• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //--------------------------------------------------------------------*/
2 //--- Massif: a heap profiling tool.                     ms_main.c ---*/
3 //--------------------------------------------------------------------*/
4 
5 /*
6    This file is part of Massif, a Valgrind tool for profiling memory
7    usage of programs.
8 
9    Copyright (C) 2003-2012 Nicholas Nethercote
10       njn@valgrind.org
11 
12    This program is free software; you can redistribute it and/or
13    modify it under the terms of the GNU General Public License as
14    published by the Free Software Foundation; either version 2 of the
15    License, or (at your option) any later version.
16 
17    This program is distributed in the hope that it will be useful, but
18    WITHOUT ANY WARRANTY; without even the implied warranty of
19    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20    General Public License for more details.
21 
22    You should have received a copy of the GNU General Public License
23    along with this program; if not, write to the Free Software
24    Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA
25    02111-1307, USA.
26 
27    The GNU General Public License is contained in the file COPYING.
28 */
29 
30 //---------------------------------------------------------------------------
31 // XXX:
32 //---------------------------------------------------------------------------
33 // Todo -- nice, but less critical:
34 // - do a graph-drawing test
35 // - make file format more generic.  Obstacles:
36 //   - unit prefixes are not generic
37 //   - preset column widths for stats are not generic
38 //   - preset column headers are not generic
39 //   - "Massif arguments:" line is not generic
40 // - do snapshots on client requests
41 //   - (Michael Meeks): have an interactive way to request a dump
42 //     (callgrind_control-style)
43 //     - "profile now"
44 //     - "show me the extra allocations since the last snapshot"
45 //     - "start/stop logging" (eg. quickly skip boring bits)
46 // - Add ability to draw multiple graphs, eg. heap-only, stack-only, total.
47 //   Give each graph a title.  (try to do it generically!)
48 // - allow truncation of long fnnames if the exact line number is
49 //   identified?  [hmm, could make getting the name of alloc-fns more
50 //   difficult] [could dump full names to file, truncate in ms_print]
51 // - make --show-below-main=no work
52 // - Options like --alloc-fn='operator new(unsigned, std::nothrow_t const&)'
53 //   don't work in a .valgrindrc file or in $VALGRIND_OPTS.
54 //   m_commandline.c:add_args_from_string() needs to respect single quotes.
55 // - With --stack=yes, want to add a stack trace for detailed snapshots so
56 //   it's clear where/why the peak is occurring. (Mattieu Castet)  Also,
57 //   possibly useful even with --stack=no? (Andi Yin)
58 //
59 // Performance:
60 // - To run the benchmarks:
61 //
62 //     perl perf/vg_perf --tools=massif --reps=3 perf/{heap,tinycc} massif
63 //     time valgrind --tool=massif --depth=100 konqueror
64 //
65 //   The other benchmarks don't do much allocation, and so give similar speeds
66 //   to Nulgrind.
67 //
68 //   Timing results on 'nevermore' (njn's machine) as of r7013:
69 //
70 //     heap      0.53s  ma:12.4s (23.5x, -----)
71 //     tinycc    0.46s  ma: 4.9s (10.7x, -----)
72 //     many-xpts 0.08s  ma: 2.0s (25.0x, -----)
73 //     konqueror 29.6s real  0:21.0s user
74 //
75 //   [Introduction of --time-unit=i as the default slowed things down by
76 //   roughly 0--20%.]
77 //
78 // - get_XCon accounts for about 9% of konqueror startup time.  Try
79 //   keeping XPt children sorted by 'ip' and use binary search in get_XCon.
80 //   Requires factoring out binary search code from various places into a
81 //   VG_(bsearch) function.
82 //
83 // Todo -- low priority:
84 // - In each XPt, record both bytes and the number of allocations, and
85 //   possibly the global number of allocations.
86 // - (Andy Lin) Give a stack trace on detailed snapshots?
87 // - (Artur Wisz) add a feature to Massif to ignore any heap blocks larger
88 //   than a certain size!  Because: "linux's malloc allows to set a
89 //   MMAP_THRESHOLD value, so we set it to 4096 - all blocks above that will
90 //   be handled directly by the kernel, and are guaranteed to be returned to
91 //   the system when freed. So we needed to profile only blocks below this
92 //   limit."
93 //
94 // File format working notes:
95 
96 #if 0
97 desc: --heap-admin=foo
98 cmd: date
99 time_unit: ms
100 #-----------
101 snapshot=0
102 #-----------
103 time=0
104 mem_heap_B=0
105 mem_heap_admin_B=0
106 mem_stacks_B=0
107 heap_tree=empty
108 #-----------
109 snapshot=1
110 #-----------
111 time=353
112 mem_heap_B=5
113 mem_heap_admin_B=0
114 mem_stacks_B=0
115 heap_tree=detailed
116 n1: 5 (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
117  n1: 5 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
118   n1: 5 0x279DE6: _nl_load_locale_from_archive (in /lib/libc-2.3.5.so)
119    n1: 5 0x278E97: _nl_find_locale (in /lib/libc-2.3.5.so)
120     n1: 5 0x278871: setlocale (in /lib/libc-2.3.5.so)
121      n1: 5 0x8049821: (within /bin/date)
122       n0: 5 0x26ED5E: (below main) (in /lib/libc-2.3.5.so)
123 
124 
125 n_events: n  time(ms)  total(B)    useful-heap(B)  admin-heap(B)  stacks(B)
126 t_events: B
127 n 0 0 0 0 0
128 n 0 0 0 0 0
129 t1: 5 <string...>
130  t1: 6 <string...>
131 
132 Ideas:
133 - each snapshot specifies an x-axis value and one or more y-axis values.
134 - can display the y-axis values separately if you like
135 - can completely separate connection between snapshots and trees.
136 
137 Challenges:
138 - how to specify and scale/abbreviate units on axes?
139 - how to combine multiple values into the y-axis?
140 
141 --------------------------------------------------------------------------------Command:            date
142 Massif arguments:   --heap-admin=foo
143 ms_print arguments: massif.out
144 --------------------------------------------------------------------------------
145     KB
146 6.472^                                                       :#
147      |                                                       :#  ::  .    .
148      ...
149      |                                     ::@  :@    :@ :@:::#  ::  :    ::::
150    0 +-----------------------------------@---@---@-----@--@---#-------------->ms     0                                                                     713
151 
152 Number of snapshots: 50
153  Detailed snapshots: [2, 11, 13, 19, 25, 32 (peak)]
154 --------------------------------------------------------------------------------  n       time(ms)         total(B)   useful-heap(B) admin-heap(B)    stacks(B)
155 --------------------------------------------------------------------------------  0              0                0                0             0            0
156   1            345                5                5             0            0
157   2            353                5                5             0            0
158 100.00% (5B) (heap allocation functions) malloc/new/new[], --alloc-fns, etc.
159 ->100.00% (5B) 0x27F6E0: _nl_normalize_codeset (in /lib/libc-2.3.5.so)
160 #endif
161 
162 //---------------------------------------------------------------------------
163 
164 #include "pub_tool_basics.h"
165 #include "pub_tool_vki.h"
166 #include "pub_tool_aspacemgr.h"
167 #include "pub_tool_debuginfo.h"
168 #include "pub_tool_hashtable.h"
169 #include "pub_tool_libcbase.h"
170 #include "pub_tool_libcassert.h"
171 #include "pub_tool_libcfile.h"
172 #include "pub_tool_libcprint.h"
173 #include "pub_tool_libcproc.h"
174 #include "pub_tool_machine.h"
175 #include "pub_tool_mallocfree.h"
176 #include "pub_tool_options.h"
177 #include "pub_tool_replacemalloc.h"
178 #include "pub_tool_stacktrace.h"
179 #include "pub_tool_threadstate.h"
180 #include "pub_tool_tooliface.h"
181 #include "pub_tool_xarray.h"
182 #include "pub_tool_clientstate.h"
183 #include "pub_tool_gdbserver.h"
184 
185 #include "valgrind.h"           // For {MALLOC,FREE}LIKE_BLOCK
186 
187 //------------------------------------------------------------*/
188 //--- Overview of operation                                ---*/
189 //------------------------------------------------------------*/
190 
191 // The size of the stacks and heap is tracked.  The heap is tracked in a lot
192 // of detail, enough to tell how many bytes each line of code is responsible
193 // for, more or less.  The main data structure is a tree representing the
194 // call tree beneath all the allocation functions like malloc().
195 // (Alternatively, if --pages-as-heap=yes is specified, memory is tracked at
196 // the page level, and each page is treated much like a heap block.  We use
197 // "heap" throughout below to cover this case because the concepts are all the
198 // same.)
199 //
200 // "Snapshots" are recordings of the memory usage.  There are two basic
201 // kinds:
202 // - Normal:  these record the current time, total memory size, total heap
203 //   size, heap admin size and stack size.
204 // - Detailed: these record those things in a normal snapshot, plus a very
205 //   detailed XTree (see below) indicating how the heap is structured.
206 //
207 // Snapshots are taken every so often.  There are two storage classes of
208 // snapshots:
209 // - Temporary:  Massif does a temporary snapshot every so often.  The idea
210 //   is to always have a certain number of temporary snapshots around.  So
211 //   we take them frequently to begin with, but decreasingly often as the
212 //   program continues to run.  Also, we remove some old ones after a while.
213 //   Overall it's a kind of exponential decay thing.  Most of these are
214 //   normal snapshots, a small fraction are detailed snapshots.
215 // - Permanent:  Massif takes a permanent (detailed) snapshot in some
216 //   circumstances.  They are:
217 //   - Peak snapshot:  When the memory usage peak is reached, it takes a
218 //     snapshot.  It keeps this, unless the peak is subsequently exceeded,
219 //     in which case it will overwrite the peak snapshot.
220 //   - User-requested snapshots:  These are done in response to client
221 //     requests.  They are always kept.
222 
223 // Used for printing things when clo_verbosity > 1.
224 #define VERB(verb, format, args...) \
225    if (VG_(clo_verbosity) > verb) { \
226       VG_(dmsg)("Massif: " format, ##args); \
227    }
228 
229 // Used for printing stats when clo_stats == True.
230 #define STATS(format, args...) \
231    if (VG_(clo_stats)) { \
232       VG_(dmsg)("Massif: " format, ##args); \
233    }
234 
235 //------------------------------------------------------------//
236 //--- Statistics                                           ---//
237 //------------------------------------------------------------//
238 
239 // Konqueror startup, to give an idea of the numbers involved with a biggish
240 // program, with default depth:
241 //
242 //  depth=3                   depth=40
243 //  - 310,000 allocations
244 //  - 300,000 frees
245 //  -  15,000 XPts            800,000 XPts
246 //  -   1,800 top-XPts
247 
248 static UInt n_heap_allocs           = 0;
249 static UInt n_heap_reallocs         = 0;
250 static UInt n_heap_frees            = 0;
251 static UInt n_ignored_heap_allocs   = 0;
252 static UInt n_ignored_heap_frees    = 0;
253 static UInt n_ignored_heap_reallocs = 0;
254 static UInt n_stack_allocs          = 0;
255 static UInt n_stack_frees           = 0;
256 static UInt n_xpts                  = 0;
257 static UInt n_xpt_init_expansions   = 0;
258 static UInt n_xpt_later_expansions  = 0;
259 static UInt n_sxpt_allocs           = 0;
260 static UInt n_sxpt_frees            = 0;
261 static UInt n_skipped_snapshots     = 0;
262 static UInt n_real_snapshots        = 0;
263 static UInt n_detailed_snapshots    = 0;
264 static UInt n_peak_snapshots        = 0;
265 static UInt n_cullings              = 0;
266 static UInt n_XCon_redos            = 0;
267 
268 //------------------------------------------------------------//
269 //--- Globals                                              ---//
270 //------------------------------------------------------------//
271 
272 // Number of guest instructions executed so far.  Only used with
273 // --time-unit=i.
274 static Long guest_instrs_executed = 0;
275 
276 static SizeT heap_szB       = 0; // Live heap size
277 static SizeT heap_extra_szB = 0; // Live heap extra size -- slop + admin bytes
278 static SizeT stacks_szB     = 0; // Live stacks size
279 
280 // This is the total size from the current peak snapshot, or 0 if no peak
281 // snapshot has been taken yet.
282 static SizeT peak_snapshot_total_szB = 0;
283 
284 // Incremented every time memory is allocated/deallocated, by the
285 // allocated/deallocated amount;  includes heap, heap-admin and stack
286 // memory.  An alternative to milliseconds as a unit of program "time".
287 static ULong total_allocs_deallocs_szB = 0;
288 
289 // When running with --heap=yes --pages-as-heap=no, we don't start taking
290 // snapshots until the first basic block is executed, rather than doing it in
291 // ms_post_clo_init (which is the obvious spot), for two reasons.
292 // - It lets us ignore stack events prior to that, because they're not
293 //   really proper ones and just would screw things up.
294 // - Because there's still some core initialisation to do, and so there
295 //   would be an artificial time gap between the first and second snapshots.
296 //
297 // When running with --heap=yes --pages-as-heap=yes, snapshots start much
298 // earlier due to new_mem_startup so this isn't relevant.
299 //
300 static Bool have_started_executing_code = False;
301 
302 //------------------------------------------------------------//
303 //--- Alloc fns                                            ---//
304 //------------------------------------------------------------//
305 
306 static XArray* alloc_fns;
307 static XArray* ignore_fns;
308 
init_alloc_fns(void)309 static void init_alloc_fns(void)
310 {
311    // Create the list, and add the default elements.
312    alloc_fns = VG_(newXA)(VG_(malloc), "ms.main.iaf.1",
313                                        VG_(free), sizeof(Char*));
314    #define DO(x)  { Char* s = x; VG_(addToXA)(alloc_fns, &s); }
315 
316    // Ordered roughly according to (presumed) frequency.
317    // Nb: The C++ "operator new*" ones are overloadable.  We include them
318    // always anyway, because even if they're overloaded, it would be a
319    // prodigiously stupid overloading that caused them to not allocate
320    // memory.
321    //
322    // XXX: because we don't look at the first stack entry (unless it's a
323    // custom allocation) there's not much point to having all these alloc
324    // functions here -- they should never appear anywhere (I think?) other
325    // than the top stack entry.  The only exceptions are those that in
326    // vg_replace_malloc.c are partly or fully implemented in terms of another
327    // alloc function: realloc (which uses malloc);  valloc,
328    // malloc_zone_valloc, posix_memalign and memalign_common (which use
329    // memalign).
