1 //===-- AsmPrinter.cpp - Common AsmPrinter code ---------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the AsmPrinter class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #define DEBUG_TYPE "asm-printer"
15 #include "llvm/CodeGen/AsmPrinter.h"
16 #include "DwarfDebug.h"
17 #include "DwarfException.h"
18 #include "llvm/ADT/SmallString.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/ConstantFolding.h"
21 #include "llvm/Assembly/Writer.h"
22 #include "llvm/CodeGen/GCMetadataPrinter.h"
23 #include "llvm/CodeGen/MachineConstantPool.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineJumpTableInfo.h"
27 #include "llvm/CodeGen/MachineLoopInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfo.h"
29 #include "llvm/DebugInfo.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Operator.h"
33 #include "llvm/MC/MCAsmInfo.h"
34 #include "llvm/MC/MCContext.h"
35 #include "llvm/MC/MCExpr.h"
36 #include "llvm/MC/MCInst.h"
37 #include "llvm/MC/MCSection.h"
38 #include "llvm/MC/MCStreamer.h"
39 #include "llvm/MC/MCSymbol.h"
40 #include "llvm/Support/ErrorHandling.h"
41 #include "llvm/Support/Format.h"
42 #include "llvm/Support/MathExtras.h"
43 #include "llvm/Support/Timer.h"
44 #include "llvm/Target/Mangler.h"
45 #include "llvm/Target/TargetFrameLowering.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetLowering.h"
48 #include "llvm/Target/TargetLoweringObjectFile.h"
49 #include "llvm/Target/TargetOptions.h"
50 #include "llvm/Target/TargetRegisterInfo.h"
51 using namespace llvm;
52
53 static const char *const DWARFGroupName = "DWARF Emission";
54 static const char *const DbgTimerName = "DWARF Debug Writer";
55 static const char *const EHTimerName = "DWARF Exception Writer";
56
57 STATISTIC(EmittedInsts, "Number of machine instrs printed");
58
59 char AsmPrinter::ID = 0;
60
61 typedef DenseMap<GCStrategy*,GCMetadataPrinter*> gcp_map_type;
getGCMap(void * & P)62 static gcp_map_type &getGCMap(void *&P) {
63 if (P == 0)
64 P = new gcp_map_type();
65 return *(gcp_map_type*)P;
66 }
67
68
69 /// getGVAlignmentLog2 - Return the alignment to use for the specified global
70 /// value in log2 form. This rounds up to the preferred alignment if possible
71 /// and legal.
getGVAlignmentLog2(const GlobalValue * GV,const DataLayout & TD,unsigned InBits=0)72 static unsigned getGVAlignmentLog2(const GlobalValue *GV, const DataLayout &TD,
73 unsigned InBits = 0) {
74 unsigned NumBits = 0;
75 if (const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV))
76 NumBits = TD.getPreferredAlignmentLog(GVar);
77
78 // If InBits is specified, round it to it.
79 if (InBits > NumBits)
80 NumBits = InBits;
81
82 // If the GV has a specified alignment, take it into account.
83 if (GV->getAlignment() == 0)
84 return NumBits;
85
86 unsigned GVAlign = Log2_32(GV->getAlignment());
87
88 // If the GVAlign is larger than NumBits, or if we are required to obey
89 // NumBits because the GV has an assigned section, obey it.
90 if (GVAlign > NumBits || GV->hasSection())
91 NumBits = GVAlign;
92 return NumBits;
93 }
94
AsmPrinter(TargetMachine & tm,MCStreamer & Streamer)95 AsmPrinter::AsmPrinter(TargetMachine &tm, MCStreamer &Streamer)
96 : MachineFunctionPass(ID),
97 TM(tm), MAI(tm.getMCAsmInfo()),
98 OutContext(Streamer.getContext()),
99 OutStreamer(Streamer),
100 LastMI(0), LastFn(0), Counter(~0U), SetCounter(0) {
101 DD = 0; DE = 0; MMI = 0; LI = 0; MF = 0;
102 CurrentFnSym = CurrentFnSymForSize = 0;
103 GCMetadataPrinters = 0;
104 VerboseAsm = Streamer.isVerboseAsm();
105 }
106
~AsmPrinter()107 AsmPrinter::~AsmPrinter() {
108 assert(DD == 0 && DE == 0 && "Debug/EH info didn't get finalized");
109
110 if (GCMetadataPrinters != 0) {
111 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
112
113 for (gcp_map_type::iterator I = GCMap.begin(), E = GCMap.end(); I != E; ++I)
114 delete I->second;
115 delete &GCMap;
116 GCMetadataPrinters = 0;
117 }
118
119 delete &OutStreamer;
120 }
121
122 /// getFunctionNumber - Return a unique ID for the current function.
123 ///
getFunctionNumber() const124 unsigned AsmPrinter::getFunctionNumber() const {
125 return MF->getFunctionNumber();
126 }
127
getObjFileLowering() const128 const TargetLoweringObjectFile &AsmPrinter::getObjFileLowering() const {
129 return TM.getTargetLowering()->getObjFileLowering();
130 }
131
132 /// getDataLayout - Return information about data layout.
getDataLayout() const133 const DataLayout &AsmPrinter::getDataLayout() const {
134 return *TM.getDataLayout();
135 }
136
getTargetTriple() const137 StringRef AsmPrinter::getTargetTriple() const {
138 return TM.getTargetTriple();
139 }
140
141 /// getCurrentSection() - Return the current section we are emitting to.
getCurrentSection() const142 const MCSection *AsmPrinter::getCurrentSection() const {
143 return OutStreamer.getCurrentSection().first;
144 }
145
146
147
getAnalysisUsage(AnalysisUsage & AU) const148 void AsmPrinter::getAnalysisUsage(AnalysisUsage &AU) const {
149 AU.setPreservesAll();
150 MachineFunctionPass::getAnalysisUsage(AU);
151 AU.addRequired<MachineModuleInfo>();
152 AU.addRequired<GCModuleInfo>();
153 if (isVerbose())
154 AU.addRequired<MachineLoopInfo>();
155 }
156
doInitialization(Module & M)157 bool AsmPrinter::doInitialization(Module &M) {
158 MMI = getAnalysisIfAvailable<MachineModuleInfo>();
159 MMI->AnalyzeModule(M);
160
161 // Initialize TargetLoweringObjectFile.
162 const_cast<TargetLoweringObjectFile&>(getObjFileLowering())
163 .Initialize(OutContext, TM);
164
165 OutStreamer.InitStreamer();
166
167 Mang = new Mangler(OutContext, &TM);
168
169 // Allow the target to emit any magic that it wants at the start of the file.
170 EmitStartOfAsmFile(M);
171
172 // Very minimal debug info. It is ignored if we emit actual debug info. If we
173 // don't, this at least helps the user find where a global came from.
174 if (MAI->hasSingleParameterDotFile()) {
175 // .file "foo.c"
176 OutStreamer.EmitFileDirective(M.getModuleIdentifier());
177 }
178
179 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
180 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
181 for (GCModuleInfo::iterator I = MI->begin(), E = MI->end(); I != E; ++I)
182 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*I))
183 MP->beginAssembly(*this);
184
185 // Emit module-level inline asm if it exists.
186 if (!M.getModuleInlineAsm().empty()) {
187 OutStreamer.AddComment("Start of file scope inline assembly");
188 OutStreamer.AddBlankLine();
189 EmitInlineAsm(M.getModuleInlineAsm()+"\n");
190 OutStreamer.AddComment("End of file scope inline assembly");
191 OutStreamer.AddBlankLine();
192 }
193
194 if (MAI->doesSupportDebugInformation())
195 DD = new DwarfDebug(this, &M);
196
197 switch (MAI->getExceptionHandlingType()) {
198 case ExceptionHandling::None:
199 return false;
200 case ExceptionHandling::SjLj:
201 case ExceptionHandling::DwarfCFI:
202 DE = new DwarfCFIException(this);
203 return false;
204 case ExceptionHandling::ARM:
205 DE = new ARMException(this);
206 return false;
207 case ExceptionHandling::Win64:
208 DE = new Win64Exception(this);
209 return false;
210 }
211
212 llvm_unreachable("Unknown exception type.");
213 }
214
EmitLinkage(unsigned Linkage,MCSymbol * GVSym) const215 void AsmPrinter::EmitLinkage(unsigned Linkage, MCSymbol *GVSym) const {
216 switch ((GlobalValue::LinkageTypes)Linkage) {
217 case GlobalValue::CommonLinkage:
218 case GlobalValue::LinkOnceAnyLinkage:
219 case GlobalValue::LinkOnceODRLinkage:
220 case GlobalValue::LinkOnceODRAutoHideLinkage:
221 case GlobalValue::WeakAnyLinkage:
222 case GlobalValue::WeakODRLinkage:
223 case GlobalValue::LinkerPrivateWeakLinkage:
224 if (MAI->getWeakDefDirective() != 0) {
225 // .globl _foo
226 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
227
228 if ((GlobalValue::LinkageTypes)Linkage !=
229 GlobalValue::LinkOnceODRAutoHideLinkage)
230 // .weak_definition _foo
231 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefinition);
232 else
233 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_WeakDefAutoPrivate);
234 } else if (MAI->getLinkOnceDirective() != 0) {
235 // .globl _foo
236 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
237 //NOTE: linkonce is handled by the section the symbol was assigned to.
238 } else {
239 // .weak _foo
240 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Weak);
241 }
242 break;
243 case GlobalValue::DLLExportLinkage:
244 case GlobalValue::AppendingLinkage:
245 // FIXME: appending linkage variables should go into a section of
246 // their name or something. For now, just emit them as external.
247 case GlobalValue::ExternalLinkage:
248 // If external or appending, declare as a global symbol.
249 // .globl _foo
250 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
251 break;
252 case GlobalValue::PrivateLinkage:
253 case GlobalValue::InternalLinkage:
254 case GlobalValue::LinkerPrivateLinkage:
255 break;
256 default:
257 llvm_unreachable("Unknown linkage type!");
258 }
259 }
260
261
262 /// EmitGlobalVariable - Emit the specified global variable to the .s file.
EmitGlobalVariable(const GlobalVariable * GV)263 void AsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
264 if (GV->hasInitializer()) {
265 // Check to see if this is a special global used by LLVM, if so, emit it.
266 if (EmitSpecialLLVMGlobal(GV))
267 return;
268
269 if (isVerbose()) {
270 WriteAsOperand(OutStreamer.GetCommentOS(), GV,
271 /*PrintType=*/false, GV->getParent());
272 OutStreamer.GetCommentOS() << '\n';
273 }
274 }
275
276 MCSymbol *GVSym = Mang->getSymbol(GV);
277 EmitVisibility(GVSym, GV->getVisibility(), !GV->isDeclaration());
278
279 if (!GV->hasInitializer()) // External globals require no extra code.
280 return;
281
282 if (MAI->hasDotTypeDotSizeDirective())
283 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_ELF_TypeObject);
284
285 SectionKind GVKind = TargetLoweringObjectFile::getKindForGlobal(GV, TM);
286
287 const DataLayout *TD = TM.getDataLayout();
288 uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
289
290 // If the alignment is specified, we *must* obey it. Overaligning a global
291 // with a specified alignment is a prompt way to break globals emitted to
292 // sections and expected to be contiguous (e.g. ObjC metadata).
293 unsigned AlignLog = getGVAlignmentLog2(GV, *TD);
294
295 // Handle common and BSS local symbols (.lcomm).
296 if (GVKind.isCommon() || GVKind.isBSSLocal()) {
297 if (Size == 0) Size = 1; // .comm Foo, 0 is undefined, avoid it.
298 unsigned Align = 1 << AlignLog;
299
300 // Handle common symbols.
301 if (GVKind.isCommon()) {
302 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
303 Align = 0;
304
305 // .comm _foo, 42, 4
306 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
307 return;
308 }
309
310 // Handle local BSS symbols.
311 if (MAI->hasMachoZeroFillDirective()) {
312 const MCSection *TheSection =
313 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
314 // .zerofill __DATA, __bss, _foo, 400, 5
315 OutStreamer.EmitZerofill(TheSection, GVSym, Size, Align);
316 return;
317 }
318
319 // Use .lcomm only if it supports user-specified alignment.
320 // Otherwise, while it would still be correct to use .lcomm in some
321 // cases (e.g. when Align == 1), the external assembler might enfore
322 // some -unknown- default alignment behavior, which could cause
323 // spurious differences between external and integrated assembler.
324 // Prefer to simply fall back to .local / .comm in this case.
