1 //===-- DWARFDebugLine.cpp ------------------------------------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9
10 #include "DWARFDebugLine.h"
11 #include "llvm/Support/Dwarf.h"
12 #include "llvm/Support/Format.h"
13 #include "llvm/Support/Path.h"
14 #include "llvm/Support/raw_ostream.h"
15 #include <algorithm>
16 using namespace llvm;
17 using namespace dwarf;
18
dump(raw_ostream & OS) const19 void DWARFDebugLine::Prologue::dump(raw_ostream &OS) const {
20 OS << "Line table prologue:\n"
21 << format(" total_length: 0x%8.8x\n", TotalLength)
22 << format(" version: %u\n", Version)
23 << format("prologue_length: 0x%8.8x\n", PrologueLength)
24 << format("min_inst_length: %u\n", MinInstLength)
25 << format("default_is_stmt: %u\n", DefaultIsStmt)
26 << format(" line_base: %i\n", LineBase)
27 << format(" line_range: %u\n", LineRange)
28 << format(" opcode_base: %u\n", OpcodeBase);
29
30 for (uint32_t i = 0; i < StandardOpcodeLengths.size(); ++i)
31 OS << format("standard_opcode_lengths[%s] = %u\n", LNStandardString(i+1),
32 StandardOpcodeLengths[i]);
33
34 if (!IncludeDirectories.empty())
35 for (uint32_t i = 0; i < IncludeDirectories.size(); ++i)
36 OS << format("include_directories[%3u] = '", i+1)
37 << IncludeDirectories[i] << "'\n";
38
39 if (!FileNames.empty()) {
40 OS << " Dir Mod Time File Len File Name\n"
41 << " ---- ---------- ---------- -----------"
42 "----------------\n";
43 for (uint32_t i = 0; i < FileNames.size(); ++i) {
44 const FileNameEntry& fileEntry = FileNames[i];
45 OS << format("file_names[%3u] %4" PRIu64 " ", i+1, fileEntry.DirIdx)
46 << format("0x%8.8" PRIx64 " 0x%8.8" PRIx64 " ",
47 fileEntry.ModTime, fileEntry.Length)
48 << fileEntry.Name << '\n';
49 }
50 }
51 }
52
postAppend()53 void DWARFDebugLine::Row::postAppend() {
54 BasicBlock = false;
55 PrologueEnd = false;
56 EpilogueBegin = false;
57 }
58
reset(bool default_is_stmt)59 void DWARFDebugLine::Row::reset(bool default_is_stmt) {
60 Address = 0;
61 Line = 1;
62 Column = 0;
63 File = 1;
64 Isa = 0;
65 IsStmt = default_is_stmt;
66 BasicBlock = false;
67 EndSequence = false;
68 PrologueEnd = false;
69 EpilogueBegin = false;
70 }
71
dump(raw_ostream & OS) const72 void DWARFDebugLine::Row::dump(raw_ostream &OS) const {
73 OS << format("0x%16.16" PRIx64 " %6u %6u", Address, Line, Column)
74 << format(" %6u %3u ", File, Isa)
75 << (IsStmt ? " is_stmt" : "")
76 << (BasicBlock ? " basic_block" : "")
77 << (PrologueEnd ? " prologue_end" : "")
78 << (EpilogueBegin ? " epilogue_begin" : "")
79 << (EndSequence ? " end_sequence" : "")
80 << '\n';
81 }
82
dump(raw_ostream & OS) const83 void DWARFDebugLine::LineTable::dump(raw_ostream &OS) const {
84 Prologue.dump(OS);
85 OS << '\n';
86
87 if (!Rows.empty()) {
88 OS << "Address Line Column File ISA Flags\n"
89 << "------------------ ------ ------ ------ --- -------------\n";
90 for (std::vector<Row>::const_iterator pos = Rows.begin(),
91 end = Rows.end(); pos != end; ++pos)
92 pos->dump(OS);
93 }
94 }
95
~State()96 DWARFDebugLine::State::~State() {}
97
appendRowToMatrix(uint32_t offset)98 void DWARFDebugLine::State::appendRowToMatrix(uint32_t offset) {
99 if (Sequence::Empty) {
100 // Record the beginning of instruction sequence.
101 Sequence::Empty = false;
102 Sequence::LowPC = Address;
103 Sequence::FirstRowIndex = row;
104 }
105 ++row; // Increase the row number.
