• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2007 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include <math.h>
18 
19 #include <cutils/compiler.h>
20 #include <utils/String8.h>
21 #include <ui/Region.h>
22 
23 #include "clz.h"
24 #include "Transform.h"
25 
26 // ---------------------------------------------------------------------------
27 
28 namespace android {
29 
30 // ---------------------------------------------------------------------------
31 
Transform()32 Transform::Transform() {
33     reset();
34 }
35 
Transform(const Transform & other)36 Transform::Transform(const Transform&  other)
37     : mMatrix(other.mMatrix), mType(other.mType) {
38 }
39 
Transform(uint32_t orientation)40 Transform::Transform(uint32_t orientation) {
41     set(orientation, 0, 0);
42 }
43 
~Transform()44 Transform::~Transform() {
45 }
46 
47 static const float EPSILON = 0.0f;
48 
isZero(float f)49 bool Transform::isZero(float f) {
50     return fabs(f) <= EPSILON;
51 }
52 
absIsOne(float f)53 bool Transform::absIsOne(float f) {
54     return isZero(fabs(f) - 1.0f);
55 }
56 
operator *(const Transform & rhs) const57 Transform Transform::operator * (const Transform& rhs) const
58 {
59     if (CC_LIKELY(mType == IDENTITY))
60         return rhs;
61 
62     Transform r(*this);
63     if (rhs.mType == IDENTITY)
64         return r;
65 
66     // TODO: we could use mType to optimize the matrix multiply
67     const mat33& A(mMatrix);
68     const mat33& B(rhs.mMatrix);
69           mat33& D(r.mMatrix);
70     for (int i=0 ; i<3 ; i++) {
71         const float v0 = A[0][i];
72         const float v1 = A[1][i];
73         const float v2 = A[2][i];
74         D[0][i] = v0*B[0][0] + v1*B[0][1] + v2*B[0][2];
75         D[1][i] = v0*B[1][0] + v1*B[1][1] + v2*B[1][2];
76         D[2][i] = v0*B[2][0] + v1*B[2][1] + v2*B[2][2];
77     }
78     r.mType |= rhs.mType;
79 
80     // TODO: we could recompute this value from r and rhs
81     r.mType &= 0xFF;
82     r.mType |= UNKNOWN_TYPE;
83     return r;
84 }
85 
operator [](size_t i) const86 const vec3& Transform::operator [] (size_t i) const {
87     return mMatrix[i];
88 }
89 
transformed() const90 bool Transform::transformed() const {
91     return type() > TRANSLATE;
92 }
93 
tx() const94 float Transform::tx() const {
95     return mMatrix[2][0];
96 }
97 
ty() const98 float Transform::ty() const {
99     return mMatrix[2][1];
100 }
101 
reset()102 void Transform::reset() {
103     mType = IDENTITY;
104     for(int i=0 ; i<3 ; i++) {
105         vec3& v(mMatrix[i]);
106         for (int j=0 ; j<3 ; j++)
107             v[j] = ((i==j) ? 1.0f : 0.0f);
108     }
109 }
110 
set(float tx,float ty)111 void Transform::set(float tx, float ty)
112 {
113     mMatrix[2][0] = tx;
114     mMatrix[2][1] = ty;
115     mMatrix[2][2] = 1.0f;
116 
117     if (isZero(tx) && isZero(ty)) {
118         mType &= ~TRANSLATE;
119     } else {
120         mType |= TRANSLATE;
121     }
122 }
123 
set(float a,float b,float c,float d)124 void Transform::set(float a, float b, float c, float d)
125 {
126     mat33& M(mMatrix);
127     M[0][0] = a;    M[1][0] = b;
128     M[0][1] = c;    M[1][1] = d;
129     M[0][2] = 0;    M[1][2] = 0;
130     mType = UNKNOWN_TYPE;
131 }
132 
set(uint32_t flags,float w,float h)133 status_t Transform::set(uint32_t flags, float w, float h)
134 {
135     if (flags & ROT_INVALID) {
136         // that's not allowed!
