1 //===--- CGDecl.cpp - Emit LLVM Code for declarations ---------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Decl nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CGOpenCLRuntime.h"
17 #include "CodeGenModule.h"
18 #include "clang/AST/ASTContext.h"
19 #include "clang/AST/CharUnits.h"
20 #include "clang/AST/Decl.h"
21 #include "clang/AST/DeclObjC.h"
22 #include "clang/Basic/SourceManager.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/DataLayout.h"
26 #include "llvm/IR/GlobalVariable.h"
27 #include "llvm/IR/Intrinsics.h"
28 #include "llvm/IR/Type.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32
EmitDecl(const Decl & D)33 void CodeGenFunction::EmitDecl(const Decl &D) {
34 switch (D.getKind()) {
35 case Decl::TranslationUnit:
36 case Decl::Namespace:
37 case Decl::UnresolvedUsingTypename:
38 case Decl::ClassTemplateSpecialization:
39 case Decl::ClassTemplatePartialSpecialization:
40 case Decl::VarTemplateSpecialization:
41 case Decl::VarTemplatePartialSpecialization:
42 case Decl::TemplateTypeParm:
43 case Decl::UnresolvedUsingValue:
44 case Decl::NonTypeTemplateParm:
45 case Decl::CXXMethod:
46 case Decl::CXXConstructor:
47 case Decl::CXXDestructor:
48 case Decl::CXXConversion:
49 case Decl::Field:
50 case Decl::MSProperty:
51 case Decl::IndirectField:
52 case Decl::ObjCIvar:
53 case Decl::ObjCAtDefsField:
54 case Decl::ParmVar:
55 case Decl::ImplicitParam:
56 case Decl::ClassTemplate:
57 case Decl::VarTemplate:
58 case Decl::FunctionTemplate:
59 case Decl::TypeAliasTemplate:
60 case Decl::TemplateTemplateParm:
61 case Decl::ObjCMethod:
62 case Decl::ObjCCategory:
63 case Decl::ObjCProtocol:
64 case Decl::ObjCInterface:
65 case Decl::ObjCCategoryImpl:
66 case Decl::ObjCImplementation:
67 case Decl::ObjCProperty:
68 case Decl::ObjCCompatibleAlias:
69 case Decl::AccessSpec:
70 case Decl::LinkageSpec:
71 case Decl::ObjCPropertyImpl:
72 case Decl::FileScopeAsm:
73 case Decl::Friend:
74 case Decl::FriendTemplate:
75 case Decl::Block:
76 case Decl::Captured:
77 case Decl::ClassScopeFunctionSpecialization:
78 case Decl::UsingShadow:
79 llvm_unreachable("Declaration should not be in declstmts!");
80 case Decl::Function: // void X();
81 case Decl::Record: // struct/union/class X;
82 case Decl::Enum: // enum X;
83 case Decl::EnumConstant: // enum ? { X = ? }
84 case Decl::CXXRecord: // struct/union/class X; [C++]
85 case Decl::StaticAssert: // static_assert(X, ""); [C++0x]
86 case Decl::Label: // __label__ x;
87 case Decl::Import:
88 case Decl::OMPThreadPrivate:
89 case Decl::Empty:
90 // None of these decls require codegen support.
91 return;
92
93 case Decl::NamespaceAlias:
94 if (CGDebugInfo *DI = getDebugInfo())
95 DI->EmitNamespaceAlias(cast<NamespaceAliasDecl>(D));
96 return;
97 case Decl::Using: // using X; [C++]
98 if (CGDebugInfo *DI = getDebugInfo())
99 DI->EmitUsingDecl(cast<UsingDecl>(D));
100 return;
101 case Decl::UsingDirective: // using namespace X; [C++]
102 if (CGDebugInfo *DI = getDebugInfo())
103 DI->EmitUsingDirective(cast<UsingDirectiveDecl>(D));
104 return;
105 case Decl::Var: {
106 const VarDecl &VD = cast<VarDecl>(D);
107 assert(VD.isLocalVarDecl() &&
108 "Should not see file-scope variables inside a function!");
109 return EmitVarDecl(VD);
110 }
111
112 case Decl::Typedef: // typedef int X;
113 case Decl::TypeAlias: { // using X = int; [C++0x]
114 const TypedefNameDecl &TD = cast<TypedefNameDecl>(D);
115 QualType Ty = TD.getUnderlyingType();
116
117 if (Ty->isVariablyModifiedType())
118 EmitVariablyModifiedType(Ty);
119 }
120 }
121 }
122
123 /// EmitVarDecl - This method handles emission of any variable declaration
124 /// inside a function, including static vars etc.
EmitVarDecl(const VarDecl & D)125 void CodeGenFunction::EmitVarDecl(const VarDecl &D) {
126 if (D.isStaticLocal()) {
127 llvm::GlobalValue::LinkageTypes Linkage =
128 llvm::GlobalValue::InternalLinkage;
129
130 // If the variable is externally visible, it must have weak linkage so it
131 // can be uniqued.
132 if (D.isExternallyVisible()) {
133 Linkage = llvm::GlobalValue::LinkOnceODRLinkage;
134
135 // FIXME: We need to force the emission/use of a guard variable for
136 // some variables even if we can constant-evaluate them because
137 // we can't guarantee every translation unit will constant-evaluate them.
138 }
139
140 return EmitStaticVarDecl(D, Linkage);
141 }
142
143 if (D.hasExternalStorage())
144 // Don't emit it now, allow it to be emitted lazily on its first use.
145 return;
146
147 if (D.getStorageClass() == SC_OpenCLWorkGroupLocal)
148 return CGM.getOpenCLRuntime().EmitWorkGroupLocalVarDecl(*this, D);
149
150 assert(D.hasLocalStorage());
151 return EmitAutoVarDecl(D);
152 }
153
GetStaticDeclName(CodeGenFunction & CGF,const VarDecl & D,const char * Separator)154 static std::string GetStaticDeclName(CodeGenFunction &CGF, const VarDecl &D,
155 const char *Separator) {
156 CodeGenModule &CGM = CGF.CGM;
157 if (CGF.getLangOpts().CPlusPlus) {
158 StringRef Name = CGM.getMangledName(&D);
159 return Name.str();
160 }
161
162 std::string ContextName;
163 if (!CGF.CurFuncDecl) {
164 // Better be in a block declared in global scope.
165 const NamedDecl *ND = cast<NamedDecl>(&D);
166 const DeclContext *DC = ND->getDeclContext();
167 if (const BlockDecl *BD = dyn_cast<BlockDecl>(DC)) {
168 MangleBuffer Name;
169 CGM.getBlockMangledName(GlobalDecl(), Name, BD);
170 ContextName = Name.getString();
171 }
172 else
173 llvm_unreachable("Unknown context for block static var decl");
174 } else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(CGF.CurFuncDecl)) {
175 StringRef Name = CGM.getMangledName(FD);
176 ContextName = Name.str();
177 } else if (isa<ObjCMethodDecl>(CGF.CurFuncDecl))
178 ContextName = CGF.CurFn->getName();
179 else
180 llvm_unreachable("Unknown context for static var decl");
181
182 return ContextName + Separator + D.getNameAsString();
183 }
184
185 llvm::GlobalVariable *
CreateStaticVarDecl(const VarDecl & D,const char * Separator,llvm::GlobalValue::LinkageTypes Linkage)186 CodeGenFunction::CreateStaticVarDecl(const VarDecl &D,
187 const char *Separator,
188 llvm::GlobalValue::LinkageTypes Linkage) {
189 QualType Ty = D.getType();
190 assert(Ty->isConstantSizeType() && "VLAs can't be static");
191
192 // Use the label if the variable is renamed with the asm-label extension.
193 std::string Name;
194 if (D.hasAttr<AsmLabelAttr>())
195 Name = CGM.getMangledName(&D);
196 else
197 Name = GetStaticDeclName(*this, D, Separator);
198
199 llvm::Type *LTy = CGM.getTypes().ConvertTypeForMem(Ty);
200 unsigned AddrSpace =
201 CGM.GetGlobalVarAddressSpace(&D, CGM.getContext().getTargetAddressSpace(Ty));
202 llvm::GlobalVariable *GV =
203 new llvm::GlobalVariable(CGM.getModule(), LTy,
204 Ty.isConstant(getContext()), Linkage,
205 CGM.EmitNullConstant(D.getType()), Name, 0,
206 llvm::GlobalVariable::NotThreadLocal,
207 AddrSpace);
208 GV->setAlignment(getContext().getDeclAlign(&D).getQuantity());
209 CGM.setGlobalVisibility(GV, &D);
210
211 if (D.getTLSKind())
212 CGM.setTLSMode(GV, D);
213
214 return GV;
215 }
216
217 /// hasNontrivialDestruction - Determine whether a type's destruction is
218 /// non-trivial. If so, and the variable uses static initialization, we must
219 /// register its destructor to run on exit.
hasNontrivialDestruction(QualType T)220 static bool hasNontrivialDestruction(QualType T) {
221 CXXRecordDecl *RD = T->getBaseElementTypeUnsafe()->getAsCXXRecordDecl();
222 return RD && !RD->hasTrivialDestructor();
223 }
224
225 /// AddInitializerToStaticVarDecl - Add the initializer for 'D' to the
226 /// global variable that has already been created for it. If the initializer
227 /// has a different type than GV does, this may free GV and return a different
228 /// one. Otherwise it just returns GV.
229 llvm::GlobalVariable *
AddInitializerToStaticVarDecl(const VarDecl & D,llvm::GlobalVariable * GV)230 CodeGenFunction::AddInitializerToStaticVarDecl(const VarDecl &D,
231 llvm::GlobalVariable *GV) {
232 llvm::Constant *Init = CGM.EmitConstantInit(D, this);
233
234 // If constant emission failed, then this should be a C++ static
235 // initializer.