330    //
331    DO("malloc"                                              );
332    DO("__builtin_new"                                       );
333    DO("operator new(unsigned)"                              );
334    DO("operator new(unsigned long)"                         );
335    DO("__builtin_vec_new"                                   );
336    DO("operator new[](unsigned)"                            );
337    DO("operator new[](unsigned long)"                       );
338    DO("calloc"                                              );
339    DO("realloc"                                             );
340    DO("memalign"                                            );
341    DO("posix_memalign"                                      );
342    DO("valloc"                                              );
343    DO("operator new(unsigned, std::nothrow_t const&)"       );
344    DO("operator new[](unsigned, std::nothrow_t const&)"     );
345    DO("operator new(unsigned long, std::nothrow_t const&)"  );
346    DO("operator new[](unsigned long, std::nothrow_t const&)");
347 #if defined(VGO_darwin)
348    DO("malloc_zone_malloc"                                  );
349    DO("malloc_zone_calloc"                                  );
350    DO("malloc_zone_realloc"                                 );
351    DO("malloc_zone_memalign"                                );
352    DO("malloc_zone_valloc"                                  );
353 #endif
354 }
355 
init_ignore_fns(void)356 static void init_ignore_fns(void)
357 {
358    // Create the (empty) list.
359    ignore_fns = VG_(newXA)(VG_(malloc), "ms.main.iif.1",
360                                         VG_(free), sizeof(Char*));
361 }
362 
363 // Determines if the named function is a member of the XArray.
is_member_fn(XArray * fns,Char * fnname)364 static Bool is_member_fn(XArray* fns, Char* fnname)
365 {
366    Char** fn_ptr;
367    Int i;
368 
369    // Nb: It's a linear search through the list, because we're comparing
370    // strings rather than pointers to strings.
371    // Nb: This gets called a lot.  It was an OSet, but they're quite slow to
372    // iterate through so it wasn't a good choice.
373    for (i = 0; i < VG_(sizeXA)(fns); i++) {
374       fn_ptr = VG_(indexXA)(fns, i);
375       if (VG_STREQ(fnname, *fn_ptr))
376          return True;
377    }
378    return False;
379 }
380 
381 
382 //------------------------------------------------------------//
383 //--- Command line args                                    ---//
384 //------------------------------------------------------------//
385 
386 #define MAX_DEPTH       200
387 
388 typedef enum { TimeI, TimeMS, TimeB } TimeUnit;
389 
TimeUnit_to_string(TimeUnit time_unit)390 static Char* TimeUnit_to_string(TimeUnit time_unit)
391 {
392    switch (time_unit) {
393    case TimeI:  return "i";
394    case TimeMS: return "ms";
395    case TimeB:  return "B";
396    default:     tl_assert2(0, "TimeUnit_to_string: unrecognised TimeUnit");
397    }
398 }
399 
400 static Bool   clo_heap            = True;
401    // clo_heap_admin is deliberately a word-sized type.  At one point it was
402    // a UInt, but this caused problems on 64-bit machines when it was
403    // multiplied by a small negative number and then promoted to a
404    // word-sized type -- it ended up with a value of 4.2 billion.  Sigh.
405 static SSizeT clo_heap_admin      = 8;
406 static Bool   clo_pages_as_heap   = False;
407 static Bool   clo_stacks          = False;
408 static Int    clo_depth           = 30;
409 static double clo_threshold       = 1.0;  // percentage
410 static double clo_peak_inaccuracy = 1.0;  // percentage
411 static Int    clo_time_unit       = TimeI;
412 static Int    clo_detailed_freq   = 10;
413 static Int    clo_max_snapshots   = 100;
414 static Char*  clo_massif_out_file = "massif.out.%p";
415 
416 static XArray* args_for_massif;
417 
ms_process_cmd_line_option(Char * arg)418 static Bool ms_process_cmd_line_option(Char* arg)
419 {
420    Char* tmp_str;
421 
422    // Remember the arg for later use.
423    VG_(addToXA)(args_for_massif, &arg);
424 
425         if VG_BOOL_CLO(arg, "--heap",           clo_heap)   {}
426    else if VG_BINT_CLO(arg, "--heap-admin",     clo_heap_admin, 0, 1024) {}
427 
428    else if VG_BOOL_CLO(arg, "--stacks",         clo_stacks) {}
429 
430    else if VG_BOOL_CLO(arg, "--pages-as-heap",  clo_pages_as_heap) {}
431 
432    else if VG_BINT_CLO(arg, "--depth",          clo_depth, 1, MAX_DEPTH) {}
433 
434    else if VG_STR_CLO(arg, "--alloc-fn",        tmp_str) {
435       VG_(addToXA)(alloc_fns, &tmp_str);
436    }
437    else if VG_STR_CLO(arg, "--ignore-fn",       tmp_str) {
438       VG_(addToXA)(ignore_fns, &tmp_str);
439    }
440 
441    else if VG_DBL_CLO(arg, "--threshold",  clo_threshold) {
442       if (clo_threshold < 0 || clo_threshold > 100) {
443          VG_(fmsg_bad_option)(arg,
444             "--threshold must be between 0.0 and 100.0\n");
445       }
446    }
447 
448    else if VG_DBL_CLO(arg, "--peak-inaccuracy", clo_peak_inaccuracy) {}
449 
450    else if VG_XACT_CLO(arg, "--time-unit=i",    clo_time_unit, TimeI)  {}
451    else if VG_XACT_CLO(arg, "--time-unit=ms",   clo_time_unit, TimeMS) {}
452    else if VG_XACT_CLO(arg, "--time-unit=B",    clo_time_unit, TimeB)  {}
453 
454    else if VG_BINT_CLO(arg, "--detailed-freq",  clo_detailed_freq, 1, 1000000) {}
455 
456    else if VG_BINT_CLO(arg, "--max-snapshots",  clo_max_snapshots, 10, 1000) {}
457 
458    else if VG_STR_CLO(arg, "--massif-out-file", clo_massif_out_file) {}
459 
460    else
461       return VG_(replacement_malloc_process_cmd_line_option)(arg);
462 
463    return True;
464 }
465 
ms_print_usage(void)466 static void ms_print_usage(void)
467 {
468    VG_(printf)(
469 "    --heap=no|yes             profile heap blocks [yes]\n"
470 "    --heap-admin=<size>       average admin bytes per heap block;\n"
471 "                               ignored if --heap=no [8]\n"
472 "    --stacks=no|yes           profile stack(s) [no]\n"
473 "    --pages-as-heap=no|yes    profile memory at the page level [no]\n"
474 "    --depth=<number>          depth of contexts [30]\n"
475 "    --alloc-fn=<name>         specify <name> as an alloc function [empty]\n"
476 "    --ignore-fn=<name>        ignore heap allocations within <name> [empty]\n"
477 "    --threshold=<m.n>         significance threshold, as a percentage [1.0]\n"
478 "    --peak-inaccuracy=<m.n>   maximum peak inaccuracy, as a percentage [1.0]\n"
479 "    --time-unit=i|ms|B        time unit: instructions executed, milliseconds\n"
480 "                              or heap bytes alloc'd/dealloc'd [i]\n"
481 "    --detailed-freq=<N>       every Nth snapshot should be detailed [10]\n"
482 "    --max-snapshots=<N>       maximum number of snapshots recorded [100]\n"
483 "    --massif-out-file=<file>  output file name [massif.out.%%p]\n"
484    );
485 }
486 
ms_print_debug_usage(void)487 static void ms_print_debug_usage(void)
488 {
489    VG_(printf)(
490 "    (none)\n"
491    );
492 }
493 
494 
495 //------------------------------------------------------------//
496 //--- XPts, XTrees and XCons                               ---//
497 //------------------------------------------------------------//
498 
499 // An XPt represents an "execution point", ie. a code address.  Each XPt is
500 // part of a tree of XPts (an "execution tree", or "XTree").  The details of
501 // the heap are represented by a single XTree.
502 //
503 // The root of the tree is 'alloc_xpt', which represents all allocation
504 // functions, eg:
505 // - malloc/calloc/realloc/memalign/new/new[];
506 // - user-specified allocation functions (using --alloc-fn);
507 // - custom allocation (MALLOCLIKE) points
508 // It's a bit of a fake XPt (ie. its 'ip' is zero), and is only used because
509 // it makes the code simpler.
510 //
511 // Any child of 'alloc_xpt' is called a "top-XPt".  The XPts at the bottom
512 // of an XTree (leaf nodes) are "bottom-XPTs".
513 //
514 // Each path from a top-XPt to a bottom-XPt through an XTree gives an
515 // execution context ("XCon"), ie. a stack trace.  (And sub-paths represent
516 // stack sub-traces.)  The number of XCons in an XTree is equal to the
517 // number of bottom-XPTs in that XTree.
518 //
519 //      alloc_xpt       XTrees are bi-directional.
520 //        | ^
521 //        v |
522 //     > parent <       Example: if child1() calls parent() and child2()
523 //    /    |     \      also calls parent(), and parent() calls malloc(),
524 //   |    / \     |     the XTree will look like this.
525 //   |   v   v    |
526 //  child1   child2
527 //
528 // (Note that malformed stack traces can lead to difficulties.  See the
529 // comment at the bottom of get_XCon.)
530 //
531 // XTrees and XPts are mirrored by SXTrees and SXPts, where the 'S' is short
532 // for "saved".  When the XTree is duplicated for a snapshot, we duplicate
533 // it as an SXTree, which is similar but omits some things it does not need,
534 // and aggregates up insignificant nodes.  This is important as an SXTree is
535 // typically much smaller than an XTree.
536 
537 // XXX: make XPt and SXPt extensible arrays, to avoid having to do two
538 // allocations per Pt.
539 
540 typedef struct _XPt XPt;
541 struct _XPt {
542    Addr  ip;              // code address
543 
544    // Bottom-XPts: space for the precise context.
545    // Other XPts:  space of all the descendent bottom-XPts.
546    // Nb: this value goes up and down as the program executes.
547    SizeT szB;
548 
549    XPt*  parent;           // pointer to parent XPt
550 
551    // Children.
552    // n_children and max_children are 32-bit integers.  16-bit integers
553    // are too small -- a very big program might have more than 65536
554    // allocation points (ie. top-XPts) -- Konqueror starting up has 1800.
555    UInt  n_children;       // number of children
556    UInt  max_children;     // capacity of children array
557    XPt** children;         // pointers to children XPts
558 };
559 
560 typedef
561    enum {
562       SigSXPt,
563       InsigSXPt
564    }
565    SXPtTag;
566 
567 typedef struct _SXPt SXPt;
568 struct _SXPt {
569    SXPtTag tag;
570    SizeT szB;              // memory size for the node, be it Sig or Insig
571    union {
572       // An SXPt representing a single significant code location.  Much like
573       // an XPt, minus the fields that aren't necessary.
574       struct {
575          Addr   ip;
576          UInt   n_children;
577          SXPt** children;
578       }
579       Sig;
580 
581       // An SXPt representing one or more code locations, all below the
582       // significance threshold.
583       struct {
584          Int   n_xpts;     // number of aggregated XPts
585       }
586       Insig;
587    };
588 };
589 
590 // Fake XPt representing all allocation functions like malloc().  Acts as
591 // parent node to all top-XPts.
592 static XPt* alloc_xpt;
593 
594 // Cheap allocation for blocks that never need to be freed.  Saves about 10%
595 // for Konqueror startup with --depth=40.
perm_malloc(SizeT n_bytes)596 static void* perm_malloc(SizeT n_bytes)
597 {
598    static Addr hp     = 0;    // current heap pointer
599    static Addr hp_lim = 0;    // maximum usable byte in current block
600 
601    #define SUPERBLOCK_SIZE  (1 << 20)         // 1 MB
602 
603    if (hp + n_bytes > hp_lim) {
604       hp = (Addr)VG_(am_shadow_alloc)(SUPERBLOCK_SIZE);
605       if (0 == hp)
606          VG_(out_of_memory_NORETURN)( "massif:perm_malloc",
607                                       SUPERBLOCK_SIZE);
608       hp_lim = hp + SUPERBLOCK_SIZE - 1;
609    }
610 
611    hp += n_bytes;
612 
613    return (void*)(hp - n_bytes);
614 }
615 
new_XPt(Addr ip,XPt * parent)616 static XPt* new_XPt(Addr ip, XPt* parent)
617 {
618    // XPts are never freed, so we can use perm_malloc to allocate them.
619    // Note that we cannot use perm_malloc for the 'children' array, because
620    // that needs to be resizable.
621    XPt* xpt    = perm_malloc(sizeof(XPt));
622    xpt->ip     = ip;
623    xpt->szB    = 0;
624    xpt->parent = parent;
625 
626    // We don't initially allocate any space for children.  We let that
627    // happen on demand.  Many XPts (ie. all the bottom-XPts) don't have any
628    // children anyway.
629    xpt->n_children   = 0;
630    xpt->max_children = 0;
631    xpt->children     = NULL;
632 
633    // Update statistics
634    n_xpts++;
635 
636    return xpt;
637 }
638 
add_child_xpt(XPt * parent,XPt * child)639 static void add_child_xpt(XPt* parent, XPt* child)
640 {
641    // Expand 'children' if necessary.
642    tl_assert(parent->n_children <= parent->max_children);
643    if (parent->n_children == parent->max_children) {
644       if (0 == parent->max_children) {
645          parent->max_children = 4;
646          parent->children = VG_(malloc)( "ms.main.acx.1",
647                                          parent->max_children * sizeof(XPt*) );
648          n_xpt_init_expansions++;
649       } else {
650          parent->max_children *= 2;    // Double size
651          parent->children = VG_(realloc)( "ms.main.acx.2",
652                                           parent->children,
653                                           parent->max_children * sizeof(XPt*) );
654          n_xpt_later_expansions++;
655       }
656    }
657 
658    // Insert new child XPt in parent's children list.
659    parent->children[ parent->n_children++ ] = child;
660 }
661 
662 // Reverse comparison for a reverse sort -- biggest to smallest.
