, D, Attr, false);
4829 break;
4830 case AttributeList::AT_TypeVisibility:
4831 handleVisibilityAttr(S, D, Attr, true);
4832 break;
4833 case AttributeList::AT_WarnUnused:
4834 handleWarnUnusedAttr(S, D, Attr);
4835 break;
4836 case AttributeList::AT_WarnUnusedResult: handleWarnUnusedResult(S, D, Attr);
4837 break;
4838 case AttributeList::AT_Weak: handleWeakAttr (S, D, Attr); break;
4839 case AttributeList::AT_WeakRef: handleWeakRefAttr (S, D, Attr); break;
4840 case AttributeList::AT_WeakImport: handleWeakImportAttr (S, D, Attr); break;
4841 case AttributeList::AT_TransparentUnion:
4842 handleTransparentUnionAttr(S, D, Attr);
4843 break;
4844 case AttributeList::AT_ObjCException:
4845 handleObjCExceptionAttr(S, D, Attr);
4846 break;
4847 case AttributeList::AT_ObjCMethodFamily:
4848 handleObjCMethodFamilyAttr(S, D, Attr);
4849 break;
4850 case AttributeList::AT_ObjCNSObject:handleObjCNSObject (S, D, Attr); break;
4851 case AttributeList::AT_Blocks: handleBlocksAttr (S, D, Attr); break;
4852 case AttributeList::AT_Sentinel: handleSentinelAttr (S, D, Attr); break;
4853 case AttributeList::AT_Const: handleConstAttr (S, D, Attr); break;
4854 case AttributeList::AT_Pure: handlePureAttr (S, D, Attr); break;
4855 case AttributeList::AT_Cleanup: handleCleanupAttr (S, D, Attr); break;
4856 case AttributeList::AT_NoDebug: handleNoDebugAttr (S, D, Attr); break;
4857 case AttributeList::AT_NoInline: handleNoInlineAttr (S, D, Attr); break;
4858 case AttributeList::AT_Regparm: handleRegparmAttr (S, D, Attr); break;
4859 case AttributeList::IgnoredAttribute:
4860 // Just ignore
4861 break;
4862 case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
4863 handleNoInstrumentFunctionAttr(S, D, Attr);
4864 break;
4865 case AttributeList::AT_StdCall:
4866 case AttributeList::AT_CDecl:
4867 case AttributeList::AT_FastCall:
4868 case AttributeList::AT_ThisCall:
4869 case AttributeList::AT_Pascal:
4870 case AttributeList::AT_Pcs:
4871 case AttributeList::AT_PnaclCall:
4872 case AttributeList::AT_IntelOclBicc:
4873 handleCallConvAttr(S, D, Attr);
4874 break;
4875 case AttributeList::AT_OpenCLKernel:
4876 handleOpenCLKernelAttr(S, D, Attr);
4877 break;
4878 case AttributeList::AT_OpenCLImageAccess:
4879 handleOpenCLImageAccessAttr(S, D, Attr);
4880 break;
4881
4882 // Microsoft attributes:
4883 case AttributeList::AT_MsProperty: break;
4884 case AttributeList::AT_MsStruct:
4885 handleMsStructAttr(S, D, Attr);
4886 break;
4887 case AttributeList::AT_Uuid:
4888 handleUuidAttr(S, D, Attr);
4889 break;
4890 case AttributeList::AT_SingleInheritance:
4891 case AttributeList::AT_MultipleInheritance:
4892 case AttributeList::AT_VirtualInheritance:
4893 handleInheritanceAttr(S, D, Attr);
4894 break;
4895 case AttributeList::AT_Win64:
4896 handlePortabilityAttr(S, D, Attr);
4897 break;
4898 case AttributeList::AT_ForceInline:
4899 handleForceInlineAttr(S, D, Attr);
4900 break;
4901 case AttributeList::AT_SelectAny:
4902 handleSelectAnyAttr(S, D, Attr);
4903 break;
4904
4905 // Thread safety attributes:
4906 case AttributeList::AT_AssertExclusiveLock:
4907 handleAssertExclusiveLockAttr(S, D, Attr);
