1 /* 2 * Copyright (C) 2005, 2006 Apple Computer, Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions 6 * are met: 7 * 1. Redistributions of source code must retain the above copyright 8 * notice, this list of conditions and the following disclaimer. 9 * 2. Redistributions in binary form must reproduce the above copyright 10 * notice, this list of conditions and the following disclaimer in the 11 * documentation and/or other materials provided with the distribution. 12 * 13 * THIS SOFTWARE IS PROVIDED BY APPLE COMPUTER, INC. ``AS IS'' AND ANY 14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 15 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 16 * PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL APPLE COMPUTER, INC. OR 17 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, 18 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, 19 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR 20 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY 21 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 22 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 */ 25 26 #ifndef TransformationMatrix_h 27 #define TransformationMatrix_h 28 29 #include "SkMatrix44.h" 30 #include <string.h> //for memcpy 31 #include "platform/geometry/FloatPoint.h" 32 #include "platform/geometry/FloatPoint3D.h" 33 #include "platform/geometry/IntPoint.h" 34 #include "wtf/CPU.h" 35 #include "wtf/FastAllocBase.h" 36 37 namespace WebCore { 38 39 class AffineTransform; 40 class IntRect; 41 class LayoutRect; 42 class FloatRect; 43 class FloatQuad; 44 45 #if CPU(X86_64) 46 #define TRANSFORMATION_MATRIX_USE_X86_64_SSE2 47 #endif 48 49 class PLATFORM_EXPORT TransformationMatrix { 50 WTF_MAKE_FAST_ALLOCATED; 51 public: 52 53 #if CPU(APPLE_ARMV7S) || defined(TRANSFORMATION_MATRIX_USE_X86_64_SSE2) 54 #if COMPILER(MSVC) 55 __declspec(align(16)) typedef double Matrix4[4][4]; 56 #else 57 typedef double Matrix4[4][4] __attribute__((aligned (16))); 58 #endif 59 #else 60 typedef double Matrix4[4][4]; 61 #endif 62 TransformationMatrix()63 TransformationMatrix() { makeIdentity(); } 64 TransformationMatrix(const AffineTransform& t); TransformationMatrix(const TransformationMatrix & t)65 TransformationMatrix(const TransformationMatrix& t) { *this = t; } TransformationMatrix(double a,double b,double c,double d,double e,double f)66 TransformationMatrix(double a, double b, double c, double d, double e, double f) { setMatrix(a, b, c, d, e, f); } TransformationMatrix(double m11,double m12,double m13,double m14,double m21,double m22,double m23,double m24,double m31,double m32,double m33,double m34,double m41,double m42,double m43,double m44)67 TransformationMatrix(double m11, double m12, double m13, double m14, 68 double m21, double m22, double m23, double m24, 69 double m31, double m32, double m33, double m34, 70 double m41, double m42, double m43, double m44) 71 { 72 setMatrix(m11, m12, m13, m14, m21, m22, m23, m24, m31, m32, m33, m34, m41, m42, m43, m44); 73 } 74 setMatrix(double a,double b,double c,double d,double e,double f)75 void setMatrix(double a, double b, double c, double d, double e, double f) 76 { 77 m_matrix[0][0] = a; m_matrix[0][1] = b; m_matrix[0][2] = 0; m_matrix[0][3] = 0; 78 m_matrix[1][0] = c; m_matrix[1][1] = d; m_matrix[1][2] = 0; m_matrix[1][3] = 0; 79 m_matrix[2][0] = 0; m_matrix[2][1] = 0; m_matrix[2][2] = 1; m_matrix[2][3] = 0; 80 m_matrix[3][0] = e; m_matrix[3][1] = f; m_matrix[3][2] = 0; m_matrix[3][3] = 1; 81 } 82 setMatrix(double m11,double m12,double m13,double m14,double m21,double m22,double m23,double m24,double m31,double m32,double m33,double m34,double m41,double m42,double m43,double m44)83 void setMatrix(double m11, double m12, double m13, double m14, 84 double m21, double m22, double m23, double m24, 85 double m31, double m32, double m33, double m34, 86 double m41, double m42, double m43, double m44) 87 { 88 m_matrix[0][0] = m11; m_matrix[0][1] = m12; m_matrix[0][2] = m13; m_matrix[0][3] = m14; 89 