• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===--- CGStmt.cpp - Emit LLVM Code from Statements ----------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Stmt nodes as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "CodeGenFunction.h"
15 #include "CGDebugInfo.h"
16 #include "CodeGenModule.h"
17 #include "TargetInfo.h"
18 #include "clang/AST/StmtVisitor.h"
19 #include "clang/Sema/SemaDiagnostic.h"
20 #include "clang/Basic/PrettyStackTrace.h"
21 #include "clang/Basic/TargetInfo.h"
22 #include "llvm/ADT/StringExtras.h"
23 #include "llvm/IR/DataLayout.h"
24 #include "llvm/IR/InlineAsm.h"
25 #include "llvm/IR/Intrinsics.h"
26 #include "llvm/Support/CallSite.h"
27 using namespace clang;
28 using namespace CodeGen;
29 
30 //===----------------------------------------------------------------------===//
31 //                              Statement Emission
32 //===----------------------------------------------------------------------===//
33 
EmitStopPoint(const Stmt * S)34 void CodeGenFunction::EmitStopPoint(const Stmt *S) {
35   if (CGDebugInfo *DI = getDebugInfo()) {
36     SourceLocation Loc;
37     Loc = S->getLocStart();
38     DI->EmitLocation(Builder, Loc);
39 
40     LastStopPoint = Loc;
41   }
42 }
43 
EmitStmt(const Stmt * S)44 void CodeGenFunction::EmitStmt(const Stmt *S) {
45   assert(S && "Null statement?");
46 
47   // These statements have their own debug info handling.
48   if (EmitSimpleStmt(S))
49     return;
50 
51   // Check if we are generating unreachable code.
52   if (!HaveInsertPoint()) {
53     // If so, and the statement doesn't contain a label, then we do not need to
54     // generate actual code. This is safe because (1) the current point is
55     // unreachable, so we don't need to execute the code, and (2) we've already
56     // handled the statements which update internal data structures (like the
57     // local variable map) which could be used by subsequent statements.
58     if (!ContainsLabel(S)) {
59       // Verify that any decl statements were handled as simple, they may be in
60       // scope of subsequent reachable statements.
61       assert(!isa<DeclStmt>(*S) && "Unexpected DeclStmt!");
62       return;
63     }
64 
65     // Otherwise, make a new block to hold the code.
66     EnsureInsertPoint();
67   }
68 
69   // Generate a stoppoint if we are emitting debug info.
70   EmitStopPoint(S);
71 
72   switch (S->getStmtClass()) {
73   case Stmt::NoStmtClass:
74   case Stmt::CXXCatchStmtClass:
75   case Stmt::SEHExceptStmtClass:
76   case Stmt::SEHFinallyStmtClass:
77   case Stmt::MSDependentExistsStmtClass:
78   case Stmt::OMPParallelDirectiveClass:
79     llvm_unreachable("invalid statement class to emit generically");
80   case Stmt::NullStmtClass:
81   case Stmt::CompoundStmtClass:
82   case Stmt::DeclStmtClass:
83   case Stmt::LabelStmtClass:
84   case Stmt::AttributedStmtClass:
85   case Stmt::GotoStmtClass:
86   case Stmt::BreakStmtClass:
87   case Stmt::ContinueStmtClass:
88   case Stmt::DefaultStmtClass:
89   case Stmt::CaseStmtClass:
90     llvm_unreachable("should have emitted these statements as simple");
91 
92 #define STMT(Type, Base)
93 #define ABSTRACT_STMT(Op)
94 #define EXPR(Type, Base) \
95   case Stmt::Type##Class:
96 #include "clang/AST/StmtNodes.inc"
97   {
98     // Remember the block we came in on.
99     llvm::BasicBlock *incoming = Builder.GetInsertBlock();
100     assert(incoming && "expression emission must have an insertion point");
101 
102     EmitIgnoredExpr(cast<Expr>(S));
103 
104     llvm::BasicBlock *outgoing = Builder.GetInsertBlock();
105     assert(outgoing && "expression emission cleared block!");
106 
107     // The expression emitters assume (reasonably!) that the insertion
108     // point is always set.  To maintain that, the call-emission code
109     // for noreturn functions has to enter a new block with no
110     // predecessors.  We want to kill that block and mark the current
111     // insertion point unreachable in the common case of a call like
112     // "exit();".  Since expression emission doesn't otherwise create
113     // blocks with no predecessors, we can just test for that.
114     // However, we must be careful not to do this to our incoming
115     // block, because *statement* emission does sometimes create
116     // reachable blocks which will have no predecessors until later in
117     // the function.  This occurs with, e.g., labels that are not
118     // reachable by fallthrough.
119     if (incoming != outgoing && outgoing->use_empty()) {
120       outgoing->eraseFromParent();
121       Builder.ClearInsertionPoint();
122     }
123     break;
124   }
125 
126   case Stmt::IndirectGotoStmtClass:
127     EmitIndirectGotoStmt(cast<IndirectGotoStmt>(*S)); break;
128 
129   case Stmt::IfStmtClass:       EmitIfStmt(cast<IfStmt>(*S));             break;
130   case Stmt::WhileStmtClass:    EmitWhileStmt(cast<WhileStmt>(*S));       break;
131   case Stmt::DoStmtClass:       EmitDoStmt(cast<DoStmt>(*S));             break;
132   case Stmt::ForStmtClass:      EmitForStmt(cast<ForStmt>(*S));           break;
133 
134   case Stmt::ReturnStmtClass:   EmitReturnStmt(cast<ReturnStmt>(*S));     break;
135 
136   case Stmt::SwitchStmtClass:   EmitSwitchStmt(cast<SwitchStmt>(*S));     break;
137   case Stmt::GCCAsmStmtClass:   // Intentional fall-through.
138   case Stmt::MSAsmStmtClass:    EmitAsmStmt(cast<AsmStmt>(*S));           break;
139   case Stmt::CapturedStmtClass:
140     EmitCapturedStmt(cast<CapturedStmt>(*S), CR_Default);
141     break;
142   case Stmt::ObjCAtTryStmtClass:
143     EmitObjCAtTryStmt(cast<ObjCAtTryStmt>(*S));
144     break;
145   case Stmt::ObjCAtCatchStmtClass:
146     llvm_unreachable(
147                     "@catch statements should be handled by EmitObjCAtTryStmt");
148   case Stmt::ObjCAtFinallyStmtClass:
149     llvm_unreachable(
150                   "@finally statements should be handled by EmitObjCAtTryStmt");
151   case Stmt::ObjCAtThrowStmtClass:
152     EmitObjCAtThrowStmt(cast<ObjCAtThrowStmt>(*S));
153     break;
154   case Stmt::ObjCAtSynchronizedStmtClass:
155     EmitObjCAtSynchronizedStmt(cast<ObjCAtSynchronizedStmt>(*S));
156     break;
157   case Stmt::ObjCForCollectionStmtClass:
158     EmitObjCForCollectionStmt(cast<ObjCForCollectionStmt>(*S));
159     break;
160   case Stmt::ObjCAutoreleasePoolStmtClass:
161     EmitObjCAutoreleasePoolStmt(cast<ObjCAutoreleasePoolStmt>(*S));
162     break;
163 
164   case Stmt::CXXTryStmtClass:
165     EmitCXXTryStmt(cast<CXXTryStmt>(*S));
166     break;
167   case Stmt::CXXForRangeStmtClass:
168     EmitCXXForRangeStmt(cast<CXXForRangeStmt>(*S));
169   case Stmt::SEHTryStmtClass:
170     // FIXME Not yet implemented
171     break;
172   }
173 }
174 
EmitSimpleStmt(const Stmt * S)175 bool CodeGenFunction::EmitSimpleStmt(const Stmt *S) {
176   switch (S->getStmtClass()) {
177   default: return false;
178   case Stmt::NullStmtClass: break;
179   case Stmt::CompoundStmtClass: EmitCompoundStmt(cast<CompoundStmt>(*S)); break;
180   case Stmt::DeclStmtClass:     EmitDeclStmt(cast<DeclStmt>(*S));         break;
181   case Stmt::LabelStmtClass:    EmitLabelStmt(cast<LabelStmt>(*S));       break;
182   case Stmt::AttributedStmtClass:
183                             EmitAttributedStmt(cast<AttributedStmt>(*S)); break;
184   case Stmt::GotoStmtClass:     EmitGotoStmt(cast<GotoStmt>(*S));         break;
185   case Stmt::BreakStmtClass:    EmitBreakStmt(cast<BreakStmt>(*S));       break;
186   case Stmt::ContinueStmtClass: EmitContinueStmt(cast<ContinueStmt>(*S)); break;
187   case Stmt::DefaultStmtClass:  EmitDefaultStmt(cast<DefaultStmt>(*S));   break;
188   case Stmt::CaseStmtClass:     EmitCaseStmt(cast<CaseStmt>(*S));         break;
189   }
190 
191   return true;
192 }
193 
194 /// EmitCompoundStmt - Emit a compound statement {..} node.  If GetLast is true,
195 /// this captures the expression result of the last sub-statement and returns it
196 /// (for use by the statement expression extension).
EmitCompoundStmt(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)197 llvm::Value* CodeGenFunction::EmitCompoundStmt(const CompoundStmt &S, bool GetLast,
198                                                AggValueSlot AggSlot) {
199   PrettyStackTraceLoc CrashInfo(getContext().getSourceManager(),S.getLBracLoc(),
200                              "LLVM IR generation of compound statement ('{}')");
201 
202   // Keep track of the current cleanup stack depth, including debug scopes.
203   LexicalScope Scope(*this, S.getSourceRange());
204 
205   return EmitCompoundStmtWithoutScope(S, GetLast, AggSlot);
206 }
207 
208 llvm::Value*
EmitCompoundStmtWithoutScope(const CompoundStmt & S,bool GetLast,AggValueSlot AggSlot)209 CodeGenFunction::EmitCompoundStmtWithoutScope(const CompoundStmt &S,
210                                               bool GetLast,
211                                               AggValueSlot AggSlot) {
212 
213   for (CompoundStmt::const_body_iterator I = S.body_begin(),
214        E = S.body_end()-GetLast; I != E; ++I)
215     EmitStmt(*I);
216 
217   llvm::Value *RetAlloca = 0;
218   if (GetLast) {
219     // We have to special case labels here.  They are statements, but when put
220     // at the end of a statement expression, they yield the value of their
221     // subexpression.  Handle this by walking through all labels we encounter,
222     // emitting them before we evaluate the subexpr.
