• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //== llvm/Support/APFloat.h - Arbitrary Precision Floating Point -*- C++ -*-==//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 ///
10 /// \file
11 /// \brief
12 /// This file declares a class to represent arbitrary precision floating point
13 /// values and provide a variety of arithmetic operations on them.
14 ///
15 //===----------------------------------------------------------------------===//
16 
17 #ifndef LLVM_ADT_APFLOAT_H
18 #define LLVM_ADT_APFLOAT_H
19 
20 #include "llvm/ADT/APInt.h"
21 
22 namespace llvm {
23 
24 struct fltSemantics;
25 class APSInt;
26 class StringRef;
27 
28 /// Enum that represents what fraction of the LSB truncated bits of an fp number
29 /// represent.
30 ///
31 /// This essentially combines the roles of guard and sticky bits.
32 enum lostFraction { // Example of truncated bits:
33   lfExactlyZero,    // 000000
34   lfLessThanHalf,   // 0xxxxx  x's not all zero
35   lfExactlyHalf,    // 100000
36   lfMoreThanHalf    // 1xxxxx  x's not all zero
37 };
38 
39 /// \brief A self-contained host- and target-independent arbitrary-precision
40 /// floating-point software implementation.
41 ///
42 /// APFloat uses bignum integer arithmetic as provided by static functions in
43 /// the APInt class.  The library will work with bignum integers whose parts are
44 /// any unsigned type at least 16 bits wide, but 64 bits is recommended.
45 ///
46 /// Written for clarity rather than speed, in particular with a view to use in
47 /// the front-end of a cross compiler so that target arithmetic can be correctly
48 /// performed on the host.  Performance should nonetheless be reasonable,
49 /// particularly for its intended use.  It may be useful as a base
50 /// implementation for a run-time library during development of a faster
51 /// target-specific one.
52 ///
53 /// All 5 rounding modes in the IEEE-754R draft are handled correctly for all
54 /// implemented operations.  Currently implemented operations are add, subtract,
55 /// multiply, divide, fused-multiply-add, conversion-to-float,
56 /// conversion-to-integer and conversion-from-integer.  New rounding modes
57 /// (e.g. away from zero) can be added with three or four lines of code.
58 ///
59 /// Four formats are built-in: IEEE single precision, double precision,
60 /// quadruple precision, and x87 80-bit extended double (when operating with
61 /// full extended precision).  Adding a new format that obeys IEEE semantics
62 /// only requires adding two lines of code: a declaration and definition of the
63 /// format.
64 ///
65 /// All operations return the status of that operation as an exception bit-mask,
66 /// so multiple operations can be done consecutively with their results or-ed
67 /// together.  The returned status can be useful for compiler diagnostics; e.g.,
68 /// inexact, underflow and overflow can be easily diagnosed on constant folding,
69 /// and compiler optimizers can determine what exceptions would be raised by
70 /// folding operations and optimize, or perhaps not optimize, accordingly.
71 ///
72 /// At present, underflow tininess is detected after rounding; it should be
73 /// straight forward to add support for the before-rounding case too.
74 ///
75 /// The library reads hexadecimal floating point numbers as per C99, and
76 /// correctly rounds if necessary according to the specified rounding mode.
77 /// Syntax is required to have been validated by the caller.  It also converts
78 /// floating point numbers to hexadecimal text as per the C99 %a and %A
79 /// conversions.  The output precision (or alternatively the natural minimal
80 /// precision) can be specified; if the requested precision is less than the
81 /// natural precision the output is correctly rounded for the specified rounding
82 /// mode.
83 ///
84 /// It also reads decimal floating point numbers and correctly rounds according
85 /// to the specified rounding mode.
86 ///
87 /// Conversion to decimal text is not currently implemented.