4908 break;
4909 case AttributeList::AT_AssertSharedLock:
4910 handleAssertSharedLockAttr(S, D, Attr);
4911 break;
4912 case AttributeList::AT_GuardedVar:
4913 handleGuardedVarAttr(S, D, Attr);
4914 break;
4915 case AttributeList::AT_PtGuardedVar:
4916 handlePtGuardedVarAttr(S, D, Attr);
4917 break;
4918 case AttributeList::AT_ScopedLockable:
4919 handleScopedLockableAttr(S, D, Attr);
4920 break;
4921 case AttributeList::AT_NoSanitizeAddress:
4922 handleNoSanitizeAddressAttr(S, D, Attr);
4923 break;
4924 case AttributeList::AT_NoThreadSafetyAnalysis:
4925 handleNoThreadSafetyAnalysis(S, D, Attr);
4926 break;
4927 case AttributeList::AT_NoSanitizeThread:
4928 handleNoSanitizeThread(S, D, Attr);
4929 break;
4930 case AttributeList::AT_NoSanitizeMemory:
4931 handleNoSanitizeMemory(S, D, Attr);
4932 break;
4933 case AttributeList::AT_Lockable:
4934 handleLockableAttr(S, D, Attr);
4935 break;
4936 case AttributeList::AT_GuardedBy:
4937 handleGuardedByAttr(S, D, Attr);
4938 break;
4939 case AttributeList::AT_PtGuardedBy:
4940 handlePtGuardedByAttr(S, D, Attr);
4941 break;
4942 case AttributeList::AT_ExclusiveLockFunction:
4943 handleExclusiveLockFunctionAttr(S, D, Attr);
4944 break;
4945 case AttributeList::AT_ExclusiveLocksRequired:
4946 handleExclusiveLocksRequiredAttr(S, D, Attr);
4947 break;
4948 case AttributeList::AT_ExclusiveTrylockFunction:
4949 handleExclusiveTrylockFunctionAttr(S, D, Attr);
4950 break;
4951 case AttributeList::AT_LockReturned:
4952 handleLockReturnedAttr(S, D, Attr);
4953 break;
4954 case AttributeList::AT_LocksExcluded:
4955 handleLocksExcludedAttr(S, D, Attr);
4956 break;
4957 case AttributeList::AT_SharedLockFunction:
4958 handleSharedLockFunctionAttr(S, D, Attr);
4959 break;
4960 case AttributeList::AT_SharedLocksRequired:
4961 handleSharedLocksRequiredAttr(S, D, Attr);
4962 break;
4963 case AttributeList::AT_SharedTrylockFunction:
4964 handleSharedTrylockFunctionAttr(S, D, Attr);
4965 break;
4966 case AttributeList::AT_UnlockFunction:
4967 handleUnlockFunAttr(S, D, Attr);
4968 break;
4969 case AttributeList::AT_AcquiredBefore:
4970 handleAcquiredBeforeAttr(S, D, Attr);
4971 break;
4972 case AttributeList::AT_AcquiredAfter:
4973 handleAcquiredAfterAttr(S, D, Attr);
4974 break;
4975
4976 // Type safety attributes.
4977 case AttributeList::AT_ArgumentWithTypeTag:
4978 handleArgumentWithTypeTagAttr(S, D, Attr);
4979 break;
4980 case AttributeList::AT_TypeTagForDatatype:
4981 handleTypeTagForDatatypeAttr(S, D, Attr);
4982 break;
4983
4984 default:
4985 // Ask target about the attribute.
4986 const TargetAttributesSema &TargetAttrs = S.getTargetAttributesSema();
4987 if (!TargetAttrs.ProcessDeclAttribute(scope, D, Attr, S))
4988 S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute() ?
4989 diag::warn_unhandled_ms_attribute_ignored :
4990 diag::warn_unknown_attribute_ignored) << Attr.getName();
4991 break;
4992 }
4993 }
4994
4995 /// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
4996 /// the attribute applies to decls. If the attribute is a type attribute, just
4997 /// silently ignore it if a GNU attribute.