223     const Stmt *LastStmt = S.body_back();
224     while (const LabelStmt *LS = dyn_cast<LabelStmt>(LastStmt)) {
225       EmitLabel(LS->getDecl());
226       LastStmt = LS->getSubStmt();
227     }
228 
229     EnsureInsertPoint();
230 
231     QualType ExprTy = cast<Expr>(LastStmt)->getType();
232     if (hasAggregateEvaluationKind(ExprTy)) {
233       EmitAggExpr(cast<Expr>(LastStmt), AggSlot);
234     } else {
235       // We can't return an RValue here because there might be cleanups at
236       // the end of the StmtExpr.  Because of that, we have to emit the result
237       // here into a temporary alloca.
238       RetAlloca = CreateMemTemp(ExprTy);
239       EmitAnyExprToMem(cast<Expr>(LastStmt), RetAlloca, Qualifiers(),
240                        /*IsInit*/false);
241     }
242 
243   }
244 
245   return RetAlloca;
246 }
247 
SimplifyForwardingBlocks(llvm::BasicBlock * BB)248 void CodeGenFunction::SimplifyForwardingBlocks(llvm::BasicBlock *BB) {
249   llvm::BranchInst *BI = dyn_cast<llvm::BranchInst>(BB->getTerminator());
250 
251   // If there is a cleanup stack, then we it isn't worth trying to
252   // simplify this block (we would need to remove it from the scope map
253   // and cleanup entry).
254   if (!EHStack.empty())
255     return;
256 
257   // Can only simplify direct branches.
258   if (!BI || !BI->isUnconditional())
259     return;
260 
261   // Can only simplify empty blocks.
262   if (BI != BB->begin())
263     return;
264 
265   BB->replaceAllUsesWith(BI->getSuccessor(0));
266   BI->eraseFromParent();
267   BB->eraseFromParent();
268 }
269 
EmitBlock(llvm::BasicBlock * BB,bool IsFinished)270 void CodeGenFunction::EmitBlock(llvm::BasicBlock *BB, bool IsFinished) {
271   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
272 
273   // Fall out of the current block (if necessary).
274   EmitBranch(BB);
275 
276   if (IsFinished && BB->use_empty()) {
277     delete BB;
278     return;
279   }
280 
281   // Place the block after the current block, if possible, or else at
282   // the end of the function.
283   if (CurBB && CurBB->getParent())
284     CurFn->getBasicBlockList().insertAfter(CurBB, BB);
285   else
286     CurFn->getBasicBlockList().push_back(BB);
287   Builder.SetInsertPoint(BB);
288 }
289 
EmitBranch(llvm::BasicBlock * Target)290 void CodeGenFunction::EmitBranch(llvm::BasicBlock *Target) {
291   // Emit a branch from the current block to the target one if this
292   // was a real block.  If this was just a fall-through block after a
293   // terminator, don't emit it.
294   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
295 
296   if (!CurBB || CurBB->getTerminator()) {
297     // If there is no insert point or the previous block is already
298     // terminated, don't touch it.
299   } else {
300     // Otherwise, create a fall-through branch.
301     Builder.CreateBr(Target);
302   }
303 
304   Builder.ClearInsertionPoint();
305 }
306 
EmitBlockAfterUses(llvm::BasicBlock * block)307 void CodeGenFunction::EmitBlockAfterUses(llvm::BasicBlock *block) {
308   bool inserted = false;
309   for (llvm::BasicBlock::use_iterator
310          i = block->use_begin(), e = block->use_end(); i != e; ++i) {
311     if (llvm::Instruction *insn = dyn_cast<llvm::Instruction>(*i)) {
312       CurFn->getBasicBlockList().insertAfter(insn->getParent(), block);
313       inserted = true;
314       break;
315     }
316   }
317 
318   if (!inserted)
319     CurFn->getBasicBlockList().push_back(block);
320 
321   Builder.SetInsertPoint(block);
322 }
323 
324 CodeGenFunction::JumpDest
getJumpDestForLabel(const LabelDecl * D)325 CodeGenFunction::getJumpDestForLabel(const LabelDecl *D) {
326   JumpDest &Dest = LabelMap[D];
327   if (Dest.isValid()) return Dest;
328 
329   // Create, but don't insert, the new block.
330   Dest = JumpDest(createBasicBlock(D->getName()),
331                   EHScopeStack::stable_iterator::invalid(),
332                   NextCleanupDestIndex++);
333   return Dest;
334 }
335 
EmitLabel(const LabelDecl * D)336 void CodeGenFunction::EmitLabel(const LabelDecl *D) {
337   // Add this label to the current lexical scope if we're within any
338   // normal cleanups.  Jumps "in" to this label --- when permitted by
339   // the language --- may need to be routed around such cleanups.
340   if (EHStack.hasNormalCleanups() && CurLexicalScope)
341     CurLexicalScope->addLabel(D);
342 
343   JumpDest &Dest = LabelMap[D];
344 
345   // If we didn't need a forward reference to this label, just go
346   // ahead and create a destination at the current scope.
347   if (!Dest.isValid()) {
348     Dest = getJumpDestInCurrentScope(D->getName());
349 
350   // Otherwise, we need to give this label a target depth and remove
351   // it from the branch-fixups list.
352   } else {
353     assert(!Dest.getScopeDepth().isValid() && "already emitted label!");
354     Dest.setScopeDepth(EHStack.stable_begin());
355     ResolveBranchFixups(Dest.getBlock());
356   }
357 
358   EmitBlock(Dest.getBlock());
359 }
360 
361 /// Change the cleanup scope of the labels in this lexical scope to
362 /// match the scope of the enclosing context.
rescopeLabels()363 void CodeGenFunction::LexicalScope::rescopeLabels() {
364   assert(!Labels.empty());
365   EHScopeStack::stable_iterator innermostScope
366     = CGF.EHStack.getInnermostNormalCleanup();
367 
368   // Change the scope depth of all the labels.
369   for (SmallVectorImpl<const LabelDecl*>::const_iterator
370          i = Labels.begin(), e = Labels.end(); i != e; ++i) {
371     assert(CGF.LabelMap.count(*i));
372     JumpDest &dest = CGF.LabelMap.find(*i)->second;
373     assert(dest.getScopeDepth().isValid());
374     assert(innermostScope.encloses(dest.getScopeDepth()));
375     dest.setScopeDepth(innermostScope);
376   }
377 
378   // Reparent the labels if the new scope also has cleanups.
379   if (innermostScope != EHScopeStack::stable_end() && ParentScope) {
380     ParentScope->Labels.append(Labels.begin(), Labels.end());
381   }
382 }
383 
384 
EmitLabelStmt(const LabelStmt & S)385 void CodeGenFunction::EmitLabelStmt(const LabelStmt &S) {
386   EmitLabel(S.getDecl());
387   EmitStmt(S.getSubStmt());
388 }
389 
EmitAttributedStmt(const AttributedStmt & S)390 void CodeGenFunction::EmitAttributedStmt(const AttributedStmt &S) {
391   EmitStmt(S.getSubStmt());
392 }
393 
EmitGotoStmt(const GotoStmt & S)394 void CodeGenFunction::EmitGotoStmt(const GotoStmt &S) {
395   // If this code is reachable then emit a stop point (if generating
396   // debug info). We have to do this ourselves because we are on the
397   // "simple" statement path.
398   if (HaveInsertPoint())
399     EmitStopPoint(&S);
400 
401   EmitBranchThroughCleanup(getJumpDestForLabel(S.getLabel()));
402 }
403 
404 
EmitIndirectGotoStmt(const IndirectGotoStmt & S)405 void CodeGenFunction::EmitIndirectGotoStmt(const IndirectGotoStmt &S) {
406   if (const LabelDecl *Target = S.getConstantTarget()) {
407     EmitBranchThroughCleanup(getJumpDestForLabel(Target));
408     return;
409   }
410 
411   // Ensure that we have an i8* for our PHI node.
412   llvm::Value *V = Builder.CreateBitCast(EmitScalarExpr(S.getTarget()),
413                                          Int8PtrTy, "addr");
414   llvm::BasicBlock *CurBB = Builder.GetInsertBlock();
415 
416   // Get the basic block for the indirect goto.
417   llvm::BasicBlock *IndGotoBB = GetIndirectGotoBlock();
418 
419   // The first instruction in the block has to be the PHI for the switch dest,
420   // add an entry for this branch.
421   cast<llvm::PHINode>(IndGotoBB->begin())->addIncoming(V, CurBB);
422 
423   EmitBranch(IndGotoBB);
424 }
425 
EmitIfStmt(const IfStmt & S)426 void CodeGenFunction::EmitIfStmt(const IfStmt &S) {
427   // C99 6.8.4.1: The first substatement is executed if the expression compares
428   // unequal to 0.  The condition must be a scalar type.
429   LexicalScope ConditionScope(*this, S.getSourceRange());
430 
431   if (S.getConditionVariable())
432     EmitAutoVarDecl(*S.getConditionVariable());
433 
434   // If the condition constant folds and can be elided, try to avoid emitting
435   // the condition and the dead arm of the if/else.
436   bool CondConstant;
437   if (ConstantFoldsToSimpleInteger(S.getCond(), CondConstant)) {
438     // Figure out which block (then or else) is executed.
439     const Stmt *Executed = S.getThen();
440     const Stmt *Skipped  = S.getElse();
441     if (!CondConstant)  // Condition false?
442       std::swap(Executed, Skipped);
443 
444     // If the skipped block has no labels in it, just emit the executed block.
445     // This avoids emitting dead code and simplifies the CFG substantially.
446     if (!ContainsLabel(Skipped)) {
447       if (Executed) {
448         RunCleanupsScope ExecutedScope(*this);
449         EmitStmt(Executed);
450       }
451       return;
452     }
453   }
454 
455   // Otherwise, the condition did not fold, or we couldn't elide it.  Just emit
456   // the conditional branch.
457   llvm::BasicBlock *ThenBlock = createBasicBlock("if.then");
458   llvm::BasicBlock *ContBlock = createBasicBlock("if.end");
459   llvm::BasicBlock *ElseBlock = ContBlock;
460   if (S.getElse())
461     ElseBlock = createBasicBlock("if.else");
462   EmitBranchOnBoolExpr(S.getCond(), ThenBlock, ElseBlock);
463 
464   // Emit the 'then' code.
465   EmitBlock(ThenBlock);
466   {
467     RunCleanupsScope ThenScope(*this);
468     EmitStmt(S.getThen());
469   }
470   EmitBranch(ContBlock);
471 
472   // Emit the 'else' code if present.