325 if (MAI->getLCOMMDirectiveAlignmentType() != LCOMM::NoAlignment) {
326 // .lcomm _foo, 42
327 OutStreamer.EmitLocalCommonSymbol(GVSym, Size, Align);
328 return;
329 }
330
331 if (!getObjFileLowering().getCommDirectiveSupportsAlignment())
332 Align = 0;
333
334 // .local _foo
335 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Local);
336 // .comm _foo, 42, 4
337 OutStreamer.EmitCommonSymbol(GVSym, Size, Align);
338 return;
339 }
340
341 const MCSection *TheSection =
342 getObjFileLowering().SectionForGlobal(GV, GVKind, Mang, TM);
343
344 // Handle the zerofill directive on darwin, which is a special form of BSS
345 // emission.
346 if (GVKind.isBSSExtern() && MAI->hasMachoZeroFillDirective()) {
347 if (Size == 0) Size = 1; // zerofill of 0 bytes is undefined.
348
349 // .globl _foo
350 OutStreamer.EmitSymbolAttribute(GVSym, MCSA_Global);
351 // .zerofill __DATA, __common, _foo, 400, 5
352 OutStreamer.EmitZerofill(TheSection, GVSym, Size, 1 << AlignLog);
353 return;
354 }
355
356 // Handle thread local data for mach-o which requires us to output an
357 // additional structure of data and mangle the original symbol so that we
358 // can reference it later.
359 //
360 // TODO: This should become an "emit thread local global" method on TLOF.
361 // All of this macho specific stuff should be sunk down into TLOFMachO and
362 // stuff like "TLSExtraDataSection" should no longer be part of the parent
363 // TLOF class. This will also make it more obvious that stuff like
364 // MCStreamer::EmitTBSSSymbol is macho specific and only called from macho
365 // specific code.
366 if (GVKind.isThreadLocal() && MAI->hasMachoTBSSDirective()) {
367 // Emit the .tbss symbol
368 MCSymbol *MangSym =
369 OutContext.GetOrCreateSymbol(GVSym->getName() + Twine("$tlv$init"));
370
371 if (GVKind.isThreadBSS()) {
372 TheSection = getObjFileLowering().getTLSBSSSection();
373 OutStreamer.EmitTBSSSymbol(TheSection, MangSym, Size, 1 << AlignLog);
374 } else if (GVKind.isThreadData()) {
375 OutStreamer.SwitchSection(TheSection);
376
377 EmitAlignment(AlignLog, GV);
378 OutStreamer.EmitLabel(MangSym);
379
380 EmitGlobalConstant(GV->getInitializer());
381 }
382
383 OutStreamer.AddBlankLine();
384
385 // Emit the variable struct for the runtime.
386 const MCSection *TLVSect
387 = getObjFileLowering().getTLSExtraDataSection();
388
389 OutStreamer.SwitchSection(TLVSect);
390 // Emit the linkage here.
391 EmitLinkage(GV->getLinkage(), GVSym);
392 OutStreamer.EmitLabel(GVSym);
393
394 // Three pointers in size:
395 // - __tlv_bootstrap - used to make sure support exists
396 // - spare pointer, used when mapped by the runtime
397 // - pointer to mangled symbol above with initializer
398 unsigned PtrSize = TD->getPointerSizeInBits()/8;
399 OutStreamer.EmitSymbolValue(GetExternalSymbolSymbol("_tlv_bootstrap"),
400 PtrSize);
401 OutStreamer.EmitIntValue(0, PtrSize);
402 OutStreamer.EmitSymbolValue(MangSym, PtrSize);
403
404 OutStreamer.AddBlankLine();
405 return;
406 }
407
408 OutStreamer.SwitchSection(TheSection);
409
410 EmitLinkage(GV->getLinkage(), GVSym);
411 EmitAlignment(AlignLog, GV);
412
413 OutStreamer.EmitLabel(GVSym);
414
415 EmitGlobalConstant(GV->getInitializer());
416
417 if (MAI->hasDotTypeDotSizeDirective())
418 // .size foo, 42
419 OutStreamer.EmitELFSize(GVSym, MCConstantExpr::Create(Size, OutContext));
420
421 OutStreamer.AddBlankLine();
422 }
423
424 /// EmitFunctionHeader - This method emits the header for the current
425 /// function.
EmitFunctionHeader()426 void AsmPrinter::EmitFunctionHeader() {
427 // Print out constants referenced by the function
428 EmitConstantPool();
429
430 // Print the 'header' of function.
431 const Function *F = MF->getFunction();
432
433 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F, Mang, TM));
434 EmitVisibility(CurrentFnSym, F->getVisibility());
435
436 EmitLinkage(F->getLinkage(), CurrentFnSym);
437 EmitAlignment(MF->getAlignment(), F);
438
439 if (MAI->hasDotTypeDotSizeDirective())
440 OutStreamer.EmitSymbolAttribute(CurrentFnSym, MCSA_ELF_TypeFunction);
441
442 if (isVerbose()) {
443 WriteAsOperand(OutStreamer.GetCommentOS(), F,
444 /*PrintType=*/false, F->getParent());
445 OutStreamer.GetCommentOS() << '\n';
446 }
447
448 // Emit the CurrentFnSym. This is a virtual function to allow targets to
449 // do their wild and crazy things as required.
450 EmitFunctionEntryLabel();
451
452 // If the function had address-taken blocks that got deleted, then we have
453 // references to the dangling symbols. Emit them at the start of the function
454 // so that we don't get references to undefined symbols.
455 std::vector<MCSymbol*> DeadBlockSyms;
456 MMI->takeDeletedSymbolsForFunction(F, DeadBlockSyms);
457 for (unsigned i = 0, e = DeadBlockSyms.size(); i != e; ++i) {
458 OutStreamer.AddComment("Address taken block that was later removed");
459 OutStreamer.EmitLabel(DeadBlockSyms[i]);
460 }
461
462 // Add some workaround for linkonce linkage on Cygwin\MinGW.
463 if (MAI->getLinkOnceDirective() != 0 &&
464 (F->hasLinkOnceLinkage() || F->hasWeakLinkage())) {
465 // FIXME: What is this?
466 MCSymbol *FakeStub =
467 OutContext.GetOrCreateSymbol(Twine("Lllvm$workaround$fake$stub$")+
468 CurrentFnSym->getName());
469 OutStreamer.EmitLabel(FakeStub);
470 }
471
472 // Emit pre-function debug and/or EH information.
473 if (DE) {
474 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
475 DE->BeginFunction(MF);
476 }
477 if (DD) {
478 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
479 DD->beginFunction(MF);
480 }
481 }
482
483 /// EmitFunctionEntryLabel - Emit the label that is the entrypoint for the
484 /// function. This can be overridden by targets as required to do custom stuff.
EmitFunctionEntryLabel()485 void AsmPrinter::EmitFunctionEntryLabel() {
486 // The function label could have already been emitted if two symbols end up
487 // conflicting due to asm renaming. Detect this and emit an error.
488 if (CurrentFnSym->isUndefined())
489 return OutStreamer.EmitLabel(CurrentFnSym);
490
491 report_fatal_error("'" + Twine(CurrentFnSym->getName()) +
492 "' label emitted multiple times to assembly file");
493 }
494
495 /// emitComments - Pretty-print comments for instructions.
emitComments(const MachineInstr & MI,raw_ostream & CommentOS)496 static void emitComments(const MachineInstr &MI, raw_ostream &CommentOS) {
497 const MachineFunction *MF = MI.getParent()->getParent();
498 const TargetMachine &TM = MF->getTarget();
499
500 // Check for spills and reloads
501 int FI;
502
503 const MachineFrameInfo *FrameInfo = MF->getFrameInfo();
504
505 // We assume a single instruction only has a spill or reload, not
506 // both.
507 const MachineMemOperand *MMO;
508 if (TM.getInstrInfo()->isLoadFromStackSlotPostFE(&MI, FI)) {
509 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
510 MMO = *MI.memoperands_begin();
511 CommentOS << MMO->getSize() << "-byte Reload\n";
512 }
513 } else if (TM.getInstrInfo()->hasLoadFromStackSlot(&MI, MMO, FI)) {
514 if (FrameInfo->isSpillSlotObjectIndex(FI))
515 CommentOS << MMO->getSize() << "-byte Folded Reload\n";
516 } else if (TM.getInstrInfo()->isStoreToStackSlotPostFE(&MI, FI)) {
517 if (FrameInfo->isSpillSlotObjectIndex(FI)) {
518 MMO = *MI.memoperands_begin();
519 CommentOS << MMO->getSize() << "-byte Spill\n";
520 }
521 } else if (TM.getInstrInfo()->hasStoreToStackSlot(&MI, MMO, FI)) {
522 if (FrameInfo->isSpillSlotObjectIndex(FI))
523 CommentOS << MMO->getSize() << "-byte Folded Spill\n";
524 }
525
526 // Check for spill-induced copies
527 if (MI.getAsmPrinterFlag(MachineInstr::ReloadReuse))
528 CommentOS << " Reload Reuse\n";
529 }
530
531 /// emitImplicitDef - This method emits the specified machine instruction
532 /// that is an implicit def.
emitImplicitDef(const MachineInstr * MI,AsmPrinter & AP)533 static void emitImplicitDef(const MachineInstr *MI, AsmPrinter &AP) {
534 unsigned RegNo = MI->getOperand(0).getReg();
535 AP.OutStreamer.AddComment(Twine("implicit-def: ") +
536 AP.TM.getRegisterInfo()->getName(RegNo));
537 AP.OutStreamer.AddBlankLine();
538 }
539
emitKill(const MachineInstr * MI,AsmPrinter & AP)540 static void emitKill(const MachineInstr *MI, AsmPrinter &AP) {
541 std::string Str = "kill:";
542 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
543 const MachineOperand &Op = MI->getOperand(i);
544 assert(Op.isReg() && "KILL instruction must have only register operands");
545 Str += ' ';
546 Str += AP.TM.getRegisterInfo()->getName(Op.getReg());
547 Str += (Op.isDef() ? "<def>" : "<kill>");
548 }
549 AP.OutStreamer.AddComment(Str);
550 AP.OutStreamer.AddBlankLine();
551 }
552
553 /// emitDebugValueComment - This method handles the target-independent form
554 /// of DBG_VALUE, returning true if it was able to do so. A false return
555 /// means the target will need to handle MI in EmitInstruction.
emitDebugValueComment(const MachineInstr * MI,AsmPrinter & AP)556 static bool emitDebugValueComment(const MachineInstr *MI, AsmPrinter &AP) {
557 // This code handles only the 3-operand target-independent form.
558 if (MI->getNumOperands() != 3)
559 return false;
560
561 SmallString<128> Str;
562 raw_svector_ostream OS(Str);
563 OS << '\t' << AP.MAI->getCommentString() << "DEBUG_VALUE: ";
564
565 // cast away const; DIetc do not take const operands for some reason.
566 DIVariable V(const_cast<MDNode*>(MI->getOperand(2).getMetadata()));
567 if (V.getContext().isSubprogram()) {
568 StringRef Name = DISubprogram(V.getContext()).getDisplayName();
569 if (!Name.empty())
570 OS << Name << ":";
571 }
572 OS << V.getName() << " <- ";
573
574 // The second operand is only an offset if it's an immediate.
575 bool Deref = MI->getOperand(0).isReg() && MI->getOperand(1).isImm();
576 int64_t Offset = Deref ? MI->getOperand(1).getImm() : 0;
577
578 // Register or immediate value. Register 0 means undef.
579 if (MI->getOperand(0).isFPImm()) {
580 APFloat APF = APFloat(MI->getOperand(0).getFPImm()->getValueAPF());
581 if (MI->getOperand(0).getFPImm()->getType()->isFloatTy()) {
582 OS << (double)APF.convertToFloat();
583 } else if (MI->getOperand(0).getFPImm()->getType()->isDoubleTy()) {
584 OS << APF.convertToDouble();
585 } else {
586 // There is no good way to print long double. Convert a copy to
587 // double. Ah well, it's only a comment.
588 bool ignored;
589 APF.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
590 &ignored);
591 OS << "(long double) " << APF.convertToDouble();
592 }
593 } else if (MI->getOperand(0).isImm()) {
594 OS << MI->getOperand(0).getImm();
595 } else if (MI->getOperand(0).isCImm()) {
596 MI->getOperand(0).getCImm()->getValue().print(OS, false /*isSigned*/);
597 } else {
598 unsigned Reg;
599 if (MI->getOperand(0).isReg()) {
600 Reg = MI->getOperand(0).getReg();
601 } else {
602 assert(MI->getOperand(0).isFI() && "Unknown operand type");
603 const TargetFrameLowering *TFI = AP.TM.getFrameLowering();
604 Offset += TFI->getFrameIndexReference(*AP.MF,
605 MI->getOperand(0).getIndex(), Reg);
606 Deref = true;
607 }
608 if (Reg == 0) {
609 // Suppress offset, it is not meaningful here.
