• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31 
32 
EmitDecl(const Decl & D)33 void CodeGenFunction::EmitDecl(const Decl &D) {
34   switch (D.getKind()) {
35   case Decl::TranslationUnit:
36   case Decl::Namespace:
37   case Decl::UnresolvedUsingTypename:
38   case Decl::ClassTemplateSpecialization:
39   case Decl::ClassTemplatePartialSpecialization:
40   case Decl::VarTemplateSpecialization:
41   case Decl::VarTemplatePartialSpecialization:
42   case Decl::TemplateTypeParm:
43   case Decl::UnresolvedUsingValue:
44   case Decl::NonTypeTemplateParm:
45   case Decl::CXXMethod:
46   case Decl::CXXConstructor:
47   case Decl::CXXDestructor:
48   case Decl::CXXConversion:
49   case Decl::Field:
50   case Decl::MSProperty:
51   case Decl::IndirectField:
52   case Decl::ObjCIvar:
53   case Decl::ObjCAtDefsField:
54   case Decl::ParmVar:
55   case Decl::ImplicitParam:
56   case Decl::ClassTemplate:
57   case Decl::VarTemplate:
58   case Decl::FunctionTemplate:
59   case Decl::TypeAliasTemplate:
60   case Decl::TemplateTemplateParm:
61   case Decl::ObjCMethod:
62   case Decl::ObjCCategory:
63   case Decl::ObjCProtocol:
64   case Decl::ObjCInterface:
65   case Decl::ObjCCategoryImpl:
66   case Decl::ObjCImplementation:
67   case Decl::ObjCProperty:
68   case Decl::ObjCCompatibleAlias:
69   case Decl::AccessSpec:
70   case Decl::LinkageSpec:
71   case Decl::ObjCPropertyImpl:
72   case Decl::FileScopeAsm:
73   case Decl::Friend:
74   case Decl::FriendTemplate:
75   case Decl::Block:
76   case Decl::Captured:
77   case Decl::ClassScopeFunctionSpecialization:
78   case Decl::UsingShadow:
79     llvm_unreachable("Declaration should not be in declstmts!");
80   case Decl::Function:  // void X();
81   case Decl::Record:    // struct/union/class X;
82   case Decl::Enum:      // enum X;
83   case Decl::EnumConstant: // enum ? { X = ? }
84   case Decl::CXXRecord: // struct/union/class X; [C++]
85   case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
86   case Decl::Label:        // __label__ x;
87   case Decl::Import:
88   case Decl::OMPThreadPrivate:
89   case Decl::Empty:
90     // None of these decls require codegen support.
91     return;
92 
93   case Decl::NamespaceAlias:
94     if (CGDebugInfo *DI = getDebugInfo())
95         DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
96     return;
97   case Decl::Using:          // using X; [C++]
98     if (CGDebugInfo *DI = getDebugInfo())
99         DI->EmitUsingDecl(cast<UsingDecl>(D));
100     return;
101   case Decl::UsingDirective: // using namespace X; [C++]
102     if (CGDebugInfo *DI = getDebugInfo())
103       DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
104     return;
105   case Decl::Var: {
106     const VarDecl &VD = cast<VarDecl>(D);
107     assert(VD.isLocalVarDecl() &&
108            "Should not see file-scope variables inside a function!");
109     return EmitVarDecl(VD);
110   }
111 
112   case Decl::Typedef:      // typedef int X;
113   case Decl::TypeAlias: {  // using X = int; [C++0x]
114     const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
115     QualType Ty = TD.getUnderlyingType();
116 
117     if (Ty->isVariablyModifiedType())
118       EmitVariablyModifiedType(Ty);
119   }
120   }
121 }
122 
123 /// EmitVarDecl - This method handles emission of any variable declaration
124 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)125 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
126   if (D.isStaticLocal()) {
127     llvm::GlobalValue::LinkageTypes Linkage =
128       llvm::GlobalValue::InternalLinkage;
129 
130     // If the variable is externally visible, it must have weak linkage so it
131     // can be uniqued.
132     if (D.isExternallyVisible()) {
133       Linkage = llvm::GlobalValue::LinkOnceODRLinkage;
134 
135       // FIXME: We need to force the emission/use of a guard variable for
136       // some variables even if we can constant-evaluate them because
137       // we can't guarantee every translation unit will constant-evaluate them.
138     }
139 
140     return EmitStaticVarDecl(D, Linkage);
141   }
142 
143   if (D.hasExternalStorage())
144     // Don't emit it now, allow it to be emitted lazily on its first use.
145     return;
146 
147   if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
148     return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
149 
150   assert(D.hasLocalStorage());
151   return EmitAutoVarDecl(D);
152 }
153 
GetStaticDeclName(CodeGenFunction & CGF,const VarDecl & D,const char * Separator)154 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
155                                      const char *Separator) {
156   CodeGenModule &CGM = CGF.CGM;
157   if (CGF.getLangOpts().CPlusPlus) {
158     StringRef Name = CGM.getMangledName(&D);
159     return Name.str();
160   }
161 
162   std::string ContextName;
163   if (!CGF.CurFuncDecl) {
164     // Better be in a block declared in global scope.
165     const NamedDecl *ND = cast<NamedDecl>(&D);
166     const DeclContext *DC = ND->getDeclContext();
167     if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
168       MangleBuffer Name;
169       CGM.getBlockMangledName(GlobalDecl(), Name, BD);
170       ContextName = Name.getString();
171     }
172     else
173       llvm_unreachable("Unknown context for block static var decl");
174   } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
175     StringRef Name = CGM.getMangledName(FD);
176     ContextName = Name.str();
177   } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
178     ContextName = CGF.CurFn->getName();
179   else
180     llvm_unreachable("Unknown context for static var decl");
181 
182   return ContextName + Separator + D.getNameAsString();
183 }
184 
185 llvm::GlobalVariable *
CreateStaticVarDecl(const VarDecl & D,const char * Separator,llvm::GlobalValue::LinkageTypes Linkage)186 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
187                                      const char *Separator,
188                                      llvm::GlobalValue::LinkageTypes Linkage) {
189   QualType Ty = D.getType();
190   assert(Ty->isConstantSizeType() && "VLAs can't be static");
191 
192   // Use the label if the variable is renamed with the asm-label extension.
193   std::string Name;
194   if (D.hasAttr<AsmLabelAttr>())
195     Name = CGM.getMangledName(&D);
196   else
197     Name = GetStaticDeclName(*this, D, Separator);
198 
199   llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
200   unsigned AddrSpace =
201    CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
202   llvm::GlobalVariable *GV =
203     new llvm::GlobalVariable(CGM.getModule(), LTy,
204                              Ty.isConstant(getContext()), Linkage,
205                              CGM.EmitNullConstant(D.getType()), Name, 0,
206                              llvm::GlobalVariable::NotThreadLocal,
207                              AddrSpace);
208   GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
209   CGM.setGlobalVisibility(GV, &D);
210 
211   if (D.getTLSKind())
212     CGM.setTLSMode(GV, D);
213 
214   return GV;
215 }
216 
217 /// hasNontrivialDestruction - Determine whether a type's destruction is
218 /// non-trivial. If so, and the variable uses static initialization, we must
219 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)220 static bool hasNontrivialDestruction(QualType T) {
221   CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
222   return RD && !RD->hasTrivialDestructor();
223 }
224 
225 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
226 /// global variable that has already been created for it.  If the initializer
227 /// has a different type than GV does, this may free GV and return a different
228 /// one.  Otherwise it just returns GV.