473   if (const Stmt *Else = S.getElse()) {
474     // There is no need to emit line number for unconditional branch.
475     if (getDebugInfo())
476       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
477     EmitBlock(ElseBlock);
478     {
479       RunCleanupsScope ElseScope(*this);
480       EmitStmt(Else);
481     }
482     // There is no need to emit line number for unconditional branch.
483     if (getDebugInfo())
484       Builder.SetCurrentDebugLocation(llvm::DebugLoc());
485     EmitBranch(ContBlock);
486   }
487 
488   // Emit the continuation block for code after the if.
489   EmitBlock(ContBlock, true);
490 }
491 
EmitWhileStmt(const WhileStmt & S)492 void CodeGenFunction::EmitWhileStmt(const WhileStmt &S) {
493   // Emit the header for the loop, which will also become
494   // the continue target.
495   JumpDest LoopHeader = getJumpDestInCurrentScope("while.cond");
496   EmitBlock(LoopHeader.getBlock());
497 
498   // Create an exit block for when the condition fails, which will
499   // also become the break target.
500   JumpDest LoopExit = getJumpDestInCurrentScope("while.end");
501 
502   // Store the blocks to use for break and continue.
503   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopHeader));
504 
505   // C++ [stmt.while]p2:
506   //   When the condition of a while statement is a declaration, the
507   //   scope of the variable that is declared extends from its point
508   //   of declaration (3.3.2) to the end of the while statement.
509   //   [...]
510   //   The object created in a condition is destroyed and created
511   //   with each iteration of the loop.
512   RunCleanupsScope ConditionScope(*this);
513 
514   if (S.getConditionVariable())
515     EmitAutoVarDecl(*S.getConditionVariable());
516 
517   // Evaluate the conditional in the while header.  C99 6.8.5.1: The
518   // evaluation of the controlling expression takes place before each
519   // execution of the loop body.
520   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
521 
522   // while(1) is common, avoid extra exit blocks.  Be sure
523   // to correctly handle break/continue though.
524   bool EmitBoolCondBranch = true;
525   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
526     if (C->isOne())
527       EmitBoolCondBranch = false;
528 
529   // As long as the condition is true, go to the loop body.
530   llvm::BasicBlock *LoopBody = createBasicBlock("while.body");
531   if (EmitBoolCondBranch) {
532     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
533     if (ConditionScope.requiresCleanups())
534       ExitBlock = createBasicBlock("while.exit");
535 
536     Builder.CreateCondBr(BoolCondVal, LoopBody, ExitBlock);
537 
538     if (ExitBlock != LoopExit.getBlock()) {
539       EmitBlock(ExitBlock);
540       EmitBranchThroughCleanup(LoopExit);
541     }
542   }
543 
544   // Emit the loop body.  We have to emit this in a cleanup scope
545   // because it might be a singleton DeclStmt.
546   {
547     RunCleanupsScope BodyScope(*this);
548     EmitBlock(LoopBody);
549     EmitStmt(S.getBody());
550   }
551 
552   BreakContinueStack.pop_back();
553 
554   // Immediately force cleanup.
555   ConditionScope.ForceCleanup();
556 
557   // Branch to the loop header again.
558   EmitBranch(LoopHeader.getBlock());
559 
560   // Emit the exit block.
561   EmitBlock(LoopExit.getBlock(), true);
562 
563   // The LoopHeader typically is just a branch if we skipped emitting
564   // a branch, try to erase it.
565   if (!EmitBoolCondBranch)
566     SimplifyForwardingBlocks(LoopHeader.getBlock());
567 }
568 
EmitDoStmt(const DoStmt & S)569 void CodeGenFunction::EmitDoStmt(const DoStmt &S) {
570   JumpDest LoopExit = getJumpDestInCurrentScope("do.end");
571   JumpDest LoopCond = getJumpDestInCurrentScope("do.cond");
572 
573   // Store the blocks to use for break and continue.
574   BreakContinueStack.push_back(BreakContinue(LoopExit, LoopCond));
575 
576   // Emit the body of the loop.
577   llvm::BasicBlock *LoopBody = createBasicBlock("do.body");
578   EmitBlock(LoopBody);
579   {
580     RunCleanupsScope BodyScope(*this);
581     EmitStmt(S.getBody());
582   }
583 
584   BreakContinueStack.pop_back();
585 
586   EmitBlock(LoopCond.getBlock());
587 
588   // C99 6.8.5.2: "The evaluation of the controlling expression takes place
589   // after each execution of the loop body."
590 
591   // Evaluate the conditional in the while header.
592   // C99 6.8.5p2/p4: The first substatement is executed if the expression
593   // compares unequal to 0.  The condition must be a scalar type.
594   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
595 
596   // "do {} while (0)" is common in macros, avoid extra blocks.  Be sure
597   // to correctly handle break/continue though.
598   bool EmitBoolCondBranch = true;
599   if (llvm::ConstantInt *C = dyn_cast<llvm::ConstantInt>(BoolCondVal))
600     if (C->isZero())
601       EmitBoolCondBranch = false;
602 
603   // As long as the condition is true, iterate the loop.
604   if (EmitBoolCondBranch)
605     Builder.CreateCondBr(BoolCondVal, LoopBody, LoopExit.getBlock());
606 
607   // Emit the exit block.
608   EmitBlock(LoopExit.getBlock());
609 
610   // The DoCond block typically is just a branch if we skipped
611   // emitting a branch, try to erase it.
612   if (!EmitBoolCondBranch)
613     SimplifyForwardingBlocks(LoopCond.getBlock());
614 }
615 
EmitForStmt(const ForStmt & S)616 void CodeGenFunction::EmitForStmt(const ForStmt &S) {
617   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
618 
619   RunCleanupsScope ForScope(*this);
620 
621   CGDebugInfo *DI = getDebugInfo();
622   if (DI)
623     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
624 
625   // Evaluate the first part before the loop.
626   if (S.getInit())
627     EmitStmt(S.getInit());
628 
629   // Start the loop with a block that tests the condition.
630   // If there's an increment, the continue scope will be overwritten
631   // later.
632   JumpDest Continue = getJumpDestInCurrentScope("for.cond");
633   llvm::BasicBlock *CondBlock = Continue.getBlock();
634   EmitBlock(CondBlock);
635 
636   // Create a cleanup scope for the condition variable cleanups.
637   RunCleanupsScope ConditionScope(*this);
638 
639   llvm::Value *BoolCondVal = 0;
640   if (S.getCond()) {
641     // If the for statement has a condition scope, emit the local variable
642     // declaration.
643     llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
644     if (S.getConditionVariable()) {
645       EmitAutoVarDecl(*S.getConditionVariable());
646     }
647 
648     // If there are any cleanups between here and the loop-exit scope,
649     // create a block to stage a loop exit along.
650     if (ForScope.requiresCleanups())
651       ExitBlock = createBasicBlock("for.cond.cleanup");
652 
653     // As long as the condition is true, iterate the loop.
654     llvm::BasicBlock *ForBody = createBasicBlock("for.body");
655 
656     // C99 6.8.5p2/p4: The first substatement is executed if the expression
657     // compares unequal to 0.  The condition must be a scalar type.
658     BoolCondVal = EvaluateExprAsBool(S.getCond());
659     Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
660 
661     if (ExitBlock != LoopExit.getBlock()) {
662       EmitBlock(ExitBlock);
663       EmitBranchThroughCleanup(LoopExit);
664     }
665 
666     EmitBlock(ForBody);
667   } else {
668     // Treat it as a non-zero constant.  Don't even create a new block for the
669     // body, just fall into it.
670   }
671 
672   // If the for loop doesn't have an increment we can just use the
673   // condition as the continue block.  Otherwise we'll need to create
674   // a block for it (in the current scope, i.e. in the scope of the
675   // condition), and that we will become our continue block.
676   if (S.getInc())
677     Continue = getJumpDestInCurrentScope("for.inc");
678 
679   // Store the blocks to use for break and continue.
680   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
681 
682   {
683     // Create a separate cleanup scope for the body, in case it is not
684     // a compound statement.
685     RunCleanupsScope BodyScope(*this);
686     EmitStmt(S.getBody());
687   }
688 
689   // If there is an increment, emit it next.
690   if (S.getInc()) {
691     EmitBlock(Continue.getBlock());
692     EmitStmt(S.getInc());
693   }
694 
695   BreakContinueStack.pop_back();
696 
697   ConditionScope.ForceCleanup();
698   EmitBranch(CondBlock);
699 
700   ForScope.ForceCleanup();
701 
702   if (DI)
703     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
704 
705   // Emit the fall-through block.
706   EmitBlock(LoopExit.getBlock(), true);
707 }
708 
EmitCXXForRangeStmt(const CXXForRangeStmt & S)709 void CodeGenFunction::EmitCXXForRangeStmt(const CXXForRangeStmt &S) {
710   JumpDest LoopExit = getJumpDestInCurrentScope("for.end");
711 
712   RunCleanupsScope ForScope(*this);
713 
714   CGDebugInfo *DI = getDebugInfo();
715   if (DI)
716     DI->EmitLexicalBlockStart(Builder, S.getSourceRange().getBegin());
717 
718   // Evaluate the first pieces before the loop.
719   EmitStmt(S.getRangeStmt());
720   EmitStmt(S.getBeginEndStmt());
721 
722   // Start the loop with a block that tests the condition.
723   // If there's an increment, the continue scope will be overwritten
724   // later.
725   llvm::BasicBlock *CondBlock = createBasicBlock("for.cond");
726   EmitBlock(CondBlock);
727 
728   // If there are any cleanups between here and the loop-exit scope,
729   // create a block to stage a loop exit along.
730   llvm::BasicBlock *ExitBlock = LoopExit.getBlock();
731   if (ForScope.requiresCleanups())
732     ExitBlock = createBasicBlock("for.cond.cleanup");
733 
734   // The loop body, consisting of the specified body and the loop variable.
735   llvm::BasicBlock *ForBody = createBasicBlock("for.body");
736 
737   // The body is executed if the expression, contextually converted
738   // to bool, is true.
739   llvm::Value *BoolCondVal = EvaluateExprAsBool(S.getCond());
740   Builder.CreateCondBr(BoolCondVal, ForBody, ExitBlock);
741 
742   if (ExitBlock != LoopExit.getBlock()) {
743     EmitBlock(ExitBlock);
744     EmitBranchThroughCleanup(LoopExit);
745   }
746 
747   EmitBlock(ForBody);
748 
749   // Create a block for the increment. In case of a 'continue', we jump there.
750   JumpDest Continue = getJumpDestInCurrentScope("for.inc");
751 
752   // Store the blocks to use for break and continue.