610 OS << "undef";
611 // NOTE: Want this comment at start of line, don't emit with AddComment.
612 AP.OutStreamer.EmitRawText(OS.str());
613 return true;
614 }
615 if (Deref)
616 OS << '[';
617 OS << AP.TM.getRegisterInfo()->getName(Reg);
618 }
619
620 if (Deref)
621 OS << '+' << Offset << ']';
622
623 // NOTE: Want this comment at start of line, don't emit with AddComment.
624 AP.OutStreamer.EmitRawText(OS.str());
625 return true;
626 }
627
needsCFIMoves()628 AsmPrinter::CFIMoveType AsmPrinter::needsCFIMoves() {
629 if (MAI->getExceptionHandlingType() == ExceptionHandling::DwarfCFI &&
630 MF->getFunction()->needsUnwindTableEntry())
631 return CFI_M_EH;
632
633 if (MMI->hasDebugInfo())
634 return CFI_M_Debug;
635
636 return CFI_M_None;
637 }
638
needsSEHMoves()639 bool AsmPrinter::needsSEHMoves() {
640 return MAI->getExceptionHandlingType() == ExceptionHandling::Win64 &&
641 MF->getFunction()->needsUnwindTableEntry();
642 }
643
needsRelocationsForDwarfStringPool() const644 bool AsmPrinter::needsRelocationsForDwarfStringPool() const {
645 return MAI->doesDwarfUseRelocationsAcrossSections();
646 }
647
emitPrologLabel(const MachineInstr & MI)648 void AsmPrinter::emitPrologLabel(const MachineInstr &MI) {
649 MCSymbol *Label = MI.getOperand(0).getMCSymbol();
650
651 if (MAI->getExceptionHandlingType() != ExceptionHandling::DwarfCFI)
652 return;
653
654 if (needsCFIMoves() == CFI_M_None)
655 return;
656
657 if (MMI->getCompactUnwindEncoding() != 0)
658 OutStreamer.EmitCompactUnwindEncoding(MMI->getCompactUnwindEncoding());
659
660 MachineModuleInfo &MMI = MF->getMMI();
661 std::vector<MCCFIInstruction> Instructions = MMI.getFrameInstructions();
662 bool FoundOne = false;
663 (void)FoundOne;
664 for (std::vector<MCCFIInstruction>::iterator I = Instructions.begin(),
665 E = Instructions.end(); I != E; ++I) {
666 if (I->getLabel() == Label) {
667 emitCFIInstruction(*I);
668 FoundOne = true;
669 }
670 }
671 assert(FoundOne);
672 }
673
674 /// EmitFunctionBody - This method emits the body and trailer for a
675 /// function.
EmitFunctionBody()676 void AsmPrinter::EmitFunctionBody() {
677 // Emit target-specific gunk before the function body.
678 EmitFunctionBodyStart();
679
680 bool ShouldPrintDebugScopes = DD && MMI->hasDebugInfo();
681
682 // Print out code for the function.
683 bool HasAnyRealCode = false;
684 const MachineInstr *LastMI = 0;
685 for (MachineFunction::const_iterator I = MF->begin(), E = MF->end();
686 I != E; ++I) {
687 // Print a label for the basic block.
688 EmitBasicBlockStart(I);
689 for (MachineBasicBlock::const_iterator II = I->begin(), IE = I->end();
690 II != IE; ++II) {
691 LastMI = II;
692
693 // Print the assembly for the instruction.
694 if (!II->isLabel() && !II->isImplicitDef() && !II->isKill() &&
695 !II->isDebugValue()) {
696 HasAnyRealCode = true;
697 ++EmittedInsts;
698 }
699
700 if (ShouldPrintDebugScopes) {
701 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
702 DD->beginInstruction(II);
703 }
704
705 if (isVerbose())
706 emitComments(*II, OutStreamer.GetCommentOS());
707
708 switch (II->getOpcode()) {
709 case TargetOpcode::PROLOG_LABEL:
710 emitPrologLabel(*II);
711 break;
712
713 case TargetOpcode::EH_LABEL:
714 case TargetOpcode::GC_LABEL:
715 OutStreamer.EmitLabel(II->getOperand(0).getMCSymbol());
716 break;
717 case TargetOpcode::INLINEASM:
718 EmitInlineAsm(II);
719 break;
720 case TargetOpcode::DBG_VALUE:
721 if (isVerbose()) {
722 if (!emitDebugValueComment(II, *this))
723 EmitInstruction(II);
724 }
725 break;
726 case TargetOpcode::IMPLICIT_DEF:
727 if (isVerbose()) emitImplicitDef(II, *this);
728 break;
729 case TargetOpcode::KILL:
730 if (isVerbose()) emitKill(II, *this);
731 break;
732 default:
733 if (!TM.hasMCUseLoc())
734 MCLineEntry::Make(&OutStreamer, getCurrentSection());
735
736 EmitInstruction(II);
737 break;
738 }
739
740 if (ShouldPrintDebugScopes) {
741 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
742 DD->endInstruction(II);
743 }
744 }
745 }
746
747 // If the last instruction was a prolog label, then we have a situation where
748 // we emitted a prolog but no function body. This results in the ending prolog
749 // label equaling the end of function label and an invalid "row" in the
750 // FDE. We need to emit a noop in this situation so that the FDE's rows are
751 // valid.
752 bool RequiresNoop = LastMI && LastMI->isPrologLabel();
753
754 // If the function is empty and the object file uses .subsections_via_symbols,
755 // then we need to emit *something* to the function body to prevent the
756 // labels from collapsing together. Just emit a noop.
757 if ((MAI->hasSubsectionsViaSymbols() && !HasAnyRealCode) || RequiresNoop) {
758 MCInst Noop;
759 TM.getInstrInfo()->getNoopForMachoTarget(Noop);
760 if (Noop.getOpcode()) {
761 OutStreamer.AddComment("avoids zero-length function");
762 OutStreamer.EmitInstruction(Noop);
763 } else // Target not mc-ized yet.
764 OutStreamer.EmitRawText(StringRef("\tnop\n"));
765 }
766
767 const Function *F = MF->getFunction();
768 for (Function::const_iterator i = F->begin(), e = F->end(); i != e; ++i) {
769 const BasicBlock *BB = i;
770 if (!BB->hasAddressTaken())
771 continue;
772 MCSymbol *Sym = GetBlockAddressSymbol(BB);
773 if (Sym->isDefined())
774 continue;
775 OutStreamer.AddComment("Address of block that was removed by CodeGen");
776 OutStreamer.EmitLabel(Sym);
777 }
778
779 // Emit target-specific gunk after the function body.
780 EmitFunctionBodyEnd();
781
782 // If the target wants a .size directive for the size of the function, emit
783 // it.
784 if (MAI->hasDotTypeDotSizeDirective()) {
785 // Create a symbol for the end of function, so we can get the size as
786 // difference between the function label and the temp label.
787 MCSymbol *FnEndLabel = OutContext.CreateTempSymbol();
788 OutStreamer.EmitLabel(FnEndLabel);
789
790 const MCExpr *SizeExp =
791 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(FnEndLabel, OutContext),
792 MCSymbolRefExpr::Create(CurrentFnSymForSize,
793 OutContext),
794 OutContext);
795 OutStreamer.EmitELFSize(CurrentFnSym, SizeExp);
796 }
797
798 // Emit post-function debug information.
799 if (DD) {
800 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
801 DD->endFunction(MF);
802 }
803 if (DE) {
804 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
805 DE->EndFunction();
806 }
807 MMI->EndFunction();
808
809 // Print out jump tables referenced by the function.
810 EmitJumpTableInfo();
811
812 OutStreamer.AddBlankLine();
813 }
814
815 /// EmitDwarfRegOp - Emit dwarf register operation.
EmitDwarfRegOp(const MachineLocation & MLoc,bool Indirect) const816 void AsmPrinter::EmitDwarfRegOp(const MachineLocation &MLoc,
817 bool Indirect) const {
818 const TargetRegisterInfo *TRI = TM.getRegisterInfo();
819 int Reg = TRI->getDwarfRegNum(MLoc.getReg(), false);
820
821 for (MCSuperRegIterator SR(MLoc.getReg(), TRI); SR.isValid() && Reg < 0;
822 ++SR) {
823 Reg = TRI->getDwarfRegNum(*SR, false);
824 // FIXME: Get the bit range this register uses of the superregister
825 // so that we can produce a DW_OP_bit_piece
826 }
827
828 // FIXME: Handle cases like a super register being encoded as
829 // DW_OP_reg 32 DW_OP_piece 4 DW_OP_reg 33
830
831 // FIXME: We have no reasonable way of handling errors in here. The
832 // caller might be in the middle of an dwarf expression. We should
833 // probably assert that Reg >= 0 once debug info generation is more mature.
834
835 if (MLoc.isIndirect() || Indirect) {
836 if (Reg < 32) {
837 OutStreamer.AddComment(
838 dwarf::OperationEncodingString(dwarf::DW_OP_breg0 + Reg));
839 EmitInt8(dwarf::DW_OP_breg0 + Reg);
840 } else {
841 OutStreamer.AddComment("DW_OP_bregx");
842 EmitInt8(dwarf::DW_OP_bregx);
843 OutStreamer.AddComment(Twine(Reg));
844 EmitULEB128(Reg);
845 }
846 EmitSLEB128(!MLoc.isIndirect() ? 0 : MLoc.getOffset());
847 if (MLoc.isIndirect() && Indirect)
848 EmitInt8(dwarf::DW_OP_deref);
849 } else {
850 if (Reg < 32) {
851 OutStreamer.AddComment(
852 dwarf::OperationEncodingString(dwarf::DW_OP_reg0 + Reg));
853 EmitInt8(dwarf::DW_OP_reg0 + Reg);
854 } else {
855 OutStreamer.AddComment("DW_OP_regx");
856 EmitInt8(dwarf::DW_OP_regx);
857 OutStreamer.AddComment(Twine(Reg));
858 EmitULEB128(Reg);
859 }
860 }
861
862 // FIXME: Produce a DW_OP_bit_piece if we used a superregister
863 }
864
doFinalization(Module & M)865 bool AsmPrinter::doFinalization(Module &M) {
866 // Emit global variables.
867 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
868 I != E; ++I)
869 EmitGlobalVariable(I);
870
871 // Emit visibility info for declarations
872 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
873 const Function &F = *I;
874 if (!F.isDeclaration())
875 continue;
876 GlobalValue::VisibilityTypes V = F.getVisibility();
877 if (V == GlobalValue::DefaultVisibility)
878 continue;
879
880 MCSymbol *Name = Mang->getSymbol(&F);
881 EmitVisibility(Name, V, false);
882 }
883
884 // Emit module flags.
885 SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
886 M.getModuleFlagsMetadata(ModuleFlags);
887 if (!ModuleFlags.empty())
888 getObjFileLowering().emitModuleFlags(OutStreamer, ModuleFlags, Mang, TM);
889
890 // Finalize debug and EH information.
891 if (DE) {
892 {
893 NamedRegionTimer T(EHTimerName, DWARFGroupName, TimePassesIsEnabled);
894 DE->EndModule();
895 }
896 delete DE; DE = 0;
897 }
898 if (DD) {
899 {
900 NamedRegionTimer T(DbgTimerName, DWARFGroupName, TimePassesIsEnabled);
901 DD->endModule();
902 }
903 delete DD; DD = 0;
904 }
905
906 // If the target wants to know about weak references, print them all.
907 if (MAI->getWeakRefDirective()) {
908 // FIXME: This is not lazy, it would be nice to only print weak references
909 // to stuff that is actually used. Note that doing so would require targets
910 // to notice uses in operands (due to constant exprs etc). This should
911 // happen with the MC stuff eventually.
912
913 // Print out module-level global variables here.