229 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)230 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
231                                                llvm::GlobalVariable *GV) {
232   llvm::Constant *Init = CGM.EmitConstantInit(D, this);
233 
234   // If constant emission failed, then this should be a C++ static
235   // initializer.
236   if (!Init) {
237     if (!getLangOpts().CPlusPlus)
238       CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
239     else if (Builder.GetInsertBlock()) {
240       // Since we have a static initializer, this global variable can't
241       // be constant.
242       GV->setConstant(false);
243 
244       EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
245     }
246     return GV;
247   }
248 
249   // The initializer may differ in type from the global. Rewrite
250   // the global to match the initializer.  (We have to do this
251   // because some types, like unions, can't be completely represented
252   // in the LLVM type system.)
253   if (GV->getType()->getElementType() != Init->getType()) {
254     llvm::GlobalVariable *OldGV = GV;
255 
256     GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
257                                   OldGV->isConstant(),
258                                   OldGV->getLinkage(), Init, "",
259                                   /*InsertBefore*/ OldGV,
260                                   OldGV->getThreadLocalMode(),
261                            CGM.getContext().getTargetAddressSpace(D.getType()));
262     GV->setVisibility(OldGV->getVisibility());
263 
264     // Steal the name of the old global
265     GV->takeName(OldGV);
266 
267     // Replace all uses of the old global with the new global
268     llvm::Constant *NewPtrForOldDecl =
269     llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
270     OldGV->replaceAllUsesWith(NewPtrForOldDecl);
271 
272     // Erase the old global, since it is no longer used.
273     OldGV->eraseFromParent();
274   }
275 
276   GV->setConstant(CGM.isTypeConstant(D.getType(), true));
277   GV->setInitializer(Init);
278 
279   if (hasNontrivialDestruction(D.getType())) {
280     // We have a constant initializer, but a nontrivial destructor. We still
281     // need to perform a guarded "initialization" in order to register the
282     // destructor.
283     EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
284   }
285 
286   return GV;
287 }
288 
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)289 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
290                                       llvm::GlobalValue::LinkageTypes Linkage) {
291   llvm::Value *&DMEntry = LocalDeclMap[&D];
292   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
293 
294   // Check to see if we already have a global variable for this
295   // declaration.  This can happen when double-emitting function
296   // bodies, e.g. with complete and base constructors.
297   llvm::Constant *addr =
298     CGM.getStaticLocalDeclAddress(&D);
299 
300   llvm::GlobalVariable *var;
301   if (addr) {
302     var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
303   } else {
304     addr = var = CreateStaticVarDecl(D, ".", Linkage);
305   }
306 
307   // Store into LocalDeclMap before generating initializer to handle
308   // circular references.
309   DMEntry = addr;
310   CGM.setStaticLocalDeclAddress(&D, addr);
311 
312   // We can't have a VLA here, but we can have a pointer to a VLA,
313   // even though that doesn't really make any sense.
314   // Make sure to evaluate VLA bounds now so that we have them for later.
315   if (D.getType()->isVariablyModifiedType())
316     EmitVariablyModifiedType(D.getType());
317 
318   // Save the type in case adding the initializer forces a type change.
319   llvm::Type *expectedType = addr->getType();
320 
321   // If this value has an initializer, emit it.
322   if (D.getInit())
323     var = AddInitializerToStaticVarDecl(D, var);
324 
325   var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
326 
327   if (D.hasAttr<AnnotateAttr>())
328     CGM.AddGlobalAnnotations(&D, var);
329 
330   if (const SectionAttr *SA = D.getAttr<SectionAttr>())
331     var->setSection(SA->getName());
332 
333   if (D.hasAttr<UsedAttr>())
334     CGM.AddUsedGlobal(var);
335 
336   // We may have to cast the constant because of the initializer
337   // mismatch above.
338   //
339   // FIXME: It is really dangerous to store this in the map; if anyone
340   // RAUW's the GV uses of this constant will be invalid.
341   llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
342   DMEntry = castedAddr;
343   CGM.setStaticLocalDeclAddress(&D, castedAddr);
344 
345   // Emit global variable debug descriptor for static vars.
346   CGDebugInfo *DI = getDebugInfo();
347   if (DI &&
348       CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
349     DI->setLocation(D.getLocation());
350     DI->EmitGlobalVariable(var, &D);
351   }
352 }
353 
354 namespace {
355   struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anon195e60cc0111::DestroyObject356     DestroyObject(llvm::Value *addr, QualType type,
357                   CodeGenFunction::Destroyer *destroyer,
358                   bool useEHCleanupForArray)
359       : addr(addr), type(type), destroyer(destroyer),
360         useEHCleanupForArray(useEHCleanupForArray) {}
361 
362     llvm::Value *addr;
363     QualType type;
364     CodeGenFunction::Destroyer *destroyer;
365     bool useEHCleanupForArray;
366 
Emit__anon195e60cc0111::DestroyObject367     void Emit(CodeGenFunction &CGF, Flags flags) {
368       // Don't use an EH cleanup recursively from an EH cleanup.
369       bool useEHCleanupForArray =
370         flags.isForNormalCleanup() && this->useEHCleanupForArray;
371 
372       CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
373     }
374   };
375 
376   struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon195e60cc0111::DestroyNRVOVariable377     DestroyNRVOVariable(llvm::Value *addr,
378                         const CXXDestructorDecl *Dtor,
379                         llvm::Value *NRVOFlag)
380       : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
381 
382     const CXXDestructorDecl *Dtor;
383     llvm::Value *NRVOFlag;
384     llvm::Value *Loc;
385 
Emit__anon195e60cc0111::DestroyNRVOVariable386     void Emit(CodeGenFunction &CGF, Flags flags) {
387       // Along the exceptions path we always execute the dtor.
388       bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
389 
390       llvm::BasicBlock *SkipDtorBB = 0;
391       if (NRVO) {
392         // If we exited via NRVO, we skip the destructor call.
393         llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
394         SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
395         llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
396         CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
397         CGF.EmitBlock(RunDtorBB);
398       }
399 
400       CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
401                                 /*ForVirtualBase=*/false,
402                                 /*Delegating=*/false,
403                                 Loc);
404 
405       if (NRVO) CGF.EmitBlock(SkipDtorBB);
406     }
407   };
408 
409   struct CallStackRestore : EHScopeStack::Cleanup {
410     llvm::Value *Stack;
CallStackRestore__anon195e60cc0111::CallStackRestore411     CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anon195e60cc0111::CallStackRestore412     void Emit(CodeGenFunction &CGF, Flags flags) {
413       llvm::Value *V = CGF.Builder.CreateLoad(Stack);
414       llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
415       CGF.Builder.CreateCall(F, V);
416     }
417   };
418 
419   struct ExtendGCLifetime : EHScopeStack::Cleanup {
420     const VarDecl &Var;
ExtendGCLifetime__anon195e60cc0111::ExtendGCLifetime421     ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
422 
Emit__anon195e60cc0111::ExtendGCLifetime423     void Emit(CodeGenFunction &CGF, Flags flags) {
424       // Compute the address of the local variable, in case it's a
425       // byref or something.