236 if (!Init) {
237 if (!getLangOpts().CPlusPlus)
238 CGM.ErrorUnsupported(D.getInit(), "constant l-value expression");
239 else if (Builder.GetInsertBlock()) {
240 // Since we have a static initializer, this global variable can't
241 // be constant.
242 GV->setConstant(false);
243
244 EmitCXXGuardedInit(D, GV, /*PerformInit*/true);
245 }
246 return GV;
247 }
248
249 // The initializer may differ in type from the global. Rewrite
250 // the global to match the initializer. (We have to do this
251 // because some types, like unions, can't be completely represented
252 // in the LLVM type system.)
253 if (GV->getType()->getElementType() != Init->getType()) {
254 llvm::GlobalVariable *OldGV = GV;
255
256 GV = new llvm::GlobalVariable(CGM.getModule(), Init->getType(),
257 OldGV->isConstant(),
258 OldGV->getLinkage(), Init, "",
259 /*InsertBefore*/ OldGV,
260 OldGV->getThreadLocalMode(),
261 CGM.getContext().getTargetAddressSpace(D.getType()));
262 GV->setVisibility(OldGV->getVisibility());
263
264 // Steal the name of the old global
265 GV->takeName(OldGV);
266
267 // Replace all uses of the old global with the new global
268 llvm::Constant *NewPtrForOldDecl =
269 llvm::ConstantExpr::getBitCast(GV, OldGV->getType());
270 OldGV->replaceAllUsesWith(NewPtrForOldDecl);
271
272 // Erase the old global, since it is no longer used.
273 OldGV->eraseFromParent();
274 }
275
276 GV->setConstant(CGM.isTypeConstant(D.getType(), true));
277 GV->setInitializer(Init);
278
279 if (hasNontrivialDestruction(D.getType())) {
280 // We have a constant initializer, but a nontrivial destructor. We still
281 // need to perform a guarded "initialization" in order to register the
282 // destructor.
283 EmitCXXGuardedInit(D, GV, /*PerformInit*/false);
284 }
285
286 return GV;
287 }
288
EmitStaticVarDecl(const VarDecl & D,llvm::GlobalValue::LinkageTypes Linkage)289 void CodeGenFunction::EmitStaticVarDecl(const VarDecl &D,
290 llvm::GlobalValue::LinkageTypes Linkage) {
291 llvm::Value *&DMEntry = LocalDeclMap[&D];
292 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
293
294 // Check to see if we already have a global variable for this
295 // declaration. This can happen when double-emitting function
296 // bodies, e.g. with complete and base constructors.
297 llvm::Constant *addr =
298 CGM.getStaticLocalDeclAddress(&D);
299
300 llvm::GlobalVariable *var;
301 if (addr) {
302 var = cast<llvm::GlobalVariable>(addr->stripPointerCasts());
303 } else {
304 addr = var = CreateStaticVarDecl(D, ".", Linkage);
305 }
306
307 // Store into LocalDeclMap before generating initializer to handle
308 // circular references.
309 DMEntry = addr;
310 CGM.setStaticLocalDeclAddress(&D, addr);
311
312 // We can't have a VLA here, but we can have a pointer to a VLA,
313 // even though that doesn't really make any sense.
314 // Make sure to evaluate VLA bounds now so that we have them for later.
315 if (D.getType()->isVariablyModifiedType())
316 EmitVariablyModifiedType(D.getType());
317
318 // Save the type in case adding the initializer forces a type change.
319 llvm::Type *expectedType = addr->getType();
320
321 // If this value has an initializer, emit it.
322 if (D.getInit())
323 var = AddInitializerToStaticVarDecl(D, var);
324
325 var->setAlignment(getContext().getDeclAlign(&D).getQuantity());
326
327 if (D.hasAttr<AnnotateAttr>())
328 CGM.AddGlobalAnnotations(&D, var);
329
330 if (const SectionAttr *SA = D.getAttr<SectionAttr>())
331 var->setSection(SA->getName());
332
333 if (D.hasAttr<UsedAttr>())
334 CGM.AddUsedGlobal(var);
335
336 // We may have to cast the constant because of the initializer
337 // mismatch above.
338 //
339 // FIXME: It is really dangerous to store this in the map; if anyone
340 // RAUW's the GV uses of this constant will be invalid.
341 llvm::Constant *castedAddr = llvm::ConstantExpr::getBitCast(var, expectedType);
342 DMEntry = castedAddr;
343 CGM.setStaticLocalDeclAddress(&D, castedAddr);
344
345 // Emit global variable debug descriptor for static vars.
346 CGDebugInfo *DI = getDebugInfo();
347 if (DI &&
348 CGM.getCodeGenOpts().getDebugInfo() >= CodeGenOptions::LimitedDebugInfo) {
349 DI->setLocation(D.getLocation());
350 DI->EmitGlobalVariable(var, &D);
351 }
352 }
353
354 namespace {
355 struct DestroyObject : EHScopeStack::Cleanup {
DestroyObject__anon195e60cc0111::DestroyObject356 DestroyObject(llvm::Value *addr, QualType type,
357 CodeGenFunction::Destroyer *destroyer,
358 bool useEHCleanupForArray)
359 : addr(addr), type(type), destroyer(destroyer),
360 useEHCleanupForArray(useEHCleanupForArray) {}
361
362 llvm::Value *addr;
363 QualType type;
364 CodeGenFunction::Destroyer *destroyer;
365 bool useEHCleanupForArray;
366
Emit__anon195e60cc0111::DestroyObject367 void Emit(CodeGenFunction &CGF, Flags flags) {
368 // Don't use an EH cleanup recursively from an EH cleanup.
369 bool useEHCleanupForArray =
370 flags.isForNormalCleanup() && this->useEHCleanupForArray;
371
372 CGF.emitDestroy(addr, type, destroyer, useEHCleanupForArray);
373 }
374 };
375
376 struct DestroyNRVOVariable : EHScopeStack::Cleanup {
DestroyNRVOVariable__anon195e60cc0111::DestroyNRVOVariable377 DestroyNRVOVariable(llvm::Value *addr,
378 const CXXDestructorDecl *Dtor,
379 llvm::Value *NRVOFlag)
380 : Dtor(Dtor), NRVOFlag(NRVOFlag), Loc(addr) {}
381
382 const CXXDestructorDecl *Dtor;
383 llvm::Value *NRVOFlag;
384 llvm::Value *Loc;
385
Emit__anon195e60cc0111::DestroyNRVOVariable386 void Emit(CodeGenFunction &CGF, Flags flags) {
387 // Along the exceptions path we always execute the dtor.
388 bool NRVO = flags.isForNormalCleanup() && NRVOFlag;
389
390 llvm::BasicBlock *SkipDtorBB = 0;
391 if (NRVO) {
392 // If we exited via NRVO, we skip the destructor call.
393 llvm::BasicBlock *RunDtorBB = CGF.createBasicBlock("nrvo.unused");
394 SkipDtorBB = CGF.createBasicBlock("nrvo.skipdtor");
395 llvm::Value *DidNRVO = CGF.Builder.CreateLoad(NRVOFlag, "nrvo.val");
396 CGF.Builder.CreateCondBr(DidNRVO, SkipDtorBB, RunDtorBB);
397 CGF.EmitBlock(RunDtorBB);
398 }
399
400 CGF.EmitCXXDestructorCall(Dtor, Dtor_Complete,
401 /*ForVirtualBase=*/false,
402 /*Delegating=*/false,
403 Loc);
404
405 if (NRVO) CGF.EmitBlock(SkipDtorBB);
406 }
407 };
408
409 struct CallStackRestore : EHScopeStack::Cleanup {
410 llvm::Value *Stack;
CallStackRestore__anon195e60cc0111::CallStackRestore411 CallStackRestore(llvm::Value *Stack) : Stack(Stack) {}
Emit__anon195e60cc0111::CallStackRestore412 void Emit(CodeGenFunction &CGF, Flags flags) {
413 llvm::Value *V = CGF.Builder.CreateLoad(Stack);
414 llvm::Value *F = CGF.CGM.getIntrinsic(llvm::Intrinsic::stackrestore);
415 CGF.Builder.CreateCall(F, V);
416 }
417 };
418
419 struct ExtendGCLifetime : EHScopeStack::Cleanup {
420 const VarDecl &Var;
ExtendGCLifetime__anon195e60cc0111::ExtendGCLifetime421 ExtendGCLifetime(const VarDecl *var) : Var(*var) {}
422
Emit__anon195e60cc0111::ExtendGCLifetime423 void Emit(CodeGenFunction &CGF, Flags flags) {
424 // Compute the address of the local variable, in case it's a
425 // byref or something.
426 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
427 Var.getType(), VK_LValue, SourceLocation());
428 llvm::Value *value = CGF.EmitLoadOfScalar(CGF.EmitDeclRefLValue(&DRE));
429 CGF.EmitExtendGCLifetime(value);
430 }
431 };
432
433 struct CallCleanupFunction : EHScopeStack::Cleanup {
434 llvm::Constant *CleanupFn;
435 const CGFunctionInfo &FnInfo;
436 const VarDecl &Var;
437
CallCleanupFunction__anon195e60cc0111::CallCleanupFunction438 CallCleanupFunction(llvm::Constant *CleanupFn, const CGFunctionInfo *Info,
439 const VarDecl *Var)
440 : CleanupFn(CleanupFn), FnInfo(*Info), Var(*Var) {}
441
Emit__anon195e60cc0111::CallCleanupFunction442 void Emit(CodeGenFunction &CGF, Flags flags) {
443 DeclRefExpr DRE(const_cast<VarDecl*>(&Var), false,
444 Var.getType(), VK_LValue, SourceLocation());
445 // Compute the address of the local variable, in case it's a byref
446 // or something.
447 llvm::Value *Addr = CGF.EmitDeclRefLValue(&DRE).getAddress();
448
449 // In some cases, the type of the function argument will be different from
450 // the type of the pointer. An example of this is
451 // void f(void* arg);
452 // __attribute__((cleanup(f))) void *g;
453 //
454 // To fix this we insert a bitcast here.