ProcessDeclAttribute(Sema & S,Scope * scope,Decl * D,const AttributeList & Attr,bool NonInheritable,bool Inheritable,bool IncludeCXX11Attributes)4998 static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
4999 const AttributeList &Attr,
5000 bool NonInheritable, bool Inheritable,
5001 bool IncludeCXX11Attributes) {
5002 if (Attr.isInvalid())
5003 return;
5004
5005 // Ignore C++11 attributes on declarator chunks: they appertain to the type
5006 // instead.
5007 if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
5008 return;
5009
5010 if (NonInheritable)
5011 ProcessNonInheritableDeclAttr(S, scope, D, Attr);
5012
5013 if (Inheritable)
5014 ProcessInheritableDeclAttr(S, scope, D, Attr);
5015 }
5016
5017 /// ProcessDeclAttributeList - Apply all the decl attributes in the specified
5018 /// attribute list to the specified decl, ignoring any type attributes.
ProcessDeclAttributeList(Scope * S,Decl * D,const AttributeList * AttrList,bool NonInheritable,bool Inheritable,bool IncludeCXX11Attributes)5019 void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
5020 const AttributeList *AttrList,
5021 bool NonInheritable, bool Inheritable,
5022 bool IncludeCXX11Attributes) {
5023 for (const AttributeList* l = AttrList; l; l = l->getNext())
5024 ProcessDeclAttribute(*this, S, D, *l, NonInheritable, Inheritable,
5025 IncludeCXX11Attributes);
5026
5027 // GCC accepts
5028 // static int a9 __attribute__((weakref));
5029 // but that looks really pointless. We reject it.
5030 if (Inheritable && D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
5031 Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias) <<
5032 cast<NamedDecl>(D)->getNameAsString();
5033 D->dropAttr<WeakRefAttr>();
5034 return;
5035 }
5036 }
5037
5038 // Annotation attributes are the only attributes allowed after an access
5039 // specifier.
ProcessAccessDeclAttributeList(AccessSpecDecl * ASDecl,const AttributeList * AttrList)5040 bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
5041 const AttributeList *AttrList) {
5042 for (const AttributeList* l = AttrList; l; l = l->getNext()) {
5043 if (l->getKind() == AttributeList::AT_Annotate) {
5044 handleAnnotateAttr(*this, ASDecl, *l);
5045 } else {
5046 Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
5047 return true;
5048 }
5049 }
5050
5051 return false;
5052 }
5053
5054 /// checkUnusedDeclAttributes - Check a list of attributes to see if it
5055 /// contains any decl attributes that we should warn about.
checkUnusedDeclAttributes(Sema & S,const AttributeList * A)5056 static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
5057 for ( ; A; A = A->getNext()) {
5058 // Only warn if the attribute is an unignored, non-type attribute.
5059 if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
5060 if (A->getKind() == AttributeList::IgnoredAttribute) continue;
5061
5062 if (A->getKind() == AttributeList::UnknownAttribute) {
5063 S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
5064 << A->getName() << A->getRange();
5065 } else {
5066 S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
5067 << A->getName() << A->getRange();
5068 }
5069 }
5070 }
5071
5072 /// checkUnusedDeclAttributes - Given a declarator which is not being
5073 /// used to build a declaration, complain about any decl attributes
5074 /// which might be lying around on it.
checkUnusedDeclAttributes(Declarator & D)5075 void Sema::checkUnusedDeclAttributes(Declarator &D) {
5076 ::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
5077 ::checkUnusedDeclAttributes(*this, D.getAttributes());
5078 for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
5079 ::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
5080 }
5081
5082 /// DeclClonePragmaWeak - clone existing decl (maybe definition),
5083 /// \#pragma weak needs a non-definition decl and source may not have one.
DeclClonePragmaWeak(NamedDecl * ND,IdentifierInfo * II,SourceLocation Loc)5084 NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
5085 SourceLocation Loc) {
5086 assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
5087 NamedDecl *NewD = 0;
5088 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
5089 FunctionDecl *NewFD;
5090 // FIXME: Missing call to CheckFunctionDeclaration().
5091 // FIXME: Mangling?