88 ///
89 /// Non-zero finite numbers are represented internally as a sign bit, a 16-bit
90 /// signed exponent, and the significand as an array of integer parts.  After
91 /// normalization of a number of precision P the exponent is within the range of
92 /// the format, and if the number is not denormal the P-th bit of the
93 /// significand is set as an explicit integer bit.  For denormals the most
94 /// significant bit is shifted right so that the exponent is maintained at the
95 /// format's minimum, so that the smallest denormal has just the least
96 /// significant bit of the significand set.  The sign of zeroes and infinities
97 /// is significant; the exponent and significand of such numbers is not stored,
98 /// but has a known implicit (deterministic) value: 0 for the significands, 0
99 /// for zero exponent, all 1 bits for infinity exponent.  For NaNs the sign and
100 /// significand are deterministic, although not really meaningful, and preserved
101 /// in non-conversion operations.  The exponent is implicitly all 1 bits.
102 ///
103 /// APFloat does not provide any exception handling beyond default exception
104 /// handling. We represent Signaling NaNs via IEEE-754R 2008 6.2.1 should clause
105 /// by encoding Signaling NaNs with the first bit of its trailing significand as
106 /// 0.
107 ///
108 /// TODO
109 /// ====
110 ///
111 /// Some features that may or may not be worth adding:
112 ///
113 /// Binary to decimal conversion (hard).
114 ///
115 /// Optional ability to detect underflow tininess before rounding.
116 ///
117 /// New formats: x87 in single and double precision mode (IEEE apart from
118 /// extended exponent range) (hard).
119 ///
120 /// New operations: sqrt, IEEE remainder, C90 fmod, nexttoward.
121 ///
122 class APFloat {
123 public:
124 
125   /// A signed type to represent a floating point numbers unbiased exponent.
126   typedef signed short ExponentType;
127 
128   /// \name Floating Point Semantics.
129   /// @{
130 
131   static const fltSemantics IEEEhalf;
132   static const fltSemantics IEEEsingle;
133   static const fltSemantics IEEEdouble;
134   static const fltSemantics IEEEquad;
135   static const fltSemantics PPCDoubleDouble;
136   static const fltSemantics x87DoubleExtended;
137 
138   /// A Pseudo fltsemantic used to construct APFloats that cannot conflict with
139   /// anything real.
140   static const fltSemantics Bogus;
141 
142   /// @}
143 
144   static unsigned int semanticsPrecision(const fltSemantics &);
145 
146   /// IEEE-754R 5.11: Floating Point Comparison Relations.
147   enum cmpResult {
148     cmpLessThan,
149     cmpEqual,
150     cmpGreaterThan,
151     cmpUnordered
152   };
153 
154   /// IEEE-754R 4.3: Rounding-direction attributes.
155   enum roundingMode {
156     rmNearestTiesToEven,
157     rmTowardPositive,
158     rmTowardNegative,
159     rmTowardZero,
160     rmNearestTiesToAway
161   };
162 
163   /// IEEE-754R 7: Default exception handling.
164   ///
165   /// opUnderflow or opOverflow are always returned or-ed with opInexact.
166   enum opStatus {
167     opOK = 0x00,
168     opInvalidOp = 0x01,
169     opDivByZero = 0x02,
170     opOverflow = 0x04,
171     opUnderflow = 0x08,
172     opInexact = 0x10
173   };
174 
175   /// Category of internally-represented number.
176   enum fltCategory {
177     fcInfinity,
178     fcNaN,
179     fcNormal,
180     fcZero
181   };
182 
183   /// Convenience enum used to construct an uninitialized APFloat.
184   enum uninitializedTag {
185     uninitialized
186   };
187 
188   /// \name Constructors
189   /// @{
190 
191   APFloat(const fltSemantics &); // Default construct to 0.0
192   APFloat(const fltSemantics &, StringRef);
193   APFloat(const fltSemantics &, integerPart);
194   APFloat(const fltSemantics &, uninitializedTag);
195   APFloat(const fltSemantics &, const APInt &);
196   explicit APFloat(double d);
197   explicit APFloat(float f);
198   APFloat(const APFloat &);
199   ~APFloat();
200 
201   /// @}
202 
203   /// \brief Returns whether this instance allocated memory.
needsCleanup()204   bool needsCleanup() const { return partCount() > 1; }
205 
206   /// \name Convenience "constructors"
207   /// @{
208 
209   /// Factory for Positive and Negative Zero.