455 QualType ArgTy = FnInfo.arg_begin()->type;
456 llvm::Value *Arg =
457 CGF.Builder.CreateBitCast(Addr, CGF.ConvertType(ArgTy));
458
459 CallArgList Args;
460 Args.add(RValue::get(Arg),
461 CGF.getContext().getPointerType(Var.getType()));
462 CGF.EmitCall(FnInfo, CleanupFn, ReturnValueSlot(), Args);
463 }
464 };
465
466 /// A cleanup to call @llvm.lifetime.end.
467 class CallLifetimeEnd : public EHScopeStack::Cleanup {
468 llvm::Value *Addr;
469 llvm::Value *Size;
470 public:
CallLifetimeEnd(llvm::Value * addr,llvm::Value * size)471 CallLifetimeEnd(llvm::Value *addr, llvm::Value *size)
472 : Addr(addr), Size(size) {}
473
Emit(CodeGenFunction & CGF,Flags flags)474 void Emit(CodeGenFunction &CGF, Flags flags) {
475 llvm::Value *castAddr = CGF.Builder.CreateBitCast(Addr, CGF.Int8PtrTy);
476 CGF.Builder.CreateCall2(CGF.CGM.getLLVMLifetimeEndFn(),
477 Size, castAddr)
478 ->setDoesNotThrow();
479 }
480 };
481 }
482
483 /// EmitAutoVarWithLifetime - Does the setup required for an automatic
484 /// variable with lifetime.
EmitAutoVarWithLifetime(CodeGenFunction & CGF,const VarDecl & var,llvm::Value * addr,Qualifiers::ObjCLifetime lifetime)485 static void EmitAutoVarWithLifetime(CodeGenFunction &CGF, const VarDecl &var,
486 llvm::Value *addr,
487 Qualifiers::ObjCLifetime lifetime) {
488 switch (lifetime) {
489 case Qualifiers::OCL_None:
490 llvm_unreachable("present but none");
491
492 case Qualifiers::OCL_ExplicitNone:
493 // nothing to do
494 break;
495
496 case Qualifiers::OCL_Strong: {
497 CodeGenFunction::Destroyer *destroyer =
498 (var.hasAttr<ObjCPreciseLifetimeAttr>()
499 ? CodeGenFunction::destroyARCStrongPrecise
500 : CodeGenFunction::destroyARCStrongImprecise);
501
502 CleanupKind cleanupKind = CGF.getARCCleanupKind();
503 CGF.pushDestroy(cleanupKind, addr, var.getType(), destroyer,
504 cleanupKind & EHCleanup);
505 break;
506 }
507 case Qualifiers::OCL_Autoreleasing:
508 // nothing to do
509 break;
510
511 case Qualifiers::OCL_Weak:
512 // __weak objects always get EH cleanups; otherwise, exceptions
513 // could cause really nasty crashes instead of mere leaks.
514 CGF.pushDestroy(NormalAndEHCleanup, addr, var.getType(),
515 CodeGenFunction::destroyARCWeak,
516 /*useEHCleanup*/ true);
517 break;
518 }
519 }
520
isAccessedBy(const VarDecl & var,const Stmt * s)521 static bool isAccessedBy(const VarDecl &var, const Stmt *s) {
522 if (const Expr *e = dyn_cast<Expr>(s)) {
523 // Skip the most common kinds of expressions that make
524 // hierarchy-walking expensive.
525 s = e = e->IgnoreParenCasts();
526
527 if (const DeclRefExpr *ref = dyn_cast<DeclRefExpr>(e))
528 return (ref->getDecl() == &var);
529 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
530 const BlockDecl *block = be->getBlockDecl();
531 for (BlockDecl::capture_const_iterator i = block->capture_begin(),
532 e = block->capture_end(); i != e; ++i) {
533 if (i->getVariable() == &var)
534 return true;
535 }
536 }
537 }
538
539 for (Stmt::const_child_range children = s->children(); children; ++children)
540 // children might be null; as in missing decl or conditional of an if-stmt.
541 if ((*children) && isAccessedBy(var, *children))
542 return true;
543
544 return false;
545 }
546
isAccessedBy(const ValueDecl * decl,const Expr * e)547 static bool isAccessedBy(const ValueDecl *decl, const Expr *e) {
548 if (!decl) return false;
549 if (!isa<VarDecl>(decl)) return false;
550 const VarDecl *var = cast<VarDecl>(decl);
551 return isAccessedBy(*var, e);
552 }
553
drillIntoBlockVariable(CodeGenFunction & CGF,LValue & lvalue,const VarDecl * var)554 static void drillIntoBlockVariable(CodeGenFunction &CGF,
555 LValue &lvalue,
556 const VarDecl *var) {
557 lvalue.setAddress(CGF.BuildBlockByrefAddress(lvalue.getAddress(), var));
558 }
559
EmitScalarInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)560 void CodeGenFunction::EmitScalarInit(const Expr *init,
561 const ValueDecl *D,
562 LValue lvalue,
563 bool capturedByInit) {
564 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
565 if (!lifetime) {
566 llvm::Value *value = EmitScalarExpr(init);
567 if (capturedByInit)
568 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
569 EmitStoreThroughLValue(RValue::get(value), lvalue, true);
570 return;
571 }
572
573 // If we're emitting a value with lifetime, we have to do the
574 // initialization *before* we leave the cleanup scopes.
575 if (const ExprWithCleanups *ewc = dyn_cast<ExprWithCleanups>(init)) {
576 enterFullExpression(ewc);
577 init = ewc->getSubExpr();
578 }
579 CodeGenFunction::RunCleanupsScope Scope(*this);
580
581 // We have to maintain the illusion that the variable is
582 // zero-initialized. If the variable might be accessed in its
583 // initializer, zero-initialize before running the initializer, then
584 // actually perform the initialization with an assign.
585 bool accessedByInit = false;
586 if (lifetime != Qualifiers::OCL_ExplicitNone)
587 accessedByInit = (capturedByInit || isAccessedBy(D, init));
588 if (accessedByInit) {
589 LValue tempLV = lvalue;
590 // Drill down to the __block object if necessary.
591 if (capturedByInit) {
592 // We can use a simple GEP for this because it can't have been
593 // moved yet.
594 tempLV.setAddress(Builder.CreateStructGEP(tempLV.getAddress(),
595 getByRefValueLLVMField(cast<VarDecl>(D))));
596 }
597
598 llvm::PointerType *ty
599 = cast<llvm::PointerType>(tempLV.getAddress()->getType());
600 ty = cast<llvm::PointerType>(ty->getElementType());
601
602 llvm::Value *zero = llvm::ConstantPointerNull::get(ty);
603
604 // If __weak, we want to use a barrier under certain conditions.
605 if (lifetime == Qualifiers::OCL_Weak)
606 EmitARCInitWeak(tempLV.getAddress(), zero);
607
608 // Otherwise just do a simple store.
609 else
610 EmitStoreOfScalar(zero, tempLV, /* isInitialization */ true);
611 }
612
613 // Emit the initializer.
614 llvm::Value *value = 0;
615
616 switch (lifetime) {
617 case Qualifiers::OCL_None:
618 llvm_unreachable("present but none");
619
620 case Qualifiers::OCL_ExplicitNone:
621 // nothing to do
622 value = EmitScalarExpr(init);
623 break;
624
625 case Qualifiers::OCL_Strong: {
626 value = EmitARCRetainScalarExpr(init);
627 break;
628 }
629
630 case Qualifiers::OCL_Weak: {
631 // No way to optimize a producing initializer into this. It's not
632 // worth optimizing for, because the value will immediately
633 // disappear in the common case.
634 value = EmitScalarExpr(init);
635
636 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
637 if (accessedByInit)
638 EmitARCStoreWeak(lvalue.getAddress(), value, /*ignored*/ true);
639 else
640 EmitARCInitWeak(lvalue.getAddress(), value);
641 return;
642 }
643
644 case Qualifiers::OCL_Autoreleasing:
645 value = EmitARCRetainAutoreleaseScalarExpr(init);
646 break;
647 }
648
649 if (capturedByInit) drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
650
651 // If the variable might have been accessed by its initializer, we
652 // might have to initialize with a barrier. We have to do this for
653 // both __weak and __strong, but __weak got filtered out above.
654 if (accessedByInit && lifetime == Qualifiers::OCL_Strong) {
655 llvm::Value *oldValue = EmitLoadOfScalar(lvalue);
656 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
657 EmitARCRelease(oldValue, ARCImpreciseLifetime);
658 return;
659 }
660
661 EmitStoreOfScalar(value, lvalue, /* isInitialization */ true);
662 }
663
664 /// EmitScalarInit - Initialize the given lvalue with the given object.
EmitScalarInit(llvm::Value * init,LValue lvalue)665 void CodeGenFunction::EmitScalarInit(llvm::Value *init, LValue lvalue) {
666 Qualifiers::ObjCLifetime lifetime = lvalue.getObjCLifetime();
667 if (!lifetime)
668 return EmitStoreThroughLValue(RValue::get(init), lvalue, true);
669
670 switch (lifetime) {
671 case Qualifiers::OCL_None:
672 llvm_unreachable("present but none");
673
674 case Qualifiers::OCL_ExplicitNone:
675 // nothing to do
676 break;
677
678 case Qualifiers::OCL_Strong:
679 init = EmitARCRetain(lvalue.getType(), init);
680 break;
681
682 case Qualifiers::OCL_Weak:
683 // Initialize and then skip the primitive store.