m_matrix[1][0] = m21; m_matrix[1][1] = m22; m_matrix[1][2] = m23; m_matrix[1][3] = m24; 90 m_matrix[2][0] = m31; m_matrix[2][1] = m32; m_matrix[2][2] = m33; m_matrix[2][3] = m34; 91 m_matrix[3][0] = m41; m_matrix[3][1] = m42; m_matrix[3][2] = m43; m_matrix[3][3] = m44; 92 } 93 94 TransformationMatrix& operator =(const TransformationMatrix &t) 95 { 96 setMatrix(t.m_matrix); 97 return *this; 98 } 99 makeIdentity()100 TransformationMatrix& makeIdentity() 101 { 102 setMatrix(1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0, 1); 103 return *this; 104 } 105 isIdentity()106 bool isIdentity() const 107 { 108 return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 && 109 m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 && 110 m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 && 111 m_matrix[3][0] == 0 && m_matrix[3][1] == 0 && m_matrix[3][2] == 0 && m_matrix[3][3] == 1; 112 } 113 114 // This form preserves the double math from input to output map(double x,double y,double & x2,double & y2)115 void map(double x, double y, double& x2, double& y2) const { multVecMatrix(x, y, x2, y2); } 116 117 // Map a 3D point through the transform, returning a 3D point. 118 FloatPoint3D mapPoint(const FloatPoint3D&) const; 119 120 // Map a 2D point through the transform, returning a 2D point. 121 // Note that this ignores the z component, effectively projecting the point into the z=0 plane. 122 FloatPoint mapPoint(const FloatPoint&) const; 123 124 // Like the version above, except that it rounds the mapped point to the nearest integer value. mapPoint(const IntPoint & p)125 IntPoint mapPoint(const IntPoint& p) const 126 { 127 return roundedIntPoint(mapPoint(FloatPoint(p))); 128 } 129 130 // If the matrix has 3D components, the z component of the result is 131 // dropped, effectively projecting the rect into the z=0 plane 132 FloatRect mapRect(const FloatRect&) const; 133 134 // Rounds the resulting mapped rectangle out. This is helpful for bounding 135 // box computations but may not be what is wanted in other contexts. 136 IntRect mapRect(const IntRect&) const; 137 LayoutRect mapRect(const LayoutRect&) const; 138 139 // If the matrix has 3D components, the z component of the result is 140 // dropped, effectively projecting the quad into the z=0 plane 141 FloatQuad mapQuad(const FloatQuad&) const; 142 143 // Map a point on the z=0 plane into a point on 144 // the plane with with the transform applied, by extending 145 // a ray perpendicular to the source plane and computing 146 // the local x,y position of the point where that ray intersects 147 // with the destination plane. 148 FloatPoint projectPoint(const FloatPoint&, bool* clamped = 0) const; 149 // Projects the four corners of the quad 150 FloatQuad projectQuad(const FloatQuad&, bool* clamped = 0) const; 151 // Projects the four corners of the quad and takes a bounding box, 152 // while sanitizing values created when the w component is negative. 153 LayoutRect clampedBoundsOfProjectedQuad(const FloatQuad&) const; 154 m11()155 double m11() const { return m_matrix[0][0]; } setM11(double f)156 void setM11(double f) { m_matrix[0][0] = f; } m12()157 double m12() const { return m_matrix[0][1]; } setM12(double f)158 void setM12(double f) { m_matrix[0][1] = f; } m13()159 double m13() const { return m_matrix[0][2]; } setM13(double f)160 void setM13(double f) { m_matrix[0][2] = f; } m14()161 double m14() const { return m_matrix[0][3]; } setM14(double f)162 void setM14(double f) { m_matrix[0][3] = f; } m21()163 double m21() const { return m_matrix[1][0]; } setM21(double f)164 void setM21(double f) { m_matrix[1][0] = f; } m22()165 double m22() const { return m_matrix[1][1]; } setM22(double f)166 void setM22(double f) { m_matrix[1][1] = f; } m23()167 double m23() const { return m_matrix[1][2]; } setM23(double f)168 void setM23(double f) { m_matrix[1][2] = f; } m24()169 double m24() const { return m_matrix[1][3]; } setM24(double f)170 void setM24(double f) { m_matrix[1][3] = f; } m31()171 