SXPt_revcmp_szB(void * n1,void * n2)663 static Int SXPt_revcmp_szB(void* n1, void* n2)
664 {
665    SXPt* sxpt1 = *(SXPt**)n1;
666    SXPt* sxpt2 = *(SXPt**)n2;
667    return ( sxpt1->szB < sxpt2->szB ?  1
668           : sxpt1->szB > sxpt2->szB ? -1
669           :                            0);
670 }
671 
672 //------------------------------------------------------------//
673 //--- XTree Operations                                     ---//
674 //------------------------------------------------------------//
675 
676 // Duplicates an XTree as an SXTree.
dup_XTree(XPt * xpt,SizeT total_szB)677 static SXPt* dup_XTree(XPt* xpt, SizeT total_szB)
678 {
679    Int  i, n_sig_children, n_insig_children, n_child_sxpts;
680    SizeT sig_child_threshold_szB;
681    SXPt* sxpt;
682 
683    // Number of XPt children  Action for SXPT
684    // ------------------      ---------------
685    // 0 sig, 0 insig          alloc 0 children
686    // N sig, 0 insig          alloc N children, dup all
687    // N sig, M insig          alloc N+1, dup first N, aggregate remaining M
688    // 0 sig, M insig          alloc 1, aggregate M
689 
690    // Work out how big a child must be to be significant.  If the current
691    // total_szB is zero, then we set it to 1, which means everything will be
692    // judged insignificant -- this is sensible, as there's no point showing
693    // any detail for this case.  Unless they used --threshold=0, in which
694    // case we show them everything because that's what they asked for.
695    //
696    // Nb: We do this once now, rather than once per child, because if we do
697    // that the cost of all the divisions adds up to something significant.
698    if (0 == total_szB && 0 != clo_threshold) {
699       sig_child_threshold_szB = 1;
700    } else {
701       sig_child_threshold_szB = (SizeT)((total_szB * clo_threshold) / 100);
702    }
703 
704    // How many children are significant?  And do we need an aggregate SXPt?
705    n_sig_children = 0;
706    for (i = 0; i < xpt->n_children; i++) {
707       if (xpt->children[i]->szB >= sig_child_threshold_szB) {
708          n_sig_children++;
709       }
710    }
711    n_insig_children = xpt->n_children - n_sig_children;
712    n_child_sxpts = n_sig_children + ( n_insig_children > 0 ? 1 : 0 );
713 
714    // Duplicate the XPt.
715    sxpt                 = VG_(malloc)("ms.main.dX.1", sizeof(SXPt));
716    n_sxpt_allocs++;
717    sxpt->tag            = SigSXPt;
718    sxpt->szB            = xpt->szB;
719    sxpt->Sig.ip         = xpt->ip;
720    sxpt->Sig.n_children = n_child_sxpts;
721 
722    // Create the SXPt's children.
723    if (n_child_sxpts > 0) {
724       Int j;
725       SizeT sig_children_szB = 0, insig_children_szB = 0;
726       sxpt->Sig.children = VG_(malloc)("ms.main.dX.2",
727                                        n_child_sxpts * sizeof(SXPt*));
728 
729       // Duplicate the significant children.  (Nb: sig_children_szB +
730       // insig_children_szB doesn't necessarily equal xpt->szB.)
731       j = 0;
732       for (i = 0; i < xpt->n_children; i++) {
733          if (xpt->children[i]->szB >= sig_child_threshold_szB) {
734             sxpt->Sig.children[j++] = dup_XTree(xpt->children[i], total_szB);
735             sig_children_szB   += xpt->children[i]->szB;
736          } else {
737             insig_children_szB += xpt->children[i]->szB;
738          }
739       }
740 
741       // Create the SXPt for the insignificant children, if any, and put it
742       // in the last child entry.
743       if (n_insig_children > 0) {
744          // Nb: We 'n_sxpt_allocs' here because creating an Insig SXPt
745          // doesn't involve a call to dup_XTree().
746          SXPt* insig_sxpt = VG_(malloc)("ms.main.dX.3", sizeof(SXPt));
747          n_sxpt_allocs++;
748          insig_sxpt->tag = InsigSXPt;
749          insig_sxpt->szB = insig_children_szB;
750          insig_sxpt->Insig.n_xpts = n_insig_children;
751          sxpt->Sig.children[n_sig_children] = insig_sxpt;
752       }
753    } else {
754       sxpt->Sig.children = NULL;
755    }
756 
757    return sxpt;
758 }
759 
free_SXTree(SXPt * sxpt)760 static void free_SXTree(SXPt* sxpt)
761 {
762    Int  i;
763    tl_assert(sxpt != NULL);
764 
765    switch (sxpt->tag) {
766     case SigSXPt:
767       // Free all children SXPts, then the children array.
768       for (i = 0; i < sxpt->Sig.n_children; i++) {
769          free_SXTree(sxpt->Sig.children[i]);
770          sxpt->Sig.children[i] = NULL;
771       }
772       VG_(free)(sxpt->Sig.children);  sxpt->Sig.children = NULL;
773       break;
774 
775     case InsigSXPt:
776       break;
777 
778     default: tl_assert2(0, "free_SXTree: unknown SXPt tag");
779    }
780 
781    // Free the SXPt itself.
782    VG_(free)(sxpt);     sxpt = NULL;
783    n_sxpt_frees++;
784 }
785 
786 // Sanity checking:  we periodically check the heap XTree with
787 // ms_expensive_sanity_check.
sanity_check_XTree(XPt * xpt,XPt * parent)788 static void sanity_check_XTree(XPt* xpt, XPt* parent)
789 {
790    tl_assert(xpt != NULL);
791 
792    // Check back-pointer.
793    tl_assert2(xpt->parent == parent,
794       "xpt->parent = %p, parent = %p\n", xpt->parent, parent);
795 
796    // Check children counts look sane.
797    tl_assert(xpt->n_children <= xpt->max_children);
798 
799    // Unfortunately, xpt's size is not necessarily equal to the sum of xpt's
800    // children's sizes.  See comment at the bottom of get_XCon.
801 }
802 
803 // Sanity checking:  we check SXTrees (which are in snapshots) after
804 // snapshots are created, before they are deleted, and before they are
805 // printed.
sanity_check_SXTree(SXPt * sxpt)806 static void sanity_check_SXTree(SXPt* sxpt)
807 {
808    Int i;
809 
810    tl_assert(sxpt != NULL);
811 
812    // Check the sum of any children szBs equals the SXPt's szB.  Check the
813    // children at the same time.
814    switch (sxpt->tag) {
815     case SigSXPt: {
816       if (sxpt->Sig.n_children > 0) {
817          for (i = 0; i < sxpt->Sig.n_children; i++) {
818             sanity_check_SXTree(sxpt->Sig.children[i]);
819          }
820       }
821       break;
822     }
823     case InsigSXPt:
824       break;         // do nothing
825 
826     default: tl_assert2(0, "sanity_check_SXTree: unknown SXPt tag");
827    }
828 }
829 
830 
831 //------------------------------------------------------------//
832 //--- XCon Operations                                      ---//
833 //------------------------------------------------------------//
834 
835 // This is the limit on the number of removed alloc-fns that can be in a
836 // single XCon.
837 #define MAX_OVERESTIMATE   50
838 #define MAX_IPS            (MAX_DEPTH + MAX_OVERESTIMATE)
839 
840 // This is used for various buffers which can hold function names/IP
841 // description.  Some C++ names can get really long so 1024 isn't big
842 // enough.
843 #define BUF_LEN   2048
844 
845 // Determine if the given IP belongs to a function that should be ignored.
fn_should_be_ignored(Addr ip)846 static Bool fn_should_be_ignored(Addr ip)
847 {
848    static Char buf[BUF_LEN];
849    return
850       ( VG_(get_fnname)(ip, buf, BUF_LEN) && is_member_fn(ignore_fns, buf)
851       ? True : False );
852 }
853 
854 // Get the stack trace for an XCon, filtering out uninteresting entries:
855 // alloc-fns and entries above alloc-fns, and entries below main-or-below-main.
856 //   Eg:       alloc-fn1 / alloc-fn2 / a / b / main / (below main) / c
857 //   becomes:  a / b / main
858 // Nb: it's possible to end up with an empty trace, eg. if 'main' is marked
859 // as an alloc-fn.  This is ok.
860 static
get_IPs(ThreadId tid,Bool exclude_first_entry,Addr ips[])861 Int get_IPs( ThreadId tid, Bool exclude_first_entry, Addr ips[])
862 {
863    static Char buf[BUF_LEN];
864    Int n_ips, i, n_alloc_fns_removed;
865    Int overestimate;
866    Bool redo;
867 
868    // We ask for a few more IPs than clo_depth suggests we need.  Then we
869    // remove every entry that is an alloc-fn.  Depending on the
870    // circumstances, we may need to redo it all, asking for more IPs.
871    // Details:
872    // - If the original stack trace is smaller than asked-for, redo=False
873    // - Else if after filtering we have >= clo_depth IPs,      redo=False
874    // - Else redo=True
875    // In other words, to redo, we'd have to get a stack trace as big as we
876    // asked for and remove more than 'overestimate' alloc-fns.
877 
878    // Main loop.
879    redo = True;      // Assume this to begin with.
880    for (overestimate = 3; redo; overestimate += 6) {
881       // This should never happen -- would require MAX_OVERESTIMATE
882       // alloc-fns to be removed from the stack trace.
883       if (overestimate > MAX_OVERESTIMATE)
884          VG_(tool_panic)("get_IPs: ips[] too small, inc. MAX_OVERESTIMATE?");
885 
886       // Ask for more IPs than clo_depth suggests we need.
887       n_ips = VG_(get_StackTrace)( tid, ips, clo_depth + overestimate,
888                                    NULL/*array to dump SP values in*/,
889                                    NULL/*array to dump FP values in*/,
890                                    0/*first_ip_delta*/ );
891       tl_assert(n_ips > 0);
892 
893       // If the original stack trace is smaller than asked-for, redo=False.
894       if (n_ips < clo_depth + overestimate) { redo = False; }
895 
896       // Filter out alloc fns.  If requested, we automatically remove the
897       // first entry (which presumably will be something like malloc or
898       // __builtin_new that we're sure to filter out) without looking at it,
899       // because VG_(get_fnname) is expensive.
900       n_alloc_fns_removed = ( exclude_first_entry ? 1 : 0 );
901       for (i = n_alloc_fns_removed; i < n_ips; i++) {
902          if (VG_(get_fnname)(ips[i], buf, BUF_LEN)) {
903             if (is_member_fn(alloc_fns, buf)) {
904                n_alloc_fns_removed++;
905             } else {
906                break;
907             }
908          }
909       }
910       // Remove the alloc fns by shuffling the rest down over them.
911       n_ips -= n_alloc_fns_removed;
912       for (i = 0; i < n_ips; i++) {
913          ips[i] = ips[i + n_alloc_fns_removed];
914       }
915 
916       // If after filtering we have >= clo_depth IPs, redo=False
917       if (n_ips >= clo_depth) {
918          redo = False;
919          n_ips = clo_depth;      // Ignore any IPs below --depth.
920       }
921 
922       if (redo) {
923          n_XCon_redos++;
924       }
925    }
926    return n_ips;
927 }
928 
929 // Gets an XCon and puts it in the tree.  Returns the XCon's bottom-XPt.
930 // Unless the allocation should be ignored, in which case we return NULL.
get_XCon(ThreadId tid,Bool exclude_first_entry)931 static XPt* get_XCon( ThreadId tid, Bool exclude_first_entry )
932 {
933    static Addr ips[MAX_IPS];
934    Int i;
935    XPt* xpt = alloc_xpt;
936 
937    // After this call, the IPs we want are in ips[0]..ips[n_ips-1].
938    Int n_ips = get_IPs(tid, exclude_first_entry, ips);
939 
940    // Should we ignore this allocation?  (Nb: n_ips can be zero, eg. if
941    // 'main' is marked as an alloc-fn.)
942    if (n_ips > 0 && fn_should_be_ignored(ips[0])) {
943       return NULL;
944    }
945 
946    // Now do the search/insertion of the XCon.
947    for (i = 0; i < n_ips; i++) {
948       Addr ip = ips[i];
949       Int ch;
950       // Look for IP in xpt's children.
951       // Linear search, ugh -- about 10% of time for konqueror startup tried
952       // caching last result, only hit about 4% for konqueror.
953       // Nb:  this search hits about 98% of the time for konqueror
954       for (ch = 0; True; ch++) {
955          if (ch == xpt->n_children) {
956             // IP not found in the children.
957             // Create and add new child XPt, then stop.
958             XPt* new_child_xpt = new_XPt(ip, xpt);
959             add_child_xpt(xpt, new_child_xpt);
960             xpt = new_child_xpt;
961             break;
962 
963          } else if (ip == xpt->children[ch]->ip) {
964             // Found the IP in the children, stop.
965             xpt = xpt->children[ch];
966             break;
967          }
968       }
969    }
970 
971    // [Note: several comments refer to this comment.  Do not delete it
972    // without updating them.]
973    //
974    // A complication... If all stack traces were well-formed, then the
975    // returned xpt would always be a bottom-XPt.  As a consequence, an XPt's
976    // size would always be equal to the sum of its children's sizes, which
977    // is an excellent sanity check.
978    //
979    // Unfortunately, stack traces occasionally are malformed, ie. truncated.
980    // This allows a stack trace to be a sub-trace of another, eg. a/b/c is a
981    // sub-trace of a/b/c/d.  So we can't assume this xpt is a bottom-XPt;
982    // nor can we do sanity check an XPt's size against its children's sizes.
983    // This is annoying, but must be dealt with.  (Older versions of Massif
984    // had this assertion in, and it was reported to fail by real users a
985    // couple of times.)  Even more annoyingly, I can't come up with a simple
986    // test case that exhibit such a malformed stack trace, so I can't
987    // regression test it.  Sigh.
988    //
989    // However, we can print a warning, so that if it happens (unexpectedly)
990    // in existing regression tests we'll know.  Also, it warns users that
991    // the output snapshots may not add up the way they might expect.