210   ///
211   /// \param Negative True iff the number should be negative.
212   static APFloat getZero(const fltSemantics &Sem, bool Negative = false) {
213     APFloat Val(Sem, uninitialized);
214     Val.makeZero(Negative);
215     return Val;
216   }
217 
218   /// Factory for Positive and Negative Infinity.
219   ///
220   /// \param Negative True iff the number should be negative.
221   static APFloat getInf(const fltSemantics &Sem, bool Negative = false) {
222     APFloat Val(Sem, uninitialized);
223     Val.makeInf(Negative);
224     return Val;
225   }
226 
227   /// Factory for QNaN values.
228   ///
229   /// \param Negative - True iff the NaN generated should be negative.
230   /// \param type - The unspecified fill bits for creating the NaN, 0 by
231   /// default.  The value is truncated as necessary.
232   static APFloat getNaN(const fltSemantics &Sem, bool Negative = false,
233                         unsigned type = 0) {
234     if (type) {
235       APInt fill(64, type);
236       return getQNaN(Sem, Negative, &fill);
237     } else {
238       return getQNaN(Sem, Negative, 0);
239     }
240   }
241 
242   /// Factory for QNaN values.
243   static APFloat getQNaN(const fltSemantics &Sem, bool Negative = false,
244                          const APInt *payload = 0) {
245     return makeNaN(Sem, false, Negative, payload);
246   }
247 
248   /// Factory for SNaN values.
249   static APFloat getSNaN(const fltSemantics &Sem, bool Negative = false,
250                          const APInt *payload = 0) {
251     return makeNaN(Sem, true, Negative, payload);
252   }
253 
254   /// Returns the largest finite number in the given semantics.
255   ///
256   /// \param Negative - True iff the number should be negative
257   static APFloat getLargest(const fltSemantics &Sem, bool Negative = false);
258 
259   /// Returns the smallest (by magnitude) finite number in the given semantics.
260   /// Might be denormalized, which implies a relative loss of precision.
261   ///
262   /// \param Negative - True iff the number should be negative
263   static APFloat getSmallest(const fltSemantics &Sem, bool Negative = false);
264 
265   /// Returns the smallest (by magnitude) normalized finite number in the given
266   /// semantics.
267   ///
268   /// \param Negative - True iff the number should be negative
269   static APFloat getSmallestNormalized(const fltSemantics &Sem,
270                                        bool Negative = false);
271 
272   /// Returns a float which is bitcasted from an all one value int.
273   ///
274   /// \param BitWidth - Select float type
275   /// \param isIEEE   - If 128 bit number, select between PPC and IEEE
276   static APFloat getAllOnesValue(unsigned BitWidth, bool isIEEE = false);
277 
278   /// @}
279 
280   /// Used to insert APFloat objects, or objects that contain APFloat objects,
281   /// into FoldingSets.
282   void Profile(FoldingSetNodeID &NID) const;
283 
284   /// \brief Used by the Bitcode serializer to emit APInts to Bitcode.
285   void Emit(Serializer &S) const;
286 
287   /// \brief Used by the Bitcode deserializer to deserialize APInts.
288   static APFloat ReadVal(Deserializer &D);
289 
290   /// \name Arithmetic
291   /// @{
292 
293   opStatus add(const APFloat &, roundingMode);
294   opStatus subtract(const APFloat &, roundingMode);
295   opStatus multiply(const APFloat &, roundingMode);
296   opStatus divide(const APFloat &, roundingMode);
297   /// IEEE remainder.
298   opStatus remainder(const APFloat &);
299   /// C fmod, or llvm frem.