684 EmitARCInitWeak(lvalue.getAddress(), init);
685 return;
686
687 case Qualifiers::OCL_Autoreleasing:
688 init = EmitARCRetainAutorelease(lvalue.getType(), init);
689 break;
690 }
691
692 EmitStoreOfScalar(init, lvalue, /* isInitialization */ true);
693 }
694
695 /// canEmitInitWithFewStoresAfterMemset - Decide whether we can emit the
696 /// non-zero parts of the specified initializer with equal or fewer than
697 /// NumStores scalar stores.
canEmitInitWithFewStoresAfterMemset(llvm::Constant * Init,unsigned & NumStores)698 static bool canEmitInitWithFewStoresAfterMemset(llvm::Constant *Init,
699 unsigned &NumStores) {
700 // Zero and Undef never requires any extra stores.
701 if (isa<llvm::ConstantAggregateZero>(Init) ||
702 isa<llvm::ConstantPointerNull>(Init) ||
703 isa<llvm::UndefValue>(Init))
704 return true;
705 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
706 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
707 isa<llvm::ConstantExpr>(Init))
708 return Init->isNullValue() || NumStores--;
709
710 // See if we can emit each element.
711 if (isa<llvm::ConstantArray>(Init) || isa<llvm::ConstantStruct>(Init)) {
712 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
713 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
714 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
715 return false;
716 }
717 return true;
718 }
719
720 if (llvm::ConstantDataSequential *CDS =
721 dyn_cast<llvm::ConstantDataSequential>(Init)) {
722 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
723 llvm::Constant *Elt = CDS->getElementAsConstant(i);
724 if (!canEmitInitWithFewStoresAfterMemset(Elt, NumStores))
725 return false;
726 }
727 return true;
728 }
729
730 // Anything else is hard and scary.
731 return false;
732 }
733
734 /// emitStoresForInitAfterMemset - For inits that
735 /// canEmitInitWithFewStoresAfterMemset returned true for, emit the scalar
736 /// stores that would be required.
emitStoresForInitAfterMemset(llvm::Constant * Init,llvm::Value * Loc,bool isVolatile,CGBuilderTy & Builder)737 static void emitStoresForInitAfterMemset(llvm::Constant *Init, llvm::Value *Loc,
738 bool isVolatile, CGBuilderTy &Builder) {
739 assert(!Init->isNullValue() && !isa<llvm::UndefValue>(Init) &&
740 "called emitStoresForInitAfterMemset for zero or undef value.");
741
742 if (isa<llvm::ConstantInt>(Init) || isa<llvm::ConstantFP>(Init) ||
743 isa<llvm::ConstantVector>(Init) || isa<llvm::BlockAddress>(Init) ||
744 isa<llvm::ConstantExpr>(Init)) {
745 Builder.CreateStore(Init, Loc, isVolatile);
746 return;
747 }
748
749 if (llvm::ConstantDataSequential *CDS =
750 dyn_cast<llvm::ConstantDataSequential>(Init)) {
751 for (unsigned i = 0, e = CDS->getNumElements(); i != e; ++i) {
752 llvm::Constant *Elt = CDS->getElementAsConstant(i);
753
754 // If necessary, get a pointer to the element and emit it.
755 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
756 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
757 isVolatile, Builder);
758 }
759 return;
760 }
761
762 assert((isa<llvm::ConstantStruct>(Init) || isa<llvm::ConstantArray>(Init)) &&
763 "Unknown value type!");
764
765 for (unsigned i = 0, e = Init->getNumOperands(); i != e; ++i) {
766 llvm::Constant *Elt = cast<llvm::Constant>(Init->getOperand(i));
767
768 // If necessary, get a pointer to the element and emit it.
769 if (!Elt->isNullValue() && !isa<llvm::UndefValue>(Elt))
770 emitStoresForInitAfterMemset(Elt, Builder.CreateConstGEP2_32(Loc, 0, i),
771 isVolatile, Builder);
772 }
773 }
774
775
776 /// shouldUseMemSetPlusStoresToInitialize - Decide whether we should use memset
777 /// plus some stores to initialize a local variable instead of using a memcpy
778 /// from a constant global. It is beneficial to use memset if the global is all
779 /// zeros, or mostly zeros and large.
shouldUseMemSetPlusStoresToInitialize(llvm::Constant * Init,uint64_t GlobalSize)780 static bool shouldUseMemSetPlusStoresToInitialize(llvm::Constant *Init,
781 uint64_t GlobalSize) {
782 // If a global is all zeros, always use a memset.
783 if (isa<llvm::ConstantAggregateZero>(Init)) return true;
784
785 // If a non-zero global is <= 32 bytes, always use a memcpy. If it is large,
786 // do it if it will require 6 or fewer scalar stores.
787 // TODO: Should budget depends on the size? Avoiding a large global warrants
788 // plopping in more stores.
789 unsigned StoreBudget = 6;
790 uint64_t SizeLimit = 32;
791
792 return GlobalSize > SizeLimit &&
793 canEmitInitWithFewStoresAfterMemset(Init, StoreBudget);
794 }
795
796 /// Should we use the LLVM lifetime intrinsics for the given local variable?
shouldUseLifetimeMarkers(CodeGenFunction & CGF,const VarDecl & D,unsigned Size)797 static bool shouldUseLifetimeMarkers(CodeGenFunction &CGF, const VarDecl &D,
798 unsigned Size) {
799 // Always emit lifetime markers in -fsanitize=use-after-scope mode.
800 if (CGF.getLangOpts().Sanitize.UseAfterScope)
801 return true;
802 // For now, only in optimized builds.
803 if (CGF.CGM.getCodeGenOpts().OptimizationLevel == 0)
804 return false;
805
806 // Limit the size of marked objects to 32 bytes. We don't want to increase
807 // compile time by marking tiny objects.
808 unsigned SizeThreshold = 32;
809
810 return Size > SizeThreshold;
811 }
812
813
814 /// EmitAutoVarDecl - Emit code and set up an entry in LocalDeclMap for a
815 /// variable declaration with auto, register, or no storage class specifier.
816 /// These turn into simple stack objects, or GlobalValues depending on target.
EmitAutoVarDecl(const VarDecl & D)817 void CodeGenFunction::EmitAutoVarDecl(const VarDecl &D) {
818 AutoVarEmission emission = EmitAutoVarAlloca(D);
819 EmitAutoVarInit(emission);
820 EmitAutoVarCleanups(emission);
821 }
822
823 /// EmitAutoVarAlloca - Emit the alloca and debug information for a
824 /// local variable. Does not emit initalization or destruction.
825 CodeGenFunction::AutoVarEmission
EmitAutoVarAlloca(const VarDecl & D)826 CodeGenFunction::EmitAutoVarAlloca(const VarDecl &D) {
827 QualType Ty = D.getType();
828
829 AutoVarEmission emission(D);
830
831 bool isByRef = D.hasAttr<BlocksAttr>();
832 emission.IsByRef = isByRef;
833
834 CharUnits alignment = getContext().getDeclAlign(&D);
835 emission.Alignment = alignment;
836
837 // If the type is variably-modified, emit all the VLA sizes for it.
838 if (Ty->isVariablyModifiedType())
839 EmitVariablyModifiedType(Ty);
840
841 llvm::Value *DeclPtr;
842 if (Ty->isConstantSizeType()) {
843 bool NRVO = getLangOpts().ElideConstructors &&
844 D.isNRVOVariable();
845
846 // If this value is an array or struct with a statically determinable
847 // constant initializer, there are optimizations we can do.
848 //
849 // TODO: We should constant-evaluate the initializer of any variable,
850 // as long as it is initialized by a constant expression. Currently,
851 // isConstantInitializer produces wrong answers for structs with
852 // reference or bitfield members, and a few other cases, and checking
853 // for POD-ness protects us from some of these.
854 if (D.getInit() && (Ty->isArrayType() || Ty->isRecordType()) &&
855 (D.isConstexpr() ||
856 ((Ty.isPODType(getContext()) ||
857 getContext().getBaseElementType(Ty)->isObjCObjectPointerType()) &&
858 D.getInit()->isConstantInitializer(getContext(), false)))) {
859
860 // If the variable's a const type, and it's neither an NRVO
861 // candidate nor a __block variable and has no mutable members,
862 // emit it as a global instead.
863 if (CGM.getCodeGenOpts().MergeAllConstants && !NRVO && !isByRef &&
864 CGM.isTypeConstant(Ty, true)) {
865 EmitStaticVarDecl(D, llvm::GlobalValue::InternalLinkage);
866
867 emission.Address = 0; // signal this condition to later callbacks
868 assert(emission.wasEmittedAsGlobal());
869 return emission;
870 }
871
872 // Otherwise, tell the initialization code that we're in this case.
873 emission.IsConstantAggregate = true;
874 }
875
876 // A normal fixed sized variable becomes an alloca in the entry block,
877 // unless it's an NRVO variable.
878 llvm::Type *LTy = ConvertTypeForMem(Ty);
879
880 if (NRVO) {
881 // The named return value optimization: allocate this variable in the
882 // return slot, so that we can elide the copy when returning this
883 // variable (C++0x [class.copy]p34).
884 DeclPtr = ReturnValue;
885
886 if (const RecordType *RecordTy = Ty->getAs<RecordType>()) {
887 if (!cast<CXXRecordDecl>(RecordTy->getDecl())->hasTrivialDestructor()) {
888 // Create a flag that is used to indicate when the NRVO was applied
889 // to this variable. Set it to zero to indicate that NRVO was not
890 // applied.
891 llvm::Value *Zero = Builder.getFalse();
892 llvm::Value *NRVOFlag = CreateTempAlloca(Zero->getType(), "nrvo");
893 EnsureInsertPoint();
894 Builder.CreateStore(Zero, NRVOFlag);
895
896 // Record the NRVO flag for this variable.
897 NRVOFlags[&D] = NRVOFlag;
898 emission.NRVOFlag = NRVOFlag;
899 }
900 }
901 } else {
902 if (isByRef)
903 LTy = BuildByRefType(&D);
904
905 llvm::AllocaInst *Alloc = CreateTempAlloca(LTy);
906 Alloc->setName(D.getName());
907
908 CharUnits allocaAlignment = alignment;
909 if (isByRef)
910 allocaAlignment = std::max(allocaAlignment,
911 getContext().toCharUnitsFromBits(getTarget().getPointerAlign(0)));
912 Alloc->setAlignment(allocaAlignment.getQuantity());
913 DeclPtr = Alloc;
914
915 // Emit a lifetime intrinsic if meaningful. There's no point
916 // in doing this if we don't have a valid insertion point (?).