double m31() const { return m_matrix[2][0]; } setM31(double f)172 void setM31(double f) { m_matrix[2][0] = f; } m32()173 double m32() const { return m_matrix[2][1]; } setM32(double f)174 void setM32(double f) { m_matrix[2][1] = f; } m33()175 double m33() const { return m_matrix[2][2]; } setM33(double f)176 void setM33(double f) { m_matrix[2][2] = f; } m34()177 double m34() const { return m_matrix[2][3]; } setM34(double f)178 void setM34(double f) { m_matrix[2][3] = f; } m41()179 double m41() const { return m_matrix[3][0]; } setM41(double f)180 void setM41(double f) { m_matrix[3][0] = f; } m42()181 double m42() const { return m_matrix[3][1]; } setM42(double f)182 void setM42(double f) { m_matrix[3][1] = f; } m43()183 double m43() const { return m_matrix[3][2]; } setM43(double f)184 void setM43(double f) { m_matrix[3][2] = f; } m44()185 double m44() const { return m_matrix[3][3]; } setM44(double f)186 void setM44(double f) { m_matrix[3][3] = f; } 187 a()188 double a() const { return m_matrix[0][0]; } setA(double a)189 void setA(double a) { m_matrix[0][0] = a; } 190 b()191 double b() const { return m_matrix[0][1]; } setB(double b)192 void setB(double b) { m_matrix[0][1] = b; } 193 c()194 double c() const { return m_matrix[1][0]; } setC(double c)195 void setC(double c) { m_matrix[1][0] = c; } 196 d()197 double d() const { return m_matrix[1][1]; } setD(double d)198 void setD(double d) { m_matrix[1][1] = d; } 199 e()200 double e() const { return m_matrix[3][0]; } setE(double e)201 void setE(double e) { m_matrix[3][0] = e; } 202 f()203 double f() const { return m_matrix[3][1]; } setF(double f)204 void setF(double f) { m_matrix[3][1] = f; } 205 206 // this = mat * this. 207 TransformationMatrix& multiply(const TransformationMatrix&); 208 209 TransformationMatrix& scale(double); 210 TransformationMatrix& scaleNonUniform(double sx, double sy); 211 TransformationMatrix& scale3d(double sx, double sy, double sz); 212 rotate(double d)213 TransformationMatrix& rotate(double d) { return rotate3d(0, 0, d); } 214 TransformationMatrix& rotateFromVector(double x, double y); 215 TransformationMatrix& rotate3d(double rx, double ry, double rz); 216 217 // The vector (x,y,z) is normalized if it's not already. A vector of 218 // (0,0,0) uses a vector of (0,0,1). 219 TransformationMatrix& rotate3d(double x, double y, double z, double angle); 220 221 TransformationMatrix& translate(double tx, double ty); 222 TransformationMatrix& translate3d(double tx, double ty, double tz); 223 224 // translation added with a post-multiply 225 TransformationMatrix& translateRight(double tx, double ty); 226 TransformationMatrix& translateRight3d(double tx, double ty, double tz); 227 228 TransformationMatrix& flipX(); 229 TransformationMatrix& flipY(); 230 TransformationMatrix& skew(double angleX, double angleY); skewX(double angle)231 TransformationMatrix& skewX(double angle) { return skew(angle, 0); } skewY(double angle)232 TransformationMatrix& skewY(double angle) { return skew(0, angle); } 233 234 TransformationMatrix& applyPerspective(double p); hasPerspective()235 bool hasPerspective() const { return m_matrix[2][3] != 0.0f; } 236 237 // returns a transformation that maps a rect to a rect 238 static TransformationMatrix rectToRect(const FloatRect&, const FloatRect&); 239 240 bool isInvertible() const; 241 242 // This method returns the identity matrix if it is not invertible. 243 // Use isInvertible() before calling this if you need to know. 244 TransformationMatrix inverse() const; 245 246 // decompose the matrix into its component parts 247 typedef struct { 248 double scaleX, scaleY, scaleZ; 249 double skewXY, skewXZ, skewYZ; 250 double quaternionX, quaternionY, quaternionZ, quaternionW; 251 double translateX, translateY, translateZ; 252 double perspectiveX, perspectiveY, perspectiveZ, perspectiveW; 253 } DecomposedType; 254 255 bool decompose(DecomposedType& decomp) const; 256 void recompose(const DecomposedType& decomp); 257 258 void blend(const TransformationMatrix& from, double progress); 259 isAffine()260 bool isAffine() const 261 { 262 return (m13() == 0 && m14() == 0 && m23() == 0 && m24() == 0 && 263 m31() == 0 && m32() == 0 && m33() == 1 && m34() == 0 && m43() == 0 && m44() == 1); 264 } 265 266 // Throw away the non-affine parts of the matrix (lossy!) 