753   BreakContinueStack.push_back(BreakContinue(LoopExit, Continue));
754 
755   {
756     // Create a separate cleanup scope for the loop variable and body.
757     RunCleanupsScope BodyScope(*this);
758     EmitStmt(S.getLoopVarStmt());
759     EmitStmt(S.getBody());
760   }
761 
762   // If there is an increment, emit it next.
763   EmitBlock(Continue.getBlock());
764   EmitStmt(S.getInc());
765 
766   BreakContinueStack.pop_back();
767 
768   EmitBranch(CondBlock);
769 
770   ForScope.ForceCleanup();
771 
772   if (DI)
773     DI->EmitLexicalBlockEnd(Builder, S.getSourceRange().getEnd());
774 
775   // Emit the fall-through block.
776   EmitBlock(LoopExit.getBlock(), true);
777 }
778 
EmitReturnOfRValue(RValue RV,QualType Ty)779 void CodeGenFunction::EmitReturnOfRValue(RValue RV, QualType Ty) {
780   if (RV.isScalar()) {
781     Builder.CreateStore(RV.getScalarVal(), ReturnValue);
782   } else if (RV.isAggregate()) {
783     EmitAggregateCopy(ReturnValue, RV.getAggregateAddr(), Ty);
784   } else {
785     EmitStoreOfComplex(RV.getComplexVal(),
786                        MakeNaturalAlignAddrLValue(ReturnValue, Ty),
787                        /*init*/ true);
788   }
789   EmitBranchThroughCleanup(ReturnBlock);
790 }
791 
792 /// EmitReturnStmt - Note that due to GCC extensions, this can have an operand
793 /// if the function returns void, or may be missing one if the function returns
794 /// non-void.  Fun stuff :).
EmitReturnStmt(const ReturnStmt & S)795 void CodeGenFunction::EmitReturnStmt(const ReturnStmt &S) {
796   // Emit the result value, even if unused, to evalute the side effects.
797   const Expr *RV = S.getRetValue();
798 
799   // Treat block literals in a return expression as if they appeared
800   // in their own scope.  This permits a small, easily-implemented
801   // exception to our over-conservative rules about not jumping to
802   // statements following block literals with non-trivial cleanups.
803   RunCleanupsScope cleanupScope(*this);
804   if (const ExprWithCleanups *cleanups =
805         dyn_cast_or_null<ExprWithCleanups>(RV)) {
806     enterFullExpression(cleanups);
807     RV = cleanups->getSubExpr();
808   }
809 
810   // FIXME: Clean this up by using an LValue for ReturnTemp,
811   // EmitStoreThroughLValue, and EmitAnyExpr.
812   if (S.getNRVOCandidate() && S.getNRVOCandidate()->isNRVOVariable()) {
813     // Apply the named return value optimization for this return statement,
814     // which means doing nothing: the appropriate result has already been
815     // constructed into the NRVO variable.
816 
817     // If there is an NRVO flag for this variable, set it to 1 into indicate
818     // that the cleanup code should not destroy the variable.
819     if (llvm::Value *NRVOFlag = NRVOFlags[S.getNRVOCandidate()])
820       Builder.CreateStore(Builder.getTrue(), NRVOFlag);
821   } else if (!ReturnValue) {
822     // Make sure not to return anything, but evaluate the expression
823     // for side effects.
824     if (RV)
825       EmitAnyExpr(RV);
826   } else if (RV == 0) {
827     // Do nothing (return value is left uninitialized)
828   } else if (FnRetTy->isReferenceType()) {
829     // If this function returns a reference, take the address of the expression
830     // rather than the value.
831     RValue Result = EmitReferenceBindingToExpr(RV);
832     Builder.CreateStore(Result.getScalarVal(), ReturnValue);
833   } else {
834     switch (getEvaluationKind(RV->getType())) {
835     case TEK_Scalar:
836       Builder.CreateStore(EmitScalarExpr(RV), ReturnValue);
837       break;
838     case TEK_Complex:
839       EmitComplexExprIntoLValue(RV,
840                      MakeNaturalAlignAddrLValue(ReturnValue, RV->getType()),
841                                 /*isInit*/ true);
842       break;
843     case TEK_Aggregate: {
844       CharUnits Alignment = getContext().getTypeAlignInChars(RV->getType());
845       EmitAggExpr(RV, AggValueSlot::forAddr(ReturnValue, Alignment,
846                                             Qualifiers(),
847                                             AggValueSlot::IsDestructed,
848                                             AggValueSlot::DoesNotNeedGCBarriers,
849                                             AggValueSlot::IsNotAliased));
850       break;
851     }
852     }
853   }
854 
855   ++NumReturnExprs;
856   if (RV == 0 || RV->isEvaluatable(getContext()))
857     ++NumSimpleReturnExprs;
858 
859   cleanupScope.ForceCleanup();
860   EmitBranchThroughCleanup(ReturnBlock);
861 }
862 
EmitDeclStmt(const DeclStmt & S)863 void CodeGenFunction::EmitDeclStmt(const DeclStmt &S) {
864   // As long as debug info is modeled with instructions, we have to ensure we
865   // have a place to insert here and write the stop point here.
866   if (HaveInsertPoint())
867     EmitStopPoint(&S);
868 
869   for (DeclStmt::const_decl_iterator I = S.decl_begin(), E = S.decl_end();
870        I != E; ++I)
871     EmitDecl(**I);
872 }
873 
EmitBreakStmt(const BreakStmt & S)874 void CodeGenFunction::EmitBreakStmt(const BreakStmt &S) {
875   assert(!BreakContinueStack.empty() && "break stmt not in a loop or switch!");
876 
877   // If this code is reachable then emit a stop point (if generating
878   // debug info). We have to do this ourselves because we are on the
879   // "simple" statement path.
880   if (HaveInsertPoint())
881     EmitStopPoint(&S);
882 
883   JumpDest Block = BreakContinueStack.back().BreakBlock;
884   EmitBranchThroughCleanup(Block);
885 }
886 
EmitContinueStmt(const ContinueStmt & S)887 void CodeGenFunction::EmitContinueStmt(const ContinueStmt &S) {
888   assert(!BreakContinueStack.empty() && "continue stmt not in a loop!");
889 
890   // If this code is reachable then emit a stop point (if generating
891   // debug info). We have to do this ourselves because we are on the
892   // "simple" statement path.
893   if (HaveInsertPoint())
894     EmitStopPoint(&S);
895 
896   JumpDest Block = BreakContinueStack.back().ContinueBlock;
897   EmitBranchThroughCleanup(Block);
898 }
899 
900 /// EmitCaseStmtRange - If case statement range is not too big then
901 /// add multiple cases to switch instruction, one for each value within
902 /// the range. If range is too big then emit "if" condition check.
EmitCaseStmtRange(const CaseStmt & S)903 void CodeGenFunction::EmitCaseStmtRange(const CaseStmt &S) {
904   assert(S.getRHS() && "Expected RHS value in CaseStmt");
905 
906   llvm::APSInt LHS = S.getLHS()->EvaluateKnownConstInt(getContext());
907   llvm::APSInt RHS = S.getRHS()->EvaluateKnownConstInt(getContext());
908 
909   // Emit the code for this case. We do this first to make sure it is
910   // properly chained from our predecessor before generating the
911   // switch machinery to enter this block.
912   EmitBlock(createBasicBlock("sw.bb"));
913   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
914   EmitStmt(S.getSubStmt());
915 
916   // If range is empty, do nothing.
917   if (LHS.isSigned() ? RHS.slt(LHS) : RHS.ult(LHS))
918     return;
919 
920   llvm::APInt Range = RHS - LHS;
921   // FIXME: parameters such as this should not be hardcoded.
922   if (Range.ult(llvm::APInt(Range.getBitWidth(), 64))) {
923     // Range is small enough to add multiple switch instruction cases.
924     for (unsigned i = 0, e = Range.getZExtValue() + 1; i != e; ++i) {
925       SwitchInsn->addCase(Builder.getInt(LHS), CaseDest);
926       LHS++;
927     }
928     return;
929   }
930 
931   // The range is too big. Emit "if" condition into a new block,
932   // making sure to save and restore the current insertion point.
933   llvm::BasicBlock *RestoreBB = Builder.GetInsertBlock();
934 
935   // Push this test onto the chain of range checks (which terminates
936   // in the default basic block). The switch's default will be changed
937   // to the top of this chain after switch emission is complete.
938   llvm::BasicBlock *FalseDest = CaseRangeBlock;
939   CaseRangeBlock = createBasicBlock("sw.caserange");
940 
941   CurFn->getBasicBlockList().push_back(CaseRangeBlock);
942   Builder.SetInsertPoint(CaseRangeBlock);
943 
944   // Emit range check.
945   llvm::Value *Diff =
946     Builder.CreateSub(SwitchInsn->getCondition(), Builder.getInt(LHS));
947   llvm::Value *Cond =
948     Builder.CreateICmpULE(Diff, Builder.getInt(Range), "inbounds");
949   Builder.CreateCondBr(Cond, CaseDest, FalseDest);
950 
951   // Restore the appropriate insertion point.
952   if (RestoreBB)
953     Builder.SetInsertPoint(RestoreBB);
954   else
955     Builder.ClearInsertionPoint();
956 }
957 
EmitCaseStmt(const CaseStmt & S)958 void CodeGenFunction::EmitCaseStmt(const CaseStmt &S) {
959   // If there is no enclosing switch instance that we're aware of, then this
960   // case statement and its block can be elided.  This situation only happens
961   // when we've constant-folded the switch, are emitting the constant case,
962   // and part of the constant case includes another case statement.  For
963   // instance: switch (4) { case 4: do { case 5: } while (1); }
964   if (!SwitchInsn) {
965     EmitStmt(S.getSubStmt());
966     return;
967   }
968 
969   // Handle case ranges.
970   if (S.getRHS()) {
971     EmitCaseStmtRange(S);
972     return;
973   }
974 
975   llvm::ConstantInt *CaseVal =
976     Builder.getInt(S.getLHS()->EvaluateKnownConstInt(getContext()));
977 
978   // If the body of the case is just a 'break', and if there was no fallthrough,
979   // try to not emit an empty block.
980   if ((CGM.getCodeGenOpts().OptimizationLevel > 0) &&
981       isa<BreakStmt>(S.getSubStmt())) {
982     JumpDest Block = BreakContinueStack.back().BreakBlock;
983 
984     // Only do this optimization if there are no cleanups that need emitting.