426       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
427                       Var.getType(), VK_LValue, SourceLocation());
428       llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
429       CGF.EmitExtendGCLifetime(value);
430     }
431   };
432 
433   struct CallCleanupFunction : EHScopeStack::Cleanup {
434     llvm::Constant *CleanupFn;
435     const CGFunctionInfo &FnInfo;
436     const VarDecl &Var;
437 
CallCleanupFunction__anon195e60cc0111::CallCleanupFunction438     CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
439                         const VarDecl *Var)
440       : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
441 
Emit__anon195e60cc0111::CallCleanupFunction442     void Emit(CodeGenFunction &CGF, Flags flags) {
443       DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
444                       Var.getType(), VK_LValue, SourceLocation());
445       // Compute the address of the local variable, in case it's a byref
446       // or something.
447       llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
448 
449       // In some cases, the type of the function argument will be different from
450       // the type of the pointer. An example of this is
451       // void f(void* arg);
452       // __attribute__((cleanup(f))) void *g;
453       //
454       // To fix this we insert a bitcast here.
455       QualType ArgTy = FnInfo.arg_begin()->type;
456       llvm::Value *Arg =
457         CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
458 
459       CallArgList Args;
460       Args.add(RValue::get(Arg),
461                CGF.getContext().getPointerType(Var.getType()));
462       CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
463     }
464   };
465 
466   /// A cleanup to call @llvm.lifetime.end.
467   class CallLifetimeEnd : public EHScopeStack::Cleanup {
468     llvm::Value *Addr;
469     llvm::Value *Size;
470   public:
CallLifetimeEnd(llvm::Value * addr,llvm::Value * size)471     CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
472       : Addr(addr), Size(size) {}
473 
Emit(CodeGenFunction & CGF,Flags flags)474     void Emit(CodeGenFunction &CGF, Flags flags) {
475       llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
476       CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
477                               Size, castAddr)
478         ->setDoesNotThrow();
479     }
480   };
481 }
482 
483 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
484 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)485 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
486                                     llvm::Value *addr,
487                                     Qualifiers::ObjCLifetime lifetime) {
488   switch (lifetime) {
489   case Qualifiers::OCL_None:
490     llvm_unreachable("present but none");
491 
492   case Qualifiers::OCL_ExplicitNone:
493     // nothing to do
494     break;
495 
496   case Qualifiers::OCL_Strong: {
497     CodeGenFunction::Destroyer *destroyer =
498       (var.hasAttr<ObjCPreciseLifetimeAttr>()
499        ? CodeGenFunction::destroyARCStrongPrecise
500        : CodeGenFunction::destroyARCStrongImprecise);
501 
502     CleanupKind cleanupKind = CGF.getARCCleanupKind();
503     CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
504                     cleanupKind & EHCleanup);
505     break;
506   }
507   case Qualifiers::OCL_Autoreleasing:
508     // nothing to do
509     break;
510 
511   case Qualifiers::OCL_Weak:
512     // __weak objects always get EH cleanups; otherwise, exceptions
513     // could cause really nasty crashes instead of mere leaks.
514     CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
515                     CodeGenFunction::destroyARCWeak,
516                     /*useEHCleanup*/ true);
517     break;
518   }
519 }
520 
isAccessedBy(const VarDecl & var,const Stmt * s)521 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
522   if (const Expr *e = dyn_cast<Expr>(s)) {
523     // Skip the most common kinds of expressions that make
524     // hierarchy-walking expensive.
525     s = e = e->IgnoreParenCasts();
526 
527     if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
528       return (ref->getDecl() == &var);
529     if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
530       const BlockDecl *block = be->getBlockDecl();
531       for (BlockDecl::capture_const_iterator i = block->capture_begin(),
532            e = block->capture_end(); i != e; ++i) {
533         if (i->getVariable() == &var)
534           return true;
535       }
536     }
537   }
538 
539   for (Stmt::const_child_range children = s->children(); children; ++children)
540     // children might be null; as in missing decl or conditional of an if-stmt.
541     if ((*children) && isAccessedBy(var, *children))
542       return true;
543 
544   return false;
545 }
546 
isAccessedBy(const ValueDecl * decl,const Expr * e)547 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
548   if (!decl) return false;
549   if (!isa<VarDecl>(decl)) return false;
550   const VarDecl *var = cast<VarDecl>(decl);
551   return isAccessedBy(*var, e);
552 }
553 
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)554 static void drillIntoBlockVariable(CodeGenFunction &CGF,
555                                    LValue &lvalue,
556                                    const VarDecl *var) {
557   lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
558 }
559 
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)560 void CodeGenFunction::EmitScalarInit(const Expr *init,
561                                      const ValueDecl *D,
562                                      LValue lvalue,
563                                      bool capturedByInit) {
564   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
565   if (!lifetime) {
566     llvm::Value *value = EmitScalarExpr(init);
567     if (capturedByInit)
568       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
569     EmitStoreThroughLValue(RValue::get(value), lvalue, true);
570     return;
571   }
572 
573   // If we're emitting a value with lifetime, we have to do the
574   // initialization *before* we leave the cleanup scopes.
575   if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
576     enterFullExpression(ewc);
577     init = ewc->getSubExpr();
578   }
579   CodeGenFunction::RunCleanupsScope Scope(*this);
580 
581   // We have to maintain the illusion that the variable is
582   // zero-initialized.  If the variable might be accessed in its
583   // initializer, zero-initialize before running the initializer, then
584   // actually perform the initialization with an assign.
585   bool accessedByInit = false;
586   if (lifetime != Qualifiers::OCL_ExplicitNone)
587     accessedByInit = (capturedByInit || isAccessedBy(D, init));
588   if (accessedByInit) {
589     LValue tempLV = lvalue;
590     // Drill down to the __block object if necessary.
591     if (capturedByInit) {
592       // We can use a simple GEP for this because it can't have been
593       // moved yet.
594       tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
595                                    getByRefValueLLVMField(cast<VarDecl>(D))));
596     }
597 
598     llvm::PointerType *ty
599       = cast<llvm::PointerType>(tempLV.getAddress()->getType());
600     ty = cast<llvm::PointerType>(ty->getElementType());
601 
602     llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
603 
604     // If __weak, we want to use a barrier under certain conditions.
605     if (lifetime == Qualifiers::OCL_Weak)
606       EmitARCInitWeak(tempLV.getAddress(), zero);
607 
608     // Otherwise just do a simple store.
609     else
610       EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
611   }
612 
613   // Emit the initializer.
614   llvm::Value *value = 0;
615 
616   switch (lifetime) {
617   case Qualifiers::OCL_None:
618     llvm_unreachable("present but none");
619 
620   case Qualifiers::OCL_ExplicitNone:
621     // nothing to do
622     value = EmitScalarExpr(init);
623     break;
624 
625   case Qualifiers::OCL_Strong: {
626     value = EmitARCRetainScalarExpr(init);
627     break;
628   }
629 
630   case Qualifiers::OCL_Weak: {
631     // No way to optimize a producing initializer into this.  It's not
632     // worth optimizing for, because the value will immediately
633     // disappear in the common case.