106 LineTable::appendRow(*this);
107 if (EndSequence) {
108 // Record the end of instruction sequence.
109 Sequence::HighPC = Address;
110 Sequence::LastRowIndex = row;
111 if (Sequence::isValid())
112 LineTable::appendSequence(*this);
113 Sequence::reset();
114 }
115 Row::postAppend();
116 }
117
finalize()118 void DWARFDebugLine::State::finalize() {
119 row = DoneParsingLineTable;
120 if (!Sequence::Empty) {
121 fprintf(stderr, "warning: last sequence in debug line table is not"
122 "terminated!\n");
123 }
124 // Sort all sequences so that address lookup will work faster.
125 if (!Sequences.empty()) {
126 std::sort(Sequences.begin(), Sequences.end(), Sequence::orderByLowPC);
127 // Note: actually, instruction address ranges of sequences should not
128 // overlap (in shared objects and executables). If they do, the address
129 // lookup would still work, though, but result would be ambiguous.
130 // We don't report warning in this case. For example,
131 // sometimes .so compiled from multiple object files contains a few
132 // rudimentary sequences for address ranges [0x0, 0xsomething).
133 }
134 }
135
~DumpingState()136 DWARFDebugLine::DumpingState::~DumpingState() {}
137
finalize()138 void DWARFDebugLine::DumpingState::finalize() {
139 LineTable::dump(OS);
140 }
141
142 const DWARFDebugLine::LineTable *
getLineTable(uint32_t offset) const143 DWARFDebugLine::getLineTable(uint32_t offset) const {
144 LineTableConstIter pos = LineTableMap.find(offset);
145 if (pos != LineTableMap.end())
146 return &pos->second;
147 return 0;
148 }
149
150 const DWARFDebugLine::LineTable *
getOrParseLineTable(DataExtractor debug_line_data,uint32_t offset)151 DWARFDebugLine::getOrParseLineTable(DataExtractor debug_line_data,
152 uint32_t offset) {
153 std::pair<LineTableIter, bool> pos =
154 LineTableMap.insert(LineTableMapTy::value_type(offset, LineTable()));
155 if (pos.second) {
156 // Parse and cache the line table for at this offset.
157 State state;
158 if (!parseStatementTable(debug_line_data, RelocMap, &offset, state))
159 return 0;
160 pos.first->second = state;
161 }
162 return &pos.first->second;
163 }
164
165 bool
parsePrologue(DataExtractor debug_line_data,uint32_t * offset_ptr,Prologue * prologue)166 DWARFDebugLine::parsePrologue(DataExtractor debug_line_data,
167 uint32_t *offset_ptr, Prologue *prologue) {
168 const uint32_t prologue_offset = *offset_ptr;
169
170 prologue->clear();
171 prologue->TotalLength = debug_line_data.getU32(offset_ptr);
172 prologue->Version = debug_line_data.getU16(offset_ptr);
173 if (prologue->Version != 2)
174 return false;
175
176 prologue->PrologueLength = debug_line_data.getU32(offset_ptr);
177 const uint32_t end_prologue_offset = prologue->PrologueLength + *offset_ptr;
178 prologue->MinInstLength = debug_line_data.getU8(offset_ptr);
179 prologue->DefaultIsStmt = debug_line_data.getU8(offset_ptr);
180 prologue->LineBase = debug_line_data.getU8(offset_ptr);
181 prologue->LineRange = debug_line_data.getU8(offset_ptr);
182 prologue->OpcodeBase = debug_line_data.getU8(offset_ptr);
183
184 prologue->StandardOpcodeLengths.reserve(prologue->OpcodeBase-1);
185 for (uint32_t i = 1; i < prologue->OpcodeBase; ++i) {
186 uint8_t op_len = debug_line_data.getU8(offset_ptr);
187 prologue->StandardOpcodeLengths.push_back(op_len);
188 }
189
190 while (*offset_ptr < end_prologue_offset) {
191 const char *s = debug_line_data.getCStr(offset_ptr);
192 if (s && s[0])
193 prologue->IncludeDirectories.push_back(s);
194 else
195 break;
196 }
197
198 while (*offset_ptr < end_prologue_offset) {
199 const char *name = debug_line_data.getCStr(offset_ptr);
200 if (name && name[0]) {
201 FileNameEntry fileEntry;
202 fileEntry.Name = name;
203 fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
204 fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
205 fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
206 prologue->FileNames.push_back(fileEntry);
207 } else {
208 break;
209 }
210 }
211
212 if (*offset_ptr != end_prologue_offset) {
213 fprintf(stderr, "warning: parsing line table prologue at 0x%8.8x should"
214 " have ended at 0x%8.8x but it ended ad 0x%8.8x\n",
215 prologue_offset, end_prologue_offset, *offset_ptr);
216 return false;
217 }
218 return true;
219 }
220
221 bool
parseStatementTable(DataExtractor debug_line_data,const RelocAddrMap * RMap,uint32_t * offset_ptr,State & state)222 DWARFDebugLine::parseStatementTable(DataExtractor debug_line_data,
223 const RelocAddrMap *RMap,
224 uint32_t *offset_ptr, State &state) {
225 const uint32_t debug_line_offset = *offset_ptr;
226
227 Prologue *prologue = &state.Prologue;
228
229 if (!parsePrologue(debug_line_data, offset_ptr, prologue)) {
230 // Restore our offset and return false to indicate failure!