914 for (Module::const_global_iterator I = M.global_begin(), E = M.global_end();
915 I != E; ++I) {
916 if (!I->hasExternalWeakLinkage()) continue;
917 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
918 }
919
920 for (Module::const_iterator I = M.begin(), E = M.end(); I != E; ++I) {
921 if (!I->hasExternalWeakLinkage()) continue;
922 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(I), MCSA_WeakReference);
923 }
924 }
925
926 if (MAI->hasSetDirective()) {
927 OutStreamer.AddBlankLine();
928 for (Module::const_alias_iterator I = M.alias_begin(), E = M.alias_end();
929 I != E; ++I) {
930 MCSymbol *Name = Mang->getSymbol(I);
931
932 const GlobalValue *GV = I->getAliasedGlobal();
933 MCSymbol *Target = Mang->getSymbol(GV);
934
935 if (I->hasExternalLinkage() || !MAI->getWeakRefDirective())
936 OutStreamer.EmitSymbolAttribute(Name, MCSA_Global);
937 else if (I->hasWeakLinkage())
938 OutStreamer.EmitSymbolAttribute(Name, MCSA_WeakReference);
939 else
940 assert(I->hasLocalLinkage() && "Invalid alias linkage");
941
942 EmitVisibility(Name, I->getVisibility());
943
944 // Emit the directives as assignments aka .set:
945 OutStreamer.EmitAssignment(Name,
946 MCSymbolRefExpr::Create(Target, OutContext));
947 }
948 }
949
950 GCModuleInfo *MI = getAnalysisIfAvailable<GCModuleInfo>();
951 assert(MI && "AsmPrinter didn't require GCModuleInfo?");
952 for (GCModuleInfo::iterator I = MI->end(), E = MI->begin(); I != E; )
953 if (GCMetadataPrinter *MP = GetOrCreateGCPrinter(*--I))
954 MP->finishAssembly(*this);
955
956 // If we don't have any trampolines, then we don't require stack memory
957 // to be executable. Some targets have a directive to declare this.
958 Function *InitTrampolineIntrinsic = M.getFunction("llvm.init.trampoline");
959 if (!InitTrampolineIntrinsic || InitTrampolineIntrinsic->use_empty())
960 if (const MCSection *S = MAI->getNonexecutableStackSection(OutContext))
961 OutStreamer.SwitchSection(S);
962
963 // Allow the target to emit any magic that it wants at the end of the file,
964 // after everything else has gone out.
965 EmitEndOfAsmFile(M);
966
967 delete Mang; Mang = 0;
968 MMI = 0;
969
970 OutStreamer.Finish();
971 OutStreamer.reset();
972
973 return false;
974 }
975
SetupMachineFunction(MachineFunction & MF)976 void AsmPrinter::SetupMachineFunction(MachineFunction &MF) {
977 this->MF = &MF;
978 // Get the function symbol.
979 CurrentFnSym = Mang->getSymbol(MF.getFunction());
980 CurrentFnSymForSize = CurrentFnSym;
981
982 if (isVerbose())
983 LI = &getAnalysis<MachineLoopInfo>();
984 }
985
986 namespace {
987 // SectionCPs - Keep track the alignment, constpool entries per Section.
988 struct SectionCPs {
989 const MCSection *S;
990 unsigned Alignment;
991 SmallVector<unsigned, 4> CPEs;
SectionCPs__anon742149d90111::SectionCPs992 SectionCPs(const MCSection *s, unsigned a) : S(s), Alignment(a) {}
993 };
994 }
995
996 /// EmitConstantPool - Print to the current output stream assembly
997 /// representations of the constants in the constant pool MCP. This is
998 /// used to print out constants which have been "spilled to memory" by
999 /// the code generator.
1000 ///
EmitConstantPool()1001 void AsmPrinter::EmitConstantPool() {
1002 const MachineConstantPool *MCP = MF->getConstantPool();
1003 const std::vector<MachineConstantPoolEntry> &CP = MCP->getConstants();
1004 if (CP.empty()) return;
1005
1006 // Calculate sections for constant pool entries. We collect entries to go into
1007 // the same section together to reduce amount of section switch statements.
1008 SmallVector<SectionCPs, 4> CPSections;
1009 for (unsigned i = 0, e = CP.size(); i != e; ++i) {
1010 const MachineConstantPoolEntry &CPE = CP[i];
1011 unsigned Align = CPE.getAlignment();
1012
1013 SectionKind Kind;
1014 switch (CPE.getRelocationInfo()) {
1015 default: llvm_unreachable("Unknown section kind");
1016 case 2: Kind = SectionKind::getReadOnlyWithRel(); break;
1017 case 1:
1018 Kind = SectionKind::getReadOnlyWithRelLocal();
1019 break;
1020 case 0:
1021 switch (TM.getDataLayout()->getTypeAllocSize(CPE.getType())) {
1022 case 4: Kind = SectionKind::getMergeableConst4(); break;
1023 case 8: Kind = SectionKind::getMergeableConst8(); break;
1024 case 16: Kind = SectionKind::getMergeableConst16();break;
1025 default: Kind = SectionKind::getMergeableConst(); break;
1026 }
1027 }
1028
1029 const MCSection *S = getObjFileLowering().getSectionForConstant(Kind);
1030
1031 // The number of sections are small, just do a linear search from the
1032 // last section to the first.
1033 bool Found = false;
1034 unsigned SecIdx = CPSections.size();
1035 while (SecIdx != 0) {
1036 if (CPSections[--SecIdx].S == S) {
1037 Found = true;
1038 break;
1039 }
1040 }
1041 if (!Found) {
1042 SecIdx = CPSections.size();
1043 CPSections.push_back(SectionCPs(S, Align));
1044 }
1045
1046 if (Align > CPSections[SecIdx].Alignment)
1047 CPSections[SecIdx].Alignment = Align;
1048 CPSections[SecIdx].CPEs.push_back(i);
1049 }
1050
1051 // Now print stuff into the calculated sections.
1052 for (unsigned i = 0, e = CPSections.size(); i != e; ++i) {
1053 OutStreamer.SwitchSection(CPSections[i].S);
1054 EmitAlignment(Log2_32(CPSections[i].Alignment));
1055
1056 unsigned Offset = 0;
1057 for (unsigned j = 0, ee = CPSections[i].CPEs.size(); j != ee; ++j) {
1058 unsigned CPI = CPSections[i].CPEs[j];
1059 MachineConstantPoolEntry CPE = CP[CPI];
1060
1061 // Emit inter-object padding for alignment.
1062 unsigned AlignMask = CPE.getAlignment() - 1;
1063 unsigned NewOffset = (Offset + AlignMask) & ~AlignMask;
1064 OutStreamer.EmitZeros(NewOffset - Offset);
1065
1066 Type *Ty = CPE.getType();
1067 Offset = NewOffset + TM.getDataLayout()->getTypeAllocSize(Ty);
1068 OutStreamer.EmitLabel(GetCPISymbol(CPI));
1069
1070 if (CPE.isMachineConstantPoolEntry())
1071 EmitMachineConstantPoolValue(CPE.Val.MachineCPVal);
1072 else
1073 EmitGlobalConstant(CPE.Val.ConstVal);
1074 }
1075 }
1076 }
1077
1078 /// EmitJumpTableInfo - Print assembly representations of the jump tables used
1079 /// by the current function to the current output stream.
1080 ///
EmitJumpTableInfo()1081 void AsmPrinter::EmitJumpTableInfo() {
1082 const MachineJumpTableInfo *MJTI = MF->getJumpTableInfo();
1083 if (MJTI == 0) return;
1084 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_Inline) return;
1085 const std::vector<MachineJumpTableEntry> &JT = MJTI->getJumpTables();
1086 if (JT.empty()) return;
1087
1088 // Pick the directive to use to print the jump table entries, and switch to
1089 // the appropriate section.
1090 const Function *F = MF->getFunction();
1091 bool JTInDiffSection = false;
1092 if (// In PIC mode, we need to emit the jump table to the same section as the
1093 // function body itself, otherwise the label differences won't make sense.
1094 // FIXME: Need a better predicate for this: what about custom entries?
1095 MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 ||
1096 // We should also do if the section name is NULL or function is declared
1097 // in discardable section
1098 // FIXME: this isn't the right predicate, should be based on the MCSection
1099 // for the function.
1100 F->isWeakForLinker()) {
1101 OutStreamer.SwitchSection(getObjFileLowering().SectionForGlobal(F,Mang,TM));
1102 } else {
1103 // Otherwise, drop it in the readonly section.
1104 const MCSection *ReadOnlySection =
1105 getObjFileLowering().getSectionForConstant(SectionKind::getReadOnly());
1106 OutStreamer.SwitchSection(ReadOnlySection);
1107 JTInDiffSection = true;
1108 }
1109
1110 EmitAlignment(Log2_32(MJTI->getEntryAlignment(*TM.getDataLayout())));
1111
1112 // Jump tables in code sections are marked with a data_region directive
1113 // where that's supported.
1114 if (!JTInDiffSection)
1115 OutStreamer.EmitDataRegion(MCDR_DataRegionJT32);
1116
1117 for (unsigned JTI = 0, e = JT.size(); JTI != e; ++JTI) {
1118 const std::vector<MachineBasicBlock*> &JTBBs = JT[JTI].MBBs;
1119
1120 // If this jump table was deleted, ignore it.
1121 if (JTBBs.empty()) continue;
1122
1123 // For the EK_LabelDifference32 entry, if the target supports .set, emit a
1124 // .set directive for each unique entry. This reduces the number of
1125 // relocations the assembler will generate for the jump table.
1126 if (MJTI->getEntryKind() == MachineJumpTableInfo::EK_LabelDifference32 &&
1127 MAI->hasSetDirective()) {
1128 SmallPtrSet<const MachineBasicBlock*, 16> EmittedSets;
1129 const TargetLowering *TLI = TM.getTargetLowering();
1130 const MCExpr *Base = TLI->getPICJumpTableRelocBaseExpr(MF,JTI,OutContext);
1131 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii) {
1132 const MachineBasicBlock *MBB = JTBBs[ii];
1133 if (!EmittedSets.insert(MBB)) continue;
1134
1135 // .set LJTSet, LBB32-base
1136 const MCExpr *LHS =
1137 MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1138 OutStreamer.EmitAssignment(GetJTSetSymbol(JTI, MBB->getNumber()),
1139 MCBinaryExpr::CreateSub(LHS, Base, OutContext));
1140 }
1141 }
1142
1143 // On some targets (e.g. Darwin) we want to emit two consecutive labels
1144 // before each jump table. The first label is never referenced, but tells
1145 // the assembler and linker the extents of the jump table object. The
1146 // second label is actually referenced by the code.
1147 if (JTInDiffSection && MAI->getLinkerPrivateGlobalPrefix()[0])
1148 // FIXME: This doesn't have to have any specific name, just any randomly
1149 // named and numbered 'l' label would work. Simplify GetJTISymbol.
1150 OutStreamer.EmitLabel(GetJTISymbol(JTI, true));
1151
1152 OutStreamer.EmitLabel(GetJTISymbol(JTI));
1153
1154 for (unsigned ii = 0, ee = JTBBs.size(); ii != ee; ++ii)
1155 EmitJumpTableEntry(MJTI, JTBBs[ii], JTI);
1156 }
1157 if (!JTInDiffSection)
1158 OutStreamer.EmitDataRegion(MCDR_DataRegionEnd);
1159 }
1160
1161 /// EmitJumpTableEntry - Emit a jump table entry for the specified MBB to the
1162 /// current stream.
EmitJumpTableEntry(const MachineJumpTableInfo * MJTI,const MachineBasicBlock * MBB,unsigned UID) const1163 void AsmPrinter::EmitJumpTableEntry(const MachineJumpTableInfo *MJTI,
1164 const MachineBasicBlock *MBB,
1165 unsigned UID) const {
1166 assert(MBB && MBB->getNumber() >= 0 && "Invalid basic block");
1167 const MCExpr *Value = 0;
1168 switch (MJTI->getEntryKind()) {
1169 case MachineJumpTableInfo::EK_Inline:
1170 llvm_unreachable("Cannot emit EK_Inline jump table entry");
1171 case MachineJumpTableInfo::EK_Custom32:
1172 Value = TM.getTargetLowering()->LowerCustomJumpTableEntry(MJTI, MBB, UID,
1173 OutContext);
1174 break;
1175 case MachineJumpTableInfo::EK_BlockAddress:
1176 // EK_BlockAddress - Each entry is a plain address of block, e.g.:
1177 // .word LBB123
1178 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1179 break;
1180 case MachineJumpTableInfo::EK_GPRel32BlockAddress: {
1181 // EK_GPRel32BlockAddress - Each entry is an address of block, encoded
1182 // with a relocation as gp-relative, e.g.:
1183 // .gprel32 LBB123
1184 MCSymbol *MBBSym = MBB->getSymbol();
1185 OutStreamer.EmitGPRel32Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1186 return;
1187 }
1188
1189 case MachineJumpTableInfo::EK_GPRel64BlockAddress: {
1190 // EK_GPRel64BlockAddress - Each entry is an address of block, encoded
1191 // with a relocation as gp-relative, e.g.:
1192 // .gpdword LBB123
1193 MCSymbol *MBBSym = MBB->getSymbol();
1194 OutStreamer.EmitGPRel64Value(MCSymbolRefExpr::Create(MBBSym, OutContext));
1195 return;
1196 }
1197
1198 case MachineJumpTableInfo::EK_LabelDifference32: {
1199 // EK_LabelDifference32 - Each entry is the address of the block minus
1200 // the address of the jump table. This is used for PIC jump tables where
1201 // gprel32 is not supported. e.g.:
1202 // .word LBB123 - LJTI1_2
1203 // If the .set directive is supported, this is emitted as:
1204 // .set L4_5_set_123, LBB123 - LJTI1_2
1205 // .word L4_5_set_123
1206
1207 // If we have emitted set directives for the jump table entries, print
1208 // them rather than the entries themselves. If we're emitting PIC, then
1209 // emit the table entries as differences between two text section labels.