992    //
993    //tl_assert(0 == xpt->n_children); // Must be bottom-XPt
994    if (0 != xpt->n_children) {
995       static Int n_moans = 0;
996       if (n_moans < 3) {
997          VG_(umsg)(
998             "Warning: Malformed stack trace detected.  In Massif's output,\n");
999          VG_(umsg)(
1000             "         the size of an entry's child entries may not sum up\n");
1001          VG_(umsg)(
1002             "         to the entry's size as they normally do.\n");
1003          n_moans++;
1004          if (3 == n_moans)
1005             VG_(umsg)(
1006             "         (And Massif now won't warn about this again.)\n");
1007       }
1008    }
1009    return xpt;
1010 }
1011 
1012 // Update 'szB' of every XPt in the XCon, by percolating upwards.
update_XCon(XPt * xpt,SSizeT space_delta)1013 static void update_XCon(XPt* xpt, SSizeT space_delta)
1014 {
1015    tl_assert(clo_heap);
1016    tl_assert(NULL != xpt);
1017 
1018    if (0 == space_delta)
1019       return;
1020 
1021    while (xpt != alloc_xpt) {
1022       if (space_delta < 0) tl_assert(xpt->szB >= -space_delta);
1023       xpt->szB += space_delta;
1024       xpt = xpt->parent;
1025    }
1026    if (space_delta < 0) tl_assert(alloc_xpt->szB >= -space_delta);
1027    alloc_xpt->szB += space_delta;
1028 }
1029 
1030 
1031 //------------------------------------------------------------//
1032 //--- Snapshots                                            ---//
1033 //------------------------------------------------------------//
1034 
1035 // Snapshots are done in a way so that we always have a reasonable number of
1036 // them.  We start by taking them quickly.  Once we hit our limit, we cull
1037 // some (eg. half), and start taking them more slowly.  Once we hit the
1038 // limit again, we again cull and then take them even more slowly, and so
1039 // on.
1040 
1041 // Time is measured either in i or ms or bytes, depending on the --time-unit
1042 // option.  It's a Long because it can exceed 32-bits reasonably easily, and
1043 // because we need to allow negative values to represent unset times.
1044 typedef Long Time;
1045 
1046 #define UNUSED_SNAPSHOT_TIME  -333  // A conspicuous negative number.
1047 
1048 typedef
1049    enum {
1050       Normal = 77,
1051       Peak,
1052       Unused
1053    }
1054    SnapshotKind;
1055 
1056 typedef
1057    struct {
1058       SnapshotKind kind;
1059       Time  time;
1060       SizeT heap_szB;
1061       SizeT heap_extra_szB;// Heap slop + admin bytes.
1062       SizeT stacks_szB;
1063       SXPt* alloc_sxpt;    // Heap XTree root, if a detailed snapshot,
1064    }                       // otherwise NULL.
1065    Snapshot;
1066 
1067 static UInt      next_snapshot_i = 0;  // Index of where next snapshot will go.
1068 static Snapshot* snapshots;            // Array of snapshots.
1069 
is_snapshot_in_use(Snapshot * snapshot)1070 static Bool is_snapshot_in_use(Snapshot* snapshot)
1071 {
1072    if (Unused == snapshot->kind) {
1073       // If snapshot is unused, check all the fields are unset.
1074       tl_assert(snapshot->time           == UNUSED_SNAPSHOT_TIME);
1075       tl_assert(snapshot->heap_extra_szB == 0);
1076       tl_assert(snapshot->heap_szB       == 0);
1077       tl_assert(snapshot->stacks_szB     == 0);
1078       tl_assert(snapshot->alloc_sxpt     == NULL);
1079       return False;
1080    } else {
1081       tl_assert(snapshot->time           != UNUSED_SNAPSHOT_TIME);
1082       return True;
1083    }
1084 }
1085 
is_detailed_snapshot(Snapshot * snapshot)1086 static Bool is_detailed_snapshot(Snapshot* snapshot)
1087 {
1088    return (snapshot->alloc_sxpt ? True : False);
1089 }
1090 
is_uncullable_snapshot(Snapshot * snapshot)1091 static Bool is_uncullable_snapshot(Snapshot* snapshot)
1092 {
1093    return &snapshots[0] == snapshot                   // First snapshot
1094        || &snapshots[next_snapshot_i-1] == snapshot   // Last snapshot
1095        || snapshot->kind == Peak;                     // Peak snapshot
1096 }
1097 
sanity_check_snapshot(Snapshot * snapshot)1098 static void sanity_check_snapshot(Snapshot* snapshot)
1099 {
1100    if (snapshot->alloc_sxpt) {
1101       sanity_check_SXTree(snapshot->alloc_sxpt);
1102    }
1103 }
1104 
1105 // All the used entries should look used, all the unused ones should be clear.
sanity_check_snapshots_array(void)1106 static void sanity_check_snapshots_array(void)
1107 {
1108    Int i;
1109    for (i = 0; i < next_snapshot_i; i++) {
1110       tl_assert( is_snapshot_in_use( & snapshots[i] ));
1111    }
1112    for (    ; i < clo_max_snapshots; i++) {
1113       tl_assert(!is_snapshot_in_use( & snapshots[i] ));
1114    }
1115 }
1116 
1117 // This zeroes all the fields in the snapshot, but does not free the heap
1118 // XTree if present.  It also does a sanity check unless asked not to;  we
1119 // can't sanity check at startup when clearing the initial snapshots because
1120 // they're full of junk.
clear_snapshot(Snapshot * snapshot,Bool do_sanity_check)1121 static void clear_snapshot(Snapshot* snapshot, Bool do_sanity_check)
1122 {
1123    if (do_sanity_check) sanity_check_snapshot(snapshot);
1124    snapshot->kind           = Unused;
1125    snapshot->time           = UNUSED_SNAPSHOT_TIME;
1126    snapshot->heap_extra_szB = 0;
1127    snapshot->heap_szB       = 0;
1128    snapshot->stacks_szB     = 0;
1129    snapshot->alloc_sxpt     = NULL;
1130 }
1131 
1132 // This zeroes all the fields in the snapshot, and frees the heap XTree if
1133 // present.
delete_snapshot(Snapshot * snapshot)1134 static void delete_snapshot(Snapshot* snapshot)
1135 {
1136    // Nb: if there's an XTree, we free it after calling clear_snapshot,
1137    // because clear_snapshot does a sanity check which includes checking the
1138    // XTree.
1139    SXPt* tmp_sxpt = snapshot->alloc_sxpt;
1140    clear_snapshot(snapshot, /*do_sanity_check*/True);
1141    if (tmp_sxpt) {
1142       free_SXTree(tmp_sxpt);
1143    }
1144 }
1145 
VERB_snapshot(Int verbosity,Char * prefix,Int i)1146 static void VERB_snapshot(Int verbosity, Char* prefix, Int i)
1147 {
1148    Snapshot* snapshot = &snapshots[i];
1149    Char* suffix;
1150    switch (snapshot->kind) {
1151    case Peak:   suffix = "p";                                            break;
1152    case Normal: suffix = ( is_detailed_snapshot(snapshot) ? "d" : "." ); break;
1153    case Unused: suffix = "u";                                            break;
1154    default:
1155       tl_assert2(0, "VERB_snapshot: unknown snapshot kind: %d", snapshot->kind);
1156    }
1157    VERB(verbosity, "%s S%s%3d (t:%lld, hp:%ld, ex:%ld, st:%ld)\n",
1158       prefix, suffix, i,
1159       snapshot->time,
1160       snapshot->heap_szB,
1161       snapshot->heap_extra_szB,
1162       snapshot->stacks_szB
1163    );
1164 }
1165 
1166 // Cull half the snapshots;  we choose those that represent the smallest
1167 // time-spans, because that gives us the most even distribution of snapshots
1168 // over time.  (It's possible to lose interesting spikes, however.)
1169 //
1170 // Algorithm for N snapshots:  We find the snapshot representing the smallest
1171 // timeframe, and remove it.  We repeat this until (N/2) snapshots are gone.
1172 // We have to do this one snapshot at a time, rather than finding the (N/2)
1173 // smallest snapshots in one hit, because when a snapshot is removed, its
1174 // neighbours immediately cover greater timespans.  So it's O(N^2), but N is
1175 // small, and it's not done very often.
1176 //
1177 // Once we're done, we return the new smallest interval between snapshots.
1178 // That becomes our minimum time interval.
cull_snapshots(void)1179 static UInt cull_snapshots(void)
1180 {
1181    Int  i, jp, j, jn, min_timespan_i;
1182    Int  n_deleted = 0;
1183    Time min_timespan;
1184 
1185    n_cullings++;
1186 
1187    // Sets j to the index of the first not-yet-removed snapshot at or after i
1188    #define FIND_SNAPSHOT(i, j) \
1189       for (j = i; \
1190            j < clo_max_snapshots && !is_snapshot_in_use(&snapshots[j]); \
1191            j++) { }
1192 
1193    VERB(2, "Culling...\n");
1194 
1195    // First we remove enough snapshots by clearing them in-place.  Once
1196    // that's done, we can slide the remaining ones down.
1197    for (i = 0; i < clo_max_snapshots/2; i++) {
1198       // Find the snapshot representing the smallest timespan.  The timespan
1199       // for snapshot n = d(N-1,N)+d(N,N+1), where d(A,B) is the time between
1200       // snapshot A and B.  We don't consider the first and last snapshots for
1201       // removal.
1202       Snapshot* min_snapshot;
1203       Int min_j;
1204 
1205       // Initial triple: (prev, curr, next) == (jp, j, jn)
1206       // Initial min_timespan is the first one.
1207       jp = 0;
1208       FIND_SNAPSHOT(1,   j);
1209       FIND_SNAPSHOT(j+1, jn);
1210       min_timespan = 0x7fffffffffffffffLL;
1211       min_j        = -1;
1212       while (jn < clo_max_snapshots) {
1213          Time timespan = snapshots[jn].time - snapshots[jp].time;
1214          tl_assert(timespan >= 0);
1215          // Nb: We never cull the peak snapshot.
1216          if (Peak != snapshots[j].kind && timespan < min_timespan) {
1217             min_timespan = timespan;
1218             min_j        = j;
1219          }
1220          // Move on to next triple
1221          jp = j;
1222          j  = jn;
1223          FIND_SNAPSHOT(jn+1, jn);
1224       }
1225       // We've found the least important snapshot, now delete it.  First
1226       // print it if necessary.
1227       tl_assert(-1 != min_j);    // Check we found a minimum.
1228       min_snapshot = & snapshots[ min_j ];
1229       if (VG_(clo_verbosity) > 1) {
1230          Char buf[64];
1231          VG_(snprintf)(buf, 64, " %3d (t-span = %lld)", i, min_timespan);
1232          VERB_snapshot(2, buf, min_j);
1233       }
1234       delete_snapshot(min_snapshot);
1235       n_deleted++;
1236    }
1237 
1238    // Slide down the remaining snapshots over the removed ones.  First set i
1239    // to point to the first empty slot, and j to the first full slot after
1240    // i.  Then slide everything down.
1241    for (i = 0;  is_snapshot_in_use( &snapshots[i] ); i++) { }
1242    for (j = i; !is_snapshot_in_use( &snapshots[j] ); j++) { }
1243    for (  ; j < clo_max_snapshots; j++) {
1244       if (is_snapshot_in_use( &snapshots[j] )) {
1245          snapshots[i++] = snapshots[j];
1246          clear_snapshot(&snapshots[j], /*do_sanity_check*/True);
1247       }
1248    }
1249    next_snapshot_i = i;
1250 
1251    // Check snapshots array looks ok after changes.
1252    sanity_check_snapshots_array();
1253 
1254    // Find the minimum timespan remaining;  that will be our new minimum
1255    // time interval.  Note that above we were finding timespans by measuring
1256    // two intervals around a snapshot that was under consideration for
1257    // deletion.  Here we only measure single intervals because all the
1258    // deletions have occurred.
1259    //
1260    // But we have to be careful -- some snapshots (eg. snapshot 0, and the
1261    // peak snapshot) are uncullable.  If two uncullable snapshots end up
1262    // next to each other, they'll never be culled (assuming the peak doesn't
1263    // change), and the time gap between them will not change.  However, the
1264    // time between the remaining cullable snapshots will grow ever larger.
1265    // This means that the min_timespan found will always be that between the
1266    // two uncullable snapshots, and it will be much smaller than it should
1267    // be.  To avoid this problem, when computing the minimum timespan, we
1268    // ignore any timespans between two uncullable snapshots.
1269    tl_assert(next_snapshot_i > 1);
1270    min_timespan = 0x7fffffffffffffffLL;
1271    min_timespan_i = -1;
1272    for (i = 1; i < next_snapshot_i; i++) {
1273       if (is_uncullable_snapshot(&snapshots[i]) &&
1274           is_uncullable_snapshot(&snapshots[i-1]))
1275       {
1276          VERB(2, "(Ignoring interval %d--%d when computing minimum)\n", i-1, i);
1277       } else {
1278          Time timespan = snapshots[i].time - snapshots[i-1].time;
1279          tl_assert(timespan >= 0);
1280          if (timespan < min_timespan) {
1281             min_timespan = timespan;
1282             min_timespan_i = i;
1283          }
1284       }
1285    }
1286    tl_assert(-1 != min_timespan_i);    // Check we found a minimum.
1287 
1288    // Print remaining snapshots, if necessary.
1289    if (VG_(clo_verbosity) > 1) {
1290       VERB(2, "Finished culling (%3d of %3d deleted)\n",
1291          n_deleted, clo_max_snapshots);
1292       for (i = 0; i < next_snapshot_i; i++) {
1293          VERB_snapshot(2, "  post-cull", i);
1294       }
1295       VERB(2, "New time interval = %lld (between snapshots %d and %d)\n",
1296          min_timespan, min_timespan_i-1, min_timespan_i);
1297    }
1298 
1299    return min_timespan;
1300 }
1301 
get_time(void)1302 static Time get_time(void)
1303 {
1304    // Get current time, in whatever time unit we're using.
1305    if (clo_time_unit == TimeI) {
1306       return guest_instrs_executed;
1307    } else if (clo_time_unit == TimeMS) {
1308       // Some stuff happens between the millisecond timer being initialised
1309       // to zero and us taking our first snapshot.  We determine that time
1310       // gap so we can subtract it from all subsequent times so that our
1311       // first snapshot is considered to be at t = 0ms.  Unfortunately, a
1312       // bunch of symbols get read after the first snapshot is taken but
1313       // before the second one (which is triggered by the first allocation),
1314       // so when the time-unit is 'ms' we always have a big gap between the
1315       // first two snapshots.  But at least users won't have to wonder why
1316       // the first snapshot isn't at t=0.
1317       static Bool is_first_get_time = True;
1318       static Time start_time_ms;
1319       if (is_first_get_time) {
1320          start_time_ms = VG_(read_millisecond_timer)();
1321          is_first_get_time = False;
1322          return 0;
1323       } else {
1324          return VG_(read_millisecond_timer)() - start_time_ms;
1325       }
1326    } else if (clo_time_unit == TimeB) {
1327       return total_allocs_deallocs_szB;
1328    } else {
1329       tl_assert2(0, "bad --time-unit value");
1330    }
1331 }
1332 
1333 // Take a snapshot, and only that -- decisions on whether to take a
1334 // snapshot, or what kind of snapshot, are made elsewhere.