231 *offset_ptr = debug_line_offset;
232 return false;
233 }
234
235 const uint32_t end_offset = debug_line_offset + prologue->TotalLength +
236 sizeof(prologue->TotalLength);
237
238 state.reset();
239
240 while (*offset_ptr < end_offset) {
241 uint8_t opcode = debug_line_data.getU8(offset_ptr);
242
243 if (opcode == 0) {
244 // Extended Opcodes always start with a zero opcode followed by
245 // a uleb128 length so you can skip ones you don't know about
246 uint32_t ext_offset = *offset_ptr;
247 uint64_t len = debug_line_data.getULEB128(offset_ptr);
248 uint32_t arg_size = len - (*offset_ptr - ext_offset);
249
250 uint8_t sub_opcode = debug_line_data.getU8(offset_ptr);
251 switch (sub_opcode) {
252 case DW_LNE_end_sequence:
253 // Set the end_sequence register of the state machine to true and
254 // append a row to the matrix using the current values of the
255 // state-machine registers. Then reset the registers to the initial
256 // values specified above. Every statement program sequence must end
257 // with a DW_LNE_end_sequence instruction which creates a row whose
258 // address is that of the byte after the last target machine instruction
259 // of the sequence.
260 state.EndSequence = true;
261 state.appendRowToMatrix(*offset_ptr);
262 state.reset();
263 break;
264
265 case DW_LNE_set_address:
266 // Takes a single relocatable address as an operand. The size of the
267 // operand is the size appropriate to hold an address on the target
268 // machine. Set the address register to the value given by the
269 // relocatable address. All of the other statement program opcodes
270 // that affect the address register add a delta to it. This instruction
271 // stores a relocatable value into it instead.
272 {
273 // If this address is in our relocation map, apply the relocation.
274 RelocAddrMap::const_iterator AI = RMap->find(*offset_ptr);
275 if (AI != RMap->end()) {
276 const std::pair<uint8_t, int64_t> &R = AI->second;
277 state.Address = debug_line_data.getAddress(offset_ptr) + R.second;
278 } else
279 state.Address = debug_line_data.getAddress(offset_ptr);
280 }
281 break;
282
283 case DW_LNE_define_file:
284 // Takes 4 arguments. The first is a null terminated string containing
285 // a source file name. The second is an unsigned LEB128 number
286 // representing the directory index of the directory in which the file
287 // was found. The third is an unsigned LEB128 number representing the
288 // time of last modification of the file. The fourth is an unsigned
289 // LEB128 number representing the length in bytes of the file. The time
290 // and length fields may contain LEB128(0) if the information is not
291 // available.
292 //
293 // The directory index represents an entry in the include_directories
294 // section of the statement program prologue. The index is LEB128(0)
295 // if the file was found in the current directory of the compilation,
296 // LEB128(1) if it was found in the first directory in the
297 // include_directories section, and so on. The directory index is
298 // ignored for file names that represent full path names.
299 //
300 // The files are numbered, starting at 1, in the order in which they
301 // appear; the names in the prologue come before names defined by
302 // the DW_LNE_define_file instruction. These numbers are used in the
303 // the file register of the state machine.