1210 if (MAI->hasSetDirective()) {
1211 // If we used .set, reference the .set's symbol.
1212 Value = MCSymbolRefExpr::Create(GetJTSetSymbol(UID, MBB->getNumber()),
1213 OutContext);
1214 break;
1215 }
1216 // Otherwise, use the difference as the jump table entry.
1217 Value = MCSymbolRefExpr::Create(MBB->getSymbol(), OutContext);
1218 const MCExpr *JTI = MCSymbolRefExpr::Create(GetJTISymbol(UID), OutContext);
1219 Value = MCBinaryExpr::CreateSub(Value, JTI, OutContext);
1220 break;
1221 }
1222 }
1223
1224 assert(Value && "Unknown entry kind!");
1225
1226 unsigned EntrySize = MJTI->getEntrySize(*TM.getDataLayout());
1227 OutStreamer.EmitValue(Value, EntrySize);
1228 }
1229
1230
1231 /// EmitSpecialLLVMGlobal - Check to see if the specified global is a
1232 /// special global used by LLVM. If so, emit it and return true, otherwise
1233 /// do nothing and return false.
EmitSpecialLLVMGlobal(const GlobalVariable * GV)1234 bool AsmPrinter::EmitSpecialLLVMGlobal(const GlobalVariable *GV) {
1235 if (GV->getName() == "llvm.used") {
1236 if (MAI->hasNoDeadStrip()) // No need to emit this at all.
1237 EmitLLVMUsedList(cast<ConstantArray>(GV->getInitializer()));
1238 return true;
1239 }
1240
1241 // Ignore debug and non-emitted data. This handles llvm.compiler.used.
1242 if (GV->getSection() == "llvm.metadata" ||
1243 GV->hasAvailableExternallyLinkage())
1244 return true;
1245
1246 if (!GV->hasAppendingLinkage()) return false;
1247
1248 assert(GV->hasInitializer() && "Not a special LLVM global!");
1249
1250 if (GV->getName() == "llvm.global_ctors") {
1251 EmitXXStructorList(GV->getInitializer(), /* isCtor */ true);
1252
1253 if (TM.getRelocationModel() == Reloc::Static &&
1254 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1255 StringRef Sym(".constructors_used");
1256 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1257 MCSA_Reference);
1258 }
1259 return true;
1260 }
1261
1262 if (GV->getName() == "llvm.global_dtors") {
1263 EmitXXStructorList(GV->getInitializer(), /* isCtor */ false);
1264
1265 if (TM.getRelocationModel() == Reloc::Static &&
1266 MAI->hasStaticCtorDtorReferenceInStaticMode()) {
1267 StringRef Sym(".destructors_used");
1268 OutStreamer.EmitSymbolAttribute(OutContext.GetOrCreateSymbol(Sym),
1269 MCSA_Reference);
1270 }
1271 return true;
1272 }
1273
1274 return false;
1275 }
1276
1277 /// EmitLLVMUsedList - For targets that define a MAI::UsedDirective, mark each
1278 /// global in the specified llvm.used list for which emitUsedDirectiveFor
1279 /// is true, as being used with this directive.
EmitLLVMUsedList(const ConstantArray * InitList)1280 void AsmPrinter::EmitLLVMUsedList(const ConstantArray *InitList) {
1281 // Should be an array of 'i8*'.
1282 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1283 const GlobalValue *GV =
1284 dyn_cast<GlobalValue>(InitList->getOperand(i)->stripPointerCasts());
1285 if (GV && getObjFileLowering().shouldEmitUsedDirectiveFor(GV, Mang))
1286 OutStreamer.EmitSymbolAttribute(Mang->getSymbol(GV), MCSA_NoDeadStrip);
1287 }
1288 }
1289
1290 typedef std::pair<unsigned, Constant*> Structor;
1291
priority_order(const Structor & lhs,const Structor & rhs)1292 static bool priority_order(const Structor& lhs, const Structor& rhs) {
1293 return lhs.first < rhs.first;
1294 }
1295
1296 /// EmitXXStructorList - Emit the ctor or dtor list taking into account the init
1297 /// priority.
EmitXXStructorList(const Constant * List,bool isCtor)1298 void AsmPrinter::EmitXXStructorList(const Constant *List, bool isCtor) {
1299 // Should be an array of '{ int, void ()* }' structs. The first value is the
1300 // init priority.
1301 if (!isa<ConstantArray>(List)) return;
1302
1303 // Sanity check the structors list.
1304 const ConstantArray *InitList = dyn_cast<ConstantArray>(List);
1305 if (!InitList) return; // Not an array!
1306 StructType *ETy = dyn_cast<StructType>(InitList->getType()->getElementType());
1307 if (!ETy || ETy->getNumElements() != 2) return; // Not an array of pairs!
1308 if (!isa<IntegerType>(ETy->getTypeAtIndex(0U)) ||
1309 !isa<PointerType>(ETy->getTypeAtIndex(1U))) return; // Not (int, ptr).
1310
1311 // Gather the structors in a form that's convenient for sorting by priority.
1312 SmallVector<Structor, 8> Structors;
1313 for (unsigned i = 0, e = InitList->getNumOperands(); i != e; ++i) {
1314 ConstantStruct *CS = dyn_cast<ConstantStruct>(InitList->getOperand(i));
1315 if (!CS) continue; // Malformed.
1316 if (CS->getOperand(1)->isNullValue())
1317 break; // Found a null terminator, skip the rest.
1318 ConstantInt *Priority = dyn_cast<ConstantInt>(CS->getOperand(0));
1319 if (!Priority) continue; // Malformed.
1320 Structors.push_back(std::make_pair(Priority->getLimitedValue(65535),
1321 CS->getOperand(1)));
1322 }
1323
1324 // Emit the function pointers in the target-specific order
1325 const DataLayout *TD = TM.getDataLayout();
1326 unsigned Align = Log2_32(TD->getPointerPrefAlignment());
1327 std::stable_sort(Structors.begin(), Structors.end(), priority_order);
1328 for (unsigned i = 0, e = Structors.size(); i != e; ++i) {
1329 const MCSection *OutputSection =
1330 (isCtor ?
1331 getObjFileLowering().getStaticCtorSection(Structors[i].first) :
1332 getObjFileLowering().getStaticDtorSection(Structors[i].first));
1333 OutStreamer.SwitchSection(OutputSection);
1334 if (OutStreamer.getCurrentSection() != OutStreamer.getPreviousSection())
1335 EmitAlignment(Align);
1336 EmitXXStructor(Structors[i].second);
1337 }
1338 }
1339
1340 //===--------------------------------------------------------------------===//
1341 // Emission and print routines
1342 //
1343
1344 /// EmitInt8 - Emit a byte directive and value.
1345 ///
EmitInt8(int Value) const1346 void AsmPrinter::EmitInt8(int Value) const {
1347 OutStreamer.EmitIntValue(Value, 1);
1348 }
1349
1350 /// EmitInt16 - Emit a short directive and value.
1351 ///
EmitInt16(int Value) const1352 void AsmPrinter::EmitInt16(int Value) const {
1353 OutStreamer.EmitIntValue(Value, 2);
1354 }
1355
1356 /// EmitInt32 - Emit a long directive and value.
1357 ///
EmitInt32(int Value) const1358 void AsmPrinter::EmitInt32(int Value) const {
1359 OutStreamer.EmitIntValue(Value, 4);
1360 }
1361
1362 /// EmitLabelDifference - Emit something like ".long Hi-Lo" where the size
1363 /// in bytes of the directive is specified by Size and Hi/Lo specify the
1364 /// labels. This implicitly uses .set if it is available.
EmitLabelDifference(const MCSymbol * Hi,const MCSymbol * Lo,unsigned Size) const1365 void AsmPrinter::EmitLabelDifference(const MCSymbol *Hi, const MCSymbol *Lo,
1366 unsigned Size) const {
1367 // Get the Hi-Lo expression.
1368 const MCExpr *Diff =
1369 MCBinaryExpr::CreateSub(MCSymbolRefExpr::Create(Hi, OutContext),
1370 MCSymbolRefExpr::Create(Lo, OutContext),
1371 OutContext);
1372
1373 if (!MAI->hasSetDirective()) {
1374 OutStreamer.EmitValue(Diff, Size);
1375 return;
1376 }
1377
1378 // Otherwise, emit with .set (aka assignment).
1379 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1380 OutStreamer.EmitAssignment(SetLabel, Diff);
1381 OutStreamer.EmitSymbolValue(SetLabel, Size);
1382 }
1383
1384 /// EmitLabelOffsetDifference - Emit something like ".long Hi+Offset-Lo"
1385 /// where the size in bytes of the directive is specified by Size and Hi/Lo
1386 /// specify the labels. This implicitly uses .set if it is available.
EmitLabelOffsetDifference(const MCSymbol * Hi,uint64_t Offset,const MCSymbol * Lo,unsigned Size) const1387 void AsmPrinter::EmitLabelOffsetDifference(const MCSymbol *Hi, uint64_t Offset,
1388 const MCSymbol *Lo, unsigned Size)
1389 const {
1390
1391 // Emit Hi+Offset - Lo
1392 // Get the Hi+Offset expression.
1393 const MCExpr *Plus =
1394 MCBinaryExpr::CreateAdd(MCSymbolRefExpr::Create(Hi, OutContext),
1395 MCConstantExpr::Create(Offset, OutContext),
1396 OutContext);
1397
1398 // Get the Hi+Offset-Lo expression.
1399 const MCExpr *Diff =
1400 MCBinaryExpr::CreateSub(Plus,
1401 MCSymbolRefExpr::Create(Lo, OutContext),
1402 OutContext);
1403
1404 if (!MAI->hasSetDirective())
1405 OutStreamer.EmitValue(Diff, 4);
1406 else {
1407 // Otherwise, emit with .set (aka assignment).
1408 MCSymbol *SetLabel = GetTempSymbol("set", SetCounter++);
1409 OutStreamer.EmitAssignment(SetLabel, Diff);
1410 OutStreamer.EmitSymbolValue(SetLabel, 4);
1411 }
1412 }
1413
1414 /// EmitLabelPlusOffset - Emit something like ".long Label+Offset"
1415 /// where the size in bytes of the directive is specified by Size and Label
1416 /// specifies the label. This implicitly uses .set if it is available.
EmitLabelPlusOffset(const MCSymbol * Label,uint64_t Offset,unsigned Size) const1417 void AsmPrinter::EmitLabelPlusOffset(const MCSymbol *Label, uint64_t Offset,
1418 unsigned Size)
1419 const {
1420 if (MAI->needsDwarfSectionOffsetDirective() && Size == 4) { // secrel32 ONLY works for 32bits.
1421 OutStreamer.EmitCOFFSecRel32(Label);
1422 return;
1423 }
1424
1425 // Emit Label+Offset (or just Label if Offset is zero)
1426 const MCExpr *Expr = MCSymbolRefExpr::Create(Label, OutContext);
1427 if (Offset)
1428 Expr = MCBinaryExpr::CreateAdd(Expr,
1429 MCConstantExpr::Create(Offset, OutContext),
1430 OutContext);
1431
1432 OutStreamer.EmitValue(Expr, Size);
1433 }
1434
1435
1436 //===----------------------------------------------------------------------===//
1437
1438 // EmitAlignment - Emit an alignment directive to the specified power of
1439 // two boundary. For example, if you pass in 3 here, you will get an 8
1440 // byte alignment. If a global value is specified, and if that global has
1441 // an explicit alignment requested, it will override the alignment request
1442 // if required for correctness.
1443 //
EmitAlignment(unsigned NumBits,const GlobalValue * GV) const1444 void AsmPrinter::EmitAlignment(unsigned NumBits, const GlobalValue *GV) const {
1445 if (GV) NumBits = getGVAlignmentLog2(GV, *TM.getDataLayout(), NumBits);
1446
1447 if (NumBits == 0) return; // 1-byte aligned: no need to emit alignment.