1335 // Nb: we call the arg "my_time" because "time" shadows a global declaration
1336 // in /usr/include/time.h on Darwin.
1337 static void
take_snapshot(Snapshot * snapshot,SnapshotKind kind,Time my_time,Bool is_detailed)1338 take_snapshot(Snapshot* snapshot, SnapshotKind kind, Time my_time,
1339               Bool is_detailed)
1340 {
1341    tl_assert(!is_snapshot_in_use(snapshot));
1342    if (!clo_pages_as_heap) {
1343       tl_assert(have_started_executing_code);
1344    }
1345 
1346    // Heap and heap admin.
1347    if (clo_heap) {
1348       snapshot->heap_szB = heap_szB;
1349       if (is_detailed) {
1350          SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1351          snapshot->alloc_sxpt = dup_XTree(alloc_xpt, total_szB);
1352          tl_assert(           alloc_xpt->szB == heap_szB);
1353          tl_assert(snapshot->alloc_sxpt->szB == heap_szB);
1354       }
1355       snapshot->heap_extra_szB = heap_extra_szB;
1356    }
1357 
1358    // Stack(s).
1359    if (clo_stacks) {
1360       snapshot->stacks_szB = stacks_szB;
1361    }
1362 
1363    // Rest of snapshot.
1364    snapshot->kind = kind;
1365    snapshot->time = my_time;
1366    sanity_check_snapshot(snapshot);
1367 
1368    // Update stats.
1369    if (Peak == kind) n_peak_snapshots++;
1370    if (is_detailed)  n_detailed_snapshots++;
1371    n_real_snapshots++;
1372 }
1373 
1374 
1375 // Take a snapshot, if it's time, or if we've hit a peak.
1376 static void
maybe_take_snapshot(SnapshotKind kind,Char * what)1377 maybe_take_snapshot(SnapshotKind kind, Char* what)
1378 {
1379    // 'min_time_interval' is the minimum time interval between snapshots.
1380    // If we try to take a snapshot and less than this much time has passed,
1381    // we don't take it.  It gets larger as the program runs longer.  It's
1382    // initialised to zero so that we begin by taking snapshots as quickly as
1383    // possible.
1384    static Time min_time_interval = 0;
1385    // Zero allows startup snapshot.
1386    static Time earliest_possible_time_of_next_snapshot = 0;
1387    static Int  n_snapshots_since_last_detailed         = 0;
1388    static Int  n_skipped_snapshots_since_last_snapshot = 0;
1389 
1390    Snapshot* snapshot;
1391    Bool      is_detailed;
1392    // Nb: we call this variable "my_time" because "time" shadows a global
1393    // declaration in /usr/include/time.h on Darwin.
1394    Time      my_time = get_time();
1395 
1396    switch (kind) {
1397     case Normal:
1398       // Only do a snapshot if it's time.
1399       if (my_time < earliest_possible_time_of_next_snapshot) {
1400          n_skipped_snapshots++;
1401          n_skipped_snapshots_since_last_snapshot++;
1402          return;
1403       }
1404       is_detailed = (clo_detailed_freq-1 == n_snapshots_since_last_detailed);
1405       break;
1406 
1407     case Peak: {
1408       // Because we're about to do a deallocation, we're coming down from a
1409       // local peak.  If it is (a) actually a global peak, and (b) a certain
1410       // amount bigger than the previous peak, then we take a peak snapshot.
1411       // By not taking a snapshot for every peak, we save a lot of effort --
1412       // because many peaks remain peak only for a short time.
1413       SizeT total_szB = heap_szB + heap_extra_szB + stacks_szB;
1414       SizeT excess_szB_for_new_peak =
1415          (SizeT)((peak_snapshot_total_szB * clo_peak_inaccuracy) / 100);
1416       if (total_szB <= peak_snapshot_total_szB + excess_szB_for_new_peak) {
1417          return;
1418       }
1419       is_detailed = True;
1420       break;
1421     }
1422 
1423     default:
1424       tl_assert2(0, "maybe_take_snapshot: unrecognised snapshot kind");
1425    }
1426 
1427    // Take the snapshot.
1428    snapshot = & snapshots[next_snapshot_i];
1429    take_snapshot(snapshot, kind, my_time, is_detailed);
1430 
1431    // Record if it was detailed.
1432    if (is_detailed) {
1433       n_snapshots_since_last_detailed = 0;
1434    } else {
1435       n_snapshots_since_last_detailed++;
1436    }
1437 
1438    // Update peak data, if it's a Peak snapshot.
1439    if (Peak == kind) {
1440       Int i, number_of_peaks_snapshots_found = 0;
1441 
1442       // Sanity check the size, then update our recorded peak.
1443       SizeT snapshot_total_szB =
1444          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
1445       tl_assert2(snapshot_total_szB > peak_snapshot_total_szB,
1446          "%ld, %ld\n", snapshot_total_szB, peak_snapshot_total_szB);
1447       peak_snapshot_total_szB = snapshot_total_szB;
1448 
1449       // Find the old peak snapshot, if it exists, and mark it as normal.
1450       for (i = 0; i < next_snapshot_i; i++) {
1451          if (Peak == snapshots[i].kind) {
1452             snapshots[i].kind = Normal;
1453             number_of_peaks_snapshots_found++;
1454          }
1455       }
1456       tl_assert(number_of_peaks_snapshots_found <= 1);
1457    }
1458 
1459    // Finish up verbosity and stats stuff.
1460    if (n_skipped_snapshots_since_last_snapshot > 0) {
1461       VERB(2, "  (skipped %d snapshot%s)\n",
1462          n_skipped_snapshots_since_last_snapshot,
1463          ( 1 == n_skipped_snapshots_since_last_snapshot ? "" : "s") );
1464    }
1465    VERB_snapshot(2, what, next_snapshot_i);
1466    n_skipped_snapshots_since_last_snapshot = 0;
1467 
1468    // Cull the entries, if our snapshot table is full.
1469    next_snapshot_i++;
1470    if (clo_max_snapshots == next_snapshot_i) {
1471       min_time_interval = cull_snapshots();
1472    }
1473 
1474    // Work out the earliest time when the next snapshot can happen.
1475    earliest_possible_time_of_next_snapshot = my_time + min_time_interval;
1476 }
1477 
1478 
1479 //------------------------------------------------------------//
1480 //--- Sanity checking                                      ---//
1481 //------------------------------------------------------------//
1482 
ms_cheap_sanity_check(void)1483 static Bool ms_cheap_sanity_check ( void )
1484 {
1485    return True;   // Nothing useful we can cheaply check.
1486 }
1487 
ms_expensive_sanity_check(void)1488 static Bool ms_expensive_sanity_check ( void )
1489 {
1490    sanity_check_XTree(alloc_xpt, /*parent*/NULL);
1491    sanity_check_snapshots_array();
1492    return True;
1493 }
1494 
1495 
1496 //------------------------------------------------------------//
1497 //--- Heap management                                      ---//
1498 //------------------------------------------------------------//
1499 
1500 // Metadata for heap blocks.  Each one contains a pointer to a bottom-XPt,
1501 // which is a foothold into the XCon at which it was allocated.  From
1502 // HP_Chunks, XPt 'space' fields are incremented (at allocation) and
1503 // decremented (at deallocation).
1504 //
1505 // Nb: first two fields must match core's VgHashNode.
1506 typedef
1507    struct _HP_Chunk {
1508       struct _HP_Chunk* next;
1509       Addr              data;       // Ptr to actual block
1510       SizeT             req_szB;    // Size requested
1511       SizeT             slop_szB;   // Extra bytes given above those requested
1512       XPt*              where;      // Where allocated; bottom-XPt
1513    }
1514    HP_Chunk;
1515 
1516 static VgHashTable malloc_list  = NULL;   // HP_Chunks
1517 
update_alloc_stats(SSizeT szB_delta)1518 static void update_alloc_stats(SSizeT szB_delta)
1519 {
1520    // Update total_allocs_deallocs_szB.
1521    if (szB_delta < 0) szB_delta = -szB_delta;
1522    total_allocs_deallocs_szB += szB_delta;
1523 }
1524 
update_heap_stats(SSizeT heap_szB_delta,Int heap_extra_szB_delta)1525 static void update_heap_stats(SSizeT heap_szB_delta, Int heap_extra_szB_delta)
1526 {
1527    if (heap_szB_delta < 0)
1528       tl_assert(heap_szB >= -heap_szB_delta);
1529    if (heap_extra_szB_delta < 0)
1530       tl_assert(heap_extra_szB >= -heap_extra_szB_delta);
1531 
1532    heap_extra_szB += heap_extra_szB_delta;
1533    heap_szB       += heap_szB_delta;
1534 
1535    update_alloc_stats(heap_szB_delta + heap_extra_szB_delta);
1536 }
1537 
1538 static
record_block(ThreadId tid,void * p,SizeT req_szB,SizeT slop_szB,Bool exclude_first_entry,Bool maybe_snapshot)1539 void* record_block( ThreadId tid, void* p, SizeT req_szB, SizeT slop_szB,
1540                     Bool exclude_first_entry, Bool maybe_snapshot )
1541 {
1542    // Make new HP_Chunk node, add to malloc_list
1543    HP_Chunk* hc = VG_(malloc)("ms.main.rb.1", sizeof(HP_Chunk));
1544    hc->req_szB  = req_szB;
1545    hc->slop_szB = slop_szB;
1546    hc->data     = (Addr)p;
1547    hc->where    = NULL;
1548    VG_(HT_add_node)(malloc_list, hc);
1549 
1550    if (clo_heap) {
1551       VERB(3, "<<< record_block (%lu, %lu)\n", req_szB, slop_szB);
1552 
1553       hc->where = get_XCon( tid, exclude_first_entry );
1554 
1555       if (hc->where) {
1556          // Update statistics.
1557          n_heap_allocs++;
1558 
1559          // Update heap stats.
1560          update_heap_stats(req_szB, clo_heap_admin + slop_szB);
1561 
1562          // Update XTree.
1563          update_XCon(hc->where, req_szB);
1564 
1565          // Maybe take a snapshot.
1566          if (maybe_snapshot) {
1567             maybe_take_snapshot(Normal, "  alloc");
1568          }
1569 
1570       } else {
1571          // Ignored allocation.
1572          n_ignored_heap_allocs++;
1573 
1574          VERB(3, "(ignored)\n");
1575       }
1576 
1577       VERB(3, ">>>\n");
1578    }
1579 
1580    return p;
1581 }
1582 
1583 static __inline__
alloc_and_record_block(ThreadId tid,SizeT req_szB,SizeT req_alignB,Bool is_zeroed)1584 void* alloc_and_record_block ( ThreadId tid, SizeT req_szB, SizeT req_alignB,
1585                                Bool is_zeroed )
1586 {
1587    SizeT actual_szB, slop_szB;
1588    void* p;
1589 
1590    if ((SSizeT)req_szB < 0) return NULL;
1591 
1592    // Allocate and zero if necessary.
1593    p = VG_(cli_malloc)( req_alignB, req_szB );
1594    if (!p) {
1595       return NULL;
1596    }
1597    if (is_zeroed) VG_(memset)(p, 0, req_szB);
1598    actual_szB = VG_(malloc_usable_size)(p);
1599    tl_assert(actual_szB >= req_szB);
1600    slop_szB = actual_szB - req_szB;
1601 
1602    // Record block.
1603    record_block(tid, p, req_szB, slop_szB, /*exclude_first_entry*/True,
1604                 /*maybe_snapshot*/True);
1605 
1606    return p;
1607 }
1608 
1609 static __inline__
unrecord_block(void * p,Bool maybe_snapshot)1610 void unrecord_block ( void* p, Bool maybe_snapshot )
1611 {
1612    // Remove HP_Chunk from malloc_list
1613    HP_Chunk* hc = VG_(HT_remove)(malloc_list, (UWord)p);
1614    if (NULL == hc) {
1615       return;   // must have been a bogus free()
1616    }
1617 
1618    if (clo_heap) {
1619       VERB(3, "<<< unrecord_block\n");
1620 
1621       if (hc->where) {
1622          // Update statistics.
1623          n_heap_frees++;
1624 
1625          // Maybe take a peak snapshot, since it's a deallocation.
1626          if (maybe_snapshot) {
1627             maybe_take_snapshot(Peak, "de-PEAK");
1628          }
1629 
1630          // Update heap stats.
1631          update_heap_stats(-hc->req_szB, -clo_heap_admin - hc->slop_szB);
1632 
1633          // Update XTree.
1634          update_XCon(hc->where, -hc->req_szB);
1635 
1636          // Maybe take a snapshot.
1637          if (maybe_snapshot) {
1638             maybe_take_snapshot(Normal, "dealloc");
1639          }
1640 
1641       } else {
1642          n_ignored_heap_frees++;
1643 
1644          VERB(3, "(ignored)\n");
1645       }
1646 
1647       VERB(3, ">>> (-%lu, -%lu)\n", hc->req_szB, hc->slop_szB);
1648    }
1649 
1650    // Actually free the chunk, and the heap block (if necessary)
1651    VG_(free)( hc );  hc = NULL;
1652 }
1653 
1654 // Nb: --ignore-fn is tricky for realloc.  If the block's original alloc was
1655 // ignored, but the realloc is not requested to be ignored, and we are
1656 // shrinking the block, then we have to ignore the realloc -- otherwise we
1657 // could end up with negative heap sizes.  This isn't a danger if we are
1658 // growing such a block, but for consistency (it also simplifies things) we
1659 // ignore such reallocs as well.
1660 static __inline__
realloc_block(ThreadId tid,void * p_old,SizeT new_req_szB)1661 void* realloc_block ( ThreadId tid, void* p_old, SizeT new_req_szB )
1662 {
1663    HP_Chunk* hc;
1664    void*     p_new;
1665    SizeT     old_req_szB, old_slop_szB, new_slop_szB, new_actual_szB;
1666    XPt      *old_where, *new_where;
1667    Bool      is_ignored = False;
1668 
1669    // Remove the old block
1670    hc = VG_(HT_remove)(malloc_list, (UWord)p_old);
1671    if (hc == NULL) {
1672       return NULL;   // must have been a bogus realloc()
1673    }
1674 
1675    old_req_szB  = hc->req_szB;
1676    old_slop_szB = hc->slop_szB;
1677 
1678    tl_assert(!clo_pages_as_heap);  // Shouldn't be here if --pages-as-heap=yes.