304 {
305 FileNameEntry fileEntry;
306 fileEntry.Name = debug_line_data.getCStr(offset_ptr);
307 fileEntry.DirIdx = debug_line_data.getULEB128(offset_ptr);
308 fileEntry.ModTime = debug_line_data.getULEB128(offset_ptr);
309 fileEntry.Length = debug_line_data.getULEB128(offset_ptr);
310 prologue->FileNames.push_back(fileEntry);
311 }
312 break;
313
314 default:
315 // Length doesn't include the zero opcode byte or the length itself, but
316 // it does include the sub_opcode, so we have to adjust for that below
317 (*offset_ptr) += arg_size;
318 break;
319 }
320 } else if (opcode < prologue->OpcodeBase) {
321 switch (opcode) {
322 // Standard Opcodes
323 case DW_LNS_copy:
324 // Takes no arguments. Append a row to the matrix using the
325 // current values of the state-machine registers. Then set
326 // the basic_block register to false.
327 state.appendRowToMatrix(*offset_ptr);
328 break;
329
330 case DW_LNS_advance_pc:
331 // Takes a single unsigned LEB128 operand, multiplies it by the
332 // min_inst_length field of the prologue, and adds the
333 // result to the address register of the state machine.
334 state.Address += debug_line_data.getULEB128(offset_ptr) *
335 prologue->MinInstLength;
336 break;
337
338 case DW_LNS_advance_line:
339 // Takes a single signed LEB128 operand and adds that value to
340 // the line register of the state machine.
341 state.Line += debug_line_data.getSLEB128(offset_ptr);
342 break;
343
344 case DW_LNS_set_file:
345 // Takes a single unsigned LEB128 operand and stores it in the file
346 // register of the state machine.
347 state.File = debug_line_data.getULEB128(offset_ptr);
348 break;
349
350 case DW_LNS_set_column:
351 // Takes a single unsigned LEB128 operand and stores it in the
352 // column register of the state machine.
353 state.Column = debug_line_data.getULEB128(offset_ptr);
354 break;
355
356 case DW_LNS_negate_stmt:
357 // Takes no arguments. Set the is_stmt register of the state
358 // machine to the logical negation of its current value.
359 state.IsStmt = !state.IsStmt;
360 break;
361
362 case DW_LNS_set_basic_block:
363 // Takes no arguments. Set the basic_block register of the
364 // state machine to true
365 state.BasicBlock = true;
366 break;
367
368 case DW_LNS_const_add_pc:
369 // Takes no arguments. Add to the address register of the state
370 // machine the address increment value corresponding to special
371 // opcode 255. The motivation for DW_LNS_const_add_pc is this:
372 // when the statement program needs to advance the address by a
373 // small amount, it can use a single special opcode, which occupies
374 // a single byte. When it needs to advance the address by up to
375 // twice the range of the last special opcode, it can use
376 // DW_LNS_const_add_pc followed by a special opcode, for a total
377 // of two bytes. Only if it needs to advance the address by more
378 // than twice that range will it need to use both DW_LNS_advance_pc
379 // and a special opcode, requiring three or more bytes.
380 {
381 uint8_t adjust_opcode = 255 - prologue->OpcodeBase;
382 uint64_t addr_offset = (adjust_opcode / prologue->LineRange) *
383 prologue->MinInstLength;
384 state.Address += addr_offset;
385 }
386 break;
387
388 case DW_LNS_fixed_advance_pc:
389 // Takes a single uhalf operand. Add to the address register of
390 // the state machine the value of the (unencoded) operand. This
391 // is the only extended opcode that takes an argument that is not
392 // a variable length number. The motivation for DW_LNS_fixed_advance_pc
393 // is this: existing assemblers cannot emit DW_LNS_advance_pc or
394 // special opcodes because they cannot encode LEB128 numbers or
395 // judge when the computation of a special opcode overflows and
396 // requires the use of DW_LNS_advance_pc. Such assemblers, however,
397 // can use DW_LNS_fixed_advance_pc instead, sacrificing compression.
398 state.Address += debug_line_data.getU16(offset_ptr);
399 break;
400
401 case DW_LNS_set_prologue_end:
402 // Takes no arguments. Set the prologue_end register of the
403 // state machine to true
404 state.PrologueEnd = true;
405 break;
406
407 case DW_LNS_set_epilogue_begin:
408 // Takes no arguments. Set the basic_block register of the
409 // state machine to true
410 state.EpilogueBegin = true;
411 break;
412
413 case DW_LNS_set_isa:
414 // Takes a single unsigned LEB128 operand and stores it in the
415 // column register of the state machine.