300   opStatus mod(const APFloat &, roundingMode);
301   opStatus fusedMultiplyAdd(const APFloat &, const APFloat &, roundingMode);
302   opStatus roundToIntegral(roundingMode);
303   /// IEEE-754R 5.3.1: nextUp/nextDown.
304   opStatus next(bool nextDown);
305 
306   /// @}
307 
308   /// \name Sign operations.
309   /// @{
310 
311   void changeSign();
312   void clearSign();
313   void copySign(const APFloat &);
314 
315   /// @}
316 
317   /// \name Conversions
318   /// @{
319 
320   opStatus convert(const fltSemantics &, roundingMode, bool *);
321   opStatus convertToInteger(integerPart *, unsigned int, bool, roundingMode,
322                             bool *) const;
323   opStatus convertToInteger(APSInt &, roundingMode, bool *) const;
324   opStatus convertFromAPInt(const APInt &, bool, roundingMode);
325   opStatus convertFromSignExtendedInteger(const integerPart *, unsigned int,
326                                           bool, roundingMode);
327   opStatus convertFromZeroExtendedInteger(const integerPart *, unsigned int,
328                                           bool, roundingMode);
329   opStatus convertFromString(StringRef, roundingMode);
330   APInt bitcastToAPInt() const;
331   double convertToDouble() const;
332   float convertToFloat() const;
333 
334   /// @}
335 
336   /// The definition of equality is not straightforward for floating point, so
337   /// we won't use operator==.  Use one of the following, or write whatever it
338   /// is you really mean.
339   bool operator==(const APFloat &) const LLVM_DELETED_FUNCTION;
340 
341   /// IEEE comparison with another floating point number (NaNs compare
342   /// unordered, 0==-0).
343   cmpResult compare(const APFloat &) const;
344 
345   /// Bitwise comparison for equality (QNaNs compare equal, 0!=-0).
346   bool bitwiseIsEqual(const APFloat &) const;
347 
348   /// Write out a hexadecimal representation of the floating point value to DST,
349   /// which must be of sufficient size, in the C99 form [-]0xh.hhhhp[+-]d.
350   /// Return the number of characters written, excluding the terminating NUL.
351   unsigned int convertToHexString(char *dst, unsigned int hexDigits,
352                                   bool upperCase, roundingMode) const;
353 
354   /// \name IEEE-754R 5.7.2 General operations.
355   /// @{
356 
357   /// IEEE-754R isSignMinus: Returns true if and only if the current value is
358   /// negative.
359   ///
360   /// This applies to zeros and NaNs as well.
isNegative()361   bool isNegative() const { return sign; }
362 
363   /// IEEE-754R isNormal: Returns true if and only if the current value is normal.
364   ///
365   /// This implies that the current value of the float is not zero, subnormal,
366   /// infinite, or NaN following the definition of normality from IEEE-754R.
isNormal()367   bool isNormal() const { return !isDenormal() && isFiniteNonZero(); }
368 
369   /// Returns true if and only if the current value is zero, subnormal, or
370   /// normal.
371   ///
372   /// This means that the value is not infinite or NaN.
isFinite()373   bool isFinite() const { return !isNaN() && !isInfinity(); }
374 
375   /// Returns true if and only if the float is plus or minus zero.
isZero()376   bool isZero() const { return category == fcZero; }
377 
378   /// IEEE-754R isSubnormal(): Returns true if and only if the float is a
379   /// denormal.
380   bool isDenormal() const;
381 
382   /// IEEE-754R isInfinite(): Returns true if and only if the float is infinity.
isInfinity()383   bool isInfinity() const { return category == fcInfinity; }
384 
385   /// Returns true if and only if the float is a quiet or signaling NaN.
isNaN()386   bool isNaN() const { return category == fcNaN; }
387 
388   /// Returns true if and only if the float is a signaling NaN.