634     value = EmitScalarExpr(init);
635 
636     if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
637     if (accessedByInit)
638       EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
639     else
640       EmitARCInitWeak(lvalue.getAddress(), value);
641     return;
642   }
643 
644   case Qualifiers::OCL_Autoreleasing:
645     value = EmitARCRetainAutoreleaseScalarExpr(init);
646     break;
647   }
648 
649   if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
650 
651   // If the variable might have been accessed by its initializer, we
652   // might have to initialize with a barrier.  We have to do this for
653   // both __weak and __strong, but __weak got filtered out above.
654   if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
655     llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
656     EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
657     EmitARCRelease(oldValue, ARCImpreciseLifetime);
658     return;
659   }
660 
661   EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
662 }
663 
664 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)665 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
666   Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
667   if (!lifetime)
668     return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
669 
670   switch (lifetime) {
671   case Qualifiers::OCL_None:
672     llvm_unreachable("present but none");
673 
674   case Qualifiers::OCL_ExplicitNone:
675     // nothing to do
676     break;
677 
678   case Qualifiers::OCL_Strong:
679     init = EmitARCRetain(lvalue.getType(), init);
680     break;
681 
682   case Qualifiers::OCL_Weak:
683     // Initialize and then skip the primitive store.
684     EmitARCInitWeak(lvalue.getAddress(), init);
685     return;
686 
687   case Qualifiers::OCL_Autoreleasing:
688     init = EmitARCRetainAutorelease(lvalue.getType(), init);
689     break;
690   }
691 
692   EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
693 }
694 
695 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
696 /// non-zero parts of the specified initializer with equal or fewer than
697 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)698 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
699                                                 unsigned &NumStores) {
700   // Zero and Undef never requires any extra stores.
701   if (isa<llvm::ConstantAggregateZero>(Init) ||
702       isa<llvm::ConstantPointerNull>(Init) ||
703       isa<llvm::UndefValue>(Init))
704     return true;
705   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
706       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
707       isa<llvm::ConstantExpr>(Init))
708     return Init->isNullValue() || NumStores--;
709 
710   // See if we can emit each element.
711   if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
712     for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
713       llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
714       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
715         return false;
716     }
717     return true;
718   }
719 
720   if (llvm::ConstantDataSequential *CDS =
721         dyn_cast<llvm::ConstantDataSequential>(Init)) {
722     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
723       llvm::Constant *Elt = CDS->getElementAsConstant(i);
724       if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
725         return false;
726     }
727     return true;
728   }
729 
730   // Anything else is hard and scary.
731   return false;
732 }
733 
734 /// emitStoresForInitAfterMemset - For inits that
735 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
736 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)737 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
738                                          bool isVolatile, CGBuilderTy &Builder) {
739   assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
740          "called emitStoresForInitAfterMemset for zero or undef value.");
741 
742   if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
743       isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
744       isa<llvm::ConstantExpr>(Init)) {
745     Builder.CreateStore(Init, Loc, isVolatile);
746     return;
747   }
748 
749   if (llvm::ConstantDataSequential *CDS =
750         dyn_cast<llvm::ConstantDataSequential>(Init)) {
751     for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
752       llvm::Constant *Elt = CDS->getElementAsConstant(i);
753 
754       // If necessary, get a pointer to the element and emit it.
755       if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
756         emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
757                                      isVolatile, Builder);
758     }
759     return;
760   }
761 
762   assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
763          "Unknown value type!");
764 
765   for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
766     llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
767 
768     // If necessary, get a pointer to the element and emit it.
769     if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
770       emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
771                                    isVolatile, Builder);
772   }
773 }
774 
775 
776 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
777 /// plus some stores to initialize a local variable instead of using a memcpy
778 /// from a constant global.  It is beneficial to use memset if the global is all
779 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)780 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
781                                                   uint64_t GlobalSize) {
782   // If a global is all zeros, always use a memset.
783   if (isa<llvm::ConstantAggregateZero>(Init)) return true;
784 
785   // If a non-zero global is <= 32 bytes, always use a memcpy.  If it is large,
786   // do it if it will require 6 or fewer scalar stores.
787   // TODO: Should budget depends on the size?  Avoiding a large global warrants
788   // plopping in more stores.
789   unsigned StoreBudget = 6;
790   uint64_t SizeLimit = 32;
791 
792   return GlobalSize > SizeLimit &&
793          canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
794 }
795 
796 /// Should we use the LLVM lifetime intrinsics for the given local variable?
shouldUseLifetimeMarkers(CodeGenFunction & CGF,const VarDecl & D,unsigned Size)797 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
798                                      unsigned Size) {
799   // Always emit lifetime markers in -fsanitize=use-after-scope mode.
800   if (CGF.getLangOpts().Sanitize.UseAfterScope)
801     return true;
802   // For now, only in optimized builds.
803   if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
804     return false;
805 
806   // Limit the size of marked objects to 32 bytes. We don't want to increase
807   // compile time by marking tiny objects.
808   unsigned SizeThreshold = 32;
809 
810   return Size > SizeThreshold;
811 }
812 
813 
814 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
815 /// variable declaration with auto, register, or no storage class specifier.
816 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)817 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
818   AutoVarEmission emission = EmitAutoVarAlloca(D);
819   EmitAutoVarInit(emission);
820   EmitAutoVarCleanups(emission);
821 }
822 
823 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
824 /// local variable.  Does not emit initalization or destruction.
825 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)826 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
827   QualType Ty = D.getType();
828 
829   AutoVarEmission emission(D);
830 
831   bool isByRef = D.hasAttr<BlocksAttr>();
832   emission.IsByRef = isByRef;
833 
834   CharUnits alignment = getContext().getDeclAlign(&D);
835   emission.Alignment = alignment;
836 
837   // If the type is variably-modified, emit all the VLA sizes for it.
838   if (Ty->isVariablyModifiedType())
839     EmitVariablyModifiedType(Ty);
840 
841   llvm::Value *DeclPtr;
842   if (Ty->isConstantSizeType()) {
843     bool NRVO = getLangOpts().ElideConstructors &&
844       D.isNRVOVariable();
845 
846     // If this value is an array or struct with a statically determinable
847     // constant initializer, there are optimizations we can do.
848     //
849     // TODO: We should constant-evaluate the initializer of any variable,
850     // as long as it is initialized by a constant expression. Currently,
851     // isConstantInitializer produces wrong answers for structs with
852     // reference or bitfield members, and a few other cases, and checking
853     // for POD-ness protects us from some of these.
854     if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
855         (D.isConstexpr() ||
856          ((Ty.isPODType(getContext()) ||
857            getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
858           D.getInit()->isConstantInitializer(getContext(), false)))) {
859 
860       // If the variable's a const type, and it's neither an NRVO
861       // candidate nor a __block variable and has no mutable members,
862       // emit it as a global instead.
863       if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
864           CGM.isTypeConstant(Ty, true)) {
865         EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
866 
867         emission.Address = 0; // signal this condition to later callbacks
868         assert(emission.wasEmittedAsGlobal());
869         return emission;
870       }
871 
872       // Otherwise, tell the initialization code that we're in this case.
873       emission.IsConstantAggregate = true;
874     }
875 
876     // A normal fixed sized variable becomes an alloca in the entry block,
877     // unless it's an NRVO variable.