1448
1449 if (getCurrentSection()->getKind().isText())
1450 OutStreamer.EmitCodeAlignment(1 << NumBits);
1451 else
1452 OutStreamer.EmitValueToAlignment(1 << NumBits, 0, 1, 0);
1453 }
1454
1455 //===----------------------------------------------------------------------===//
1456 // Constant emission.
1457 //===----------------------------------------------------------------------===//
1458
1459 /// lowerConstant - Lower the specified LLVM Constant to an MCExpr.
1460 ///
lowerConstant(const Constant * CV,AsmPrinter & AP)1461 static const MCExpr *lowerConstant(const Constant *CV, AsmPrinter &AP) {
1462 MCContext &Ctx = AP.OutContext;
1463
1464 if (CV->isNullValue() || isa<UndefValue>(CV))
1465 return MCConstantExpr::Create(0, Ctx);
1466
1467 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV))
1468 return MCConstantExpr::Create(CI->getZExtValue(), Ctx);
1469
1470 if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV))
1471 return MCSymbolRefExpr::Create(AP.Mang->getSymbol(GV), Ctx);
1472
1473 if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV))
1474 return MCSymbolRefExpr::Create(AP.GetBlockAddressSymbol(BA), Ctx);
1475
1476 const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV);
1477 if (CE == 0) {
1478 llvm_unreachable("Unknown constant value to lower!");
1479 }
1480
1481 switch (CE->getOpcode()) {
1482 default:
1483 // If the code isn't optimized, there may be outstanding folding
1484 // opportunities. Attempt to fold the expression using DataLayout as a
1485 // last resort before giving up.
1486 if (Constant *C =
1487 ConstantFoldConstantExpression(CE, AP.TM.getDataLayout()))
1488 if (C != CE)
1489 return lowerConstant(C, AP);
1490
1491 // Otherwise report the problem to the user.
1492 {
1493 std::string S;
1494 raw_string_ostream OS(S);
1495 OS << "Unsupported expression in static initializer: ";
1496 WriteAsOperand(OS, CE, /*PrintType=*/false,
1497 !AP.MF ? 0 : AP.MF->getFunction()->getParent());
1498 report_fatal_error(OS.str());
1499 }
1500 case Instruction::GetElementPtr: {
1501 const DataLayout &TD = *AP.TM.getDataLayout();
1502 // Generate a symbolic expression for the byte address
1503 APInt OffsetAI(TD.getPointerSizeInBits(), 0);
1504 cast<GEPOperator>(CE)->accumulateConstantOffset(TD, OffsetAI);
1505
1506 const MCExpr *Base = lowerConstant(CE->getOperand(0), AP);
1507 if (!OffsetAI)
1508 return Base;
1509
1510 int64_t Offset = OffsetAI.getSExtValue();
1511 return MCBinaryExpr::CreateAdd(Base, MCConstantExpr::Create(Offset, Ctx),
1512 Ctx);
1513 }
1514
1515 case Instruction::Trunc:
1516 // We emit the value and depend on the assembler to truncate the generated
1517 // expression properly. This is important for differences between
1518 // blockaddress labels. Since the two labels are in the same function, it
1519 // is reasonable to treat their delta as a 32-bit value.
1520 // FALL THROUGH.
1521 case Instruction::BitCast:
1522 return lowerConstant(CE->getOperand(0), AP);
1523
1524 case Instruction::IntToPtr: {
1525 const DataLayout &TD = *AP.TM.getDataLayout();
1526 // Handle casts to pointers by changing them into casts to the appropriate
1527 // integer type. This promotes constant folding and simplifies this code.
1528 Constant *Op = CE->getOperand(0);
1529 Op = ConstantExpr::getIntegerCast(Op, TD.getIntPtrType(CV->getContext()),
1530 false/*ZExt*/);
1531 return lowerConstant(Op, AP);
1532 }
1533
1534 case Instruction::PtrToInt: {
1535 const DataLayout &TD = *AP.TM.getDataLayout();
1536 // Support only foldable casts to/from pointers that can be eliminated by
1537 // changing the pointer to the appropriately sized integer type.
1538 Constant *Op = CE->getOperand(0);
1539 Type *Ty = CE->getType();
1540
1541 const MCExpr *OpExpr = lowerConstant(Op, AP);
1542
1543 // We can emit the pointer value into this slot if the slot is an
1544 // integer slot equal to the size of the pointer.
1545 if (TD.getTypeAllocSize(Ty) == TD.getTypeAllocSize(Op->getType()))
1546 return OpExpr;
1547
1548 // Otherwise the pointer is smaller than the resultant integer, mask off
1549 // the high bits so we are sure to get a proper truncation if the input is
1550 // a constant expr.
1551 unsigned InBits = TD.getTypeAllocSizeInBits(Op->getType());
1552 const MCExpr *MaskExpr = MCConstantExpr::Create(~0ULL >> (64-InBits), Ctx);
1553 return MCBinaryExpr::CreateAnd(OpExpr, MaskExpr, Ctx);
1554 }
1555
1556 // The MC library also has a right-shift operator, but it isn't consistently
1557 // signed or unsigned between different targets.
1558 case Instruction::Add:
1559 case Instruction::Sub:
1560 case Instruction::Mul:
1561 case Instruction::SDiv:
1562 case Instruction::SRem:
1563 case Instruction::Shl:
1564 case Instruction::And:
1565 case Instruction::Or:
1566 case Instruction::Xor: {
1567 const MCExpr *LHS = lowerConstant(CE->getOperand(0), AP);
1568 const MCExpr *RHS = lowerConstant(CE->getOperand(1), AP);
1569 switch (CE->getOpcode()) {
1570 default: llvm_unreachable("Unknown binary operator constant cast expr");
1571 case Instruction::Add: return MCBinaryExpr::CreateAdd(LHS, RHS, Ctx);
1572 case Instruction::Sub: return MCBinaryExpr::CreateSub(LHS, RHS, Ctx);
1573 case Instruction::Mul: return MCBinaryExpr::CreateMul(LHS, RHS, Ctx);
1574 case Instruction::SDiv: return MCBinaryExpr::CreateDiv(LHS, RHS, Ctx);
1575 case Instruction::SRem: return MCBinaryExpr::CreateMod(LHS, RHS, Ctx);
1576 case Instruction::Shl: return MCBinaryExpr::CreateShl(LHS, RHS, Ctx);
1577 case Instruction::And: return MCBinaryExpr::CreateAnd(LHS, RHS, Ctx);
1578 case Instruction::Or: return MCBinaryExpr::CreateOr (LHS, RHS, Ctx);
1579 case Instruction::Xor: return MCBinaryExpr::CreateXor(LHS, RHS, Ctx);
1580 }
1581 }
1582 }
1583 }
1584
1585 static void emitGlobalConstantImpl(const Constant *C, AsmPrinter &AP);
1586
1587 /// isRepeatedByteSequence - Determine whether the given value is
1588 /// composed of a repeated sequence of identical bytes and return the
1589 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const ConstantDataSequential * V)1590 static int isRepeatedByteSequence(const ConstantDataSequential *V) {
1591 StringRef Data = V->getRawDataValues();
1592 assert(!Data.empty() && "Empty aggregates should be CAZ node");
1593 char C = Data[0];
1594 for (unsigned i = 1, e = Data.size(); i != e; ++i)
1595 if (Data[i] != C) return -1;
1596 return static_cast<uint8_t>(C); // Ensure 255 is not returned as -1.
1597 }
1598
1599
1600 /// isRepeatedByteSequence - Determine whether the given value is
1601 /// composed of a repeated sequence of identical bytes and return the
1602 /// byte value. If it is not a repeated sequence, return -1.
isRepeatedByteSequence(const Value * V,TargetMachine & TM)1603 static int isRepeatedByteSequence(const Value *V, TargetMachine &TM) {
1604
1605 if (const ConstantInt *CI = dyn_cast<ConstantInt>(V)) {
1606 if (CI->getBitWidth() > 64) return -1;
1607
1608 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(V->getType());
1609 uint64_t Value = CI->getZExtValue();
1610
1611 // Make sure the constant is at least 8 bits long and has a power
1612 // of 2 bit width. This guarantees the constant bit width is
1613 // always a multiple of 8 bits, avoiding issues with padding out
1614 // to Size and other such corner cases.
1615 if (CI->getBitWidth() < 8 || !isPowerOf2_64(CI->getBitWidth())) return -1;
1616
1617 uint8_t Byte = static_cast<uint8_t>(Value);
1618
1619 for (unsigned i = 1; i < Size; ++i) {
1620 Value >>= 8;
1621 if (static_cast<uint8_t>(Value) != Byte) return -1;
1622 }
1623 return Byte;
1624 }
1625 if (const ConstantArray *CA = dyn_cast<ConstantArray>(V)) {
1626 // Make sure all array elements are sequences of the same repeated
1627 // byte.
1628 assert(CA->getNumOperands() != 0 && "Should be a CAZ");
1629 int Byte = isRepeatedByteSequence(CA->getOperand(0), TM);
1630 if (Byte == -1) return -1;
1631
1632 for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
1633 int ThisByte = isRepeatedByteSequence(CA->getOperand(i), TM);
1634 if (ThisByte == -1) return -1;
1635 if (Byte != ThisByte) return -1;
1636 }
1637 return Byte;
1638 }
1639
1640 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(V))
1641 return isRepeatedByteSequence(CDS);
1642
1643 return -1;
1644 }
1645
emitGlobalConstantDataSequential(const ConstantDataSequential * CDS,AsmPrinter & AP)1646 static void emitGlobalConstantDataSequential(const ConstantDataSequential *CDS,
1647 AsmPrinter &AP){
1648
1649 // See if we can aggregate this into a .fill, if so, emit it as such.
1650 int Value = isRepeatedByteSequence(CDS, AP.TM);
1651 if (Value != -1) {
1652 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CDS->getType());
1653 // Don't emit a 1-byte object as a .fill.
1654 if (Bytes > 1)
1655 return AP.OutStreamer.EmitFill(Bytes, Value);
1656 }
1657
1658 // If this can be emitted with .ascii/.asciz, emit it as such.
1659 if (CDS->isString())
1660 return AP.OutStreamer.EmitBytes(CDS->getAsString());
1661
1662 // Otherwise, emit the values in successive locations.
1663 unsigned ElementByteSize = CDS->getElementByteSize();
1664 if (isa<IntegerType>(CDS->getElementType())) {
1665 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1666 if (AP.isVerbose())
1667 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1668 CDS->getElementAsInteger(i));
1669 AP.OutStreamer.EmitIntValue(CDS->getElementAsInteger(i),
1670 ElementByteSize);
1671 }
1672 } else if (ElementByteSize == 4) {
1673 // FP Constants are printed as integer constants to avoid losing
1674 // precision.
1675 assert(CDS->getElementType()->isFloatTy());
1676 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1677 union {
1678 float F;
1679 uint32_t I;
1680 };
1681
1682 F = CDS->getElementAsFloat(i);
1683 if (AP.isVerbose())
1684 AP.OutStreamer.GetCommentOS() << "float " << F << '\n';
1685 AP.OutStreamer.EmitIntValue(I, 4);
1686 }
1687 } else {
1688 assert(CDS->getElementType()->isDoubleTy());
1689 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
1690 union {
1691 double F;
1692 uint64_t I;
1693 };
1694
1695 F = CDS->getElementAsDouble(i);
1696 if (AP.isVerbose())
1697 AP.OutStreamer.GetCommentOS() << "double " << F << '\n';
1698 AP.OutStreamer.EmitIntValue(I, 8);
1699 }
1700 }
1701
1702 const DataLayout &TD = *AP.TM.getDataLayout();
1703 unsigned Size = TD.getTypeAllocSize(CDS->getType());
1704 unsigned EmittedSize = TD.getTypeAllocSize(CDS->getType()->getElementType()) *
1705 CDS->getNumElements();
1706 if (unsigned Padding = Size - EmittedSize)
1707 AP.OutStreamer.EmitZeros(Padding);
1708
1709 }
1710
emitGlobalConstantArray(const ConstantArray * CA,AsmPrinter & AP)1711 static void emitGlobalConstantArray(const ConstantArray *CA, AsmPrinter &AP) {
1712 // See if we can aggregate some values. Make sure it can be
1713 // represented as a series of bytes of the constant value.