416 state.Isa = debug_line_data.getULEB128(offset_ptr);
417 break;
418
419 default:
420 // Handle any unknown standard opcodes here. We know the lengths
421 // of such opcodes because they are specified in the prologue
422 // as a multiple of LEB128 operands for each opcode.
423 {
424 assert(opcode - 1U < prologue->StandardOpcodeLengths.size());
425 uint8_t opcode_length = prologue->StandardOpcodeLengths[opcode - 1];
426 for (uint8_t i=0; i<opcode_length; ++i)
427 debug_line_data.getULEB128(offset_ptr);
428 }
429 break;
430 }
431 } else {
432 // Special Opcodes
433
434 // A special opcode value is chosen based on the amount that needs
435 // to be added to the line and address registers. The maximum line
436 // increment for a special opcode is the value of the line_base
437 // field in the header, plus the value of the line_range field,
438 // minus 1 (line base + line range - 1). If the desired line
439 // increment is greater than the maximum line increment, a standard
440 // opcode must be used instead of a special opcode. The "address
441 // advance" is calculated by dividing the desired address increment
442 // by the minimum_instruction_length field from the header. The
443 // special opcode is then calculated using the following formula:
444 //
445 // opcode = (desired line increment - line_base) +
446 // (line_range * address advance) + opcode_base
447 //
448 // If the resulting opcode is greater than 255, a standard opcode
449 // must be used instead.
450 //
451 // To decode a special opcode, subtract the opcode_base from the
452 // opcode itself to give the adjusted opcode. The amount to
453 // increment the address register is the result of the adjusted
454 // opcode divided by the line_range multiplied by the
455 // minimum_instruction_length field from the header. That is:
456 //
457 // address increment = (adjusted opcode / line_range) *
458 // minimum_instruction_length
459 //
460 // The amount to increment the line register is the line_base plus
461 // the result of the adjusted opcode modulo the line_range. That is:
462 //
463 // line increment = line_base + (adjusted opcode % line_range)
464
465 uint8_t adjust_opcode = opcode - prologue->OpcodeBase;
466 uint64_t addr_offset = (adjust_opcode / prologue->LineRange) *
467 prologue->MinInstLength;
468 int32_t line_offset = prologue->LineBase +
469 (adjust_opcode % prologue->LineRange);
470 state.Line += line_offset;
471 state.Address += addr_offset;
472 state.appendRowToMatrix(*offset_ptr);
473 }
474 }
475
476 state.finalize();
477
478 return end_offset;
479 }
480
481 uint32_t
lookupAddress(uint64_t address) const482 DWARFDebugLine::LineTable::lookupAddress(uint64_t address) const {
483 uint32_t unknown_index = UINT32_MAX;
484 if (Sequences.empty())
485 return unknown_index;
486 // First, find an instruction sequence containing the given address.
487 DWARFDebugLine::Sequence sequence;
488 sequence.LowPC = address;
489 SequenceIter first_seq = Sequences.begin();
490 SequenceIter last_seq = Sequences.end();
491 SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
492 DWARFDebugLine::Sequence::orderByLowPC);
493 DWARFDebugLine::Sequence found_seq;
494 if (seq_pos == last_seq) {
495 found_seq = Sequences.back();
496 } else if (seq_pos->LowPC == address) {
497 found_seq = *seq_pos;
498 } else {
499 if (seq_pos == first_seq)
500 return unknown_index;
501 found_seq = *(seq_pos - 1);
502 }
503 if (!found_seq.containsPC(address))
504 return unknown_index;
505 // Search for instruction address in the rows describing the sequence.
506 // Rows are stored in a vector, so we may use arithmetical operations with
507 // iterators.
508 DWARFDebugLine::Row row;
509 row.Address = address;
510 RowIter first_row = Rows.begin() + found_seq.FirstRowIndex;
511 RowIter last_row = Rows.begin() + found_seq.LastRowIndex;
512 RowIter row_pos = std::lower_bound(first_row, last_row, row,
513 DWARFDebugLine::Row::orderByAddress);
514 if (row_pos == last_row) {
515 return found_seq.LastRowIndex - 1;
516 }
517 uint32_t index = found_seq.FirstRowIndex + (row_pos - first_row);
518 if (row_pos->Address > address) {
519 if (row_pos == first_row)
520 return unknown_index;
521 else
522 index--;
523 }
524 return index;
525 }
526
527 bool
lookupAddressRange(uint64_t address,uint64_t size,std::vector<uint32_t> & result) const528 DWARFDebugLine::LineTable::lookupAddressRange(uint64_t address,
529 uint64_t size,
530 std::vector<uint32_t>& result) const {
531 if (Sequences.empty())
532 return false;
533 uint64_t end_addr = address + size;
534 // First, find an instruction sequence containing the given address.