878     llvm::Type *LTy = ConvertTypeForMem(Ty);
879 
880     if (NRVO) {
881       // The named return value optimization: allocate this variable in the
882       // return slot, so that we can elide the copy when returning this
883       // variable (C++0x [class.copy]p34).
884       DeclPtr = ReturnValue;
885 
886       if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
887         if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
888           // Create a flag that is used to indicate when the NRVO was applied
889           // to this variable. Set it to zero to indicate that NRVO was not
890           // applied.
891           llvm::Value *Zero = Builder.getFalse();
892           llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
893           EnsureInsertPoint();
894           Builder.CreateStore(Zero, NRVOFlag);
895 
896           // Record the NRVO flag for this variable.
897           NRVOFlags[&D] = NRVOFlag;
898           emission.NRVOFlag = NRVOFlag;
899         }
900       }
901     } else {
902       if (isByRef)
903         LTy = BuildByRefType(&D);
904 
905       llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
906       Alloc->setName(D.getName());
907 
908       CharUnits allocaAlignment = alignment;
909       if (isByRef)
910         allocaAlignment = std::max(allocaAlignment,
911             getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
912       Alloc->setAlignment(allocaAlignment.getQuantity());
913       DeclPtr = Alloc;
914 
915       // Emit a lifetime intrinsic if meaningful.  There's no point
916       // in doing this if we don't have a valid insertion point (?).
917       uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
918       if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
919         llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
920 
921         emission.SizeForLifetimeMarkers = sizeV;
922         llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
923         Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
924           ->setDoesNotThrow();
925       } else {
926         assert(!emission.useLifetimeMarkers());
927       }
928     }
929   } else {
930     EnsureInsertPoint();
931 
932     if (!DidCallStackSave) {
933       // Save the stack.
934       llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
935 
936       llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
937       llvm::Value *V = Builder.CreateCall(F);
938 
939       Builder.CreateStore(V, Stack);
940 
941       DidCallStackSave = true;
942 
943       // Push a cleanup block and restore the stack there.
944       // FIXME: in general circumstances, this should be an EH cleanup.
945       EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
946     }
947 
948     llvm::Value *elementCount;
949     QualType elementType;
950     llvm::tie(elementCount, elementType) = getVLASize(Ty);
951 
952     llvm::Type *llvmTy = ConvertTypeForMem(elementType);
953 
954     // Allocate memory for the array.
955     llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
956     vla->setAlignment(alignment.getQuantity());
957 
958     DeclPtr = vla;
959   }
960 
961   llvm::Value *&DMEntry = LocalDeclMap[&D];
962   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
963   DMEntry = DeclPtr;
964   emission.Address = DeclPtr;
965 
966   // Emit debug info for local var declaration.
967   if (HaveInsertPoint())
968     if (CGDebugInfo *DI = getDebugInfo()) {
969       if (CGM.getCodeGenOpts().getDebugInfo()
970             >= CodeGenOptions::LimitedDebugInfo) {
971         DI->setLocation(D.getLocation());
972         DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
973       }
974     }
975 
976   if (D.hasAttr<AnnotateAttr>())
977       EmitVarAnnotations(&D, emission.Address);
978 
979   return emission;
980 }
981 
982 /// Determines whether the given __block variable is potentially
983 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)984 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
985   // Skip the most common kinds of expressions that make
986   // hierarchy-walking expensive.
987   e = e->IgnoreParenCasts();
988 
989   if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
990     const BlockDecl *block = be->getBlockDecl();
991     for (BlockDecl::capture_const_iterator i = block->capture_begin(),
992            e = block->capture_end(); i != e; ++i) {
993       if (i->getVariable() == &var)
994         return true;
995     }
996 
997     // No need to walk into the subexpressions.
998     return false;
999   }
1000 
1001   if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1002     const CompoundStmt *CS = SE->getSubStmt();
1003     for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
1004 	   BE = CS->body_end(); BI != BE; ++BI)
1005       if (Expr *E = dyn_cast<Expr>((*BI))) {
1006         if (isCapturedBy(var, E))
1007             return true;
1008       }
1009       else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
1010           // special case declarations
1011           for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1012                I != E; ++I) {
1013               if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
1014                 Expr *Init = VD->getInit();
1015                 if (Init && isCapturedBy(var, Init))
1016                   return true;
1017               }
1018           }
1019       }
1020       else
1021         // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1022         // Later, provide code to poke into statements for capture analysis.
1023         return true;
1024     return false;
1025   }
1026 
1027   for (Stmt::const_child_range children = e->children(); children; ++children)
1028     if (isCapturedBy(var, cast<Expr>(*children)))
1029       return true;
1030 
1031   return false;
1032 }
1033 
1034 /// \brief Determine whether the given initializer is trivial in the sense
1035 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1036 static bool isTrivialInitializer(const Expr *Init) {
1037   if (!Init)
1038     return true;
1039 
1040   if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1041     if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1042       if (Constructor->isTrivial() &&
1043           Constructor->isDefaultConstructor() &&
1044           !Construct->requiresZeroInitialization())
1045         return true;
1046 
1047   return false;
1048 }
EmitAutoVarInit(const AutoVarEmission & emission)1049 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1050   assert(emission.Variable && "emission was not valid!");
1051 
1052   // If this was emitted as a global constant, we're done.
1053   if (emission.wasEmittedAsGlobal()) return;
1054 
1055   const VarDecl &D = *emission.Variable;
1056   QualType type = D.getType();
1057 
1058   // If this local has an initializer, emit it now.
1059   const Expr *Init = D.getInit();
1060 
1061   // If we are at an unreachable point, we don't need to emit the initializer
1062   // unless it contains a label.
1063   if (!HaveInsertPoint()) {
1064     if (!Init || !ContainsLabel(Init)) return;
1065     EnsureInsertPoint();
1066   }
1067 
1068   // Initialize the structure of a __block variable.
1069   if (emission.IsByRef)
1070     emitByrefStructureInit(emission);
1071 
1072   if (isTrivialInitializer(Init))
1073     return;
1074 
1075   CharUnits alignment = emission.Alignment;
1076 
1077   // Check whether this is a byref variable that's potentially
1078   // captured and moved by its own initializer.  If so, we'll need to
1079   // emit the initializer first, then copy into the variable.
1080   bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1081 
1082   llvm::Value *Loc =
1083     capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1084 
1085   llvm::Constant *constant = 0;
1086   if (emission.IsConstantAggregate || D.isConstexpr()) {
1087     assert(!capturedByInit && "constant init contains a capturing block?");
1088     constant = CGM.EmitConstantInit(D, this);
1089   }
1090 
1091   if (!constant) {
1092     LValue lv = MakeAddrLValue(Loc, type, alignment);
1093     lv.setNonGC(true);
1094     return EmitExprAsInit(Init, &D, lv, capturedByInit);
1095   }
1096 
1097   if (!emission.IsConstantAggregate) {
1098     // For simple scalar/complex initialization, store the value directly.
1099     LValue lv = MakeAddrLValue(Loc, type, alignment);
1100     lv.setNonGC(true);
1101     return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1102   }
1103 
1104   // If this is a simple aggregate initialization, we can optimize it
1105   // in various ways.