917 uint64_t size = CGM.getDataLayout().getTypeAllocSize(LTy);
918 if (HaveInsertPoint() && shouldUseLifetimeMarkers(*this, D, size)) {
919 llvm::Value *sizeV = llvm::ConstantInt::get(Int64Ty, size);
920
921 emission.SizeForLifetimeMarkers = sizeV;
922 llvm::Value *castAddr = Builder.CreateBitCast(Alloc, Int8PtrTy);
923 Builder.CreateCall2(CGM.getLLVMLifetimeStartFn(), sizeV, castAddr)
924 ->setDoesNotThrow();
925 } else {
926 assert(!emission.useLifetimeMarkers());
927 }
928 }
929 } else {
930 EnsureInsertPoint();
931
932 if (!DidCallStackSave) {
933 // Save the stack.
934 llvm::Value *Stack = CreateTempAlloca(Int8PtrTy, "saved_stack");
935
936 llvm::Value *F = CGM.getIntrinsic(llvm::Intrinsic::stacksave);
937 llvm::Value *V = Builder.CreateCall(F);
938
939 Builder.CreateStore(V, Stack);
940
941 DidCallStackSave = true;
942
943 // Push a cleanup block and restore the stack there.
944 // FIXME: in general circumstances, this should be an EH cleanup.
945 EHStack.pushCleanup<CallStackRestore>(NormalCleanup, Stack);
946 }
947
948 llvm::Value *elementCount;
949 QualType elementType;
950 llvm::tie(elementCount, elementType) = getVLASize(Ty);
951
952 llvm::Type *llvmTy = ConvertTypeForMem(elementType);
953
954 // Allocate memory for the array.
955 llvm::AllocaInst *vla = Builder.CreateAlloca(llvmTy, elementCount, "vla");
956 vla->setAlignment(alignment.getQuantity());
957
958 DeclPtr = vla;
959 }
960
961 llvm::Value *&DMEntry = LocalDeclMap[&D];
962 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
963 DMEntry = DeclPtr;
964 emission.Address = DeclPtr;
965
966 // Emit debug info for local var declaration.
967 if (HaveInsertPoint())
968 if (CGDebugInfo *DI = getDebugInfo()) {
969 if (CGM.getCodeGenOpts().getDebugInfo()
970 >= CodeGenOptions::LimitedDebugInfo) {
971 DI->setLocation(D.getLocation());
972 DI->EmitDeclareOfAutoVariable(&D, DeclPtr, Builder);
973 }
974 }
975
976 if (D.hasAttr<AnnotateAttr>())
977 EmitVarAnnotations(&D, emission.Address);
978
979 return emission;
980 }
981
982 /// Determines whether the given __block variable is potentially
983 /// captured by the given expression.
isCapturedBy(const VarDecl & var,const Expr * e)984 static bool isCapturedBy(const VarDecl &var, const Expr *e) {
985 // Skip the most common kinds of expressions that make
986 // hierarchy-walking expensive.
987 e = e->IgnoreParenCasts();
988
989 if (const BlockExpr *be = dyn_cast<BlockExpr>(e)) {
990 const BlockDecl *block = be->getBlockDecl();
991 for (BlockDecl::capture_const_iterator i = block->capture_begin(),
992 e = block->capture_end(); i != e; ++i) {
993 if (i->getVariable() == &var)
994 return true;
995 }
996
997 // No need to walk into the subexpressions.
998 return false;
999 }
1000
1001 if (const StmtExpr *SE = dyn_cast<StmtExpr>(e)) {
1002 const CompoundStmt *CS = SE->getSubStmt();
1003 for (CompoundStmt::const_body_iterator BI = CS->body_begin(),
1004 BE = CS->body_end(); BI != BE; ++BI)
1005 if (Expr *E = dyn_cast<Expr>((*BI))) {
1006 if (isCapturedBy(var, E))
1007 return true;
1008 }
1009 else if (DeclStmt *DS = dyn_cast<DeclStmt>((*BI))) {
1010 // special case declarations
1011 for (DeclStmt::decl_iterator I = DS->decl_begin(), E = DS->decl_end();
1012 I != E; ++I) {
1013 if (VarDecl *VD = dyn_cast<VarDecl>((*I))) {
1014 Expr *Init = VD->getInit();
1015 if (Init && isCapturedBy(var, Init))
1016 return true;
1017 }
1018 }
1019 }
1020 else
1021 // FIXME. Make safe assumption assuming arbitrary statements cause capturing.
1022 // Later, provide code to poke into statements for capture analysis.
1023 return true;
1024 return false;
1025 }
1026
1027 for (Stmt::const_child_range children = e->children(); children; ++children)
1028 if (isCapturedBy(var, cast<Expr>(*children)))
1029 return true;
1030
1031 return false;
1032 }
1033
1034 /// \brief Determine whether the given initializer is trivial in the sense
1035 /// that it requires no code to be generated.
isTrivialInitializer(const Expr * Init)1036 static bool isTrivialInitializer(const Expr *Init) {
1037 if (!Init)
1038 return true;
1039
1040 if (const CXXConstructExpr *Construct = dyn_cast<CXXConstructExpr>(Init))
1041 if (CXXConstructorDecl *Constructor = Construct->getConstructor())
1042 if (Constructor->isTrivial() &&
1043 Constructor->isDefaultConstructor() &&
1044 !Construct->requiresZeroInitialization())
1045 return true;
1046
1047 return false;
1048 }
EmitAutoVarInit(const AutoVarEmission & emission)1049 void CodeGenFunction::EmitAutoVarInit(const AutoVarEmission &emission) {
1050 assert(emission.Variable && "emission was not valid!");
1051
1052 // If this was emitted as a global constant, we're done.
1053 if (emission.wasEmittedAsGlobal()) return;
1054
1055 const VarDecl &D = *emission.Variable;
1056 QualType type = D.getType();
1057
1058 // If this local has an initializer, emit it now.
1059 const Expr *Init = D.getInit();
1060
1061 // If we are at an unreachable point, we don't need to emit the initializer
1062 // unless it contains a label.
1063 if (!HaveInsertPoint()) {
1064 if (!Init || !ContainsLabel(Init)) return;
1065 EnsureInsertPoint();
1066 }
1067
1068 // Initialize the structure of a __block variable.
1069 if (emission.IsByRef)
1070 emitByrefStructureInit(emission);
1071
1072 if (isTrivialInitializer(Init))
1073 return;
1074
1075 CharUnits alignment = emission.Alignment;
1076
1077 // Check whether this is a byref variable that's potentially
1078 // captured and moved by its own initializer. If so, we'll need to
1079 // emit the initializer first, then copy into the variable.
1080 bool capturedByInit = emission.IsByRef && isCapturedBy(D, Init);
1081
1082 llvm::Value *Loc =
1083 capturedByInit ? emission.Address : emission.getObjectAddress(*this);
1084
1085 llvm::Constant *constant = 0;
1086 if (emission.IsConstantAggregate || D.isConstexpr()) {
1087 assert(!capturedByInit && "constant init contains a capturing block?");
1088 constant = CGM.EmitConstantInit(D, this);
1089 }
1090
1091 if (!constant) {
1092 LValue lv = MakeAddrLValue(Loc, type, alignment);
1093 lv.setNonGC(true);
1094 return EmitExprAsInit(Init, &D, lv, capturedByInit);
1095 }
1096
1097 if (!emission.IsConstantAggregate) {
1098 // For simple scalar/complex initialization, store the value directly.
1099 LValue lv = MakeAddrLValue(Loc, type, alignment);
1100 lv.setNonGC(true);
1101 return EmitStoreThroughLValue(RValue::get(constant), lv, true);
1102 }
1103
1104 // If this is a simple aggregate initialization, we can optimize it
1105 // in various ways.
1106 bool isVolatile = type.isVolatileQualified();
1107
1108 llvm::Value *SizeVal =
1109 llvm::ConstantInt::get(IntPtrTy,
1110 getContext().getTypeSizeInChars(type).getQuantity());
1111
1112 llvm::Type *BP = Int8PtrTy;
1113 if (Loc->getType() != BP)
1114 Loc = Builder.CreateBitCast(Loc, BP);
1115
1116 // If the initializer is all or mostly zeros, codegen with memset then do
1117 // a few stores afterward.
1118 if (shouldUseMemSetPlusStoresToInitialize(constant,
1119 CGM.getDataLayout().getTypeAllocSize(constant->getType()))) {
1120 Builder.CreateMemSet(Loc, llvm::ConstantInt::get(Int8Ty, 0), SizeVal,
1121 alignment.getQuantity(), isVolatile);
1122 // Zero and undef don't require a stores.
1123 if (!constant->isNullValue() && !isa<llvm::UndefValue>(constant)) {
1124 Loc = Builder.CreateBitCast(Loc, constant->getType()->getPointerTo());
1125 emitStoresForInitAfterMemset(constant, Loc, isVolatile, Builder);
1126 }
1127 } else {
1128 // Otherwise, create a temporary global with the initializer then
1129 // memcpy from the global to the alloca.
1130 std::string Name = GetStaticDeclName(*this, D, ".");
1131 llvm::GlobalVariable *GV =
1132 new llvm::GlobalVariable(CGM.getModule(), constant->getType(), true,
1133 llvm::GlobalValue::PrivateLinkage,
1134 constant, Name);
1135 GV->setAlignment(alignment.getQuantity());
1136 GV->setUnnamedAddr(true);
1137
1138 llvm::Value *SrcPtr = GV;
1139 if (SrcPtr->getType() != BP)
1140 SrcPtr = Builder.CreateBitCast(SrcPtr, BP);
1141
1142 Builder.CreateMemCpy(Loc, SrcPtr, SizeVal, alignment.getQuantity(),
1143 isVolatile);
1144 }
1145 }
1146
1147 /// Emit an expression as an initializer for a variable at the given
1148 /// location. The expression is not necessarily the normal
1149 /// initializer for the variable, and the address is not necessarily
1150 /// its normal location.