137         reset();
138         return BAD_VALUE;
139     }
140 
141     Transform H, V, R;
142     if (flags & ROT_90) {
143         // w & h are inverted when rotating by 90 degrees
144         swap(w, h);
145     }
146 
147     if (flags & FLIP_H) {
148         H.mType = (FLIP_H << 8) | SCALE;
149         H.mType |= isZero(w) ? IDENTITY : TRANSLATE;
150         mat33& M(H.mMatrix);
151         M[0][0] = -1;
152         M[2][0] = w;
153     }
154 
155     if (flags & FLIP_V) {
156         V.mType = (FLIP_V << 8) | SCALE;
157         V.mType |= isZero(h) ? IDENTITY : TRANSLATE;
158         mat33& M(V.mMatrix);
159         M[1][1] = -1;
160         M[2][1] = h;
161     }
162 
163     if (flags & ROT_90) {
164         const float original_w = h;
165         R.mType = (ROT_90 << 8) | ROTATE;
166         R.mType |= isZero(original_w) ? IDENTITY : TRANSLATE;
167         mat33& M(R.mMatrix);
168         M[0][0] = 0;    M[1][0] =-1;    M[2][0] = original_w;
169         M[0][1] = 1;    M[1][1] = 0;
170     }
171 
172     *this = (R*(H*V));
173     return NO_ERROR;
174 }
175 
transform(const vec2 & v) const176 vec2 Transform::transform(const vec2& v) const {
177     vec2 r;
178     const mat33& M(mMatrix);
179     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0];
180     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1];
181     return r;
182 }
183 
transform(const vec3 & v) const184 vec3 Transform::transform(const vec3& v) const {
185     vec3 r;
186     const mat33& M(mMatrix);
187     r[0] = M[0][0]*v[0] + M[1][0]*v[1] + M[2][0]*v[2];
188     r[1] = M[0][1]*v[0] + M[1][1]*v[1] + M[2][1]*v[2];
189     r[2] = M[0][2]*v[0] + M[1][2]*v[1] + M[2][2]*v[2];
190     return r;
191 }
192 
transform(int x,int y) const193 vec2 Transform::transform(int x, int y) const
194 {
195     return transform(vec2(x,y));
196 }
197 
makeBounds(int w,int h) const198 Rect Transform::makeBounds(int w, int h) const
199 {
200     return transform( Rect(w, h) );
201 }
202 
transform(const Rect & bounds) const203 Rect Transform::transform(const Rect& bounds) const
204 {
205     Rect r;
206     vec2 lt( bounds.left,  bounds.top    );
207     vec2 rt( bounds.right, bounds.top    );
208     vec2 lb( bounds.left,  bounds.bottom );
209     vec2 rb( bounds.right, bounds.bottom );
210 
211     lt = transform(lt);
212     rt = transform(rt);
213     lb = transform(lb);
214     rb = transform(rb);
215 
216     r.left   = floorf(min(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
217     r.top    = floorf(min(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
218     r.right  = floorf(max(lt[0], rt[0], lb[0], rb[0]) + 0.5f);
219     r.bottom = floorf(max(lt[1], rt[1], lb[1], rb[1]) + 0.5f);
220 
221     return r;
222 }
223 
transform(const Region & reg) const224 Region Transform::transform(const Region& reg) const
225 {
226     Region out;
227     if (CC_UNLIKELY(transformed())) {
228         if (CC_LIKELY(preserveRects())) {
229             Region::const_iterator it = reg.begin();
230             Region::const_iterator const end = reg.end();
231             while (it != end) {
232                 out.orSelf(transform(*it++));
233             }
234         } else {
235             out.set(transform(reg.bounds()));
236         }
237     } else {
238         int xpos = floorf(tx() + 0.5f);
239         int ypos = floorf(ty() + 0.5f);
240         out = reg.translate(xpos, ypos);
241     }
242     return out;
243 }
244 
type() const245 uint32_t Transform::type() const
246 {
247     if (mType & UNKNOWN_TYPE) {
248         // recompute what this transform is
249 
250         const mat33& M(mMatrix);
251         const float a = M[0][0];
252         const float b = M[1][0];
253         const float c = M[0][1];
254         const float d = M[1][1];
255         const float x = M[2][0];
256         const float y = M[2][1];
257 
258         bool scale = false;
259         uint32_t flags = ROT_0;
260         if (isZero(b) && isZero(c)) {
261             if (a<0)    flags |= FLIP_H;
262             if (d<0)    flags |= FLIP_V;