1106   bool isVolatile = type.isVolatileQualified();
1107 
1108   llvm::Value *SizeVal =
1109     llvm::ConstantInt::get(IntPtrTy,
1110                            getContext().getTypeSizeInChars(type).getQuantity());
1111 
1112   llvm::Type *BP = Int8PtrTy;
1113   if (Loc->getType() != BP)
1114     Loc = Builder.CreateBitCast(Loc, BP);
1115 
1116   // If the initializer is all or mostly zeros, codegen with memset then do
1117   // a few stores afterward.
1118   if (shouldUseMemSetPlusStoresToInitialize(constant,
1119                 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1120     Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1121                          alignment.getQuantity(), isVolatile);
1122     // Zero and undef don't require a stores.
1123     if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1124       Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1125       emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1126     }
1127   } else {
1128     // Otherwise, create a temporary global with the initializer then
1129     // memcpy from the global to the alloca.
1130     std::string Name = GetStaticDeclName(*this, D, ".");
1131     llvm::GlobalVariable *GV =
1132       new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1133                                llvm::GlobalValue::PrivateLinkage,
1134                                constant, Name);
1135     GV->setAlignment(alignment.getQuantity());
1136     GV->setUnnamedAddr(true);
1137 
1138     llvm::Value *SrcPtr = GV;
1139     if (SrcPtr->getType() != BP)
1140       SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1141 
1142     Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1143                          isVolatile);
1144   }
1145 }
1146 
1147 /// Emit an expression as an initializer for a variable at the given
1148 /// location.  The expression is not necessarily the normal
1149 /// initializer for the variable, and the address is not necessarily
1150 /// its normal location.
1151 ///
1152 /// \param init the initializing expression
1153 /// \param var the variable to act as if we're initializing
1154 /// \param loc the address to initialize; its type is a pointer
1155 ///   to the LLVM mapping of the variable's type
1156 /// \param alignment the alignment of the address
1157 /// \param capturedByInit true if the variable is a __block variable
1158 ///   whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1159 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1160                                      const ValueDecl *D,
1161                                      LValue lvalue,
1162                                      bool capturedByInit) {
1163   QualType type = D->getType();
1164 
1165   if (type->isReferenceType()) {
1166     RValue rvalue = EmitReferenceBindingToExpr(init);
1167     if (capturedByInit)
1168       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1169     EmitStoreThroughLValue(rvalue, lvalue, true);
1170     return;
1171   }
1172   switch (getEvaluationKind(type)) {
1173   case TEK_Scalar:
1174     EmitScalarInit(init, D, lvalue, capturedByInit);
1175     return;
1176   case TEK_Complex: {
1177     ComplexPairTy complex = EmitComplexExpr(init);
1178     if (capturedByInit)
1179       drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1180     EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1181     return;
1182   }
1183   case TEK_Aggregate:
1184     if (type->isAtomicType()) {
1185       EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1186     } else {
1187       // TODO: how can we delay here if D is captured by its initializer?
1188       EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1189                                               AggValueSlot::IsDestructed,
1190                                          AggValueSlot::DoesNotNeedGCBarriers,
1191                                               AggValueSlot::IsNotAliased));
1192     }
1193     return;
1194   }
1195   llvm_unreachable("bad evaluation kind");
1196 }
1197 
1198 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1199 void CodeGenFunction::emitAutoVarTypeCleanup(
1200                             const CodeGenFunction::AutoVarEmission &emission,
1201                             QualType::DestructionKind dtorKind) {
1202   assert(dtorKind != QualType::DK_none);
1203 
1204   // Note that for __block variables, we want to destroy the
1205   // original stack object, not the possibly forwarded object.
1206   llvm::Value *addr = emission.getObjectAddress(*this);
1207 
1208   const VarDecl *var = emission.Variable;
1209   QualType type = var->getType();
1210 
1211   CleanupKind cleanupKind = NormalAndEHCleanup;
1212   CodeGenFunction::Destroyer *destroyer = 0;
1213 
1214   switch (dtorKind) {
1215   case QualType::DK_none:
1216     llvm_unreachable("no cleanup for trivially-destructible variable");
1217 
1218   case QualType::DK_cxx_destructor:
1219     // If there's an NRVO flag on the emission, we need a different
1220     // cleanup.
1221     if (emission.NRVOFlag) {
1222       assert(!type->isArrayType());
1223       CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1224       EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1225                                                emission.NRVOFlag);
1226       return;
1227     }
1228     break;
1229 
1230   case QualType::DK_objc_strong_lifetime:
1231     // Suppress cleanups for pseudo-strong variables.
1232     if (var->isARCPseudoStrong()) return;
1233 
1234     // Otherwise, consider whether to use an EH cleanup or not.
1235     cleanupKind = getARCCleanupKind();
1236 
1237     // Use the imprecise destroyer by default.
1238     if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1239       destroyer = CodeGenFunction::destroyARCStrongImprecise;
1240     break;
1241 
1242   case QualType::DK_objc_weak_lifetime:
1243     break;
1244   }
1245 
1246   // If we haven't chosen a more specific destroyer, use the default.
1247   if (!destroyer) destroyer = getDestroyer(dtorKind);
1248 
1249   // Use an EH cleanup in array destructors iff the destructor itself
1250   // is being pushed as an EH cleanup.
1251   bool useEHCleanup = (cleanupKind & EHCleanup);
1252   EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1253                                      useEHCleanup);
1254 }
1255 
EmitAutoVarCleanups(const AutoVarEmission & emission)1256 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1257   assert(emission.Variable && "emission was not valid!");
1258 
1259   // If this was emitted as a global constant, we're done.
1260   if (emission.wasEmittedAsGlobal()) return;
1261 
1262   // If we don't have an insertion point, we're done.  Sema prevents
1263   // us from jumping into any of these scopes anyway.
1264   if (!HaveInsertPoint()) return;
1265 
1266   const VarDecl &D = *emission.Variable;
1267 
1268   // Make sure we call @llvm.lifetime.end.  This needs to happen
1269   // *last*, so the cleanup needs to be pushed *first*.
1270   if (emission.useLifetimeMarkers()) {
1271     EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1272                                          emission.getAllocatedAddress(),
1273                                          emission.getSizeForLifetimeMarkers());
1274   }
1275 
1276   // Check the type for a cleanup.
1277   if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1278     emitAutoVarTypeCleanup(emission, dtorKind);
1279 
1280   // In GC mode, honor objc_precise_lifetime.
1281   if (getLangOpts().getGC() != LangOptions::NonGC &&
1282       D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1283     EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1284   }
1285 
1286   // Handle the cleanup attribute.
1287   if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1288     const FunctionDecl *FD = CA->getFunctionDecl();
1289 
1290     llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1291     assert(F && "Could not find function!");
1292 
1293     const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1294     EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1295   }
1296 
1297   // If this is a block variable, call _Block_object_destroy
1298   // (on the unforwarded address).
