1 //
2 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6
7 #include "compiler/ParseContext.h"
8
9 #include <stdarg.h>
10 #include <stdio.h>
11
12 #include "compiler/glslang.h"
13 #include "compiler/preprocessor/SourceLocation.h"
14
15 ///////////////////////////////////////////////////////////////////////
16 //
17 // Sub- vector and matrix fields
18 //
19 ////////////////////////////////////////////////////////////////////////
20
21 //
22 // Look at a '.' field selector string and change it into offsets
23 // for a vector.
24 //
parseVectorFields(const TString & compString,int vecSize,TVectorFields & fields,const TSourceLoc & line)25 bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc& line)
26 {
27 fields.num = (int) compString.size();
28 if (fields.num > 4) {
29 error(line, "illegal vector field selection", compString.c_str());
30 return false;
31 }
32
33 enum {
34 exyzw,
35 ergba,
36 estpq
37 } fieldSet[4];
38
39 for (int i = 0; i < fields.num; ++i) {
40 switch (compString[i]) {
41 case 'x':
42 fields.offsets[i] = 0;
43 fieldSet[i] = exyzw;
44 break;
45 case 'r':
46 fields.offsets[i] = 0;
47 fieldSet[i] = ergba;
48 break;
49 case 's':
50 fields.offsets[i] = 0;
51 fieldSet[i] = estpq;
52 break;
53 case 'y':
54 fields.offsets[i] = 1;
55 fieldSet[i] = exyzw;
56 break;
57 case 'g':
58 fields.offsets[i] = 1;
59 fieldSet[i] = ergba;
60 break;
61 case 't':
62 fields.offsets[i] = 1;
63 fieldSet[i] = estpq;
64 break;
65 case 'z':
66 fields.offsets[i] = 2;
67 fieldSet[i] = exyzw;
68 break;
69 case 'b':
70 fields.offsets[i] = 2;
71 fieldSet[i] = ergba;
72 break;
73 case 'p':
74 fields.offsets[i] = 2;
75 fieldSet[i] = estpq;
76 break;
77
78 case 'w':
79 fields.offsets[i] = 3;
80 fieldSet[i] = exyzw;
81 break;
82 case 'a':
83 fields.offsets[i] = 3;
84 fieldSet[i] = ergba;
85 break;
86 case 'q':
87 fields.offsets[i] = 3;
88 fieldSet[i] = estpq;
89 break;
90 default:
91 error(line, "illegal vector field selection", compString.c_str());
92 return false;
93 }
94 }
95
96 for (int i = 0; i < fields.num; ++i) {
97 if (fields.offsets[i] >= vecSize) {
98 error(line, "vector field selection out of range", compString.c_str());
99 return false;
100 }
101
102 if (i > 0) {
103 if (fieldSet[i] != fieldSet[i-1]) {
104 error(line, "illegal - vector component fields not from the same set", compString.c_str());
105 return false;
106 }
107 }
108 }
109
110 return true;
111 }
112
113
114 //
115 // Look at a '.' field selector string and change it into offsets
116 // for a matrix.
117 //
parseMatrixFields(const TString & compString,int matSize,TMatrixFields & fields,const TSourceLoc & line)118 bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, const TSourceLoc& line)
119 {
120 fields.wholeRow = false;
121 fields.wholeCol = false;
122 fields.row = -1;
123 fields.col = -1;
124
125 if (compString.size() != 2) {
126 error(line, "illegal length of matrix field selection", compString.c_str());
127 return false;
128 }
129
130 if (compString[0] == '_') {
131 if (compString[1] < '0' || compString[1] > '3') {
132 error(line, "illegal matrix field selection", compString.c_str());
133 return false;
134 }
135 fields.wholeCol = true;
136 fields.col = compString[1] - '0';
137 } else if (compString[1] == '_') {
138 if (compString[0] < '0' || compString[0] > '3') {
139 error(line, "illegal matrix field selection", compString.c_str());
140 return false;
141 }
142 fields.wholeRow = true;
143 fields.row = compString[0] - '0';
144 } else {
145 if (compString[0] < '0' || compString[0] > '3' ||
146 compString[1] < '0' || compString[1] > '3') {
147 error(line, "illegal matrix field selection", compString.c_str());
148 return false;
149 }
150 fields.row = compString[0] - '0';
151 fields.col = compString[1] - '0';
152 }
153
154 if (fields.row >= matSize || fields.col >= matSize) {
155 error(line, "matrix field selection out of range", compString.c_str());
156 return false;
157 }
158
159 return true;
160 }
161
162 ///////////////////////////////////////////////////////////////////////
163 //
164 // Errors
165 //
166 ////////////////////////////////////////////////////////////////////////
167
168 //
169 // Track whether errors have occurred.