985     if (isObviouslyBranchWithoutCleanups(Block)) {
986       SwitchInsn->addCase(CaseVal, Block.getBlock());
987 
988       // If there was a fallthrough into this case, make sure to redirect it to
989       // the end of the switch as well.
990       if (Builder.GetInsertBlock()) {
991         Builder.CreateBr(Block.getBlock());
992         Builder.ClearInsertionPoint();
993       }
994       return;
995     }
996   }
997 
998   EmitBlock(createBasicBlock("sw.bb"));
999   llvm::BasicBlock *CaseDest = Builder.GetInsertBlock();
1000   SwitchInsn->addCase(CaseVal, CaseDest);
1001 
1002   // Recursively emitting the statement is acceptable, but is not wonderful for
1003   // code where we have many case statements nested together, i.e.:
1004   //  case 1:
1005   //    case 2:
1006   //      case 3: etc.
1007   // Handling this recursively will create a new block for each case statement
1008   // that falls through to the next case which is IR intensive.  It also causes
1009   // deep recursion which can run into stack depth limitations.  Handle
1010   // sequential non-range case statements specially.
1011   const CaseStmt *CurCase = &S;
1012   const CaseStmt *NextCase = dyn_cast<CaseStmt>(S.getSubStmt());
1013 
1014   // Otherwise, iteratively add consecutive cases to this switch stmt.
1015   while (NextCase && NextCase->getRHS() == 0) {
1016     CurCase = NextCase;
1017     llvm::ConstantInt *CaseVal =
1018       Builder.getInt(CurCase->getLHS()->EvaluateKnownConstInt(getContext()));
1019     SwitchInsn->addCase(CaseVal, CaseDest);
1020     NextCase = dyn_cast<CaseStmt>(CurCase->getSubStmt());
1021   }
1022 
1023   // Normal default recursion for non-cases.
1024   EmitStmt(CurCase->getSubStmt());
1025 }
1026 
EmitDefaultStmt(const DefaultStmt & S)1027 void CodeGenFunction::EmitDefaultStmt(const DefaultStmt &S) {
1028   llvm::BasicBlock *DefaultBlock = SwitchInsn->getDefaultDest();
1029   assert(DefaultBlock->empty() &&
1030          "EmitDefaultStmt: Default block already defined?");
1031   EmitBlock(DefaultBlock);
1032   EmitStmt(S.getSubStmt());
1033 }
1034 
1035 /// CollectStatementsForCase - Given the body of a 'switch' statement and a
1036 /// constant value that is being switched on, see if we can dead code eliminate
1037 /// the body of the switch to a simple series of statements to emit.  Basically,
1038 /// on a switch (5) we want to find these statements:
1039 ///    case 5:
1040 ///      printf(...);    <--
1041 ///      ++i;            <--
1042 ///      break;
1043 ///
1044 /// and add them to the ResultStmts vector.  If it is unsafe to do this
1045 /// transformation (for example, one of the elided statements contains a label
1046 /// that might be jumped to), return CSFC_Failure.  If we handled it and 'S'
1047 /// should include statements after it (e.g. the printf() line is a substmt of
1048 /// the case) then return CSFC_FallThrough.  If we handled it and found a break
1049 /// statement, then return CSFC_Success.
1050 ///
1051 /// If Case is non-null, then we are looking for the specified case, checking
1052 /// that nothing we jump over contains labels.  If Case is null, then we found
1053 /// the case and are looking for the break.
1054 ///
1055 /// If the recursive walk actually finds our Case, then we set FoundCase to
1056 /// true.
1057 ///
1058 enum CSFC_Result { CSFC_Failure, CSFC_FallThrough, CSFC_Success };
CollectStatementsForCase(const Stmt * S,const SwitchCase * Case,bool & FoundCase,SmallVectorImpl<const Stmt * > & ResultStmts)1059 static CSFC_Result CollectStatementsForCase(const Stmt *S,
1060                                             const SwitchCase *Case,
1061                                             bool &FoundCase,
1062                               SmallVectorImpl<const Stmt*> &ResultStmts) {
1063   // If this is a null statement, just succeed.
1064   if (S == 0)
1065     return Case ? CSFC_Success : CSFC_FallThrough;
1066 
1067   // If this is the switchcase (case 4: or default) that we're looking for, then
1068   // we're in business.  Just add the substatement.
1069   if (const SwitchCase *SC = dyn_cast<SwitchCase>(S)) {
1070     if (S == Case) {
1071       FoundCase = true;
1072       return CollectStatementsForCase(SC->getSubStmt(), 0, FoundCase,
1073                                       ResultStmts);
1074     }
1075 
1076     // Otherwise, this is some other case or default statement, just ignore it.
1077     return CollectStatementsForCase(SC->getSubStmt(), Case, FoundCase,
1078                                     ResultStmts);
1079   }
1080 
1081   // If we are in the live part of the code and we found our break statement,
1082   // return a success!
1083   if (Case == 0 && isa<BreakStmt>(S))
1084     return CSFC_Success;
1085 
1086   // If this is a switch statement, then it might contain the SwitchCase, the
1087   // break, or neither.
1088   if (const CompoundStmt *CS = dyn_cast<CompoundStmt>(S)) {
1089     // Handle this as two cases: we might be looking for the SwitchCase (if so
1090     // the skipped statements must be skippable) or we might already have it.
1091     CompoundStmt::const_body_iterator I = CS->body_begin(), E = CS->body_end();
1092     if (Case) {
1093       // Keep track of whether we see a skipped declaration.  The code could be
1094       // using the declaration even if it is skipped, so we can't optimize out
1095       // the decl if the kept statements might refer to it.
1096       bool HadSkippedDecl = false;
1097 
1098       // If we're looking for the case, just see if we can skip each of the
1099       // substatements.
1100       for (; Case && I != E; ++I) {
1101         HadSkippedDecl |= isa<DeclStmt>(*I);
1102 
1103         switch (CollectStatementsForCase(*I, Case, FoundCase, ResultStmts)) {
1104         case CSFC_Failure: return CSFC_Failure;
1105         case CSFC_Success:
1106           // A successful result means that either 1) that the statement doesn't
1107           // have the case and is skippable, or 2) does contain the case value
1108           // and also contains the break to exit the switch.  In the later case,
1109           // we just verify the rest of the statements are elidable.
1110           if (FoundCase) {
1111             // If we found the case and skipped declarations, we can't do the
1112             // optimization.
1113             if (HadSkippedDecl)
1114               return CSFC_Failure;
1115 
1116             for (++I; I != E; ++I)
1117               if (CodeGenFunction::ContainsLabel(*I, true))
1118                 return CSFC_Failure;
1119             return CSFC_Success;
1120           }
1121           break;
1122         case CSFC_FallThrough:
1123           // If we have a fallthrough condition, then we must have found the
1124           // case started to include statements.  Consider the rest of the
1125           // statements in the compound statement as candidates for inclusion.
1126           assert(FoundCase && "Didn't find case but returned fallthrough?");
1127           // We recursively found Case, so we're not looking for it anymore.
1128           Case = 0;
1129 
1130           // If we found the case and skipped declarations, we can't do the
1131           // optimization.
1132           if (HadSkippedDecl)
1133             return CSFC_Failure;
1134           break;
1135         }
1136       }
1137     }
1138 
1139     // If we have statements in our range, then we know that the statements are
1140     // live and need to be added to the set of statements we're tracking.
1141     for (; I != E; ++I) {
1142       switch (CollectStatementsForCase(*I, 0, FoundCase, ResultStmts)) {
1143       case CSFC_Failure: return CSFC_Failure;
1144       case CSFC_FallThrough:
1145         // A fallthrough result means that the statement was simple and just
1146         // included in ResultStmt, keep adding them afterwards.
1147         break;
1148       case CSFC_Success:
1149         // A successful result means that we found the break statement and
1150         // stopped statement inclusion.  We just ensure that any leftover stmts
1151         // are skippable and return success ourselves.
1152         for (++I; I != E; ++I)
1153           if (CodeGenFunction::ContainsLabel(*I, true))
1154             return CSFC_Failure;
1155         return CSFC_Success;
1156       }
1157     }
1158 
1159     return Case ? CSFC_Success : CSFC_FallThrough;
1160   }
1161 
1162   // Okay, this is some other statement that we don't handle explicitly, like a
1163   // for statement or increment etc.  If we are skipping over this statement,
1164   // just verify it doesn't have labels, which would make it invalid to elide.
1165   if (Case) {
1166     if (CodeGenFunction::ContainsLabel(S, true))
1167       return CSFC_Failure;
1168     return CSFC_Success;
1169   }
1170 
1171   // Otherwise, we want to include this statement.  Everything is cool with that
1172   // so long as it doesn't contain a break out of the switch we're in.
1173   if (CodeGenFunction::containsBreak(S)) return CSFC_Failure;
1174 
1175   // Otherwise, everything is great.  Include the statement and tell the caller
1176   // that we fall through and include the next statement as well.
1177   ResultStmts.push_back(S);
1178   return CSFC_FallThrough;
1179 }
1180 
1181 /// FindCaseStatementsForValue - Find the case statement being jumped to and
1182 /// then invoke CollectStatementsForCase to find the list of statements to emit
1183 /// for a switch on constant.  See the comment above CollectStatementsForCase
1184 /// for more details.
FindCaseStatementsForValue(const SwitchStmt & S,const llvm::APSInt & ConstantCondValue,SmallVectorImpl<const Stmt * > & ResultStmts,ASTContext & C)1185 static bool FindCaseStatementsForValue(const SwitchStmt &S,
1186                                        const llvm::APSInt &ConstantCondValue,
1187                                 SmallVectorImpl<const Stmt*> &ResultStmts,
1188                                        ASTContext &C) {
1189   // First step, find the switch case that is being branched to.  We can do this
1190   // efficiently by scanning the SwitchCase list.
1191   const SwitchCase *Case = S.getSwitchCaseList();
1192   const DefaultStmt *DefaultCase = 0;
1193 
1194   for (; Case; Case = Case->getNextSwitchCase()) {
1195     // It's either a default or case.  Just remember the default statement in
1196     // case we're not jumping to any numbered cases.
1197     if (const DefaultStmt *DS = dyn_cast<DefaultStmt>(Case)) {
1198       DefaultCase = DS;
1199       continue;
1200     }
1201 
1202     // Check to see if this case is the one we're looking for.
1203     const CaseStmt *CS = cast<CaseStmt>(Case);
1204     // Don't handle case ranges yet.
1205     if (CS->getRHS()) return false;
1206 
1207     // If we found our case, remember it as 'case'.