1299   if (emission.IsByRef)
1300     enterByrefCleanup(emission);
1301 }
1302 
1303 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1304 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1305   switch (kind) {
1306   case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1307   case QualType::DK_cxx_destructor:
1308     return destroyCXXObject;
1309   case QualType::DK_objc_strong_lifetime:
1310     return destroyARCStrongPrecise;
1311   case QualType::DK_objc_weak_lifetime:
1312     return destroyARCWeak;
1313   }
1314   llvm_unreachable("Unknown DestructionKind");
1315 }
1316 
1317 /// pushEHDestroy - Push the standard destructor for the given type as
1318 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1319 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1320                                   llvm::Value *addr, QualType type) {
1321   assert(dtorKind && "cannot push destructor for trivial type");
1322   assert(needsEHCleanup(dtorKind));
1323 
1324   pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1325 }
1326 
1327 /// pushDestroy - Push the standard destructor for the given type as
1328 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1329 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1330                                   llvm::Value *addr, QualType type) {
1331   assert(dtorKind && "cannot push destructor for trivial type");
1332 
1333   CleanupKind cleanupKind = getCleanupKind(dtorKind);
1334   pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1335               cleanupKind & EHCleanup);
1336 }
1337 
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1338 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1339                                   QualType type, Destroyer *destroyer,
1340                                   bool useEHCleanupForArray) {
1341   pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1342                                      destroyer, useEHCleanupForArray);
1343 }
1344 
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1345 void CodeGenFunction::pushLifetimeExtendedDestroy(
1346     CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1347     Destroyer *destroyer, bool useEHCleanupForArray) {
1348   assert(!isInConditionalBranch() &&
1349          "performing lifetime extension from within conditional");
1350 
1351   // Push an EH-only cleanup for the object now.
1352   // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1353   // around in case a temporary's destructor throws an exception.
1354   if (cleanupKind & EHCleanup)
1355     EHStack.pushCleanup<DestroyObject>(
1356         static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1357         destroyer, useEHCleanupForArray);
1358 
1359   // Remember that we need to push a full cleanup for the object at the
1360   // end of the full-expression.
1361   pushCleanupAfterFullExpr<DestroyObject>(
1362       cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1363 }
1364 
1365 /// emitDestroy - Immediately perform the destruction of the given
1366 /// object.
1367 ///
1368 /// \param addr - the address of the object; a type*
1369 /// \param type - the type of the object; if an array type, all
1370 ///   objects are destroyed in reverse order
1371 /// \param destroyer - the function to call to destroy individual
1372 ///   elements
1373 /// \param useEHCleanupForArray - whether an EH cleanup should be
1374 ///   used when destroying array elements, in case one of the
1375 ///   destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1376 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1377                                   Destroyer *destroyer,
1378                                   bool useEHCleanupForArray) {
1379   const ArrayType *arrayType = getContext().getAsArrayType(type);
1380   if (!arrayType)
1381     return destroyer(*this, addr, type);
1382 
1383   llvm::Value *begin = addr;
1384   llvm::Value *length = emitArrayLength(arrayType, type, begin);
1385 
1386   // Normally we have to check whether the array is zero-length.
1387   bool checkZeroLength = true;
1388 
1389   // But if the array length is constant, we can suppress that.
1390   if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1391     // ...and if it's constant zero, we can just skip the entire thing.
1392     if (constLength->isZero()) return;
1393     checkZeroLength = false;
1394   }
1395 
1396   llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1397   emitArrayDestroy(begin, end, type, destroyer,
1398                    checkZeroLength, useEHCleanupForArray);
1399 }
1400 
1401 /// emitArrayDestroy - Destroys all the elements of the given array,
1402 /// beginning from last to first.  The array cannot be zero-length.
1403 ///
1404 /// \param begin - a type* denoting the first element of the array
1405 /// \param end - a type* denoting one past the end of the array
1406 /// \param type - the element type of the array
1407 /// \param destroyer - the function to call to destroy elements
1408 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1409 ///   the remaining elements in case the destruction of a single
1410 ///   element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1411 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1412                                        llvm::Value *end,
1413                                        QualType type,
1414                                        Destroyer *destroyer,
1415                                        bool checkZeroLength,
1416                                        bool useEHCleanup) {
1417   assert(!type->isArrayType());
1418 
1419   // The basic structure here is a do-while loop, because we don't
1420   // need to check for the zero-element case.
1421   llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1422   llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1423 
1424   if (checkZeroLength) {
1425     llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1426                                                 "arraydestroy.isempty");
1427     Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1428   }
1429 
1430   // Enter the loop body, making that address the current address.
1431   llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1432   EmitBlock(bodyBB);
1433   llvm::PHINode *elementPast =
1434     Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1435   elementPast->addIncoming(end, entryBB);
1436 
1437   // Shift the address back by one element.
1438   llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1439   llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1440                                                    "arraydestroy.element");
1441 
1442   if (useEHCleanup)
1443     pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1444 
1445   // Perform the actual destruction there.
1446   destroyer(*this, element, type);
1447 
1448   if (useEHCleanup)
1449     PopCleanupBlock();
1450 
1451   // Check whether we've reached the end.
1452   llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1453   Builder.CreateCondBr(done, doneBB, bodyBB);
1454   elementPast->addIncoming(element, Builder.GetInsertBlock());
1455 
1456   // Done.
1457   EmitBlock(doneBB);
1458 }
1459 
1460 /// Perform partial array destruction as if in an EH cleanup.  Unlike
1461 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1462 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1463                                     llvm::Value *begin, llvm::Value *end,
1464                                     QualType type,
1465                                     CodeGenFunction::Destroyer *destroyer) {
1466   // If the element type is itself an array, drill down.
1467   unsigned arrayDepth = 0;
1468   while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1469     // VLAs don't require a GEP index to walk into.
1470     if (!isa<VariableArrayType>(arrayType))
1471       arrayDepth++;
1472     type = arrayType->getElementType();
1473   }
1474 
1475   if (arrayDepth) {
1476     llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1477 
1478     SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1479     begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1480     end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1481   }
1482 
1483   // Destroy the array.  We don't ever need an EH cleanup because we
1484   // assume that we're in an EH cleanup ourselves, so a throwing
1485   // destructor causes an immediate terminate.
1486   CGF.emitArrayDestroy(begin, end, type, destroyer,
1487                        /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1488 }
1489 
1490 namespace {
1491   /// RegularPartialArrayDestroy - a cleanup which performs a partial
1492   /// array destroy where the end pointer is regularly determined and
1493   /// does not need to be loaded from a local.
1494   class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1495     llvm::Value *ArrayBegin;
1496     llvm::Value *ArrayEnd;
1497     QualType ElementType;
1498     CodeGenFunction::Destroyer *Destroyer;
1499   public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1500     RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1501                                QualType elementType,
1502                                CodeGenFunction::Destroyer *destroyer)
1503       : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1504         ElementType(elementType), Destroyer(destroyer) {}
1505 
Emit(CodeGenFunction & CGF,Flags flags)1506     void Emit(CodeGenFunction &CGF, Flags flags) {
1507       emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1508                               ElementType, Destroyer);
1509     }
1510   };
1511 
1512   /// IrregularPartialArrayDestroy - a cleanup which performs a
1513   /// partial array destroy where the end pointer is irregularly
1514   /// determined and must be loaded from a local.