1151 ///
1152 /// \param init the initializing expression
1153 /// \param var the variable to act as if we're initializing
1154 /// \param loc the address to initialize; its type is a pointer
1155 /// to the LLVM mapping of the variable's type
1156 /// \param alignment the alignment of the address
1157 /// \param capturedByInit true if the variable is a __block variable
1158 /// whose address is potentially changed by the initializer
EmitExprAsInit(const Expr * init,const ValueDecl * D,LValue lvalue,bool capturedByInit)1159 void CodeGenFunction::EmitExprAsInit(const Expr *init,
1160 const ValueDecl *D,
1161 LValue lvalue,
1162 bool capturedByInit) {
1163 QualType type = D->getType();
1164
1165 if (type->isReferenceType()) {
1166 RValue rvalue = EmitReferenceBindingToExpr(init);
1167 if (capturedByInit)
1168 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1169 EmitStoreThroughLValue(rvalue, lvalue, true);
1170 return;
1171 }
1172 switch (getEvaluationKind(type)) {
1173 case TEK_Scalar:
1174 EmitScalarInit(init, D, lvalue, capturedByInit);
1175 return;
1176 case TEK_Complex: {
1177 ComplexPairTy complex = EmitComplexExpr(init);
1178 if (capturedByInit)
1179 drillIntoBlockVariable(*this, lvalue, cast<VarDecl>(D));
1180 EmitStoreOfComplex(complex, lvalue, /*init*/ true);
1181 return;
1182 }
1183 case TEK_Aggregate:
1184 if (type->isAtomicType()) {
1185 EmitAtomicInit(const_cast<Expr*>(init), lvalue);
1186 } else {
1187 // TODO: how can we delay here if D is captured by its initializer?
1188 EmitAggExpr(init, AggValueSlot::forLValue(lvalue,
1189 AggValueSlot::IsDestructed,
1190 AggValueSlot::DoesNotNeedGCBarriers,
1191 AggValueSlot::IsNotAliased));
1192 }
1193 return;
1194 }
1195 llvm_unreachable("bad evaluation kind");
1196 }
1197
1198 /// Enter a destroy cleanup for the given local variable.
emitAutoVarTypeCleanup(const CodeGenFunction::AutoVarEmission & emission,QualType::DestructionKind dtorKind)1199 void CodeGenFunction::emitAutoVarTypeCleanup(
1200 const CodeGenFunction::AutoVarEmission &emission,
1201 QualType::DestructionKind dtorKind) {
1202 assert(dtorKind != QualType::DK_none);
1203
1204 // Note that for __block variables, we want to destroy the
1205 // original stack object, not the possibly forwarded object.
1206 llvm::Value *addr = emission.getObjectAddress(*this);
1207
1208 const VarDecl *var = emission.Variable;
1209 QualType type = var->getType();
1210
1211 CleanupKind cleanupKind = NormalAndEHCleanup;
1212 CodeGenFunction::Destroyer *destroyer = 0;
1213
1214 switch (dtorKind) {
1215 case QualType::DK_none:
1216 llvm_unreachable("no cleanup for trivially-destructible variable");
1217
1218 case QualType::DK_cxx_destructor:
1219 // If there's an NRVO flag on the emission, we need a different
1220 // cleanup.
1221 if (emission.NRVOFlag) {
1222 assert(!type->isArrayType());
1223 CXXDestructorDecl *dtor = type->getAsCXXRecordDecl()->getDestructor();
1224 EHStack.pushCleanup<DestroyNRVOVariable>(cleanupKind, addr, dtor,
1225 emission.NRVOFlag);
1226 return;
1227 }
1228 break;
1229
1230 case QualType::DK_objc_strong_lifetime:
1231 // Suppress cleanups for pseudo-strong variables.
1232 if (var->isARCPseudoStrong()) return;
1233
1234 // Otherwise, consider whether to use an EH cleanup or not.
1235 cleanupKind = getARCCleanupKind();
1236
1237 // Use the imprecise destroyer by default.
1238 if (!var->hasAttr<ObjCPreciseLifetimeAttr>())
1239 destroyer = CodeGenFunction::destroyARCStrongImprecise;
1240 break;
1241
1242 case QualType::DK_objc_weak_lifetime:
1243 break;
1244 }
1245
1246 // If we haven't chosen a more specific destroyer, use the default.
1247 if (!destroyer) destroyer = getDestroyer(dtorKind);
1248
1249 // Use an EH cleanup in array destructors iff the destructor itself
1250 // is being pushed as an EH cleanup.
1251 bool useEHCleanup = (cleanupKind & EHCleanup);
1252 EHStack.pushCleanup<DestroyObject>(cleanupKind, addr, type, destroyer,
1253 useEHCleanup);
1254 }
1255
EmitAutoVarCleanups(const AutoVarEmission & emission)1256 void CodeGenFunction::EmitAutoVarCleanups(const AutoVarEmission &emission) {
1257 assert(emission.Variable && "emission was not valid!");
1258
1259 // If this was emitted as a global constant, we're done.
1260 if (emission.wasEmittedAsGlobal()) return;
1261
1262 // If we don't have an insertion point, we're done. Sema prevents
1263 // us from jumping into any of these scopes anyway.
1264 if (!HaveInsertPoint()) return;
1265
1266 const VarDecl &D = *emission.Variable;
1267
1268 // Make sure we call @llvm.lifetime.end. This needs to happen
1269 // *last*, so the cleanup needs to be pushed *first*.
1270 if (emission.useLifetimeMarkers()) {
1271 EHStack.pushCleanup<CallLifetimeEnd>(NormalCleanup,
1272 emission.getAllocatedAddress(),
1273 emission.getSizeForLifetimeMarkers());
1274 }
1275
1276 // Check the type for a cleanup.
1277 if (QualType::DestructionKind dtorKind = D.getType().isDestructedType())
1278 emitAutoVarTypeCleanup(emission, dtorKind);
1279
1280 // In GC mode, honor objc_precise_lifetime.
1281 if (getLangOpts().getGC() != LangOptions::NonGC &&
1282 D.hasAttr<ObjCPreciseLifetimeAttr>()) {
1283 EHStack.pushCleanup<ExtendGCLifetime>(NormalCleanup, &D);
1284 }
1285
1286 // Handle the cleanup attribute.
1287 if (const CleanupAttr *CA = D.getAttr<CleanupAttr>()) {
1288 const FunctionDecl *FD = CA->getFunctionDecl();
1289
1290 llvm::Constant *F = CGM.GetAddrOfFunction(FD);
1291 assert(F && "Could not find function!");
1292
1293 const CGFunctionInfo &Info = CGM.getTypes().arrangeFunctionDeclaration(FD);
1294 EHStack.pushCleanup<CallCleanupFunction>(NormalAndEHCleanup, F, &Info, &D);
1295 }
1296
1297 // If this is a block variable, call _Block_object_destroy
1298 // (on the unforwarded address).
1299 if (emission.IsByRef)
1300 enterByrefCleanup(emission);
1301 }
1302
1303 CodeGenFunction::Destroyer *
getDestroyer(QualType::DestructionKind kind)1304 CodeGenFunction::getDestroyer(QualType::DestructionKind kind) {
1305 switch (kind) {
1306 case QualType::DK_none: llvm_unreachable("no destroyer for trivial dtor");
1307 case QualType::DK_cxx_destructor:
1308 return destroyCXXObject;
1309 case QualType::DK_objc_strong_lifetime:
1310 return destroyARCStrongPrecise;
1311 case QualType::DK_objc_weak_lifetime:
1312 return destroyARCWeak;
1313 }
1314 llvm_unreachable("Unknown DestructionKind");
1315 }
1316
1317 /// pushEHDestroy - Push the standard destructor for the given type as
1318 /// an EH-only cleanup.
pushEHDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1319 void CodeGenFunction::pushEHDestroy(QualType::DestructionKind dtorKind,
1320 llvm::Value *addr, QualType type) {
1321 assert(dtorKind && "cannot push destructor for trivial type");
1322 assert(needsEHCleanup(dtorKind));
1323
1324 pushDestroy(EHCleanup, addr, type, getDestroyer(dtorKind), true);
1325 }
1326
1327 /// pushDestroy - Push the standard destructor for the given type as
1328 /// at least a normal cleanup.
pushDestroy(QualType::DestructionKind dtorKind,llvm::Value * addr,QualType type)1329 void CodeGenFunction::pushDestroy(QualType::DestructionKind dtorKind,
1330 llvm::Value *addr, QualType type) {
1331 assert(dtorKind && "cannot push destructor for trivial type");
1332
1333 CleanupKind cleanupKind = getCleanupKind(dtorKind);
1334 pushDestroy(cleanupKind, addr, type, getDestroyer(dtorKind),
1335 cleanupKind & EHCleanup);
1336 }
1337
pushDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1338 void CodeGenFunction::pushDestroy(CleanupKind cleanupKind, llvm::Value *addr,
1339 QualType type, Destroyer *destroyer,
1340 bool useEHCleanupForArray) {
1341 pushFullExprCleanup<DestroyObject>(cleanupKind, addr, type,
1342 destroyer, useEHCleanupForArray);
1343 }
1344
pushLifetimeExtendedDestroy(CleanupKind cleanupKind,llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1345 void CodeGenFunction::pushLifetimeExtendedDestroy(
1346 CleanupKind cleanupKind, llvm::Value *addr, QualType type,
1347 Destroyer *destroyer, bool useEHCleanupForArray) {
1348 assert(!isInConditionalBranch() &&
1349 "performing lifetime extension from within conditional");
1350
1351 // Push an EH-only cleanup for the object now.