1208     if (CS->getLHS()->EvaluateKnownConstInt(C) == ConstantCondValue)
1209       break;
1210   }
1211 
1212   // If we didn't find a matching case, we use a default if it exists, or we
1213   // elide the whole switch body!
1214   if (Case == 0) {
1215     // It is safe to elide the body of the switch if it doesn't contain labels
1216     // etc.  If it is safe, return successfully with an empty ResultStmts list.
1217     if (DefaultCase == 0)
1218       return !CodeGenFunction::ContainsLabel(&S);
1219     Case = DefaultCase;
1220   }
1221 
1222   // Ok, we know which case is being jumped to, try to collect all the
1223   // statements that follow it.  This can fail for a variety of reasons.  Also,
1224   // check to see that the recursive walk actually found our case statement.
1225   // Insane cases like this can fail to find it in the recursive walk since we
1226   // don't handle every stmt kind:
1227   // switch (4) {
1228   //   while (1) {
1229   //     case 4: ...
1230   bool FoundCase = false;
1231   return CollectStatementsForCase(S.getBody(), Case, FoundCase,
1232                                   ResultStmts) != CSFC_Failure &&
1233          FoundCase;
1234 }
1235 
EmitSwitchStmt(const SwitchStmt & S)1236 void CodeGenFunction::EmitSwitchStmt(const SwitchStmt &S) {
1237   JumpDest SwitchExit = getJumpDestInCurrentScope("sw.epilog");
1238 
1239   RunCleanupsScope ConditionScope(*this);
1240 
1241   if (S.getConditionVariable())
1242     EmitAutoVarDecl(*S.getConditionVariable());
1243 
1244   // Handle nested switch statements.
1245   llvm::SwitchInst *SavedSwitchInsn = SwitchInsn;
1246   llvm::BasicBlock *SavedCRBlock = CaseRangeBlock;
1247 
1248   // See if we can constant fold the condition of the switch and therefore only
1249   // emit the live case statement (if any) of the switch.
1250   llvm::APSInt ConstantCondValue;
1251   if (ConstantFoldsToSimpleInteger(S.getCond(), ConstantCondValue)) {
1252     SmallVector<const Stmt*, 4> CaseStmts;
1253     if (FindCaseStatementsForValue(S, ConstantCondValue, CaseStmts,
1254                                    getContext())) {
1255       RunCleanupsScope ExecutedScope(*this);
1256 
1257       // At this point, we are no longer "within" a switch instance, so
1258       // we can temporarily enforce this to ensure that any embedded case
1259       // statements are not emitted.
1260       SwitchInsn = 0;
1261 
1262       // Okay, we can dead code eliminate everything except this case.  Emit the
1263       // specified series of statements and we're good.
1264       for (unsigned i = 0, e = CaseStmts.size(); i != e; ++i)
1265         EmitStmt(CaseStmts[i]);
1266 
1267       // Now we want to restore the saved switch instance so that nested
1268       // switches continue to function properly
1269       SwitchInsn = SavedSwitchInsn;
1270 
1271       return;
1272     }
1273   }
1274 
1275   llvm::Value *CondV = EmitScalarExpr(S.getCond());
1276 
1277   // Create basic block to hold stuff that comes after switch
1278   // statement. We also need to create a default block now so that
1279   // explicit case ranges tests can have a place to jump to on
1280   // failure.
1281   llvm::BasicBlock *DefaultBlock = createBasicBlock("sw.default");
1282   SwitchInsn = Builder.CreateSwitch(CondV, DefaultBlock);
1283   CaseRangeBlock = DefaultBlock;
1284 
1285   // Clear the insertion point to indicate we are in unreachable code.
1286   Builder.ClearInsertionPoint();
1287 
1288   // All break statements jump to NextBlock. If BreakContinueStack is non empty
1289   // then reuse last ContinueBlock.
1290   JumpDest OuterContinue;
1291   if (!BreakContinueStack.empty())
1292     OuterContinue = BreakContinueStack.back().ContinueBlock;
1293 
1294   BreakContinueStack.push_back(BreakContinue(SwitchExit, OuterContinue));
1295 
1296   // Emit switch body.
1297   EmitStmt(S.getBody());
1298 
1299   BreakContinueStack.pop_back();
1300 
1301   // Update the default block in case explicit case range tests have
1302   // been chained on top.
1303   SwitchInsn->setDefaultDest(CaseRangeBlock);
1304 
1305   // If a default was never emitted:
1306   if (!DefaultBlock->getParent()) {
1307     // If we have cleanups, emit the default block so that there's a
1308     // place to jump through the cleanups from.
1309     if (ConditionScope.requiresCleanups()) {
1310       EmitBlock(DefaultBlock);
1311 
1312     // Otherwise, just forward the default block to the switch end.
1313     } else {
1314       DefaultBlock->replaceAllUsesWith(SwitchExit.getBlock());
1315       delete DefaultBlock;
1316     }
1317   }
1318 
1319   ConditionScope.ForceCleanup();
1320 
1321   // Emit continuation.
1322   EmitBlock(SwitchExit.getBlock(), true);
1323 
1324   SwitchInsn = SavedSwitchInsn;
1325   CaseRangeBlock = SavedCRBlock;
1326 }
1327 
1328 static std::string
SimplifyConstraint(const char * Constraint,const TargetInfo & Target,SmallVectorImpl<TargetInfo::ConstraintInfo> * OutCons=0)1329 SimplifyConstraint(const char *Constraint, const TargetInfo &Target,
1330                  SmallVectorImpl<TargetInfo::ConstraintInfo> *OutCons=0) {
1331   std::string Result;
1332 
1333   while (*Constraint) {
1334     switch (*Constraint) {
1335     default:
1336       Result += Target.convertConstraint(Constraint);
1337       break;
1338     // Ignore these
1339     case '*':
1340     case '?':
1341     case '!':
1342     case '=': // Will see this and the following in mult-alt constraints.
1343     case '+':
1344       break;
1345     case '#': // Ignore the rest of the constraint alternative.
1346       while (Constraint[1] && Constraint[1] != ',')
1347         Constraint++;
1348       break;
1349     case ',':
1350       Result += "|";
1351       break;
1352     case 'g':
1353       Result += "imr";
1354       break;
1355     case '[': {
1356       assert(OutCons &&
1357              "Must pass output names to constraints with a symbolic name");
1358       unsigned Index;
1359       bool result = Target.resolveSymbolicName(Constraint,
1360                                                &(*OutCons)[0],
1361                                                OutCons->size(), Index);
1362       assert(result && "Could not resolve symbolic name"); (void)result;
1363       Result += llvm::utostr(Index);
1364       break;
1365     }
1366     }
1367 
1368     Constraint++;
1369   }
1370 
1371   return Result;
1372 }
1373 
1374 /// AddVariableConstraints - Look at AsmExpr and if it is a variable declared
1375 /// as using a particular register add that as a constraint that will be used
1376 /// in this asm stmt.
1377 static std::string
AddVariableConstraints(const std::string & Constraint,const Expr & AsmExpr,const TargetInfo & Target,CodeGenModule & CGM,const AsmStmt & Stmt)1378 AddVariableConstraints(const std::string &Constraint, const Expr &AsmExpr,
1379                        const TargetInfo &Target, CodeGenModule &CGM,
1380                        const AsmStmt &Stmt) {
1381   const DeclRefExpr *AsmDeclRef = dyn_cast<DeclRefExpr>(&AsmExpr);
1382   if (!AsmDeclRef)
1383     return Constraint;
1384   const ValueDecl &Value = *AsmDeclRef->getDecl();
1385   const VarDecl *Variable = dyn_cast<VarDecl>(&Value);
1386   if (!Variable)
1387     return Constraint;
1388   if (Variable->getStorageClass() != SC_Register)
1389     return Constraint;
1390   AsmLabelAttr *Attr = Variable->getAttr<AsmLabelAttr>();
1391   if (!Attr)
1392     return Constraint;
1393   StringRef Register = Attr->getLabel();
1394   assert(Target.isValidGCCRegisterName(Register));
1395   // We're using validateOutputConstraint here because we only care if
1396   // this is a register constraint.
1397   TargetInfo::ConstraintInfo Info(Constraint, "");
1398   if (Target.validateOutputConstraint(Info) &&
1399       !Info.allowsRegister()) {
1400     CGM.ErrorUnsupported(&Stmt, "__asm__");
1401     return Constraint;
1402   }
1403   // Canonicalize the register here before returning it.
1404   Register = Target.getNormalizedGCCRegisterName(Register);
1405   return "{" + Register.str() + "}";
1406 }
1407 
1408 llvm::Value*
EmitAsmInputLValue(const TargetInfo::ConstraintInfo & Info,LValue InputValue,QualType InputType,std::string & ConstraintStr)1409 CodeGenFunction::EmitAsmInputLValue(const TargetInfo::ConstraintInfo &Info,
1410                                     LValue InputValue, QualType InputType,
1411                                     std::string &ConstraintStr) {
1412   llvm::Value *Arg;
1413   if (Info.allowsRegister() || !Info.allowsMemory()) {
1414     if (CodeGenFunction::hasScalarEvaluationKind(InputType)) {
1415       Arg = EmitLoadOfLValue(InputValue).getScalarVal();
1416     } else {
1417       llvm::Type *Ty = ConvertType(InputType);
1418       uint64_t Size = CGM.getDataLayout().getTypeSizeInBits(Ty);
1419       if (Size <= 64 && llvm::isPowerOf2_64(Size)) {
1420         Ty = llvm::IntegerType::get(getLLVMContext(), Size);
1421         Ty = llvm::PointerType::getUnqual(Ty);
1422 
1423         Arg = Builder.CreateLoad(Builder.CreateBitCast(InputValue.getAddress(),
1424                                                        Ty));
1425       } else {
1426         Arg = InputValue.getAddress();
1427         ConstraintStr += '*';
1428       }
1429     }
1430   } else {
1431     Arg = InputValue.getAddress();
1432     ConstraintStr += '*';
1433   }
1434 
1435   return Arg;
1436 }
1437 
EmitAsmInput(const TargetInfo::ConstraintInfo & Info,const Expr * InputExpr,std::string & ConstraintStr)1438 llvm::Value* CodeGenFunction::EmitAsmInput(
1439                                          const TargetInfo::ConstraintInfo &Info,
1440                                            const Expr *InputExpr,
1441                                            std::string &ConstraintStr) {
1442   if (Info.allowsRegister() || !Info.allowsMemory())
1443     if (CodeGenFunction::hasScalarEvaluationKind(InputExpr->getType()))
1444       return EmitScalarExpr(InputExpr);
1445 
1446   InputExpr = InputExpr->IgnoreParenNoopCasts(getContext());
1447   LValue Dest = EmitLValue(InputExpr);
1448   return EmitAsmInputLValue(Info, Dest, InputExpr->getType(), ConstraintStr);
1449 }
1450 
1451 /// getAsmSrcLocInfo - Return the !srcloc metadata node to attach to an inline
1452 /// asm call instruction.  The !srcloc MDNode contains a list of constant
1453 /// integers which are the source locations of the start of each line in the
1454 /// asm.
getAsmSrcLocInfo(const StringLiteral * Str,CodeGenFunction & CGF)1455 static llvm::MDNode *getAsmSrcLocInfo(const StringLiteral *Str,
1456                                       CodeGenFunction &CGF) {
1457   SmallVector<llvm::Value *, 8> Locs;
1458   // Add the location of the first line to the MDNode.