170 //
recover()171 void TParseContext::recover()
172 {
173 }
174
175 //
176 // Used by flex/bison to output all syntax and parsing errors.
177 //
error(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)178 void TParseContext::error(const TSourceLoc& loc,
179 const char* reason, const char* token,
180 const char* extraInfo)
181 {
182 pp::SourceLocation srcLoc;
183 srcLoc.file = loc.first_file;
184 srcLoc.line = loc.first_line;
185 diagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
186 srcLoc, reason, token, extraInfo);
187
188 }
189
warning(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)190 void TParseContext::warning(const TSourceLoc& loc,
191 const char* reason, const char* token,
192 const char* extraInfo) {
193 pp::SourceLocation srcLoc;
194 srcLoc.file = loc.first_file;
195 srcLoc.line = loc.first_line;
196 diagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
197 srcLoc, reason, token, extraInfo);
198 }
199
trace(const char * str)200 void TParseContext::trace(const char* str)
201 {
202 diagnostics.writeDebug(str);
203 }
204
205 //
206 // Same error message for all places assignments don't work.
207 //
assignError(const TSourceLoc & line,const char * op,TString left,TString right)208 void TParseContext::assignError(const TSourceLoc& line, const char* op, TString left, TString right)
209 {
210 std::stringstream extraInfoStream;
211 extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
212 std::string extraInfo = extraInfoStream.str();
213 error(line, "", op, extraInfo.c_str());
214 }
215
216 //
217 // Same error message for all places unary operations don't work.
218 //
unaryOpError(const TSourceLoc & line,const char * op,TString operand)219 void TParseContext::unaryOpError(const TSourceLoc& line, const char* op, TString operand)
220 {
221 std::stringstream extraInfoStream;
222 extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
223 << " (or there is no acceptable conversion)";
224 std::string extraInfo = extraInfoStream.str();
225 error(line, " wrong operand type", op, extraInfo.c_str());
226 }
227
228 //
229 // Same error message for all binary operations don't work.
230 //
binaryOpError(const TSourceLoc & line,const char * op,TString left,TString right)231 void TParseContext::binaryOpError(const TSourceLoc& line, const char* op, TString left, TString right)
232 {
233 std::stringstream extraInfoStream;
234 extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
235 << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
236 std::string extraInfo = extraInfoStream.str();
237 error(line, " wrong operand types ", op, extraInfo.c_str());
238 }
239
precisionErrorCheck(const TSourceLoc & line,TPrecision precision,TBasicType type)240 bool TParseContext::precisionErrorCheck(const TSourceLoc& line, TPrecision precision, TBasicType type){
241 if (!checksPrecisionErrors)
242 return false;
243 switch( type ){
244 case EbtFloat:
245 if( precision == EbpUndefined ){
246 error( line, "No precision specified for (float)", "" );
247 return true;
248 }
249 break;
250 case EbtInt:
251 if( precision == EbpUndefined ){
252 error( line, "No precision specified (int)", "" );
253 return true;
254 }
255 break;
256 default:
257 return false;
258 }
259 return false;
260 }
261
262 //
263 // Both test and if necessary, spit out an error, to see if the node is really
264 // an l-value that can be operated on this way.
265 //
266 // Returns true if the was an error.