1352 // FIXME: When popping normal cleanups, we need to keep this EH cleanup
1353 // around in case a temporary's destructor throws an exception.
1354 if (cleanupKind & EHCleanup)
1355 EHStack.pushCleanup<DestroyObject>(
1356 static_cast<CleanupKind>(cleanupKind & ~NormalCleanup), addr, type,
1357 destroyer, useEHCleanupForArray);
1358
1359 // Remember that we need to push a full cleanup for the object at the
1360 // end of the full-expression.
1361 pushCleanupAfterFullExpr<DestroyObject>(
1362 cleanupKind, addr, type, destroyer, useEHCleanupForArray);
1363 }
1364
1365 /// emitDestroy - Immediately perform the destruction of the given
1366 /// object.
1367 ///
1368 /// \param addr - the address of the object; a type*
1369 /// \param type - the type of the object; if an array type, all
1370 /// objects are destroyed in reverse order
1371 /// \param destroyer - the function to call to destroy individual
1372 /// elements
1373 /// \param useEHCleanupForArray - whether an EH cleanup should be
1374 /// used when destroying array elements, in case one of the
1375 /// destructions throws an exception
emitDestroy(llvm::Value * addr,QualType type,Destroyer * destroyer,bool useEHCleanupForArray)1376 void CodeGenFunction::emitDestroy(llvm::Value *addr, QualType type,
1377 Destroyer *destroyer,
1378 bool useEHCleanupForArray) {
1379 const ArrayType *arrayType = getContext().getAsArrayType(type);
1380 if (!arrayType)
1381 return destroyer(*this, addr, type);
1382
1383 llvm::Value *begin = addr;
1384 llvm::Value *length = emitArrayLength(arrayType, type, begin);
1385
1386 // Normally we have to check whether the array is zero-length.
1387 bool checkZeroLength = true;
1388
1389 // But if the array length is constant, we can suppress that.
1390 if (llvm::ConstantInt *constLength = dyn_cast<llvm::ConstantInt>(length)) {
1391 // ...and if it's constant zero, we can just skip the entire thing.
1392 if (constLength->isZero()) return;
1393 checkZeroLength = false;
1394 }
1395
1396 llvm::Value *end = Builder.CreateInBoundsGEP(begin, length);
1397 emitArrayDestroy(begin, end, type, destroyer,
1398 checkZeroLength, useEHCleanupForArray);
1399 }
1400
1401 /// emitArrayDestroy - Destroys all the elements of the given array,
1402 /// beginning from last to first. The array cannot be zero-length.
1403 ///
1404 /// \param begin - a type* denoting the first element of the array
1405 /// \param end - a type* denoting one past the end of the array
1406 /// \param type - the element type of the array
1407 /// \param destroyer - the function to call to destroy elements
1408 /// \param useEHCleanup - whether to push an EH cleanup to destroy
1409 /// the remaining elements in case the destruction of a single
1410 /// element throws
emitArrayDestroy(llvm::Value * begin,llvm::Value * end,QualType type,Destroyer * destroyer,bool checkZeroLength,bool useEHCleanup)1411 void CodeGenFunction::emitArrayDestroy(llvm::Value *begin,
1412 llvm::Value *end,
1413 QualType type,
1414 Destroyer *destroyer,
1415 bool checkZeroLength,
1416 bool useEHCleanup) {
1417 assert(!type->isArrayType());
1418
1419 // The basic structure here is a do-while loop, because we don't
1420 // need to check for the zero-element case.
1421 llvm::BasicBlock *bodyBB = createBasicBlock("arraydestroy.body");
1422 llvm::BasicBlock *doneBB = createBasicBlock("arraydestroy.done");
1423
1424 if (checkZeroLength) {
1425 llvm::Value *isEmpty = Builder.CreateICmpEQ(begin, end,
1426 "arraydestroy.isempty");
1427 Builder.CreateCondBr(isEmpty, doneBB, bodyBB);
1428 }
1429
1430 // Enter the loop body, making that address the current address.
1431 llvm::BasicBlock *entryBB = Builder.GetInsertBlock();
1432 EmitBlock(bodyBB);
1433 llvm::PHINode *elementPast =
1434 Builder.CreatePHI(begin->getType(), 2, "arraydestroy.elementPast");
1435 elementPast->addIncoming(end, entryBB);
1436
1437 // Shift the address back by one element.
1438 llvm::Value *negativeOne = llvm::ConstantInt::get(SizeTy, -1, true);
1439 llvm::Value *element = Builder.CreateInBoundsGEP(elementPast, negativeOne,
1440 "arraydestroy.element");
1441
1442 if (useEHCleanup)
1443 pushRegularPartialArrayCleanup(begin, element, type, destroyer);
1444
1445 // Perform the actual destruction there.
1446 destroyer(*this, element, type);
1447
1448 if (useEHCleanup)
1449 PopCleanupBlock();
1450
1451 // Check whether we've reached the end.
1452 llvm::Value *done = Builder.CreateICmpEQ(element, begin, "arraydestroy.done");
1453 Builder.CreateCondBr(done, doneBB, bodyBB);
1454 elementPast->addIncoming(element, Builder.GetInsertBlock());
1455
1456 // Done.
1457 EmitBlock(doneBB);
1458 }
1459
1460 /// Perform partial array destruction as if in an EH cleanup. Unlike
1461 /// emitArrayDestroy, the element type here may still be an array type.
emitPartialArrayDestroy(CodeGenFunction & CGF,llvm::Value * begin,llvm::Value * end,QualType type,CodeGenFunction::Destroyer * destroyer)1462 static void emitPartialArrayDestroy(CodeGenFunction &CGF,
1463 llvm::Value *begin, llvm::Value *end,
1464 QualType type,
1465 CodeGenFunction::Destroyer *destroyer) {
1466 // If the element type is itself an array, drill down.
1467 unsigned arrayDepth = 0;
1468 while (const ArrayType *arrayType = CGF.getContext().getAsArrayType(type)) {
1469 // VLAs don't require a GEP index to walk into.
1470 if (!isa<VariableArrayType>(arrayType))
1471 arrayDepth++;
1472 type = arrayType->getElementType();
1473 }
1474
1475 if (arrayDepth) {
1476 llvm::Value *zero = llvm::ConstantInt::get(CGF.SizeTy, arrayDepth+1);
1477
1478 SmallVector<llvm::Value*,4> gepIndices(arrayDepth, zero);
1479 begin = CGF.Builder.CreateInBoundsGEP(begin, gepIndices, "pad.arraybegin");
1480 end = CGF.Builder.CreateInBoundsGEP(end, gepIndices, "pad.arrayend");
1481 }
1482
1483 // Destroy the array. We don't ever need an EH cleanup because we
1484 // assume that we're in an EH cleanup ourselves, so a throwing
1485 // destructor causes an immediate terminate.
1486 CGF.emitArrayDestroy(begin, end, type, destroyer,
1487 /*checkZeroLength*/ true, /*useEHCleanup*/ false);
1488 }
1489
1490 namespace {
1491 /// RegularPartialArrayDestroy - a cleanup which performs a partial
1492 /// array destroy where the end pointer is regularly determined and
1493 /// does not need to be loaded from a local.
1494 class RegularPartialArrayDestroy : public EHScopeStack::Cleanup {
1495 llvm::Value *ArrayBegin;
1496 llvm::Value *ArrayEnd;
1497 QualType ElementType;
1498 CodeGenFunction::Destroyer *Destroyer;
1499 public:
RegularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,CodeGenFunction::Destroyer * destroyer)1500 RegularPartialArrayDestroy(llvm::Value *arrayBegin, llvm::Value *arrayEnd,
1501 QualType elementType,
1502 CodeGenFunction::Destroyer *destroyer)
1503 : ArrayBegin(arrayBegin), ArrayEnd(arrayEnd),
1504 ElementType(elementType), Destroyer(destroyer) {}
1505
Emit(CodeGenFunction & CGF,Flags flags)1506 void Emit(CodeGenFunction &CGF, Flags flags) {
1507 emitPartialArrayDestroy(CGF, ArrayBegin, ArrayEnd,
1508 ElementType, Destroyer);
1509 }
1510 };
1511
1512 /// IrregularPartialArrayDestroy - a cleanup which performs a
1513 /// partial array destroy where the end pointer is irregularly
1514 /// determined and must be loaded from a local.
1515 class IrregularPartialArrayDestroy : public EHScopeStack::Cleanup {
1516 llvm::Value *ArrayBegin;
1517 llvm::Value *ArrayEndPointer;
1518 QualType ElementType;
1519 CodeGenFunction::Destroyer *Destroyer;
1520 public:
IrregularPartialArrayDestroy(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,CodeGenFunction::Destroyer * destroyer)1521 IrregularPartialArrayDestroy(llvm::Value *arrayBegin,
1522 llvm::Value *arrayEndPointer,
1523 QualType elementType,
1524 CodeGenFunction::Destroyer *destroyer)
1525 : ArrayBegin(arrayBegin), ArrayEndPointer(arrayEndPointer),
1526 ElementType(elementType), Destroyer(destroyer) {}
1527
Emit(CodeGenFunction & CGF,Flags flags)1528 void Emit(CodeGenFunction &CGF, Flags flags) {
1529 llvm::Value *arrayEnd = CGF.Builder.CreateLoad(ArrayEndPointer);
1530 emitPartialArrayDestroy(CGF, ArrayBegin, arrayEnd,
1531 ElementType, Destroyer);
1532 }
1533 };
1534 }
1535
1536 /// pushIrregularPartialArrayCleanup - Push an EH cleanup to destroy
1537 /// already-constructed elements of the given array. The cleanup
1538 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1539 ///
1540 /// \param elementType - the immediate element type of the array;
1541 /// possibly still an array type
pushIrregularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEndPointer,QualType elementType,Destroyer * destroyer)1542 void CodeGenFunction::pushIrregularPartialArrayCleanup(llvm::Value *arrayBegin,
1543 llvm::Value *arrayEndPointer,
1544 QualType elementType,
1545 Destroyer *destroyer) {
1546 pushFullExprCleanup<IrregularPartialArrayDestroy>(EHCleanup,
1547 arrayBegin, arrayEndPointer,
1548 elementType, destroyer);
1549 }
1550
1551 /// pushRegularPartialArrayCleanup - Push an EH cleanup to destroy
1552 /// already-constructed elements of the given array. The cleanup
1553 /// may be popped with DeactivateCleanupBlock or PopCleanupBlock.