1459   Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1460                                         Str->getLocStart().getRawEncoding()));
1461   StringRef StrVal = Str->getString();
1462   if (!StrVal.empty()) {
1463     const SourceManager &SM = CGF.CGM.getContext().getSourceManager();
1464     const LangOptions &LangOpts = CGF.CGM.getLangOpts();
1465 
1466     // Add the location of the start of each subsequent line of the asm to the
1467     // MDNode.
1468     for (unsigned i = 0, e = StrVal.size()-1; i != e; ++i) {
1469       if (StrVal[i] != '\n') continue;
1470       SourceLocation LineLoc = Str->getLocationOfByte(i+1, SM, LangOpts,
1471                                                       CGF.getTarget());
1472       Locs.push_back(llvm::ConstantInt::get(CGF.Int32Ty,
1473                                             LineLoc.getRawEncoding()));
1474     }
1475   }
1476 
1477   return llvm::MDNode::get(CGF.getLLVMContext(), Locs);
1478 }
1479 
EmitAsmStmt(const AsmStmt & S)1480 void CodeGenFunction::EmitAsmStmt(const AsmStmt &S) {
1481   // Assemble the final asm string.
1482   std::string AsmString = S.generateAsmString(getContext());
1483 
1484   // Get all the output and input constraints together.
1485   SmallVector<TargetInfo::ConstraintInfo, 4> OutputConstraintInfos;
1486   SmallVector<TargetInfo::ConstraintInfo, 4> InputConstraintInfos;
1487 
1488   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1489     StringRef Name;
1490     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1491       Name = GAS->getOutputName(i);
1492     TargetInfo::ConstraintInfo Info(S.getOutputConstraint(i), Name);
1493     bool IsValid = getTarget().validateOutputConstraint(Info); (void)IsValid;
1494     assert(IsValid && "Failed to parse output constraint");
1495     OutputConstraintInfos.push_back(Info);
1496   }
1497 
1498   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1499     StringRef Name;
1500     if (const GCCAsmStmt *GAS = dyn_cast<GCCAsmStmt>(&S))
1501       Name = GAS->getInputName(i);
1502     TargetInfo::ConstraintInfo Info(S.getInputConstraint(i), Name);
1503     bool IsValid =
1504       getTarget().validateInputConstraint(OutputConstraintInfos.data(),
1505                                           S.getNumOutputs(), Info);
1506     assert(IsValid && "Failed to parse input constraint"); (void)IsValid;
1507     InputConstraintInfos.push_back(Info);
1508   }
1509 
1510   std::string Constraints;
1511 
1512   std::vector<LValue> ResultRegDests;
1513   std::vector<QualType> ResultRegQualTys;
1514   std::vector<llvm::Type *> ResultRegTypes;
1515   std::vector<llvm::Type *> ResultTruncRegTypes;
1516   std::vector<llvm::Type *> ArgTypes;
1517   std::vector<llvm::Value*> Args;
1518 
1519   // Keep track of inout constraints.
1520   std::string InOutConstraints;
1521   std::vector<llvm::Value*> InOutArgs;
1522   std::vector<llvm::Type*> InOutArgTypes;
1523 
1524   for (unsigned i = 0, e = S.getNumOutputs(); i != e; i++) {
1525     TargetInfo::ConstraintInfo &Info = OutputConstraintInfos[i];
1526 
1527     // Simplify the output constraint.
1528     std::string OutputConstraint(S.getOutputConstraint(i));
1529     OutputConstraint = SimplifyConstraint(OutputConstraint.c_str() + 1,
1530                                           getTarget());
1531 
1532     const Expr *OutExpr = S.getOutputExpr(i);
1533     OutExpr = OutExpr->IgnoreParenNoopCasts(getContext());
1534 
1535     OutputConstraint = AddVariableConstraints(OutputConstraint, *OutExpr,
1536                                               getTarget(), CGM, S);
1537 
1538     LValue Dest = EmitLValue(OutExpr);
1539     if (!Constraints.empty())
1540       Constraints += ',';
1541 
1542     // If this is a register output, then make the inline asm return it
1543     // by-value.  If this is a memory result, return the value by-reference.
1544     if (!Info.allowsMemory() && hasScalarEvaluationKind(OutExpr->getType())) {
1545       Constraints += "=" + OutputConstraint;
1546       ResultRegQualTys.push_back(OutExpr->getType());
1547       ResultRegDests.push_back(Dest);
1548       ResultRegTypes.push_back(ConvertTypeForMem(OutExpr->getType()));
1549       ResultTruncRegTypes.push_back(ResultRegTypes.back());
1550 
1551       // If this output is tied to an input, and if the input is larger, then
1552       // we need to set the actual result type of the inline asm node to be the
1553       // same as the input type.
1554       if (Info.hasMatchingInput()) {
1555         unsigned InputNo;
1556         for (InputNo = 0; InputNo != S.getNumInputs(); ++InputNo) {
1557           TargetInfo::ConstraintInfo &Input = InputConstraintInfos[InputNo];
1558           if (Input.hasTiedOperand() && Input.getTiedOperand() == i)
1559             break;
1560         }
1561         assert(InputNo != S.getNumInputs() && "Didn't find matching input!");
1562 
1563         QualType InputTy = S.getInputExpr(InputNo)->getType();
1564         QualType OutputType = OutExpr->getType();
1565 
1566         uint64_t InputSize = getContext().getTypeSize(InputTy);
1567         if (getContext().getTypeSize(OutputType) < InputSize) {
1568           // Form the asm to return the value as a larger integer or fp type.
1569           ResultRegTypes.back() = ConvertType(InputTy);
1570         }
1571       }
1572       if (llvm::Type* AdjTy =
1573             getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1574                                                  ResultRegTypes.back()))
1575         ResultRegTypes.back() = AdjTy;
1576       else {
1577         CGM.getDiags().Report(S.getAsmLoc(),
1578                               diag::err_asm_invalid_type_in_input)
1579             << OutExpr->getType() << OutputConstraint;
1580       }
1581     } else {
1582       ArgTypes.push_back(Dest.getAddress()->getType());
1583       Args.push_back(Dest.getAddress());
1584       Constraints += "=*";
1585       Constraints += OutputConstraint;
1586     }
1587 
1588     if (Info.isReadWrite()) {
1589       InOutConstraints += ',';
1590 
1591       const Expr *InputExpr = S.getOutputExpr(i);
1592       llvm::Value *Arg = EmitAsmInputLValue(Info, Dest, InputExpr->getType(),
1593                                             InOutConstraints);
1594 
1595       if (llvm::Type* AdjTy =
1596           getTargetHooks().adjustInlineAsmType(*this, OutputConstraint,
1597                                                Arg->getType()))
1598         Arg = Builder.CreateBitCast(Arg, AdjTy);
1599 
1600       if (Info.allowsRegister())
1601         InOutConstraints += llvm::utostr(i);
1602       else
1603         InOutConstraints += OutputConstraint;
1604 
1605       InOutArgTypes.push_back(Arg->getType());
1606       InOutArgs.push_back(Arg);
1607     }
1608   }
1609 
1610   unsigned NumConstraints = S.getNumOutputs() + S.getNumInputs();
1611 
1612   for (unsigned i = 0, e = S.getNumInputs(); i != e; i++) {
1613     const Expr *InputExpr = S.getInputExpr(i);
1614 
1615     TargetInfo::ConstraintInfo &Info = InputConstraintInfos[i];
1616 
1617     if (!Constraints.empty())
1618       Constraints += ',';
1619 
1620     // Simplify the input constraint.
1621     std::string InputConstraint(S.getInputConstraint(i));
1622     InputConstraint = SimplifyConstraint(InputConstraint.c_str(), getTarget(),
1623                                          &OutputConstraintInfos);
1624 
1625     InputConstraint =
1626       AddVariableConstraints(InputConstraint,
1627                             *InputExpr->IgnoreParenNoopCasts(getContext()),
1628                             getTarget(), CGM, S);
1629 
1630     llvm::Value *Arg = EmitAsmInput(Info, InputExpr, Constraints);
1631 
1632     // If this input argument is tied to a larger output result, extend the
1633     // input to be the same size as the output.  The LLVM backend wants to see
1634     // the input and output of a matching constraint be the same size.  Note
1635     // that GCC does not define what the top bits are here.  We use zext because
1636     // that is usually cheaper, but LLVM IR should really get an anyext someday.
1637     if (Info.hasTiedOperand()) {
1638       unsigned Output = Info.getTiedOperand();
1639       QualType OutputType = S.getOutputExpr(Output)->getType();
1640       QualType InputTy = InputExpr->getType();
1641 
1642       if (getContext().getTypeSize(OutputType) >
1643           getContext().getTypeSize(InputTy)) {
1644         // Use ptrtoint as appropriate so that we can do our extension.
1645         if (isa<llvm::PointerType>(Arg->getType()))
1646           Arg = Builder.CreatePtrToInt(Arg, IntPtrTy);
1647         llvm::Type *OutputTy = ConvertType(OutputType);
1648         if (isa<llvm::IntegerType>(OutputTy))
1649           Arg = Builder.CreateZExt(Arg, OutputTy);
1650         else if (isa<llvm::PointerType>(OutputTy))
1651           Arg = Builder.CreateZExt(Arg, IntPtrTy);
1652         else {
1653           assert(OutputTy->isFloatingPointTy() && "Unexpected output type");
1654           Arg = Builder.CreateFPExt(Arg, OutputTy);
1655         }
1656       }
1657     }
1658     if (llvm::Type* AdjTy =
1659               getTargetHooks().adjustInlineAsmType(*this, InputConstraint,
1660                                                    Arg->getType()))
1661       Arg = Builder.CreateBitCast(Arg, AdjTy);
1662     else
1663       CGM.getDiags().Report(S.getAsmLoc(), diag::err_asm_invalid_type_in_input)
1664           << InputExpr->getType() << InputConstraint;
1665 
1666     ArgTypes.push_back(Arg->getType());
1667     Args.push_back(Arg);
1668     Constraints += InputConstraint;
1669   }
1670 
1671   // Append the "input" part of inout constraints last.