5092 // FIXME: Is the qualifier info correct?
5093 // FIXME: Is the DeclContext correct?
5094 NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
5095 Loc, Loc, DeclarationName(II),
5096 FD->getType(), FD->getTypeSourceInfo(),
5097 SC_None, false/*isInlineSpecified*/,
5098 FD->hasPrototype(),
5099 false/*isConstexprSpecified*/);
5100 NewD = NewFD;
5101
5102 if (FD->getQualifier())
5103 NewFD->setQualifierInfo(FD->getQualifierLoc());
5104
5105 // Fake up parameter variables; they are declared as if this were
5106 // a typedef.
5107 QualType FDTy = FD->getType();
5108 if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
5109 SmallVector<ParmVarDecl*, 16> Params;
5110 for (FunctionProtoType::arg_type_iterator AI = FT->arg_type_begin(),
5111 AE = FT->arg_type_end(); AI != AE; ++AI) {
5112 ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, *AI);
5113 Param->setScopeInfo(0, Params.size());
5114 Params.push_back(Param);
5115 }
5116 NewFD->setParams(Params);
5117 }
5118 } else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
5119 NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
5120 VD->getInnerLocStart(), VD->getLocation(), II,
5121 VD->getType(), VD->getTypeSourceInfo(),
5122 VD->getStorageClass());
5123 if (VD->getQualifier()) {
5124 VarDecl *NewVD = cast<VarDecl>(NewD);
5125 NewVD->setQualifierInfo(VD->getQualifierLoc());
5126 }
5127 }
5128 return NewD;
5129 }
5130
5131 /// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
5132 /// applied to it, possibly with an alias.
DeclApplyPragmaWeak(Scope * S,NamedDecl * ND,WeakInfo & W)5133 void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
5134 if (W.getUsed()) return; // only do this once
5135 W.setUsed(true);
5136 if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
5137 IdentifierInfo *NDId = ND->getIdentifier();
5138 NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
5139 NewD->addAttr(::new (Context) AliasAttr(W.getLocation(), Context,
5140 NDId->getName()));
5141 NewD->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
5142 WeakTopLevelDecl.push_back(NewD);
5143 // FIXME: "hideous" code from Sema::LazilyCreateBuiltin
5144 // to insert Decl at TU scope, sorry.
5145 DeclContext *SavedContext = CurContext;
5146 CurContext = Context.getTranslationUnitDecl();
5147 PushOnScopeChains(NewD, S);
5148 CurContext = SavedContext;
5149 } else { // just add weak to existing
5150 ND->addAttr(::new (Context) WeakAttr(W.getLocation(), Context));
5151 }
5152 }
5153
ProcessPragmaWeak(Scope * S,Decl * D)5154 void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
5155 // It's valid to "forward-declare" #pragma weak, in which case we
5156 // have to do this.
5157 LoadExternalWeakUndeclaredIdentifiers();
5158 if (!WeakUndeclaredIdentifiers.empty()) {
5159 NamedDecl *ND = NULL;
5160 if (VarDecl *VD = dyn_cast<VarDecl>(D))
5161 if (VD->isExternC())
5162 ND = VD;
5163 if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
5164 if (FD->isExternC())
5165 ND = FD;
5166 if (ND) {
5167 if (IdentifierInfo *Id = ND->getIdentifier()) {
5168 llvm::DenseMap<IdentifierInfo*,WeakInfo>::iterator I
5169 = WeakUndeclaredIdentifiers.find(Id);
5170 if (I != WeakUndeclaredIdentifiers.end()) {
5171 WeakInfo W = I->second;
5172 DeclApplyPragmaWeak(S, ND, W);
5173 WeakUndeclaredIdentifiers[Id] = W;
5174 }
5175 }
5176 }
5177 }
5178 }
5179
5180 /// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
5181 /// it, apply them to D. This is a bit tricky because PD can have attributes
5182 /// specified in many different places, and we need to find and apply them all.
ProcessDeclAttributes(Scope * S,Decl * D,const Declarator & PD,bool NonInheritable,bool Inheritable)5183 void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD,
5184 bool NonInheritable, bool Inheritable) {
5185 // Apply decl attributes from the DeclSpec if present.