1679    if (clo_heap) {
1680       VERB(3, "<<< realloc_block (%lu)\n", new_req_szB);
1681 
1682       if (hc->where) {
1683          // Update statistics.
1684          n_heap_reallocs++;
1685 
1686          // Maybe take a peak snapshot, if it's (effectively) a deallocation.
1687          if (new_req_szB < old_req_szB) {
1688             maybe_take_snapshot(Peak, "re-PEAK");
1689          }
1690       } else {
1691          // The original malloc was ignored, so we have to ignore the
1692          // realloc as well.
1693          is_ignored = True;
1694       }
1695    }
1696 
1697    // Actually do the allocation, if necessary.
1698    if (new_req_szB <= old_req_szB + old_slop_szB) {
1699       // New size is smaller or same;  block not moved.
1700       p_new = p_old;
1701       new_slop_szB = old_slop_szB + (old_req_szB - new_req_szB);
1702 
1703    } else {
1704       // New size is bigger;  make new block, copy shared contents, free old.
1705       p_new = VG_(cli_malloc)(VG_(clo_alignment), new_req_szB);
1706       if (!p_new) {
1707          // Nb: if realloc fails, NULL is returned but the old block is not
1708          // touched.  What an awful function.
1709          return NULL;
1710       }
1711       VG_(memcpy)(p_new, p_old, old_req_szB + old_slop_szB);
1712       VG_(cli_free)(p_old);
1713       new_actual_szB = VG_(malloc_usable_size)(p_new);
1714       tl_assert(new_actual_szB >= new_req_szB);
1715       new_slop_szB = new_actual_szB - new_req_szB;
1716    }
1717 
1718    if (p_new) {
1719       // Update HP_Chunk.
1720       hc->data     = (Addr)p_new;
1721       hc->req_szB  = new_req_szB;
1722       hc->slop_szB = new_slop_szB;
1723       old_where    = hc->where;
1724       hc->where    = NULL;
1725 
1726       // Update XTree.
1727       if (clo_heap) {
1728          new_where = get_XCon( tid, /*exclude_first_entry*/True);
1729          if (!is_ignored && new_where) {
1730             hc->where = new_where;
1731             update_XCon(old_where, -old_req_szB);
1732             update_XCon(new_where,  new_req_szB);
1733          } else {
1734             // The realloc itself is ignored.
1735             is_ignored = True;
1736 
1737             // Update statistics.
1738             n_ignored_heap_reallocs++;
1739          }
1740       }
1741    }
1742 
1743    // Now insert the new hc (with a possibly new 'data' field) into
1744    // malloc_list.  If this realloc() did not increase the memory size, we
1745    // will have removed and then re-added hc unnecessarily.  But that's ok
1746    // because shrinking a block with realloc() is (presumably) much rarer
1747    // than growing it, and this way simplifies the growing case.
1748    VG_(HT_add_node)(malloc_list, hc);
1749 
1750    if (clo_heap) {
1751       if (!is_ignored) {
1752          // Update heap stats.
1753          update_heap_stats(new_req_szB - old_req_szB,
1754                           new_slop_szB - old_slop_szB);
1755 
1756          // Maybe take a snapshot.
1757          maybe_take_snapshot(Normal, "realloc");
1758       } else {
1759 
1760          VERB(3, "(ignored)\n");
1761       }
1762 
1763       VERB(3, ">>> (%ld, %ld)\n",
1764          new_req_szB - old_req_szB, new_slop_szB - old_slop_szB);
1765    }
1766 
1767    return p_new;
1768 }
1769 
1770 
1771 //------------------------------------------------------------//
1772 //--- malloc() et al replacement wrappers                  ---//
1773 //------------------------------------------------------------//
1774 
ms_malloc(ThreadId tid,SizeT szB)1775 static void* ms_malloc ( ThreadId tid, SizeT szB )
1776 {
1777    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1778 }
1779 
ms___builtin_new(ThreadId tid,SizeT szB)1780 static void* ms___builtin_new ( ThreadId tid, SizeT szB )
1781 {
1782    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1783 }
1784 
ms___builtin_vec_new(ThreadId tid,SizeT szB)1785 static void* ms___builtin_vec_new ( ThreadId tid, SizeT szB )
1786 {
1787    return alloc_and_record_block( tid, szB, VG_(clo_alignment), /*is_zeroed*/False );
1788 }
1789 
ms_calloc(ThreadId tid,SizeT m,SizeT szB)1790 static void* ms_calloc ( ThreadId tid, SizeT m, SizeT szB )
1791 {
1792    return alloc_and_record_block( tid, m*szB, VG_(clo_alignment), /*is_zeroed*/True );
1793 }
1794 
ms_memalign(ThreadId tid,SizeT alignB,SizeT szB)1795 static void *ms_memalign ( ThreadId tid, SizeT alignB, SizeT szB )
1796 {
1797    return alloc_and_record_block( tid, szB, alignB, False );
1798 }
1799 
ms_free(ThreadId tid,void * p)1800 static void ms_free ( ThreadId tid __attribute__((unused)), void* p )
1801 {
1802    unrecord_block(p, /*maybe_snapshot*/True);
1803    VG_(cli_free)(p);
1804 }
1805 
ms___builtin_delete(ThreadId tid,void * p)1806 static void ms___builtin_delete ( ThreadId tid, void* p )
1807 {
1808    unrecord_block(p, /*maybe_snapshot*/True);
1809    VG_(cli_free)(p);
1810 }
1811 
ms___builtin_vec_delete(ThreadId tid,void * p)1812 static void ms___builtin_vec_delete ( ThreadId tid, void* p )
1813 {
1814    unrecord_block(p, /*maybe_snapshot*/True);
1815    VG_(cli_free)(p);
1816 }
1817 
ms_realloc(ThreadId tid,void * p_old,SizeT new_szB)1818 static void* ms_realloc ( ThreadId tid, void* p_old, SizeT new_szB )
1819 {
1820    return realloc_block(tid, p_old, new_szB);
1821 }
1822 
ms_malloc_usable_size(ThreadId tid,void * p)1823 static SizeT ms_malloc_usable_size ( ThreadId tid, void* p )
1824 {
1825    HP_Chunk* hc = VG_(HT_lookup)( malloc_list, (UWord)p );
1826 
1827    return ( hc ? hc->req_szB + hc->slop_szB : 0 );
1828 }
1829 
1830 //------------------------------------------------------------//
1831 //--- Page handling                                        ---//
1832 //------------------------------------------------------------//
1833 
1834 static
ms_record_page_mem(Addr a,SizeT len)1835 void ms_record_page_mem ( Addr a, SizeT len )
1836 {
1837    ThreadId tid = VG_(get_running_tid)();
1838    Addr end;
1839    tl_assert(VG_IS_PAGE_ALIGNED(len));
1840    tl_assert(len >= VKI_PAGE_SIZE);
1841    // Record the first N-1 pages as blocks, but don't do any snapshots.
1842    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1843       record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1844                     /*exclude_first_entry*/False, /*maybe_snapshot*/False );
1845    }
1846    // Record the last page as a block, and maybe do a snapshot afterwards.
1847    record_block( tid, (void*)a, VKI_PAGE_SIZE, /*slop_szB*/0,
1848                  /*exclude_first_entry*/False, /*maybe_snapshot*/True );
1849 }
1850 
1851 static
ms_unrecord_page_mem(Addr a,SizeT len)1852 void ms_unrecord_page_mem( Addr a, SizeT len )
1853 {
1854    Addr end;
1855    tl_assert(VG_IS_PAGE_ALIGNED(len));
1856    tl_assert(len >= VKI_PAGE_SIZE);
1857    for (end = a + len - VKI_PAGE_SIZE; a < end; a += VKI_PAGE_SIZE) {
1858       unrecord_block((void*)a, /*maybe_snapshot*/False);
1859    }
1860    unrecord_block((void*)a, /*maybe_snapshot*/True);
1861 }
1862 
1863 //------------------------------------------------------------//
1864 
1865 static
ms_new_mem_mmap(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1866 void ms_new_mem_mmap ( Addr a, SizeT len,
1867                        Bool rr, Bool ww, Bool xx, ULong di_handle )
1868 {
1869    tl_assert(VG_IS_PAGE_ALIGNED(len));
1870    ms_record_page_mem(a, len);
1871 }
1872 
1873 static
ms_new_mem_startup(Addr a,SizeT len,Bool rr,Bool ww,Bool xx,ULong di_handle)1874 void ms_new_mem_startup( Addr a, SizeT len,
1875                          Bool rr, Bool ww, Bool xx, ULong di_handle )
1876 {
1877    // startup maps are always be page-sized, except the trampoline page is
1878    // marked by the core as only being the size of the trampoline itself,
1879    // which is something like 57 bytes.  Round it up to page size.
1880    len = VG_PGROUNDUP(len);
1881    ms_record_page_mem(a, len);
1882 }
1883 
1884 static
ms_new_mem_brk(Addr a,SizeT len,ThreadId tid)1885 void ms_new_mem_brk ( Addr a, SizeT len, ThreadId tid )
1886 {
1887    // brk limit is not necessarily aligned on a page boundary.
1888    // If new memory being brk-ed implies to allocate a new page,
1889    // then call ms_record_page_mem with page aligned parameters
1890    // otherwise just ignore.
1891    Addr old_bottom_page = VG_PGROUNDDN(a - 1);
1892    Addr new_top_page = VG_PGROUNDDN(a + len - 1);
1893    if (old_bottom_page != new_top_page)
1894       ms_record_page_mem(VG_PGROUNDDN(a),
1895                          (new_top_page - old_bottom_page));
1896 }
1897 
1898 static
ms_copy_mem_remap(Addr from,Addr to,SizeT len)1899 void ms_copy_mem_remap( Addr from, Addr to, SizeT len)
1900 {
1901    tl_assert(VG_IS_PAGE_ALIGNED(len));
1902    ms_unrecord_page_mem(from, len);
1903    ms_record_page_mem(to, len);
1904 }
1905 
1906 static
ms_die_mem_munmap(Addr a,SizeT len)1907 void ms_die_mem_munmap( Addr a, SizeT len )
1908 {
1909    tl_assert(VG_IS_PAGE_ALIGNED(len));
1910    ms_unrecord_page_mem(a, len);
1911 }
1912 
1913 static
ms_die_mem_brk(Addr a,SizeT len)1914 void ms_die_mem_brk( Addr a, SizeT len )
1915 {
1916    // Call ms_unrecord_page_mem only if one or more pages are de-allocated.
1917    // See ms_new_mem_brk for more details.
1918    Addr new_bottom_page = VG_PGROUNDDN(a - 1);
1919    Addr old_top_page = VG_PGROUNDDN(a + len - 1);
1920    if (old_top_page != new_bottom_page)
1921       ms_unrecord_page_mem(VG_PGROUNDDN(a),
1922                            (old_top_page - new_bottom_page));
1923 
1924 }
1925 
1926 //------------------------------------------------------------//
1927 //--- Stacks                                               ---//
1928 //------------------------------------------------------------//
1929 
1930 // We really want the inlining to occur...
1931 #define INLINE    inline __attribute__((always_inline))
1932 
update_stack_stats(SSizeT stack_szB_delta)1933 static void update_stack_stats(SSizeT stack_szB_delta)
1934 {
1935    if (stack_szB_delta < 0) tl_assert(stacks_szB >= -stack_szB_delta);
1936    stacks_szB += stack_szB_delta;
1937 
1938    update_alloc_stats(stack_szB_delta);
1939 }
1940 
new_mem_stack_2(SizeT len,Char * what)1941 static INLINE void new_mem_stack_2(SizeT len, Char* what)
1942 {
1943    if (have_started_executing_code) {
1944       VERB(3, "<<< new_mem_stack (%ld)\n", len);
1945       n_stack_allocs++;
1946       update_stack_stats(len);
1947       maybe_take_snapshot(Normal, what);
1948       VERB(3, ">>>\n");
1949    }
1950 }
1951 
die_mem_stack_2(SizeT len,Char * what)1952 static INLINE void die_mem_stack_2(SizeT len, Char* what)
1953 {
1954    if (have_started_executing_code) {
1955       VERB(3, "<<< die_mem_stack (%ld)\n", -len);
1956       n_stack_frees++;
1957       maybe_take_snapshot(Peak,   "stkPEAK");
1958       update_stack_stats(-len);
1959       maybe_take_snapshot(Normal, what);
1960       VERB(3, ">>>\n");
1961    }
1962 }
1963 
new_mem_stack(Addr a,SizeT len)1964 static void new_mem_stack(Addr a, SizeT len)
1965 {
1966    new_mem_stack_2(len, "stk-new");
1967 }
1968 
die_mem_stack(Addr a,SizeT len)1969 static void die_mem_stack(Addr a, SizeT len)
1970 {
1971    die_mem_stack_2(len, "stk-die");
1972 }
1973 
new_mem_stack_signal(Addr a,SizeT len,ThreadId tid)1974 static void new_mem_stack_signal(Addr a, SizeT len, ThreadId tid)
1975 {
1976    new_mem_stack_2(len, "sig-new");
1977 }
1978 
die_mem_stack_signal(Addr a,SizeT len)1979 static void die_mem_stack_signal(Addr a, SizeT len)
1980 {
1981    die_mem_stack_2(len, "sig-die");
1982 }
1983 
1984 
1985 //------------------------------------------------------------//
1986 //--- Client Requests                                      ---//
1987 //------------------------------------------------------------//
1988 
print_monitor_help(void)1989 static void print_monitor_help ( void )
1990 {
1991    VG_(gdb_printf) ("\n");
1992    VG_(gdb_printf) ("massif monitor commands:\n");
1993    VG_(gdb_printf) ("  snapshot [<filename>]\n");
1994    VG_(gdb_printf) ("  detailed_snapshot [<filename>]\n");
1995    VG_(gdb_printf) ("       takes a snapshot (or a detailed snapshot)\n");
1996    VG_(gdb_printf) ("       and saves it in <filename>\n");
1997    VG_(gdb_printf) ("             default <filename> is massif.vgdb.out\n");
1998    VG_(gdb_printf) ("\n");
1999 }
2000 
2001 
2002 /* Forward declaration.