1672   for (unsigned i = 0, e = InOutArgs.size(); i != e; i++) {
1673     ArgTypes.push_back(InOutArgTypes[i]);
1674     Args.push_back(InOutArgs[i]);
1675   }
1676   Constraints += InOutConstraints;
1677 
1678   // Clobbers
1679   for (unsigned i = 0, e = S.getNumClobbers(); i != e; i++) {
1680     StringRef Clobber = S.getClobber(i);
1681 
1682     if (Clobber != "memory" && Clobber != "cc")
1683     Clobber = getTarget().getNormalizedGCCRegisterName(Clobber);
1684 
1685     if (i != 0 || NumConstraints != 0)
1686       Constraints += ',';
1687 
1688     Constraints += "~{";
1689     Constraints += Clobber;
1690     Constraints += '}';
1691   }
1692 
1693   // Add machine specific clobbers
1694   std::string MachineClobbers = getTarget().getClobbers();
1695   if (!MachineClobbers.empty()) {
1696     if (!Constraints.empty())
1697       Constraints += ',';
1698     Constraints += MachineClobbers;
1699   }
1700 
1701   llvm::Type *ResultType;
1702   if (ResultRegTypes.empty())
1703     ResultType = VoidTy;
1704   else if (ResultRegTypes.size() == 1)
1705     ResultType = ResultRegTypes[0];
1706   else
1707     ResultType = llvm::StructType::get(getLLVMContext(), ResultRegTypes);
1708 
1709   llvm::FunctionType *FTy =
1710     llvm::FunctionType::get(ResultType, ArgTypes, false);
1711 
1712   bool HasSideEffect = S.isVolatile() || S.getNumOutputs() == 0;
1713   llvm::InlineAsm::AsmDialect AsmDialect = isa<MSAsmStmt>(&S) ?
1714     llvm::InlineAsm::AD_Intel : llvm::InlineAsm::AD_ATT;
1715   llvm::InlineAsm *IA =
1716     llvm::InlineAsm::get(FTy, AsmString, Constraints, HasSideEffect,
1717                          /* IsAlignStack */ false, AsmDialect);
1718   llvm::CallInst *Result = Builder.CreateCall(IA, Args);
1719   Result->addAttribute(llvm::AttributeSet::FunctionIndex,
1720                        llvm::Attribute::NoUnwind);
1721 
1722   // Slap the source location of the inline asm into a !srcloc metadata on the
1723   // call.  FIXME: Handle metadata for MS-style inline asms.
1724   if (const GCCAsmStmt *gccAsmStmt = dyn_cast<GCCAsmStmt>(&S))
1725     Result->setMetadata("srcloc", getAsmSrcLocInfo(gccAsmStmt->getAsmString(),
1726                                                    *this));
1727 
1728   // Extract all of the register value results from the asm.
1729   std::vector<llvm::Value*> RegResults;
1730   if (ResultRegTypes.size() == 1) {
1731     RegResults.push_back(Result);
1732   } else {
1733     for (unsigned i = 0, e = ResultRegTypes.size(); i != e; ++i) {
1734       llvm::Value *Tmp = Builder.CreateExtractValue(Result, i, "asmresult");
1735       RegResults.push_back(Tmp);
1736     }
1737   }
1738 
1739   for (unsigned i = 0, e = RegResults.size(); i != e; ++i) {
1740     llvm::Value *Tmp = RegResults[i];
1741 
1742     // If the result type of the LLVM IR asm doesn't match the result type of
1743     // the expression, do the conversion.
1744     if (ResultRegTypes[i] != ResultTruncRegTypes[i]) {
1745       llvm::Type *TruncTy = ResultTruncRegTypes[i];
1746 
1747       // Truncate the integer result to the right size, note that TruncTy can be
1748       // a pointer.
1749       if (TruncTy->isFloatingPointTy())
1750         Tmp = Builder.CreateFPTrunc(Tmp, TruncTy);
1751       else if (TruncTy->isPointerTy() && Tmp->getType()->isIntegerTy()) {
1752         uint64_t ResSize = CGM.getDataLayout().getTypeSizeInBits(TruncTy);
1753         Tmp = Builder.CreateTrunc(Tmp,
1754                    llvm::IntegerType::get(getLLVMContext(), (unsigned)ResSize));
1755         Tmp = Builder.CreateIntToPtr(Tmp, TruncTy);
1756       } else if (Tmp->getType()->isPointerTy() && TruncTy->isIntegerTy()) {
1757         uint64_t TmpSize =CGM.getDataLayout().getTypeSizeInBits(Tmp->getType());
1758         Tmp = Builder.CreatePtrToInt(Tmp,
1759                    llvm::IntegerType::get(getLLVMContext(), (unsigned)TmpSize));
1760         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1761       } else if (TruncTy->isIntegerTy()) {
1762         Tmp = Builder.CreateTrunc(Tmp, TruncTy);
1763       } else if (TruncTy->isVectorTy()) {
1764         Tmp = Builder.CreateBitCast(Tmp, TruncTy);
1765       }
1766     }
1767 
1768     EmitStoreThroughLValue(RValue::get(Tmp), ResultRegDests[i]);
1769   }
1770 }
1771 
InitCapturedStruct(CodeGenFunction & CGF,const CapturedStmt & S)1772 static LValue InitCapturedStruct(CodeGenFunction &CGF, const CapturedStmt &S) {
1773   const RecordDecl *RD = S.getCapturedRecordDecl();
1774   QualType RecordTy = CGF.getContext().getRecordType(RD);
1775 
1776   // Initialize the captured struct.
1777   LValue SlotLV = CGF.MakeNaturalAlignAddrLValue(
1778                     CGF.CreateMemTemp(RecordTy, "agg.captured"), RecordTy);
1779 
1780   RecordDecl::field_iterator CurField = RD->field_begin();
1781   for (CapturedStmt::capture_init_iterator I = S.capture_init_begin(),
1782                                            E = S.capture_init_end();
1783        I != E; ++I, ++CurField) {
1784     LValue LV = CGF.EmitLValueForFieldInitialization(SlotLV, *CurField);
1785     CGF.EmitInitializerForField(*CurField, LV, *I, ArrayRef<VarDecl *>());
1786   }
1787 
1788   return SlotLV;
1789 }
1790 
1791 /// Generate an outlined function for the body of a CapturedStmt, store any
1792 /// captured variables into the captured struct, and call the outlined function.
1793 llvm::Function *
EmitCapturedStmt(const CapturedStmt & S,CapturedRegionKind K)1794 CodeGenFunction::EmitCapturedStmt(const CapturedStmt &S, CapturedRegionKind K) {
1795   const CapturedDecl *CD = S.getCapturedDecl();
1796   const RecordDecl *RD = S.getCapturedRecordDecl();
1797   assert(CD->hasBody() && "missing CapturedDecl body");
1798 
1799   LValue CapStruct = InitCapturedStruct(*this, S);
1800 
1801   // Emit the CapturedDecl
1802   CodeGenFunction CGF(CGM, true);
1803   CGF.CapturedStmtInfo = new CGCapturedStmtInfo(S, K);
1804   llvm::Function *F = CGF.GenerateCapturedStmtFunction(CD, RD);
1805   delete CGF.CapturedStmtInfo;
1806 
1807   // Emit call to the helper function.
1808   EmitCallOrInvoke(F, CapStruct.getAddress());
1809 
1810   return F;
1811 }
1812 
1813 /// Creates the outlined function for a CapturedStmt.
1814 llvm::Function *
GenerateCapturedStmtFunction(const CapturedDecl * CD,const RecordDecl * RD)1815 CodeGenFunction::GenerateCapturedStmtFunction(const CapturedDecl *CD,
1816                                               const RecordDecl *RD) {
1817   assert(CapturedStmtInfo &&
1818     "CapturedStmtInfo should be set when generating the captured function");
1819 
1820   // Check if we should generate debug info for this function.
1821   maybeInitializeDebugInfo();
1822 
1823   // Build the argument list.
1824   ASTContext &Ctx = CGM.getContext();
1825   FunctionArgList Args;
1826   Args.append(CD->param_begin(), CD->param_end());
1827 
1828   // Create the function declaration.
1829   FunctionType::ExtInfo ExtInfo;
1830   const CGFunctionInfo &FuncInfo =
1831     CGM.getTypes().arrangeFunctionDeclaration(Ctx.VoidTy, Args, ExtInfo,
1832                                               /*IsVariadic=*/false);
1833   llvm::FunctionType *FuncLLVMTy = CGM.getTypes().GetFunctionType(FuncInfo);
1834 
1835   llvm::Function *F =
1836     llvm::Function::Create(FuncLLVMTy, llvm::GlobalValue::InternalLinkage,
1837                            CapturedStmtInfo->getHelperName(), &CGM.getModule());
1838   CGM.SetInternalFunctionAttributes(CD, F, FuncInfo);
1839 
1840   // Generate the function.
1841   StartFunction(CD, Ctx.VoidTy, F, FuncInfo, Args, CD->getBody()->getLocStart());
1842 
1843   // Set the context parameter in CapturedStmtInfo.
1844   llvm::Value *DeclPtr = LocalDeclMap[CD->getContextParam()];
1845   assert(DeclPtr && "missing context parameter for CapturedStmt");
1846   CapturedStmtInfo->setContextValue(Builder.CreateLoad(DeclPtr));
1847 
1848   // If 'this' is captured, load it into CXXThisValue.
1849   if (CapturedStmtInfo->isCXXThisExprCaptured()) {
1850     FieldDecl *FD = CapturedStmtInfo->getThisFieldDecl();
1851     LValue LV = MakeNaturalAlignAddrLValue(CapturedStmtInfo->getContextValue(),
1852                                            Ctx.getTagDeclType(RD));
1853     LValue ThisLValue = EmitLValueForField(LV, FD);
1854 
1855     CXXThisValue = EmitLoadOfLValue(ThisLValue).getScalarVal();
1856   }
1857 
1858   CapturedStmtInfo->EmitBody(*this, CD->getBody());
1859   FinishFunction(CD->getBodyRBrace());
1860 
1861   return F;
1862 }
1863