263             if (!absIsOne(a) || !absIsOne(d)) {
264                 scale = true;
265             }
266         } else if (isZero(a) && isZero(d)) {
267             flags |= ROT_90;
268             if (b>0)    flags |= FLIP_V;
269             if (c<0)    flags |= FLIP_H;
270             if (!absIsOne(b) || !absIsOne(c)) {
271                 scale = true;
272             }
273         } else {
274             // there is a skew component and/or a non 90 degrees rotation
275             flags = ROT_INVALID;
276         }
277 
278         mType = flags << 8;
279         if (flags & ROT_INVALID) {
280             mType |= UNKNOWN;
281         } else {
282             if ((flags & ROT_90) || ((flags & ROT_180) == ROT_180))
283                 mType |= ROTATE;
284             if (flags & FLIP_H)
285                 mType ^= SCALE;
286             if (flags & FLIP_V)
287                 mType ^= SCALE;
288             if (scale)
289                 mType |= SCALE;
290         }
291 
292         if (!isZero(x) || !isZero(y))
293             mType |= TRANSLATE;
294     }
295     return mType;
296 }
297 
inverse() const298 Transform Transform::inverse() const {
299     // our 3x3 matrix is always of the form of a 2x2 transformation
300     // followed by a translation: T*M, therefore:
301     // (T*M)^-1 = M^-1 * T^-1
302     Transform result;
303     if (mType <= TRANSLATE) {
304         // 1 0 x
305         // 0 1 y
306         // 0 0 1
307         result = *this;
308         result.mMatrix[2][0] = -result.mMatrix[2][0];
309         result.mMatrix[2][1] = -result.mMatrix[2][1];
310     } else {
311         // a c x
312         // b d y
313         // 0 0 1
314         const mat33& M(mMatrix);
315         const float a = M[0][0];
316         const float b = M[1][0];
317         const float c = M[0][1];
318         const float d = M[1][1];
319         const float x = M[2][0];
320         const float y = M[2][1];
321 
322         Transform R, T;
323         const float idet = 1.0 / (a*d - b*c);
324         R.mMatrix[0][0] =  d*idet;    R.mMatrix[0][1] = -c*idet;
325         R.mMatrix[1][0] = -b*idet;    R.mMatrix[1][1] =  a*idet;
326         R.mType = mType &= ~TRANSLATE;
327 
328         T.mMatrix[2][0] = -x;
329         T.mMatrix[2][1] = -y;
330         T.mType = TRANSLATE;
331         result =  R * T;
332     }
333     return result;
334 }
335 
getType() const336 uint32_t Transform::getType() const {
337     return type() & 0xFF;
338 }
339 
getOrientation() const340 uint32_t Transform::getOrientation() const
341 {
342     return (type() >> 8) & 0xFF;
343 }
344 
preserveRects() const345 bool Transform::preserveRects() const
346 {
347     return (getOrientation() & ROT_INVALID) ? false : true;
348 }
349 
dump(const char * name) const350 void Transform::dump(const char* name) const
351 {
352     type(); // updates the type
353 
354     String8 flags, type;
355     const mat33& m(mMatrix);
356     uint32_t orient = mType >> 8;
357 
358     if (orient&ROT_INVALID) {
359         flags.append("ROT_INVALID ");
360     } else {
361         if (orient&ROT_90) {
362             flags.append("ROT_90 ");
363         } else {
364             flags.append("ROT_0 ");
365         }
366         if (orient&FLIP_V)
367             flags.append("FLIP_V ");
368         if (orient&FLIP_H)
369             flags.append("FLIP_H ");
370     }
371 
372     if (!(mType&(SCALE|ROTATE|TRANSLATE)))
373         type.append("IDENTITY ");
374     if (mType&SCALE)
375         type.append("SCALE ");
376     if (mType&ROTATE)
377         type.append("ROTATE ");
378     if (mType&TRANSLATE)
379         type.append("TRANSLATE ");
380 
381     ALOGD("%s 0x%08x (%s, %s)", name, mType, flags.string(), type.string());
382     ALOGD("%.4f  %.4f  %.4f", m[0][0], m[1][0], m[2][0]);
383     ALOGD("%.4f  %.4f  %.4f", m[0][1], m[1][1], m[2][1]);
384     ALOGD("%.4f  %.4f  %.4f", m[0][2], m[1][2], m[2][2]);
385 }
386 
387 // ---------------------------------------------------------------------------
388 
389 }; // namespace android
390