5186 if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
5187 ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
5188
5189 // Walk the declarator structure, applying decl attributes that were in a type
5190 // position to the decl itself. This handles cases like:
5191 // int *__attr__(x)** D;
5192 // when X is a decl attribute.
5193 for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
5194 if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
5195 ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable,
5196 /*IncludeCXX11Attributes=*/false);
5197
5198 // Finally, apply any attributes on the decl itself.
5199 if (const AttributeList *Attrs = PD.getAttributes())
5200 ProcessDeclAttributeList(S, D, Attrs, NonInheritable, Inheritable);
5201 }
5202
5203 /// Is the given declaration allowed to use a forbidden type?
isForbiddenTypeAllowed(Sema & S,Decl * decl)5204 static bool isForbiddenTypeAllowed(Sema &S, Decl *decl) {
5205 // Private ivars are always okay. Unfortunately, people don't
5206 // always properly make their ivars private, even in system headers.
5207 // Plus we need to make fields okay, too.
5208 // Function declarations in sys headers will be marked unavailable.
5209 if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
5210 !isa<FunctionDecl>(decl))
5211 return false;
5212
5213 // Require it to be declared in a system header.
5214 return S.Context.getSourceManager().isInSystemHeader(decl->getLocation());
5215 }
5216
5217 /// Handle a delayed forbidden-type diagnostic.
handleDelayedForbiddenType(Sema & S,DelayedDiagnostic & diag,Decl * decl)5218 static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
5219 Decl *decl) {
5220 if (decl && isForbiddenTypeAllowed(S, decl)) {
5221 decl->addAttr(new (S.Context) UnavailableAttr(diag.Loc, S.Context,
5222 "this system declaration uses an unsupported type"));
5223 return;
5224 }
5225 if (S.getLangOpts().ObjCAutoRefCount)
5226 if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
5227 // FIXME: we may want to suppress diagnostics for all
5228 // kind of forbidden type messages on unavailable functions.
5229 if (FD->hasAttr<UnavailableAttr>() &&
5230 diag.getForbiddenTypeDiagnostic() ==
5231 diag::err_arc_array_param_no_ownership) {
5232 diag.Triggered = true;
5233 return;
5234 }
5235 }
5236
5237 S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
5238 << diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
5239 diag.Triggered = true;
5240 }
5241
PopParsingDeclaration(ParsingDeclState state,Decl * decl)5242 void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
5243 assert(DelayedDiagnostics.getCurrentPool());
5244 DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
5245 DelayedDiagnostics.popWithoutEmitting(state);
5246
5247 // When delaying diagnostics to run in the context of a parsed
5248 // declaration, we only want to actually emit anything if parsing
5249 // succeeds.
5250 if (!decl) return;
5251
5252 // We emit all the active diagnostics in this pool or any of its
5253 // parents. In general, we'll get one pool for the decl spec
5254 // and a child pool for each declarator; in a decl group like:
5255 // deprecated_typedef foo, *bar, baz();
5256 // only the declarator pops will be passed decls. This is correct;
5257 // we really do need to consider delayed diagnostics from the decl spec
5258 // for each of the different declarations.
5259 const DelayedDiagnosticPool *pool = &poppedPool;
5260 do {
5261 for (DelayedDiagnosticPool::pool_iterator
5262 i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
5263 // This const_cast is a bit lame. Really, Triggered should be mutable.
5264 DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
5265 if (diag.Triggered)
5266 continue;
5267
5268 switch (diag.Kind) {
5269 case DelayedDiagnostic::Deprecation:
5270 // Don't bother giving deprecation diagnostics if the decl is invalid.
5271 if (!decl->isInvalidDecl())
5272 HandleDelayedDeprecationCheck(diag, decl);
5273 break;
5274
5275 case DelayedDiagnostic::Access:
5276 HandleDelayedAccessCheck(diag, decl);
5277 break;
5278
5279 case DelayedDiagnostic::ForbiddenType:
5280 handleDelayedForbiddenType(*this, diag, decl);
5281 break;
5282 }
5283 }
5284 } while ((pool = pool->getParent()));
5285 }
5286
5287 /// Given a set of delayed diagnostics, re-emit them as if they had
5288 /// been delayed in the current context instead of in the given pool.