1714 int Value = isRepeatedByteSequence(CA, AP.TM);
1715
1716 if (Value != -1) {
1717 uint64_t Bytes = AP.TM.getDataLayout()->getTypeAllocSize(CA->getType());
1718 AP.OutStreamer.EmitFill(Bytes, Value);
1719 }
1720 else {
1721 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
1722 emitGlobalConstantImpl(CA->getOperand(i), AP);
1723 }
1724 }
1725
emitGlobalConstantVector(const ConstantVector * CV,AsmPrinter & AP)1726 static void emitGlobalConstantVector(const ConstantVector *CV, AsmPrinter &AP) {
1727 for (unsigned i = 0, e = CV->getType()->getNumElements(); i != e; ++i)
1728 emitGlobalConstantImpl(CV->getOperand(i), AP);
1729
1730 const DataLayout &TD = *AP.TM.getDataLayout();
1731 unsigned Size = TD.getTypeAllocSize(CV->getType());
1732 unsigned EmittedSize = TD.getTypeAllocSize(CV->getType()->getElementType()) *
1733 CV->getType()->getNumElements();
1734 if (unsigned Padding = Size - EmittedSize)
1735 AP.OutStreamer.EmitZeros(Padding);
1736 }
1737
emitGlobalConstantStruct(const ConstantStruct * CS,AsmPrinter & AP)1738 static void emitGlobalConstantStruct(const ConstantStruct *CS, AsmPrinter &AP) {
1739 // Print the fields in successive locations. Pad to align if needed!
1740 const DataLayout *TD = AP.TM.getDataLayout();
1741 unsigned Size = TD->getTypeAllocSize(CS->getType());
1742 const StructLayout *Layout = TD->getStructLayout(CS->getType());
1743 uint64_t SizeSoFar = 0;
1744 for (unsigned i = 0, e = CS->getNumOperands(); i != e; ++i) {
1745 const Constant *Field = CS->getOperand(i);
1746
1747 // Check if padding is needed and insert one or more 0s.
1748 uint64_t FieldSize = TD->getTypeAllocSize(Field->getType());
1749 uint64_t PadSize = ((i == e-1 ? Size : Layout->getElementOffset(i+1))
1750 - Layout->getElementOffset(i)) - FieldSize;
1751 SizeSoFar += FieldSize + PadSize;
1752
1753 // Now print the actual field value.
1754 emitGlobalConstantImpl(Field, AP);
1755
1756 // Insert padding - this may include padding to increase the size of the
1757 // current field up to the ABI size (if the struct is not packed) as well
1758 // as padding to ensure that the next field starts at the right offset.
1759 AP.OutStreamer.EmitZeros(PadSize);
1760 }
1761 assert(SizeSoFar == Layout->getSizeInBytes() &&
1762 "Layout of constant struct may be incorrect!");
1763 }
1764
emitGlobalConstantFP(const ConstantFP * CFP,AsmPrinter & AP)1765 static void emitGlobalConstantFP(const ConstantFP *CFP, AsmPrinter &AP) {
1766 APInt API = CFP->getValueAPF().bitcastToAPInt();
1767
1768 // First print a comment with what we think the original floating-point value
1769 // should have been.
1770 if (AP.isVerbose()) {
1771 SmallString<8> StrVal;
1772 CFP->getValueAPF().toString(StrVal);
1773
1774 CFP->getType()->print(AP.OutStreamer.GetCommentOS());
1775 AP.OutStreamer.GetCommentOS() << ' ' << StrVal << '\n';
1776 }
1777
1778 // Now iterate through the APInt chunks, emitting them in endian-correct
1779 // order, possibly with a smaller chunk at beginning/end (e.g. for x87 80-bit
1780 // floats).
1781 unsigned NumBytes = API.getBitWidth() / 8;
1782 unsigned TrailingBytes = NumBytes % sizeof(uint64_t);
1783 const uint64_t *p = API.getRawData();
1784
1785 // PPC's long double has odd notions of endianness compared to how LLVM
1786 // handles it: p[0] goes first for *big* endian on PPC.
1787 if (AP.TM.getDataLayout()->isBigEndian() != CFP->getType()->isPPC_FP128Ty()) {
1788 int Chunk = API.getNumWords() - 1;
1789
1790 if (TrailingBytes)
1791 AP.OutStreamer.EmitIntValue(p[Chunk--], TrailingBytes);
1792
1793 for (; Chunk >= 0; --Chunk)
1794 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1795 } else {
1796 unsigned Chunk;
1797 for (Chunk = 0; Chunk < NumBytes / sizeof(uint64_t); ++Chunk)
1798 AP.OutStreamer.EmitIntValue(p[Chunk], sizeof(uint64_t));
1799
1800 if (TrailingBytes)
1801 AP.OutStreamer.EmitIntValue(p[Chunk], TrailingBytes);
1802 }
1803
1804 // Emit the tail padding for the long double.
1805 const DataLayout &TD = *AP.TM.getDataLayout();
1806 AP.OutStreamer.EmitZeros(TD.getTypeAllocSize(CFP->getType()) -
1807 TD.getTypeStoreSize(CFP->getType()));
1808 }
1809
emitGlobalConstantLargeInt(const ConstantInt * CI,AsmPrinter & AP)1810 static void emitGlobalConstantLargeInt(const ConstantInt *CI, AsmPrinter &AP) {
1811 const DataLayout *TD = AP.TM.getDataLayout();
1812 unsigned BitWidth = CI->getBitWidth();
1813
1814 // Copy the value as we may massage the layout for constants whose bit width
1815 // is not a multiple of 64-bits.
1816 APInt Realigned(CI->getValue());
1817 uint64_t ExtraBits = 0;
1818 unsigned ExtraBitsSize = BitWidth & 63;
1819
1820 if (ExtraBitsSize) {
1821 // The bit width of the data is not a multiple of 64-bits.
1822 // The extra bits are expected to be at the end of the chunk of the memory.
1823 // Little endian:
1824 // * Nothing to be done, just record the extra bits to emit.
1825 // Big endian:
1826 // * Record the extra bits to emit.
1827 // * Realign the raw data to emit the chunks of 64-bits.
1828 if (TD->isBigEndian()) {
1829 // Basically the structure of the raw data is a chunk of 64-bits cells:
1830 // 0 1 BitWidth / 64
1831 // [chunk1][chunk2] ... [chunkN].
1832 // The most significant chunk is chunkN and it should be emitted first.
1833 // However, due to the alignment issue chunkN contains useless bits.
1834 // Realign the chunks so that they contain only useless information:
1835 // ExtraBits 0 1 (BitWidth / 64) - 1
1836 // chu[nk1 chu][nk2 chu] ... [nkN-1 chunkN]
1837 ExtraBits = Realigned.getRawData()[0] &
1838 (((uint64_t)-1) >> (64 - ExtraBitsSize));
1839 Realigned = Realigned.lshr(ExtraBitsSize);
1840 } else
1841 ExtraBits = Realigned.getRawData()[BitWidth / 64];
1842 }
1843
1844 // We don't expect assemblers to support integer data directives
1845 // for more than 64 bits, so we emit the data in at most 64-bit
1846 // quantities at a time.
1847 const uint64_t *RawData = Realigned.getRawData();
1848 for (unsigned i = 0, e = BitWidth / 64; i != e; ++i) {
1849 uint64_t Val = TD->isBigEndian() ? RawData[e - i - 1] : RawData[i];
1850 AP.OutStreamer.EmitIntValue(Val, 8);
1851 }
1852
1853 if (ExtraBitsSize) {
1854 // Emit the extra bits after the 64-bits chunks.
1855
1856 // Emit a directive that fills the expected size.
1857 uint64_t Size = AP.TM.getDataLayout()->getTypeAllocSize(CI->getType());
1858 Size -= (BitWidth / 64) * 8;
1859 assert(Size && Size * 8 >= ExtraBitsSize &&
1860 (ExtraBits & (((uint64_t)-1) >> (64 - ExtraBitsSize)))
1861 == ExtraBits && "Directive too small for extra bits.");
1862 AP.OutStreamer.EmitIntValue(ExtraBits, Size);
1863 }
1864 }
1865
emitGlobalConstantImpl(const Constant * CV,AsmPrinter & AP)1866 static void emitGlobalConstantImpl(const Constant *CV, AsmPrinter &AP) {
1867 const DataLayout *TD = AP.TM.getDataLayout();
1868 uint64_t Size = TD->getTypeAllocSize(CV->getType());
1869 if (isa<ConstantAggregateZero>(CV) || isa<UndefValue>(CV))
1870 return AP.OutStreamer.EmitZeros(Size);
1871
1872 if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
1873 switch (Size) {
1874 case 1:
1875 case 2:
1876 case 4:
1877 case 8:
1878 if (AP.isVerbose())
1879 AP.OutStreamer.GetCommentOS() << format("0x%" PRIx64 "\n",
1880 CI->getZExtValue());
1881 AP.OutStreamer.EmitIntValue(CI->getZExtValue(), Size);
1882 return;
1883 default:
1884 emitGlobalConstantLargeInt(CI, AP);
1885 return;
1886 }
1887 }
1888
1889 if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV))
1890 return emitGlobalConstantFP(CFP, AP);
1891
1892 if (isa<ConstantPointerNull>(CV)) {
1893 AP.OutStreamer.EmitIntValue(0, Size);
1894 return;
1895 }
1896
1897 if (const ConstantDataSequential *CDS = dyn_cast<ConstantDataSequential>(CV))
1898 return emitGlobalConstantDataSequential(CDS, AP);
1899
1900 if (const ConstantArray *CVA = dyn_cast<ConstantArray>(CV))
1901 return emitGlobalConstantArray(CVA, AP);
1902
1903 if (const ConstantStruct *CVS = dyn_cast<ConstantStruct>(CV))
1904 return emitGlobalConstantStruct(CVS, AP);
1905
1906 if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
1907 // Look through bitcasts, which might not be able to be MCExpr'ized (e.g. of
1908 // vectors).
1909 if (CE->getOpcode() == Instruction::BitCast)
1910 return emitGlobalConstantImpl(CE->getOperand(0), AP);
1911
1912 if (Size > 8) {
1913 // If the constant expression's size is greater than 64-bits, then we have
1914 // to emit the value in chunks. Try to constant fold the value and emit it
1915 // that way.
1916 Constant *New = ConstantFoldConstantExpression(CE, TD);
1917 if (New && New != CE)
1918 return emitGlobalConstantImpl(New, AP);
1919 }
1920 }
1921
1922 if (const ConstantVector *V = dyn_cast<ConstantVector>(CV))
1923 return emitGlobalConstantVector(V, AP);
1924
1925 // Otherwise, it must be a ConstantExpr. Lower it to an MCExpr, then emit it
1926 // thread the streamer with EmitValue.
1927 AP.OutStreamer.EmitValue(lowerConstant(CV, AP), Size);
1928 }
1929
1930 /// EmitGlobalConstant - Print a general LLVM constant to the .s file.
EmitGlobalConstant(const Constant * CV)1931 void AsmPrinter::EmitGlobalConstant(const Constant *CV) {
1932 uint64_t Size = TM.getDataLayout()->getTypeAllocSize(CV->getType());
1933 if (Size)
1934 emitGlobalConstantImpl(CV, *this);
1935 else if (MAI->hasSubsectionsViaSymbols()) {
1936 // If the global has zero size, emit a single byte so that two labels don't
1937 // look like they are at the same location.
1938 OutStreamer.EmitIntValue(0, 1);
1939 }
1940 }
1941
EmitMachineConstantPoolValue(MachineConstantPoolValue * MCPV)1942 void AsmPrinter::EmitMachineConstantPoolValue(MachineConstantPoolValue *MCPV) {
1943 // Target doesn't support this yet!
1944 llvm_unreachable("Target does not support EmitMachineConstantPoolValue");
1945 }
1946
printOffset(int64_t Offset,raw_ostream & OS) const1947 void AsmPrinter::printOffset(int64_t Offset, raw_ostream &OS) const {
1948 if (Offset > 0)
1949 OS << '+' << Offset;
1950 else if (Offset < 0)
1951 OS << Offset;
1952 }
1953
1954 //===----------------------------------------------------------------------===//
1955 // Symbol Lowering Routines.
1956 //===----------------------------------------------------------------------===//
1957
1958 /// GetTempSymbol - Return the MCSymbol corresponding to the assembler
1959 /// temporary label with the specified stem and unique ID.
GetTempSymbol(StringRef Name,unsigned ID) const1960 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name, unsigned ID) const {
1961 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix()) +
1962 Name + Twine(ID));
1963 }
1964
1965 /// GetTempSymbol - Return an assembler temporary label with the specified
1966 /// stem.