2003    return True if request recognised, False otherwise */
2004 static Bool handle_gdb_monitor_command (ThreadId tid, Char *req);
ms_handle_client_request(ThreadId tid,UWord * argv,UWord * ret)2005 static Bool ms_handle_client_request ( ThreadId tid, UWord* argv, UWord* ret )
2006 {
2007    switch (argv[0]) {
2008    case VG_USERREQ__MALLOCLIKE_BLOCK: {
2009       void* p   = (void*)argv[1];
2010       SizeT szB =        argv[2];
2011       record_block( tid, p, szB, /*slop_szB*/0, /*exclude_first_entry*/False,
2012                     /*maybe_snapshot*/True );
2013       *ret = 0;
2014       return True;
2015    }
2016    case VG_USERREQ__RESIZEINPLACE_BLOCK: {
2017       void* p        = (void*)argv[1];
2018       SizeT newSizeB =       argv[3];
2019 
2020       unrecord_block(p, /*maybe_snapshot*/True);
2021       record_block(tid, p, newSizeB, /*slop_szB*/0,
2022                    /*exclude_first_entry*/False, /*maybe_snapshot*/True);
2023       return True;
2024    }
2025    case VG_USERREQ__FREELIKE_BLOCK: {
2026       void* p = (void*)argv[1];
2027       unrecord_block(p, /*maybe_snapshot*/True);
2028       *ret = 0;
2029       return True;
2030    }
2031    case VG_USERREQ__GDB_MONITOR_COMMAND: {
2032      Bool handled = handle_gdb_monitor_command (tid, (Char*)argv[1]);
2033      if (handled)
2034        *ret = 1;
2035      else
2036        *ret = 0;
2037      return handled;
2038    }
2039 
2040    default:
2041       *ret = 0;
2042       return False;
2043    }
2044 }
2045 
2046 //------------------------------------------------------------//
2047 //--- Instrumentation                                      ---//
2048 //------------------------------------------------------------//
2049 
add_counter_update(IRSB * sbOut,Int n)2050 static void add_counter_update(IRSB* sbOut, Int n)
2051 {
2052    #if defined(VG_BIGENDIAN)
2053    # define END Iend_BE
2054    #elif defined(VG_LITTLEENDIAN)
2055    # define END Iend_LE
2056    #else
2057    # error "Unknown endianness"
2058    #endif
2059    // Add code to increment 'guest_instrs_executed' by 'n', like this:
2060    //   WrTmp(t1, Load64(&guest_instrs_executed))
2061    //   WrTmp(t2, Add64(RdTmp(t1), Const(n)))
2062    //   Store(&guest_instrs_executed, t2)
2063    IRTemp t1 = newIRTemp(sbOut->tyenv, Ity_I64);
2064    IRTemp t2 = newIRTemp(sbOut->tyenv, Ity_I64);
2065    IRExpr* counter_addr = mkIRExpr_HWord( (HWord)&guest_instrs_executed );
2066 
2067    IRStmt* st1 = IRStmt_WrTmp(t1, IRExpr_Load(END, Ity_I64, counter_addr));
2068    IRStmt* st2 =
2069       IRStmt_WrTmp(t2,
2070                    IRExpr_Binop(Iop_Add64, IRExpr_RdTmp(t1),
2071                                            IRExpr_Const(IRConst_U64(n))));
2072    IRStmt* st3 = IRStmt_Store(END, counter_addr, IRExpr_RdTmp(t2));
2073 
2074    addStmtToIRSB( sbOut, st1 );
2075    addStmtToIRSB( sbOut, st2 );
2076    addStmtToIRSB( sbOut, st3 );
2077 }
2078 
ms_instrument2(IRSB * sbIn)2079 static IRSB* ms_instrument2( IRSB* sbIn )
2080 {
2081    Int   i, n = 0;
2082    IRSB* sbOut;
2083 
2084    // We increment the instruction count in two places:
2085    // - just before any Ist_Exit statements;
2086    // - just before the IRSB's end.
2087    // In the former case, we zero 'n' and then continue instrumenting.
2088 
2089    sbOut = deepCopyIRSBExceptStmts(sbIn);
2090 
2091    for (i = 0; i < sbIn->stmts_used; i++) {
2092       IRStmt* st = sbIn->stmts[i];
2093 
2094       if (!st || st->tag == Ist_NoOp) continue;
2095 
2096       if (st->tag == Ist_IMark) {
2097          n++;
2098       } else if (st->tag == Ist_Exit) {
2099          if (n > 0) {
2100             // Add an increment before the Exit statement, then reset 'n'.
2101             add_counter_update(sbOut, n);
2102             n = 0;
2103          }
2104       }
2105       addStmtToIRSB( sbOut, st );
2106    }
2107 
2108    if (n > 0) {
2109       // Add an increment before the SB end.
2110       add_counter_update(sbOut, n);
2111    }
2112    return sbOut;
2113 }
2114 
2115 static
ms_instrument(VgCallbackClosure * closure,IRSB * sbIn,VexGuestLayout * layout,VexGuestExtents * vge,IRType gWordTy,IRType hWordTy)2116 IRSB* ms_instrument ( VgCallbackClosure* closure,
2117                       IRSB* sbIn,
2118                       VexGuestLayout* layout,
2119                       VexGuestExtents* vge,
2120                       IRType gWordTy, IRType hWordTy )
2121 {
2122    if (! have_started_executing_code) {
2123       // Do an initial sample to guarantee that we have at least one.
2124       // We use 'maybe_take_snapshot' instead of 'take_snapshot' to ensure
2125       // 'maybe_take_snapshot's internal static variables are initialised.
2126       have_started_executing_code = True;
2127       maybe_take_snapshot(Normal, "startup");
2128    }
2129 
2130    if      (clo_time_unit == TimeI)  { return ms_instrument2(sbIn); }
2131    else if (clo_time_unit == TimeMS) { return sbIn; }
2132    else if (clo_time_unit == TimeB)  { return sbIn; }
2133    else                              { tl_assert2(0, "bad --time-unit value"); }
2134 }
2135 
2136 
2137 //------------------------------------------------------------//
2138 //--- Writing snapshots                                    ---//
2139 //------------------------------------------------------------//
2140 
2141 Char FP_buf[BUF_LEN];
2142 
2143 // XXX: implement f{,n}printf in m_libcprint.c eventually, and use it here.
2144 // Then change Cachegrind to use it too.
2145 #define FP(format, args...) ({ \
2146    VG_(snprintf)(FP_buf, BUF_LEN, format, ##args); \
2147    FP_buf[BUF_LEN-1] = '\0';  /* Make sure the string is terminated. */ \
2148    VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf)); \
2149 })
2150 
2151 // Nb: uses a static buffer, each call trashes the last string returned.
make_perc(double x)2152 static Char* make_perc(double x)
2153 {
2154    static Char mbuf[32];
2155 
2156    VG_(percentify)((ULong)(x * 100), 10000, 2, 6, mbuf);
2157    // XXX: this is bogus if the denominator was zero -- resulting string is
2158    // something like "0 --%")
2159    if (' ' == mbuf[0]) mbuf[0] = '0';
2160    return mbuf;
2161 }
2162 
pp_snapshot_SXPt(Int fd,SXPt * sxpt,Int depth,Char * depth_str,Int depth_str_len,SizeT snapshot_heap_szB,SizeT snapshot_total_szB)2163 static void pp_snapshot_SXPt(Int fd, SXPt* sxpt, Int depth, Char* depth_str,
2164                             Int depth_str_len,
2165                             SizeT snapshot_heap_szB, SizeT snapshot_total_szB)
2166 {
2167    Int   i, j, n_insig_children_sxpts;
2168    SXPt* child = NULL;
2169 
2170    // Used for printing function names.  Is made static to keep it out
2171    // of the stack frame -- this function is recursive.  Obviously this
2172    // now means its contents are trashed across the recursive call.
2173    static Char ip_desc_array[BUF_LEN];
2174    Char* ip_desc = ip_desc_array;
2175 
2176    switch (sxpt->tag) {
2177     case SigSXPt:
2178       // Print the SXPt itself.
2179       if (0 == depth) {
2180          if (clo_heap) {
2181             ip_desc =
2182                ( clo_pages_as_heap
2183                ? "(page allocation syscalls) mmap/mremap/brk, --alloc-fns, etc."
2184                : "(heap allocation functions) malloc/new/new[], --alloc-fns, etc."
2185                );
2186          } else {
2187             // XXX: --alloc-fns?
2188          }
2189       } else {
2190          // If it's main-or-below-main, we (if appropriate) ignore everything
2191          // below it by pretending it has no children.
2192          if ( ! VG_(clo_show_below_main) ) {
2193             Vg_FnNameKind kind = VG_(get_fnname_kind_from_IP)(sxpt->Sig.ip);
2194             if (Vg_FnNameMain == kind || Vg_FnNameBelowMain == kind) {
2195                sxpt->Sig.n_children = 0;
2196             }
2197          }
2198 
2199          // We need the -1 to get the line number right, But I'm not sure why.
2200          ip_desc = VG_(describe_IP)(sxpt->Sig.ip-1, ip_desc, BUF_LEN);
2201       }
2202 
2203       // Do the non-ip_desc part first...
2204       FP("%sn%d: %lu ", depth_str, sxpt->Sig.n_children, sxpt->szB);
2205 
2206       // For ip_descs beginning with "0xABCD...:" addresses, we first
2207       // measure the length of the "0xabcd: " address at the start of the
2208       // ip_desc.
2209       j = 0;
2210       if ('0' == ip_desc[0] && 'x' == ip_desc[1]) {
2211          j = 2;
2212          while (True) {
2213             if (ip_desc[j]) {
2214                if (':' == ip_desc[j]) break;
2215                j++;
2216             } else {
2217                tl_assert2(0, "ip_desc has unexpected form: %s\n", ip_desc);
2218             }
2219          }
2220       }
2221       // Nb: We treat this specially (ie. we don't use FP) so that if the
2222       // ip_desc is too long (eg. due to a long C++ function name), it'll
2223       // get truncated, but the '\n' is still there so its a valid file.
2224       // (At one point we were truncating without adding the '\n', which
2225       // caused bug #155929.)
2226       //
2227       // Also, we account for the length of the address in ip_desc when
2228       // truncating.  (The longest address we could have is 18 chars:  "0x"
2229       // plus 16 address digits.)  This ensures that the truncated function
2230       // name always has the same length, which makes truncation
2231       // deterministic and thus makes testing easier.
2232       tl_assert(j <= 18);
2233       VG_(snprintf)(FP_buf, BUF_LEN, "%s\n", ip_desc);
2234       FP_buf[BUF_LEN-18+j-5] = '.';    // "..." at the end make the
2235       FP_buf[BUF_LEN-18+j-4] = '.';    //   truncation more obvious.
2236       FP_buf[BUF_LEN-18+j-3] = '.';
2237       FP_buf[BUF_LEN-18+j-2] = '\n';   // The last char is '\n'.
2238       FP_buf[BUF_LEN-18+j-1] = '\0';   // The string is terminated.
2239       VG_(write)(fd, (void*)FP_buf, VG_(strlen)(FP_buf));
2240 
2241       // Indent.
2242       tl_assert(depth+1 < depth_str_len-1);    // -1 for end NUL char
2243       depth_str[depth+0] = ' ';
2244       depth_str[depth+1] = '\0';
2245 
2246       // Sort SXPt's children by szB (reverse order:  biggest to smallest).
2247       // Nb: we sort them here, rather than earlier (eg. in dup_XTree), for
2248       // two reasons.  First, if we do it during dup_XTree, it can get
2249       // expensive (eg. 15% of execution time for konqueror
2250       // startup/shutdown).  Second, this way we get the Insig SXPt (if one
2251       // is present) in its sorted position, not at the end.
2252       VG_(ssort)(sxpt->Sig.children, sxpt->Sig.n_children, sizeof(SXPt*),
2253                  SXPt_revcmp_szB);
2254 
2255       // Print the SXPt's children.  They should already be in sorted order.
2256       n_insig_children_sxpts = 0;
2257       for (i = 0; i < sxpt->Sig.n_children; i++) {
2258          child = sxpt->Sig.children[i];
2259 
2260          if (InsigSXPt == child->tag)
2261             n_insig_children_sxpts++;
2262 
2263          // Ok, print the child.  NB: contents of ip_desc_array will be
2264          // trashed by this recursive call.  Doesn't matter currently,
2265          // but worth noting.
2266          pp_snapshot_SXPt(fd, child, depth+1, depth_str, depth_str_len,
2267             snapshot_heap_szB, snapshot_total_szB);
2268       }
2269 
2270       // Unindent.
2271       depth_str[depth+0] = '\0';
2272       depth_str[depth+1] = '\0';
2273 
2274       // There should be 0 or 1 Insig children SXPts.
2275       tl_assert(n_insig_children_sxpts <= 1);
2276       break;
2277 
2278     case InsigSXPt: {
2279       Char* s = ( 1 == sxpt->Insig.n_xpts ? "," : "s, all" );
2280       FP("%sn0: %lu in %d place%s below massif's threshold (%s)\n",
2281          depth_str, sxpt->szB, sxpt->Insig.n_xpts, s,
2282          make_perc(clo_threshold));
2283       break;
2284     }
2285 
2286     default:
2287       tl_assert2(0, "pp_snapshot_SXPt: unrecognised SXPt tag");
2288    }
2289 }
2290 
pp_snapshot(Int fd,Snapshot * snapshot,Int snapshot_n)2291 static void pp_snapshot(Int fd, Snapshot* snapshot, Int snapshot_n)
2292 {
2293    sanity_check_snapshot(snapshot);
2294 
2295    FP("#-----------\n");
2296    FP("snapshot=%d\n", snapshot_n);
2297    FP("#-----------\n");
2298    FP("time=%lld\n",            snapshot->time);
2299    FP("mem_heap_B=%lu\n",       snapshot->heap_szB);
2300    FP("mem_heap_extra_B=%lu\n", snapshot->heap_extra_szB);
2301    FP("mem_stacks_B=%lu\n",     snapshot->stacks_szB);
2302 
2303    if (is_detailed_snapshot(snapshot)) {
2304       // Detailed snapshot -- print heap tree.
2305       Int   depth_str_len = clo_depth + 3;
2306       Char* depth_str = VG_(malloc)("ms.main.pps.1",
2307                                     sizeof(Char) * depth_str_len);
2308       SizeT snapshot_total_szB =
2309          snapshot->heap_szB + snapshot->heap_extra_szB + snapshot->stacks_szB;
2310       depth_str[0] = '\0';   // Initialise depth_str to "".