389   bool isSignaling() const;
390 
391   /// @}
392 
393   /// \name Simple Queries
394   /// @{
395 
getCategory()396   fltCategory getCategory() const { return category; }
getSemantics()397   const fltSemantics &getSemantics() const { return *semantics; }
isNonZero()398   bool isNonZero() const { return category != fcZero; }
isFiniteNonZero()399   bool isFiniteNonZero() const { return isFinite() && !isZero(); }
isPosZero()400   bool isPosZero() const { return isZero() && !isNegative(); }
isNegZero()401   bool isNegZero() const { return isZero() && isNegative(); }
402 
403   /// Returns true if and only if the number has the smallest possible non-zero
404   /// magnitude in the current semantics.
405   bool isSmallest() const;
406 
407   /// Returns true if and only if the number has the largest possible finite
408   /// magnitude in the current semantics.
409   bool isLargest() const;
410 
411   /// @}
412 
413   APFloat &operator=(const APFloat &);
414 
415   /// \brief Overload to compute a hash code for an APFloat value.
416   ///
417   /// Note that the use of hash codes for floating point values is in general
418   /// frought with peril. Equality is hard to define for these values. For
419   /// example, should negative and positive zero hash to different codes? Are
420   /// they equal or not? This hash value implementation specifically
421   /// emphasizes producing different codes for different inputs in order to
422   /// be used in canonicalization and memoization. As such, equality is
423   /// bitwiseIsEqual, and 0 != -0.
424   friend hash_code hash_value(const APFloat &Arg);
425 
426   /// Converts this value into a decimal string.
427   ///
428   /// \param FormatPrecision The maximum number of digits of
429   ///   precision to output.  If there are fewer digits available,
430   ///   zero padding will not be used unless the value is
431   ///   integral and small enough to be expressed in
432   ///   FormatPrecision digits.  0 means to use the natural
433   ///   precision of the number.
434   /// \param FormatMaxPadding The maximum number of zeros to
435   ///   consider inserting before falling back to scientific
436   ///   notation.  0 means to always use scientific notation.
437   ///
438   /// Number       Precision    MaxPadding      Result
439   /// ------       ---------    ----------      ------
440   /// 1.01E+4              5             2       10100
441   /// 1.01E+4              4             2       1.01E+4
442   /// 1.01E+4              5             1       1.01E+4
443   /// 1.01E-2              5             2       0.0101
444   /// 1.01E-2              4             2       0.0101
445   /// 1.01E-2              4             1       1.01E-2
446   void toString(SmallVectorImpl<char> &Str, unsigned FormatPrecision = 0,
447                 unsigned FormatMaxPadding = 3) const;
448 
449   /// If this value has an exact multiplicative inverse, store it in inv and
450   /// return true.
451   bool getExactInverse(APFloat *inv) const;
452 
453 private:
454 
455   /// \name Simple Queries
456   /// @{
457 
458   integerPart *significandParts();
459   const integerPart *significandParts() const;
460   unsigned int partCount() const;
461 
462   /// @}
463 
464   /// \name Significand operations.
465   /// @{
466 
467   integerPart addSignificand(const APFloat &);
468   integerPart subtractSignificand(const APFloat &, integerPart);
469   lostFraction addOrSubtractSignificand(const APFloat &, bool subtract);
470   lostFraction multiplySignificand(const APFloat &, const APFloat *);
471   lostFraction divideSignificand(const APFloat &);
472   void incrementSignificand();
473   void initialize(const fltSemantics *);
474   void shiftSignificandLeft(unsigned int);
475   lostFraction shiftSignificandRight(unsigned int);
476   unsigned int significandLSB() const;
477   unsigned int significandMSB() const;
478   void zeroSignificand();
479   /// Return true if the significand excluding the integral bit is all ones.
480   bool isSignificandAllOnes() const;
481   /// Return true if the significand excluding the integral bit is all zeros.
482   bool isSignificandAllZeros() const;
483 
484   /// @}
485 
486   /// \name Arithmetic on special values.