535 DWARFDebugLine::Sequence sequence;
536 sequence.LowPC = address;
537 SequenceIter first_seq = Sequences.begin();
538 SequenceIter last_seq = Sequences.end();
539 SequenceIter seq_pos = std::lower_bound(first_seq, last_seq, sequence,
540 DWARFDebugLine::Sequence::orderByLowPC);
541 if (seq_pos == last_seq || seq_pos->LowPC != address) {
542 if (seq_pos == first_seq)
543 return false;
544 seq_pos--;
545 }
546 if (!seq_pos->containsPC(address))
547 return false;
548
549 SequenceIter start_pos = seq_pos;
550
551 // Add the rows from the first sequence to the vector, starting with the
552 // index we just calculated
553
554 while (seq_pos != last_seq && seq_pos->LowPC < end_addr) {
555 DWARFDebugLine::Sequence cur_seq = *seq_pos;
556 uint32_t first_row_index;
557 uint32_t last_row_index;
558 if (seq_pos == start_pos) {
559 // For the first sequence, we need to find which row in the sequence is the
560 // first in our range. Rows are stored in a vector, so we may use
561 // arithmetical operations with iterators.
562 DWARFDebugLine::Row row;
563 row.Address = address;
564 RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
565 RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
566 RowIter row_pos = std::upper_bound(first_row, last_row, row,
567 DWARFDebugLine::Row::orderByAddress);
568 // The 'row_pos' iterator references the first row that is greater than
569 // our start address. Unless that's the first row, we want to start at
570 // the row before that.
571 first_row_index = cur_seq.FirstRowIndex + (row_pos - first_row);
572 if (row_pos != first_row)
573 --first_row_index;
574 } else
575 first_row_index = cur_seq.FirstRowIndex;
576
577 // For the last sequence in our range, we need to figure out the last row in
578 // range. For all other sequences we can go to the end of the sequence.
579 if (cur_seq.HighPC > end_addr) {
580 DWARFDebugLine::Row row;
581 row.Address = end_addr;
582 RowIter first_row = Rows.begin() + cur_seq.FirstRowIndex;
583 RowIter last_row = Rows.begin() + cur_seq.LastRowIndex;
584 RowIter row_pos = std::upper_bound(first_row, last_row, row,
585 DWARFDebugLine::Row::orderByAddress);
586 // The 'row_pos' iterator references the first row that is greater than
587 // our end address. The row before that is the last row we want.
588 last_row_index = cur_seq.FirstRowIndex + (row_pos - first_row) - 1;
589 } else
590 // Contrary to what you might expect, DWARFDebugLine::SequenceLastRowIndex
591 // isn't a valid index within the current sequence. It's that plus one.
592 last_row_index = cur_seq.LastRowIndex - 1;
593
594 for (uint32_t i = first_row_index; i <= last_row_index; ++i) {
595 result.push_back(i);
596 }
597
598 ++seq_pos;
599 }
600
601 return true;
602 }
603
604 bool
getFileNameByIndex(uint64_t FileIndex,bool NeedsAbsoluteFilePath,std::string & Result) const605 DWARFDebugLine::LineTable::getFileNameByIndex(uint64_t FileIndex,
606 bool NeedsAbsoluteFilePath,
607 std::string &Result) const {
608 if (FileIndex == 0 || FileIndex > Prologue.FileNames.size())
609 return false;
610 const FileNameEntry &Entry = Prologue.FileNames[FileIndex - 1];
611 const char *FileName = Entry.Name;
612 if (!NeedsAbsoluteFilePath ||
613 sys::path::is_absolute(FileName)) {
614 Result = FileName;
615 return true;
616 }
617 SmallString<16> FilePath;
618 uint64_t IncludeDirIndex = Entry.DirIdx;
619 // Be defensive about the contents of Entry.
620 if (IncludeDirIndex > 0 &&
621 IncludeDirIndex <= Prologue.IncludeDirectories.size()) {
622 const char *IncludeDir = Prologue.IncludeDirectories[IncludeDirIndex - 1];
623 sys::path::append(FilePath, IncludeDir);
624 }
625 sys::path::append(FilePath, FileName);
626 Result = FilePath.str();
627 return true;
628 }
629