2311 
2312       FP("heap_tree=%s\n", ( Peak == snapshot->kind ? "peak" : "detailed" ));
2313       pp_snapshot_SXPt(fd, snapshot->alloc_sxpt, 0, depth_str,
2314                        depth_str_len, snapshot->heap_szB,
2315                        snapshot_total_szB);
2316 
2317       VG_(free)(depth_str);
2318 
2319    } else {
2320       FP("heap_tree=empty\n");
2321    }
2322 }
2323 
write_snapshots_to_file(Char * massif_out_file,Snapshot snapshots_array[],Int nr_elements)2324 static void write_snapshots_to_file(Char* massif_out_file,
2325                                     Snapshot snapshots_array[],
2326                                     Int nr_elements)
2327 {
2328    Int i, fd;
2329    SysRes sres;
2330 
2331    sres = VG_(open)(massif_out_file, VKI_O_CREAT|VKI_O_TRUNC|VKI_O_WRONLY,
2332                                      VKI_S_IRUSR|VKI_S_IWUSR);
2333    if (sr_isError(sres)) {
2334       // If the file can't be opened for whatever reason (conflict
2335       // between multiple cachegrinded processes?), give up now.
2336       VG_(umsg)("error: can't open output file '%s'\n", massif_out_file );
2337       VG_(umsg)("       ... so profiling results will be missing.\n");
2338       return;
2339    } else {
2340       fd = sr_Res(sres);
2341    }
2342 
2343    // Print massif-specific options that were used.
2344    // XXX: is it worth having a "desc:" line?  Could just call it "options:"
2345    // -- this file format isn't as generic as Cachegrind's, so the
2346    // implied genericity of "desc:" is bogus.
2347    FP("desc:");
2348    for (i = 0; i < VG_(sizeXA)(args_for_massif); i++) {
2349       Char* arg = *(Char**)VG_(indexXA)(args_for_massif, i);
2350       FP(" %s", arg);
2351    }
2352    if (0 == i) FP(" (none)");
2353    FP("\n");
2354 
2355    // Print "cmd:" line.
2356    FP("cmd: ");
2357    if (VG_(args_the_exename)) {
2358       FP("%s", VG_(args_the_exename));
2359       for (i = 0; i < VG_(sizeXA)( VG_(args_for_client) ); i++) {
2360          HChar* arg = * (HChar**) VG_(indexXA)( VG_(args_for_client), i );
2361          if (arg)
2362             FP(" %s", arg);
2363       }
2364    } else {
2365       FP(" ???");
2366    }
2367    FP("\n");
2368 
2369    FP("time_unit: %s\n", TimeUnit_to_string(clo_time_unit));
2370 
2371    for (i = 0; i < nr_elements; i++) {
2372       Snapshot* snapshot = & snapshots_array[i];
2373       pp_snapshot(fd, snapshot, i);     // Detailed snapshot!
2374    }
2375    VG_(close) (fd);
2376 }
2377 
write_snapshots_array_to_file(void)2378 static void write_snapshots_array_to_file(void)
2379 {
2380    // Setup output filename.  Nb: it's important to do this now, ie. as late
2381    // as possible.  If we do it at start-up and the program forks and the
2382    // output file format string contains a %p (pid) specifier, both the
2383    // parent and child will incorrectly write to the same file;  this
2384    // happened in 3.3.0.
2385    Char* massif_out_file =
2386       VG_(expand_file_name)("--massif-out-file", clo_massif_out_file);
2387    write_snapshots_to_file (massif_out_file, snapshots, next_snapshot_i);
2388    VG_(free)(massif_out_file);
2389 }
2390 
handle_snapshot_monitor_command(Char * filename,Bool detailed)2391 static void handle_snapshot_monitor_command (Char *filename, Bool detailed)
2392 {
2393    Snapshot snapshot;
2394 
2395    clear_snapshot(&snapshot, /* do_sanity_check */ False);
2396    take_snapshot(&snapshot, Normal, get_time(), detailed);
2397    write_snapshots_to_file ((filename == NULL) ? (Char*) "massif.vgdb.out" : filename,
2398                             &snapshot,
2399                             1);
2400    delete_snapshot(&snapshot);
2401 }
2402 
handle_gdb_monitor_command(ThreadId tid,Char * req)2403 static Bool handle_gdb_monitor_command (ThreadId tid, Char *req)
2404 {
2405    Char* wcmd;
2406    Char s[VG_(strlen(req))]; /* copy for strtok_r */
2407    Char *ssaveptr;
2408 
2409    VG_(strcpy) (s, req);
2410 
2411    wcmd = VG_(strtok_r) (s, " ", &ssaveptr);
2412    switch (VG_(keyword_id) ("help snapshot detailed_snapshot",
2413                             wcmd, kwd_report_duplicated_matches)) {
2414    case -2: /* multiple matches */
2415       return True;
2416    case -1: /* not found */
2417       return False;
2418    case  0: /* help */
2419       print_monitor_help();
2420       return True;
2421    case  1: { /* snapshot */
2422       Char* filename;
2423       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2424       handle_snapshot_monitor_command (filename, False /* detailed */);
2425       return True;
2426    }
2427    case  2: { /* detailed_snapshot */
2428       Char* filename;
2429       filename = VG_(strtok_r) (NULL, " ", &ssaveptr);
2430       handle_snapshot_monitor_command (filename, True /* detailed */);
2431       return True;
2432    }
2433    default:
2434       tl_assert(0);
2435       return False;
2436    }
2437 }
2438 
2439 //------------------------------------------------------------//
2440 //--- Finalisation                                         ---//
2441 //------------------------------------------------------------//
2442 
ms_fini(Int exit_status)2443 static void ms_fini(Int exit_status)
2444 {
2445    // Output.
2446    write_snapshots_array_to_file();
2447 
2448    // Stats
2449    tl_assert(n_xpts > 0);  // always have alloc_xpt
2450    STATS("heap allocs:           %u\n", n_heap_allocs);
2451    STATS("heap reallocs:         %u\n", n_heap_reallocs);
2452    STATS("heap frees:            %u\n", n_heap_frees);
2453    STATS("ignored heap allocs:   %u\n", n_ignored_heap_allocs);
2454    STATS("ignored heap frees:    %u\n", n_ignored_heap_frees);
2455    STATS("ignored heap reallocs: %u\n", n_ignored_heap_reallocs);
2456    STATS("stack allocs:          %u\n", n_stack_allocs);
2457    STATS("stack frees:           %u\n", n_stack_frees);
2458    STATS("XPts:                  %u\n", n_xpts);
2459    STATS("top-XPts:              %u (%d%%)\n",
2460       alloc_xpt->n_children,
2461       ( n_xpts ? alloc_xpt->n_children * 100 / n_xpts : 0));
2462    STATS("XPt init expansions:   %u\n", n_xpt_init_expansions);
2463    STATS("XPt later expansions:  %u\n", n_xpt_later_expansions);
2464    STATS("SXPt allocs:           %u\n", n_sxpt_allocs);
2465    STATS("SXPt frees:            %u\n", n_sxpt_frees);
2466    STATS("skipped snapshots:     %u\n", n_skipped_snapshots);
2467    STATS("real snapshots:        %u\n", n_real_snapshots);
2468    STATS("detailed snapshots:    %u\n", n_detailed_snapshots);
2469    STATS("peak snapshots:        %u\n", n_peak_snapshots);
2470    STATS("cullings:              %u\n", n_cullings);
2471    STATS("XCon redos:            %u\n", n_XCon_redos);
2472 }
2473 
2474 
2475 //------------------------------------------------------------//
2476 //--- Initialisation                                       ---//
2477 //------------------------------------------------------------//
2478 
ms_post_clo_init(void)2479 static void ms_post_clo_init(void)
2480 {
2481    Int i;
2482    Char* LD_PRELOAD_val;
2483    Char* s;
2484    Char* s2;
2485 
2486    // Check options.
2487    if (clo_pages_as_heap) {
2488       if (clo_stacks) {
2489          VG_(fmsg_bad_option)(
2490             "--pages-as-heap=yes together with --stacks=yes", "");
2491       }
2492    }
2493    if (!clo_heap) {
2494       clo_pages_as_heap = False;
2495    }
2496 
2497    // If --pages-as-heap=yes we don't want malloc replacement to occur.  So we
2498    // disable vgpreload_massif-$PLATFORM.so by removing it from LD_PRELOAD (or
2499    // platform-equivalent).  We replace it entirely with spaces because then
2500    // the linker doesn't complain (it does complain if we just change the name
2501    // to a bogus file).  This is a bit of a hack, but LD_PRELOAD is setup well
2502    // before tool initialisation, so this seems the best way to do it.
2503    if (clo_pages_as_heap) {
2504       clo_heap_admin = 0;     // No heap admin on pages.
2505 
2506       LD_PRELOAD_val = VG_(getenv)( (Char*)VG_(LD_PRELOAD_var_name) );
2507       tl_assert(LD_PRELOAD_val);
2508 
2509       // Make sure the vgpreload_core-$PLATFORM entry is there, for sanity.
2510       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_core");
2511       tl_assert(s2);
2512 
2513       // Now find the vgpreload_massif-$PLATFORM entry.
2514       s2 = VG_(strstr)(LD_PRELOAD_val, "vgpreload_massif");
2515       tl_assert(s2);
2516 
2517       // Blank out everything to the previous ':', which must be there because
2518       // of the preceding vgpreload_core-$PLATFORM entry.
2519       for (s = s2; *s != ':'; s--) {
2520          *s = ' ';
2521       }
2522 
2523       // Blank out everything to the end of the entry, which will be '\0' if
2524       // LD_PRELOAD was empty before Valgrind started, or ':' otherwise.
2525       for (s = s2; *s != ':' && *s != '\0'; s++) {
2526          *s = ' ';
2527       }
2528    }
2529 
2530    // Print alloc-fns and ignore-fns, if necessary.
2531    if (VG_(clo_verbosity) > 1) {
2532       VERB(1, "alloc-fns:\n");
2533       for (i = 0; i < VG_(sizeXA)(alloc_fns); i++) {
2534          Char** fn_ptr = VG_(indexXA)(alloc_fns, i);
2535          VERB(1, "  %s\n", *fn_ptr);
2536       }
2537 
2538       VERB(1, "ignore-fns:\n");
2539       if (0 == VG_(sizeXA)(ignore_fns)) {
2540          VERB(1, "  <empty>\n");
2541       }
2542       for (i = 0; i < VG_(sizeXA)(ignore_fns); i++) {
2543          Char** fn_ptr = VG_(indexXA)(ignore_fns, i);
2544          VERB(1, "  %d: %s\n", i, *fn_ptr);
2545       }
2546    }
2547 
2548    // Events to track.
2549    if (clo_stacks) {
2550       VG_(track_new_mem_stack)        ( new_mem_stack        );
2551       VG_(track_die_mem_stack)        ( die_mem_stack        );
2552       VG_(track_new_mem_stack_signal) ( new_mem_stack_signal );
2553       VG_(track_die_mem_stack_signal) ( die_mem_stack_signal );
2554    }
2555 
2556    if (clo_pages_as_heap) {
2557       VG_(track_new_mem_startup) ( ms_new_mem_startup );
2558       VG_(track_new_mem_brk)     ( ms_new_mem_brk     );
2559       VG_(track_new_mem_mmap)    ( ms_new_mem_mmap    );
2560 
2561       VG_(track_copy_mem_remap)  ( ms_copy_mem_remap  );
2562 
2563       VG_(track_die_mem_brk)     ( ms_die_mem_brk     );
2564       VG_(track_die_mem_munmap)  ( ms_die_mem_munmap  );
2565    }
2566 
2567    // Initialise snapshot array, and sanity-check it.
2568    snapshots = VG_(malloc)("ms.main.mpoci.1",
2569                            sizeof(Snapshot) * clo_max_snapshots);
2570    // We don't want to do snapshot sanity checks here, because they're
2571    // currently uninitialised.
2572    for (i = 0; i < clo_max_snapshots; i++) {
2573       clear_snapshot( & snapshots[i], /*do_sanity_check*/False );
2574    }
2575    sanity_check_snapshots_array();
2576 }
2577 
ms_pre_clo_init(void)2578 static void ms_pre_clo_init(void)
2579 {
2580    VG_(details_name)            ("Massif");
2581    VG_(details_version)         (NULL);
2582    VG_(details_description)     ("a heap profiler");
2583    VG_(details_copyright_author)(
2584       "Copyright (C) 2003-2012, and GNU GPL'd, by Nicholas Nethercote");
2585    VG_(details_bug_reports_to)  (VG_BUGS_TO);
2586 
2587    VG_(details_avg_translation_sizeB) ( 330 );
2588 
2589    // Basic functions.
2590    VG_(basic_tool_funcs)          (ms_post_clo_init,
2591                                    ms_instrument,
2592                                    ms_fini);
2593 
2594    // Needs.
2595    VG_(needs_libc_freeres)();
2596    VG_(needs_command_line_options)(ms_process_cmd_line_option,
2597                                    ms_print_usage,
2598                                    ms_print_debug_usage);
2599    VG_(needs_client_requests)     (ms_handle_client_request);
2600    VG_(needs_sanity_checks)       (ms_cheap_sanity_check,
2601                                    ms_expensive_sanity_check);
2602    VG_(needs_malloc_replacement)  (ms_malloc,
2603                                    ms___builtin_new,
2604                                    ms___builtin_vec_new,
2605                                    ms_memalign,
2606                                    ms_calloc,
2607                                    ms_free,
2608                                    ms___builtin_delete,
2609                                    ms___builtin_vec_delete,
2610                                    ms_realloc,
2611                                    ms_malloc_usable_size,
2612                                    0 );
2613 
2614    // HP_Chunks.
2615    malloc_list = VG_(HT_construct)( "Massif's malloc list" );
2616 
2617    // Dummy node at top of the context structure.
2618    alloc_xpt = new_XPt(/*ip*/0, /*parent*/NULL);
2619 
2620    // Initialise alloc_fns and ignore_fns.
2621    init_alloc_fns();
2622    init_ignore_fns();
2623 
2624    // Initialise args_for_massif.
2625    args_for_massif = VG_(newXA)(VG_(malloc), "ms.main.mprci.1",
2626                                 VG_(free), sizeof(HChar*));
2627 }
2628 
2629 VG_DETERMINE_INTERFACE_VERSION(ms_pre_clo_init)
2630 
2631 //--------------------------------------------------------------------//
2632 //--- end                                                          ---//
2633 //--------------------------------------------------------------------//
2634