267 void makeAffine(); 268 269 AffineTransform toAffineTransform() const; 270 271 bool operator==(const TransformationMatrix& m2) const 272 { 273 return (m_matrix[0][0] == m2.m_matrix[0][0] && 274 m_matrix[0][1] == m2.m_matrix[0][1] && 275 m_matrix[0][2] == m2.m_matrix[0][2] && 276 m_matrix[0][3] == m2.m_matrix[0][3] && 277 m_matrix[1][0] == m2.m_matrix[1][0] && 278 m_matrix[1][1] == m2.m_matrix[1][1] && 279 m_matrix[1][2] == m2.m_matrix[1][2] && 280 m_matrix[1][3] == m2.m_matrix[1][3] && 281 m_matrix[2][0] == m2.m_matrix[2][0] && 282 m_matrix[2][1] == m2.m_matrix[2][1] && 283 m_matrix[2][2] == m2.m_matrix[2][2] && 284 m_matrix[2][3] == m2.m_matrix[2][3] && 285 m_matrix[3][0] == m2.m_matrix[3][0] && 286 m_matrix[3][1] == m2.m_matrix[3][1] && 287 m_matrix[3][2] == m2.m_matrix[3][2] && 288 m_matrix[3][3] == m2.m_matrix[3][3]); 289 } 290 291 bool operator!=(const TransformationMatrix& other) const { return !(*this == other); } 292 293 // *this = *this * t 294 TransformationMatrix& operator*=(const TransformationMatrix& t) 295 { 296 return multiply(t); 297 } 298 299 // result = *this * t 300 TransformationMatrix operator*(const TransformationMatrix& t) const 301 { 302 TransformationMatrix result = *this; 303 result.multiply(t); 304 return result; 305 } 306 isIdentityOrTranslation()307 bool isIdentityOrTranslation() const 308 { 309 return m_matrix[0][0] == 1 && m_matrix[0][1] == 0 && m_matrix[0][2] == 0 && m_matrix[0][3] == 0 310 && m_matrix[1][0] == 0 && m_matrix[1][1] == 1 && m_matrix[1][2] == 0 && m_matrix[1][3] == 0 311 && m_matrix[2][0] == 0 && m_matrix[2][1] == 0 && m_matrix[2][2] == 1 && m_matrix[2][3] == 0 312 && m_matrix[3][3] == 1; 313 } 314 315 bool isIntegerTranslation() const; 316 317 // This method returns the matrix without 3D components. 318 TransformationMatrix to2dTransform() const; 319 320 typedef float FloatMatrix4[16]; 321 void toColumnMajorFloatArray(FloatMatrix4& result) const; 322 323 // A local-space layer is implicitly defined at the z = 0 plane, with its front side 324 // facing the positive z-axis (i.e. a camera looking along the negative z-axis sees 325 // the front side of the layer). This function checks if the transformed layer's back 326 // face would be visible to a camera looking along the negative z-axis in the target space. 327 bool isBackFaceVisible() const; 328 329 static SkMatrix44 toSkMatrix44(const TransformationMatrix&); 330 331 private: 332 // multiply passed 2D point by matrix (assume z=0) 333 void multVecMatrix(double x, double y, double& dstX, double& dstY) const; internalMapPoint(const FloatPoint & sourcePoint)334 FloatPoint internalMapPoint(const FloatPoint& sourcePoint) const 335 { 336 double resultX; 337 double resultY; 338 multVecMatrix(sourcePoint.x(), sourcePoint.y(), resultX, resultY); 339 return FloatPoint(static_cast<float>(resultX), static_cast<float>(resultY)); 340 } 341 342 // multiply passed 3D point by matrix 343 void multVecMatrix(double x, double y, double z, double& dstX, double& dstY, double& dstZ) const; internalMapPoint(const FloatPoint3D & sourcePoint)344 FloatPoint3D internalMapPoint(const FloatPoint3D& sourcePoint) const 345 { 346 double resultX; 347 double resultY; 348 double resultZ; 349 multVecMatrix(sourcePoint.x(), sourcePoint.y(), sourcePoint.z(), resultX, resultY, resultZ); 350 return FloatPoint3D(static_cast<float>(resultX), static_cast<float>(resultY), static_cast<float>(resultZ)); 351 } 352 setMatrix(const Matrix4 m)353 void setMatrix(const Matrix4 m) 354 { 355 if (m && m != m_matrix) 356 memcpy(m_matrix, m, sizeof(Matrix4)); 357 } 358 359 Matrix4 m_matrix; 360 }; 361 362 } // namespace WebCore 363 364 #endif // TransformationMatrix_h 365