5289 /// Essentially, this just moves them to the current pool.
redelayDiagnostics(DelayedDiagnosticPool & pool)5290 void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
5291 DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
5292 assert(curPool && "re-emitting in undelayed context not supported");
5293 curPool->steal(pool);
5294 }
5295
isDeclDeprecated(Decl * D)5296 static bool isDeclDeprecated(Decl *D) {
5297 do {
5298 if (D->isDeprecated())
5299 return true;
5300 // A category implicitly has the availability of the interface.
5301 if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
5302 return CatD->getClassInterface()->isDeprecated();
5303 } while ((D = cast_or_null<Decl>(D->getDeclContext())));
5304 return false;
5305 }
5306
5307 static void
DoEmitDeprecationWarning(Sema & S,const NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCPropery)5308 DoEmitDeprecationWarning(Sema &S, const NamedDecl *D, StringRef Message,
5309 SourceLocation Loc,
5310 const ObjCInterfaceDecl *UnknownObjCClass,
5311 const ObjCPropertyDecl *ObjCPropery) {
5312 DeclarationName Name = D->getDeclName();
5313 if (!Message.empty()) {
5314 S.Diag(Loc, diag::warn_deprecated_message) << Name << Message;
5315 S.Diag(D->getLocation(),
5316 isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
5317 : diag::note_previous_decl) << Name;
5318 if (ObjCPropery)
5319 S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
5320 << ObjCPropery->getDeclName() << 0;
5321 } else if (!UnknownObjCClass) {
5322 S.Diag(Loc, diag::warn_deprecated) << D->getDeclName();
5323 S.Diag(D->getLocation(),
5324 isa<ObjCMethodDecl>(D) ? diag::note_method_declared_at
5325 : diag::note_previous_decl) << Name;
5326 if (ObjCPropery)
5327 S.Diag(ObjCPropery->getLocation(), diag::note_property_attribute)
5328 << ObjCPropery->getDeclName() << 0;
5329 } else {
5330 S.Diag(Loc, diag::warn_deprecated_fwdclass_message) << Name;
5331 S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
5332 }
5333 }
5334
HandleDelayedDeprecationCheck(DelayedDiagnostic & DD,Decl * Ctx)5335 void Sema::HandleDelayedDeprecationCheck(DelayedDiagnostic &DD,
5336 Decl *Ctx) {
5337 if (isDeclDeprecated(Ctx))
5338 return;
5339
5340 DD.Triggered = true;
5341 DoEmitDeprecationWarning(*this, DD.getDeprecationDecl(),
5342 DD.getDeprecationMessage(), DD.Loc,
5343 DD.getUnknownObjCClass(),
5344 DD.getObjCProperty());
5345 }
5346
EmitDeprecationWarning(NamedDecl * D,StringRef Message,SourceLocation Loc,const ObjCInterfaceDecl * UnknownObjCClass,const ObjCPropertyDecl * ObjCProperty)5347 void Sema::EmitDeprecationWarning(NamedDecl *D, StringRef Message,
5348 SourceLocation Loc,
5349 const ObjCInterfaceDecl *UnknownObjCClass,
5350 const ObjCPropertyDecl *ObjCProperty) {
5351 // Delay if we're currently parsing a declaration.
5352 if (DelayedDiagnostics.shouldDelayDiagnostics()) {
5353 DelayedDiagnostics.add(DelayedDiagnostic::makeDeprecation(Loc, D,
5354 UnknownObjCClass,
5355 ObjCProperty,
5356 Message));
5357 return;
5358 }
5359
5360 // Otherwise, don't warn if our current context is deprecated.
5361 if (isDeclDeprecated(cast<Decl>(getCurLexicalContext())))
5362 return;
5363 DoEmitDeprecationWarning(*this, D, Message, Loc, UnknownObjCClass, ObjCProperty);
5364 }
5365