GetTempSymbol(StringRef Name) const1967 MCSymbol *AsmPrinter::GetTempSymbol(StringRef Name) const {
1968 return OutContext.GetOrCreateSymbol(Twine(MAI->getPrivateGlobalPrefix())+
1969 Name);
1970 }
1971
1972
GetBlockAddressSymbol(const BlockAddress * BA) const1973 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BlockAddress *BA) const {
1974 return MMI->getAddrLabelSymbol(BA->getBasicBlock());
1975 }
1976
GetBlockAddressSymbol(const BasicBlock * BB) const1977 MCSymbol *AsmPrinter::GetBlockAddressSymbol(const BasicBlock *BB) const {
1978 return MMI->getAddrLabelSymbol(BB);
1979 }
1980
1981 /// GetCPISymbol - Return the symbol for the specified constant pool entry.
GetCPISymbol(unsigned CPID) const1982 MCSymbol *AsmPrinter::GetCPISymbol(unsigned CPID) const {
1983 return OutContext.GetOrCreateSymbol
1984 (Twine(MAI->getPrivateGlobalPrefix()) + "CPI" + Twine(getFunctionNumber())
1985 + "_" + Twine(CPID));
1986 }
1987
1988 /// GetJTISymbol - Return the symbol for the specified jump table entry.
GetJTISymbol(unsigned JTID,bool isLinkerPrivate) const1989 MCSymbol *AsmPrinter::GetJTISymbol(unsigned JTID, bool isLinkerPrivate) const {
1990 return MF->getJTISymbol(JTID, OutContext, isLinkerPrivate);
1991 }
1992
1993 /// GetJTSetSymbol - Return the symbol for the specified jump table .set
1994 /// FIXME: privatize to AsmPrinter.
GetJTSetSymbol(unsigned UID,unsigned MBBID) const1995 MCSymbol *AsmPrinter::GetJTSetSymbol(unsigned UID, unsigned MBBID) const {
1996 return OutContext.GetOrCreateSymbol
1997 (Twine(MAI->getPrivateGlobalPrefix()) + Twine(getFunctionNumber()) + "_" +
1998 Twine(UID) + "_set_" + Twine(MBBID));
1999 }
2000
2001 /// GetSymbolWithGlobalValueBase - Return the MCSymbol for a symbol with
2002 /// global value name as its base, with the specified suffix, and where the
2003 /// symbol is forced to have private linkage if ForcePrivate is true.
GetSymbolWithGlobalValueBase(const GlobalValue * GV,StringRef Suffix,bool ForcePrivate) const2004 MCSymbol *AsmPrinter::GetSymbolWithGlobalValueBase(const GlobalValue *GV,
2005 StringRef Suffix,
2006 bool ForcePrivate) const {
2007 SmallString<60> NameStr;
2008 Mang->getNameWithPrefix(NameStr, GV, ForcePrivate);
2009 NameStr.append(Suffix.begin(), Suffix.end());
2010 return OutContext.GetOrCreateSymbol(NameStr.str());
2011 }
2012
2013 /// GetExternalSymbolSymbol - Return the MCSymbol for the specified
2014 /// ExternalSymbol.
GetExternalSymbolSymbol(StringRef Sym) const2015 MCSymbol *AsmPrinter::GetExternalSymbolSymbol(StringRef Sym) const {
2016 SmallString<60> NameStr;
2017 Mang->getNameWithPrefix(NameStr, Sym);
2018 return OutContext.GetOrCreateSymbol(NameStr.str());
2019 }
2020
2021
2022
2023 /// PrintParentLoopComment - Print comments about parent loops of this one.
PrintParentLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2024 static void PrintParentLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2025 unsigned FunctionNumber) {
2026 if (Loop == 0) return;
2027 PrintParentLoopComment(OS, Loop->getParentLoop(), FunctionNumber);
2028 OS.indent(Loop->getLoopDepth()*2)
2029 << "Parent Loop BB" << FunctionNumber << "_"
2030 << Loop->getHeader()->getNumber()
2031 << " Depth=" << Loop->getLoopDepth() << '\n';
2032 }
2033
2034
2035 /// PrintChildLoopComment - Print comments about child loops within
2036 /// the loop for this basic block, with nesting.
PrintChildLoopComment(raw_ostream & OS,const MachineLoop * Loop,unsigned FunctionNumber)2037 static void PrintChildLoopComment(raw_ostream &OS, const MachineLoop *Loop,
2038 unsigned FunctionNumber) {
2039 // Add child loop information
2040 for (MachineLoop::iterator CL = Loop->begin(), E = Loop->end();CL != E; ++CL){
2041 OS.indent((*CL)->getLoopDepth()*2)
2042 << "Child Loop BB" << FunctionNumber << "_"
2043 << (*CL)->getHeader()->getNumber() << " Depth " << (*CL)->getLoopDepth()
2044 << '\n';
2045 PrintChildLoopComment(OS, *CL, FunctionNumber);
2046 }
2047 }
2048
2049 /// emitBasicBlockLoopComments - Pretty-print comments for basic blocks.
emitBasicBlockLoopComments(const MachineBasicBlock & MBB,const MachineLoopInfo * LI,const AsmPrinter & AP)2050 static void emitBasicBlockLoopComments(const MachineBasicBlock &MBB,
2051 const MachineLoopInfo *LI,
2052 const AsmPrinter &AP) {
2053 // Add loop depth information
2054 const MachineLoop *Loop = LI->getLoopFor(&MBB);
2055 if (Loop == 0) return;
2056
2057 MachineBasicBlock *Header = Loop->getHeader();
2058 assert(Header && "No header for loop");
2059
2060 // If this block is not a loop header, just print out what is the loop header
2061 // and return.
2062 if (Header != &MBB) {
2063 AP.OutStreamer.AddComment(" in Loop: Header=BB" +
2064 Twine(AP.getFunctionNumber())+"_" +
2065 Twine(Loop->getHeader()->getNumber())+
2066 " Depth="+Twine(Loop->getLoopDepth()));
2067 return;
2068 }
2069
2070 // Otherwise, it is a loop header. Print out information about child and
2071 // parent loops.
2072 raw_ostream &OS = AP.OutStreamer.GetCommentOS();
2073
2074 PrintParentLoopComment(OS, Loop->getParentLoop(), AP.getFunctionNumber());
2075
2076 OS << "=>";
2077 OS.indent(Loop->getLoopDepth()*2-2);
2078
2079 OS << "This ";
2080 if (Loop->empty())
2081 OS << "Inner ";
2082 OS << "Loop Header: Depth=" + Twine(Loop->getLoopDepth()) << '\n';
2083
2084 PrintChildLoopComment(OS, Loop, AP.getFunctionNumber());
2085 }
2086
2087
2088 /// EmitBasicBlockStart - This method prints the label for the specified
2089 /// MachineBasicBlock, an alignment (if present) and a comment describing
2090 /// it if appropriate.
EmitBasicBlockStart(const MachineBasicBlock * MBB) const2091 void AsmPrinter::EmitBasicBlockStart(const MachineBasicBlock *MBB) const {
2092 // Emit an alignment directive for this block, if needed.
2093 if (unsigned Align = MBB->getAlignment())
2094 EmitAlignment(Align);
2095
2096 // If the block has its address taken, emit any labels that were used to
2097 // reference the block. It is possible that there is more than one label
2098 // here, because multiple LLVM BB's may have been RAUW'd to this block after
2099 // the references were generated.
2100 if (MBB->hasAddressTaken()) {
2101 const BasicBlock *BB = MBB->getBasicBlock();
2102 if (isVerbose())
2103 OutStreamer.AddComment("Block address taken");
2104
2105 std::vector<MCSymbol*> Syms = MMI->getAddrLabelSymbolToEmit(BB);
2106
2107 for (unsigned i = 0, e = Syms.size(); i != e; ++i)
2108 OutStreamer.EmitLabel(Syms[i]);
2109 }
2110
2111 // Print some verbose block comments.
2112 if (isVerbose()) {
2113 if (const BasicBlock *BB = MBB->getBasicBlock())
2114 if (BB->hasName())
2115 OutStreamer.AddComment("%" + BB->getName());
2116 emitBasicBlockLoopComments(*MBB, LI, *this);
2117 }
2118
2119 // Print the main label for the block.
2120 if (MBB->pred_empty() || isBlockOnlyReachableByFallthrough(MBB)) {
2121 if (isVerbose() && OutStreamer.hasRawTextSupport()) {
2122 // NOTE: Want this comment at start of line, don't emit with AddComment.
2123 OutStreamer.EmitRawText(Twine(MAI->getCommentString()) + " BB#" +
2124 Twine(MBB->getNumber()) + ":");
2125 }
2126 } else {
2127 OutStreamer.EmitLabel(MBB->getSymbol());
2128 }
2129 }
2130
EmitVisibility(MCSymbol * Sym,unsigned Visibility,bool IsDefinition) const2131 void AsmPrinter::EmitVisibility(MCSymbol *Sym, unsigned Visibility,
2132 bool IsDefinition) const {
2133 MCSymbolAttr Attr = MCSA_Invalid;
2134
2135 switch (Visibility) {
2136 default: break;
2137 case GlobalValue::HiddenVisibility:
2138 if (IsDefinition)
2139 Attr = MAI->getHiddenVisibilityAttr();
2140 else
2141 Attr = MAI->getHiddenDeclarationVisibilityAttr();
2142 break;
2143 case GlobalValue::ProtectedVisibility:
2144 Attr = MAI->getProtectedVisibilityAttr();
2145 break;
2146 }
2147
2148 if (Attr != MCSA_Invalid)
2149 OutStreamer.EmitSymbolAttribute(Sym, Attr);
2150 }
2151
2152 /// isBlockOnlyReachableByFallthough - Return true if the basic block has
2153 /// exactly one predecessor and the control transfer mechanism between
2154 /// the predecessor and this block is a fall-through.
2155 bool AsmPrinter::
isBlockOnlyReachableByFallthrough(const MachineBasicBlock * MBB) const2156 isBlockOnlyReachableByFallthrough(const MachineBasicBlock *MBB) const {
2157 // If this is a landing pad, it isn't a fall through. If it has no preds,
2158 // then nothing falls through to it.
2159 if (MBB->isLandingPad() || MBB->pred_empty())
2160 return false;
2161
2162 // If there isn't exactly one predecessor, it can't be a fall through.
2163 MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(), PI2 = PI;
2164 ++PI2;
2165 if (PI2 != MBB->pred_end())
2166 return false;
2167
2168 // The predecessor has to be immediately before this block.
2169 MachineBasicBlock *Pred = *PI;
2170
2171 if (!Pred->isLayoutSuccessor(MBB))
2172 return false;
2173
2174 // If the block is completely empty, then it definitely does fall through.
2175 if (Pred->empty())
2176 return true;
2177
2178 // Check the terminators in the previous blocks
2179 for (MachineBasicBlock::iterator II = Pred->getFirstTerminator(),
2180 IE = Pred->end(); II != IE; ++II) {
2181 MachineInstr &MI = *II;
2182
2183 // If it is not a simple branch, we are in a table somewhere.
2184 if (!MI.isBranch() || MI.isIndirectBranch())
2185 return false;
2186
2187 // If we are the operands of one of the branches, this is not
2188 // a fall through.
2189 for (MachineInstr::mop_iterator OI = MI.operands_begin(),
2190 OE = MI.operands_end(); OI != OE; ++OI) {
2191 const MachineOperand& OP = *OI;
2192 if (OP.isJTI())
2193 return false;
2194 if (OP.isMBB() && OP.getMBB() == MBB)
2195 return false;
2196 }
2197 }
2198
2199 return true;
2200 }
2201
2202
2203
GetOrCreateGCPrinter(GCStrategy * S)2204 GCMetadataPrinter *AsmPrinter::GetOrCreateGCPrinter(GCStrategy *S) {
2205 if (!S->usesMetadata())
2206 return 0;
2207
2208 gcp_map_type &GCMap = getGCMap(GCMetadataPrinters);
2209 gcp_map_type::iterator GCPI = GCMap.find(S);
2210 if (GCPI != GCMap.end())
2211 return GCPI->second;
2212
2213 const char *Name = S->getName().c_str();
2214
2215 for (GCMetadataPrinterRegistry::iterator
2216 I = GCMetadataPrinterRegistry::begin(),
2217 E = GCMetadataPrinterRegistry::end(); I != E; ++I)
2218 if (strcmp(Name, I->getName()) == 0) {
2219 GCMetadataPrinter *GMP = I->instantiate();
2220 GMP->S = S;
2221 GCMap.insert(std::make_pair(S, GMP));
2222 return GMP;
2223 }
2224
2225 report_fatal_error("no GCMetadataPrinter registered for GC: " + Twine(Name));
2226 }
2227