1515   class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1516     llvm::Value *ArrayBegin;
1517     llvm::Value *ArrayEndPointer;
1518     QualType ElementType;
1519     CodeGenFunction::Destroyer *Destroyer;
1520   public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1521     IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1522                                  llvm::Value *arrayEndPointer,
1523                                  QualType elementType,
1524                                  CodeGenFunction::Destroyer *destroyer)
1525       : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1526         ElementType(elementType), Destroyer(destroyer) {}
1527 
Emit(CodeGenFunction & CGF,Flags flags)1528     void Emit(CodeGenFunction &CGF, Flags flags) {
1529       llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1530       emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1531                               ElementType, Destroyer);
1532     }
1533   };
1534 }
1535 
1536 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1537 /// already-constructed elements of the given array.  The cleanup
1538 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1539 ///
1540 /// \param elementType - the immediate element type of the array;
1541 ///   possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1542 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1543                                                  llvm::Value *arrayEndPointer,
1544                                                        QualType elementType,
1545                                                        Destroyer *destroyer) {
1546   pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1547                                                     arrayBegin, arrayEndPointer,
1548                                                     elementType, destroyer);
1549 }
1550 
1551 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1552 /// already-constructed elements of the given array.  The cleanup
1553 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1554 ///
1555 /// \param elementType - the immediate element type of the array;
1556 ///   possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1557 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1558                                                      llvm::Value *arrayEnd,
1559                                                      QualType elementType,
1560                                                      Destroyer *destroyer) {
1561   pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1562                                                   arrayBegin, arrayEnd,
1563                                                   elementType, destroyer);
1564 }
1565 
1566 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()1567 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1568   if (LifetimeStartFn) return LifetimeStartFn;
1569   LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1570                                             llvm::Intrinsic::lifetime_start);
1571   return LifetimeStartFn;
1572 }
1573 
1574 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()1575 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1576   if (LifetimeEndFn) return LifetimeEndFn;
1577   LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1578                                               llvm::Intrinsic::lifetime_end);
1579   return LifetimeEndFn;
1580 }
1581 
1582 namespace {
1583   /// A cleanup to perform a release of an object at the end of a
1584   /// function.  This is used to balance out the incoming +1 of a
1585   /// ns_consumed argument when we can't reasonably do that just by
1586   /// not doing the initial retain for a __block argument.
1587   struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anon195e60cc0311::ConsumeARCParameter1588     ConsumeARCParameter(llvm::Value *param,
1589                         ARCPreciseLifetime_t precise)
1590       : Param(param), Precise(precise) {}
1591 
1592     llvm::Value *Param;
1593     ARCPreciseLifetime_t Precise;
1594 
Emit__anon195e60cc0311::ConsumeARCParameter1595     void Emit(CodeGenFunction &CGF, Flags flags) {
1596       CGF.EmitARCRelease(Param, Precise);
1597     }
1598   };
1599 }
1600 
1601 /// Emit an alloca (or GlobalValue depending on target)
1602 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,unsigned ArgNo)1603 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1604                                    unsigned ArgNo) {
1605   // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1606   assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1607          "Invalid argument to EmitParmDecl");
1608 
1609   Arg->setName(D.getName());
1610 
1611   QualType Ty = D.getType();
1612 
1613   // Use better IR generation for certain implicit parameters.
1614   if (isa<ImplicitParamDecl>(D)) {
1615     // The only implicit argument a block has is its literal.
1616     if (BlockInfo) {
1617       LocalDeclMap[&D] = Arg;
1618       llvm::Value *LocalAddr = 0;
1619       if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1620         // Allocate a stack slot to let the debug info survive the RA.
1621         llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1622                                                    D.getName() + ".addr");
1623         Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1624         LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1625         EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1626         LocalAddr = Builder.CreateLoad(Alloc);
1627       }
1628 
1629       if (CGDebugInfo *DI = getDebugInfo()) {
1630         if (CGM.getCodeGenOpts().getDebugInfo()
1631               >= CodeGenOptions::LimitedDebugInfo) {
1632           DI->setLocation(D.getLocation());
1633           DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1634         }
1635       }
1636 
1637       return;
1638     }
1639   }
1640 
1641   llvm::Value *DeclPtr;
1642   bool HasNonScalarEvalKind = !CodeGenFunction::hasScalarEvaluationKind(Ty);
1643   // If this is an aggregate or variable sized value, reuse the input pointer.
1644   if (HasNonScalarEvalKind || !Ty->isConstantSizeType()) {
1645     DeclPtr = Arg;
1646     // Push a destructor cleanup for this parameter if the ABI requires it.
1647     if (HasNonScalarEvalKind &&
1648         getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
1649       if (const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl()) {
1650         if (RD->hasNonTrivialDestructor())
1651           pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1652       }
1653     }
1654   } else {
1655     // Otherwise, create a temporary to hold the value.
1656     llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1657                                                D.getName() + ".addr");
1658     CharUnits Align = getContext().getDeclAlign(&D);
1659     Alloc->setAlignment(Align.getQuantity());
1660     DeclPtr = Alloc;
1661 
1662     bool doStore = true;
1663 
1664     Qualifiers qs = Ty.getQualifiers();
1665     LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1666     if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1667       // We honor __attribute__((ns_consumed)) for types with lifetime.
1668       // For __strong, it's handled by just skipping the initial retain;
1669       // otherwise we have to balance out the initial +1 with an extra
1670       // cleanup to do the release at the end of the function.
1671       bool isConsumed = D.hasAttr<NSConsumedAttr>();
1672 
1673       // 'self' is always formally __strong, but if this is not an
1674       // init method then we don't want to retain it.
1675       if (D.isARCPseudoStrong()) {
1676         const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1677         assert(&D == method->getSelfDecl());
1678         assert(lt == Qualifiers::OCL_Strong);
1679         assert(qs.hasConst());
1680         assert(method->getMethodFamily() != OMF_init);
1681         (void) method;
1682         lt = Qualifiers::OCL_ExplicitNone;
1683       }
1684 
1685       if (lt == Qualifiers::OCL_Strong) {
1686         if (!isConsumed) {
1687           if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1688             // use objc_storeStrong(&dest, value) for retaining the
1689             // object. But first, store a null into 'dest' because
1690             // objc_storeStrong attempts to release its old value.
1691             llvm::Value * Null = CGM.EmitNullConstant(D.getType());
1692             EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1693             EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1694             doStore = false;
1695           }
1696           else
1697           // Don't use objc_retainBlock for block pointers, because we
1698           // don't want to Block_copy something just because we got it
1699           // as a parameter.
1700             Arg = EmitARCRetainNonBlock(Arg);
1701         }
1702       } else {
1703         // Push the cleanup for a consumed parameter.
1704         if (isConsumed) {
1705           ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1706                                 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1707           EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1708                                                    precise);
1709         }
1710 
1711         if (lt == Qualifiers::OCL_Weak) {
1712           EmitARCInitWeak(DeclPtr, Arg);
1713           doStore = false; // The weak init is a store, no need to do two.
1714         }
1715       }
1716 
1717       // Enter the cleanup scope.
1718       EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1719     }
1720 
1721     // Store the initial value into the alloca.
1722     if (doStore)
1723       EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1724   }
1725 
1726   llvm::Value *&DMEntry = LocalDeclMap[&D];
1727   assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1728   DMEntry = DeclPtr;
1729 
1730   // Emit debug info for param declaration.
1731   if (CGDebugInfo *DI = getDebugInfo()) {
1732     if (CGM.getCodeGenOpts().getDebugInfo()
1733           >= CodeGenOptions::LimitedDebugInfo) {
1734       DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1735     }
1736   }
1737 
1738   if (D.hasAttr<AnnotateAttr>())
1739       EmitVarAnnotations(&D, DeclPtr);
1740 }
1741