1554 ///
1555 /// \param elementType - the immediate element type of the array;
1556 /// possibly still an array type
pushRegularPartialArrayCleanup(llvm::Value * arrayBegin,llvm::Value * arrayEnd,QualType elementType,Destroyer * destroyer)1557 void CodeGenFunction::pushRegularPartialArrayCleanup(llvm::Value *arrayBegin,
1558 llvm::Value *arrayEnd,
1559 QualType elementType,
1560 Destroyer *destroyer) {
1561 pushFullExprCleanup<RegularPartialArrayDestroy>(EHCleanup,
1562 arrayBegin, arrayEnd,
1563 elementType, destroyer);
1564 }
1565
1566 /// Lazily declare the @llvm.lifetime.start intrinsic.
getLLVMLifetimeStartFn()1567 llvm::Constant *CodeGenModule::getLLVMLifetimeStartFn() {
1568 if (LifetimeStartFn) return LifetimeStartFn;
1569 LifetimeStartFn = llvm::Intrinsic::getDeclaration(&getModule(),
1570 llvm::Intrinsic::lifetime_start);
1571 return LifetimeStartFn;
1572 }
1573
1574 /// Lazily declare the @llvm.lifetime.end intrinsic.
getLLVMLifetimeEndFn()1575 llvm::Constant *CodeGenModule::getLLVMLifetimeEndFn() {
1576 if (LifetimeEndFn) return LifetimeEndFn;
1577 LifetimeEndFn = llvm::Intrinsic::getDeclaration(&getModule(),
1578 llvm::Intrinsic::lifetime_end);
1579 return LifetimeEndFn;
1580 }
1581
1582 namespace {
1583 /// A cleanup to perform a release of an object at the end of a
1584 /// function. This is used to balance out the incoming +1 of a
1585 /// ns_consumed argument when we can't reasonably do that just by
1586 /// not doing the initial retain for a __block argument.
1587 struct ConsumeARCParameter : EHScopeStack::Cleanup {
ConsumeARCParameter__anon195e60cc0311::ConsumeARCParameter1588 ConsumeARCParameter(llvm::Value *param,
1589 ARCPreciseLifetime_t precise)
1590 : Param(param), Precise(precise) {}
1591
1592 llvm::Value *Param;
1593 ARCPreciseLifetime_t Precise;
1594
Emit__anon195e60cc0311::ConsumeARCParameter1595 void Emit(CodeGenFunction &CGF, Flags flags) {
1596 CGF.EmitARCRelease(Param, Precise);
1597 }
1598 };
1599 }
1600
1601 /// Emit an alloca (or GlobalValue depending on target)
1602 /// for the specified parameter and set up LocalDeclMap.
EmitParmDecl(const VarDecl & D,llvm::Value * Arg,unsigned ArgNo)1603 void CodeGenFunction::EmitParmDecl(const VarDecl &D, llvm::Value *Arg,
1604 unsigned ArgNo) {
1605 // FIXME: Why isn't ImplicitParamDecl a ParmVarDecl?
1606 assert((isa<ParmVarDecl>(D) || isa<ImplicitParamDecl>(D)) &&
1607 "Invalid argument to EmitParmDecl");
1608
1609 Arg->setName(D.getName());
1610
1611 QualType Ty = D.getType();
1612
1613 // Use better IR generation for certain implicit parameters.
1614 if (isa<ImplicitParamDecl>(D)) {
1615 // The only implicit argument a block has is its literal.
1616 if (BlockInfo) {
1617 LocalDeclMap[&D] = Arg;
1618 llvm::Value *LocalAddr = 0;
1619 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1620 // Allocate a stack slot to let the debug info survive the RA.
1621 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1622 D.getName() + ".addr");
1623 Alloc->setAlignment(getContext().getDeclAlign(&D).getQuantity());
1624 LValue lv = MakeAddrLValue(Alloc, Ty, getContext().getDeclAlign(&D));
1625 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1626 LocalAddr = Builder.CreateLoad(Alloc);
1627 }
1628
1629 if (CGDebugInfo *DI = getDebugInfo()) {
1630 if (CGM.getCodeGenOpts().getDebugInfo()
1631 >= CodeGenOptions::LimitedDebugInfo) {
1632 DI->setLocation(D.getLocation());
1633 DI->EmitDeclareOfBlockLiteralArgVariable(*BlockInfo, Arg, LocalAddr, Builder);
1634 }
1635 }
1636
1637 return;
1638 }
1639 }
1640
1641 llvm::Value *DeclPtr;
1642 bool HasNonScalarEvalKind = !CodeGenFunction::hasScalarEvaluationKind(Ty);
1643 // If this is an aggregate or variable sized value, reuse the input pointer.
1644 if (HasNonScalarEvalKind || !Ty->isConstantSizeType()) {
1645 DeclPtr = Arg;
1646 // Push a destructor cleanup for this parameter if the ABI requires it.
1647 if (HasNonScalarEvalKind &&
1648 getTarget().getCXXABI().isArgumentDestroyedByCallee()) {
1649 if (const CXXRecordDecl *RD = Ty->getAsCXXRecordDecl()) {
1650 if (RD->hasNonTrivialDestructor())
1651 pushDestroy(QualType::DK_cxx_destructor, DeclPtr, Ty);
1652 }
1653 }
1654 } else {
1655 // Otherwise, create a temporary to hold the value.
1656 llvm::AllocaInst *Alloc = CreateTempAlloca(ConvertTypeForMem(Ty),
1657 D.getName() + ".addr");
1658 CharUnits Align = getContext().getDeclAlign(&D);
1659 Alloc->setAlignment(Align.getQuantity());
1660 DeclPtr = Alloc;
1661
1662 bool doStore = true;
1663
1664 Qualifiers qs = Ty.getQualifiers();
1665 LValue lv = MakeAddrLValue(DeclPtr, Ty, Align);
1666 if (Qualifiers::ObjCLifetime lt = qs.getObjCLifetime()) {
1667 // We honor __attribute__((ns_consumed)) for types with lifetime.
1668 // For __strong, it's handled by just skipping the initial retain;
1669 // otherwise we have to balance out the initial +1 with an extra
1670 // cleanup to do the release at the end of the function.
1671 bool isConsumed = D.hasAttr<NSConsumedAttr>();
1672
1673 // 'self' is always formally __strong, but if this is not an
1674 // init method then we don't want to retain it.
1675 if (D.isARCPseudoStrong()) {
1676 const ObjCMethodDecl *method = cast<ObjCMethodDecl>(CurCodeDecl);
1677 assert(&D == method->getSelfDecl());
1678 assert(lt == Qualifiers::OCL_Strong);
1679 assert(qs.hasConst());
1680 assert(method->getMethodFamily() != OMF_init);
1681 (void) method;
1682 lt = Qualifiers::OCL_ExplicitNone;
1683 }
1684
1685 if (lt == Qualifiers::OCL_Strong) {
1686 if (!isConsumed) {
1687 if (CGM.getCodeGenOpts().OptimizationLevel == 0) {
1688 // use objc_storeStrong(&dest, value) for retaining the
1689 // object. But first, store a null into 'dest' because
1690 // objc_storeStrong attempts to release its old value.
1691 llvm::Value * Null = CGM.EmitNullConstant(D.getType());
1692 EmitStoreOfScalar(Null, lv, /* isInitialization */ true);
1693 EmitARCStoreStrongCall(lv.getAddress(), Arg, true);
1694 doStore = false;
1695 }
1696 else
1697 // Don't use objc_retainBlock for block pointers, because we
1698 // don't want to Block_copy something just because we got it
1699 // as a parameter.
1700 Arg = EmitARCRetainNonBlock(Arg);
1701 }
1702 } else {
1703 // Push the cleanup for a consumed parameter.
1704 if (isConsumed) {
1705 ARCPreciseLifetime_t precise = (D.hasAttr<ObjCPreciseLifetimeAttr>()
1706 ? ARCPreciseLifetime : ARCImpreciseLifetime);
1707 EHStack.pushCleanup<ConsumeARCParameter>(getARCCleanupKind(), Arg,
1708 precise);
1709 }
1710
1711 if (lt == Qualifiers::OCL_Weak) {
1712 EmitARCInitWeak(DeclPtr, Arg);
1713 doStore = false; // The weak init is a store, no need to do two.
1714 }
1715 }
1716
1717 // Enter the cleanup scope.
1718 EmitAutoVarWithLifetime(*this, D, DeclPtr, lt);
1719 }
1720
1721 // Store the initial value into the alloca.
1722 if (doStore)
1723 EmitStoreOfScalar(Arg, lv, /* isInitialization */ true);
1724 }
1725
1726 llvm::Value *&DMEntry = LocalDeclMap[&D];
1727 assert(DMEntry == 0 && "Decl already exists in localdeclmap!");
1728 DMEntry = DeclPtr;
1729
1730 // Emit debug info for param declaration.
1731 if (CGDebugInfo *DI = getDebugInfo()) {
1732 if (CGM.getCodeGenOpts().getDebugInfo()
1733 >= CodeGenOptions::LimitedDebugInfo) {
1734 DI->EmitDeclareOfArgVariable(&D, DeclPtr, ArgNo, Builder);
1735 }
1736 }
1737
1738 if (D.hasAttr<AnnotateAttr>())
1739 EmitVarAnnotations(&D, DeclPtr);
1740 }
1741