487   /// @{
488 
489   opStatus addOrSubtractSpecials(const APFloat &, bool subtract);
490   opStatus divideSpecials(const APFloat &);
491   opStatus multiplySpecials(const APFloat &);
492   opStatus modSpecials(const APFloat &);
493 
494   /// @}
495 
496   /// \name Special value setters.
497   /// @{
498 
499   void makeLargest(bool Neg = false);
500   void makeSmallest(bool Neg = false);
501   void makeNaN(bool SNaN = false, bool Neg = false, const APInt *fill = 0);
502   static APFloat makeNaN(const fltSemantics &Sem, bool SNaN, bool Negative,
503                          const APInt *fill);
504   void makeInf(bool Neg = false);
505   void makeZero(bool Neg = false);
506 
507   /// @}
508 
509   /// \name Miscellany
510   /// @{
511 
512   bool convertFromStringSpecials(StringRef str);
513   opStatus normalize(roundingMode, lostFraction);
514   opStatus addOrSubtract(const APFloat &, roundingMode, bool subtract);
515   cmpResult compareAbsoluteValue(const APFloat &) const;
516   opStatus handleOverflow(roundingMode);
517   bool roundAwayFromZero(roundingMode, lostFraction, unsigned int) const;
518   opStatus convertToSignExtendedInteger(integerPart *, unsigned int, bool,
519                                         roundingMode, bool *) const;
520   opStatus convertFromUnsignedParts(const integerPart *, unsigned int,
521                                     roundingMode);
522   opStatus convertFromHexadecimalString(StringRef, roundingMode);
523   opStatus convertFromDecimalString(StringRef, roundingMode);
524   char *convertNormalToHexString(char *, unsigned int, bool,
525                                  roundingMode) const;
526   opStatus roundSignificandWithExponent(const integerPart *, unsigned int, int,
527                                         roundingMode);
528 
529   /// @}
530 
531   APInt convertHalfAPFloatToAPInt() const;
532   APInt convertFloatAPFloatToAPInt() const;
533   APInt convertDoubleAPFloatToAPInt() const;
534   APInt convertQuadrupleAPFloatToAPInt() const;
535   APInt convertF80LongDoubleAPFloatToAPInt() const;
536   APInt convertPPCDoubleDoubleAPFloatToAPInt() const;
537   void initFromAPInt(const fltSemantics *Sem, const APInt &api);
538   void initFromHalfAPInt(const APInt &api);
539   void initFromFloatAPInt(const APInt &api);
540   void initFromDoubleAPInt(const APInt &api);
541   void initFromQuadrupleAPInt(const APInt &api);
542   void initFromF80LongDoubleAPInt(const APInt &api);
543   void initFromPPCDoubleDoubleAPInt(const APInt &api);
544 
545   void assign(const APFloat &);
546   void copySignificand(const APFloat &);
547   void freeSignificand();
548 
549   /// The semantics that this value obeys.
550   const fltSemantics *semantics;
551 
552   /// A binary fraction with an explicit integer bit.
553   ///
554   /// The significand must be at least one bit wider than the target precision.
555   union Significand {
556     integerPart part;
557     integerPart *parts;
558   } significand;
559 
560   /// The signed unbiased exponent of the value.
561   ExponentType exponent;
562 
563   /// What kind of floating point number this is.
564   ///
565   /// Only 2 bits are required, but VisualStudio incorrectly sign extends it.
566   /// Using the extra bit keeps it from failing under VisualStudio.
567   fltCategory category : 3;
568 
569   /// Sign bit of the number.
570   unsigned int sign : 1;
571 };
572 
573 /// See friend declaration above.
574 ///
575 /// This additional declaration is required in order to compile LLVM with IBM
576 /// xlC compiler.
577 hash_code hash_value(const APFloat &Arg);
578 } // namespace llvm
579 
580 #endif // LLVM_ADT_APFLOAT_H
581