267 //
lValueErrorCheck(const TSourceLoc & line,const char * op,TIntermTyped * node)268 bool TParseContext::lValueErrorCheck(const TSourceLoc& line, const char* op, TIntermTyped* node)
269 {
270 TIntermSymbol* symNode = node->getAsSymbolNode();
271 TIntermBinary* binaryNode = node->getAsBinaryNode();
272
273 if (binaryNode) {
274 bool errorReturn;
275
276 switch(binaryNode->getOp()) {
277 case EOpIndexDirect:
278 case EOpIndexIndirect:
279 case EOpIndexDirectStruct:
280 return lValueErrorCheck(line, op, binaryNode->getLeft());
281 case EOpVectorSwizzle:
282 errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
283 if (!errorReturn) {
284 int offset[4] = {0,0,0,0};
285
286 TIntermTyped* rightNode = binaryNode->getRight();
287 TIntermAggregate *aggrNode = rightNode->getAsAggregate();
288
289 for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
290 p != aggrNode->getSequence().end(); p++) {
291 int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
292 offset[value]++;
293 if (offset[value] > 1) {
294 error(line, " l-value of swizzle cannot have duplicate components", op);
295
296 return true;
297 }
298 }
299 }
300
301 return errorReturn;
302 default:
303 break;
304 }
305 error(line, " l-value required", op);
306
307 return true;
308 }
309
310
311 const char* symbol = 0;
312 if (symNode != 0)
313 symbol = symNode->getSymbol().c_str();
314
315 const char* message = 0;
316 switch (node->getQualifier()) {
317 case EvqConst: message = "can't modify a const"; break;
318 case EvqConstReadOnly: message = "can't modify a const"; break;
319 case EvqAttribute: message = "can't modify an attribute"; break;
320 case EvqUniform: message = "can't modify a uniform"; break;
321 case EvqVaryingIn: message = "can't modify a varying"; break;
322 case EvqFragCoord: message = "can't modify gl_FragCoord"; break;
323 case EvqFrontFacing: message = "can't modify gl_FrontFacing"; break;
324 case EvqPointCoord: message = "can't modify gl_PointCoord"; break;
325 default:
326
327 //
328 // Type that can't be written to?
329 //
330 switch (node->getBasicType()) {
331 case EbtSampler2D:
332 case EbtSamplerCube:
333 message = "can't modify a sampler";
334 break;
335 case EbtVoid:
336 message = "can't modify void";
337 break;
338 default:
339 break;
340 }
341 }
342
343 if (message == 0 && binaryNode == 0 && symNode == 0) {
344 error(line, " l-value required", op);
345
346 return true;
347 }
348
349
350 //
351 // Everything else is okay, no error.
352 //
353 if (message == 0)
354 return false;
355
356 //
357 // If we get here, we have an error and a message.
358 //
359 if (symNode) {
360 std::stringstream extraInfoStream;
361 extraInfoStream << "\"" << symbol << "\" (" << message << ")";
362 std::string extraInfo = extraInfoStream.str();
363 error(line, " l-value required", op, extraInfo.c_str());
364 }
365 else {
366 std::stringstream extraInfoStream;
367 extraInfoStream << "(" << message << ")";
368 std::string extraInfo = extraInfoStream.str();
369 error(line, " l-value required", op, extraInfo.c_str());
370 }
371
372 return true;
373 }
374
375 //
376 // Both test, and if necessary spit out an error, to see if the node is really
377 // a constant.
378 //
379 // Returns true if the was an error.
380 //
constErrorCheck(TIntermTyped * node)381 bool TParseContext::constErrorCheck(TIntermTyped* node)
382 {
383 if (node->getQualifier() == EvqConst)
384 return false;
385
386 error(node->getLine(), "constant expression required", "");
387
388 return true;
389 }
390
391 //
392 // Both test, and if necessary spit out an error, to see if the node is really
393 // an integer.
394 //
395 // Returns true if the was an error.
396 //
integerErrorCheck(TIntermTyped * node,const char * token)397 bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
398 {
399 if (node->getBasicType() == EbtInt && node->getNominalSize() == 1)
400 return false;
401
402 error(node->getLine(), "integer expression required", token);
403
404 return true;
405 }
406
407 //
408 // Both test, and if necessary spit out an error, to see if we are currently
409 // globally scoped.
410 //
411 // Returns true if the was an error.
412 //
globalErrorCheck(const TSourceLoc & line,bool global,const char * token)413 bool TParseContext::globalErrorCheck(const TSourceLoc& line, bool global, const char* token)
414 {
415 if (global)
416 return false;
417
418 error(line, "only allowed at global scope", token);
419
420 return true;
421 }
422
423 //
424 // For now, keep it simple: if it starts "gl_", it's reserved, independent
425 // of scope. Except, if the symbol table is at the built-in push-level,
426 // which is when we are parsing built-ins.
427 // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
428 // webgl shader.
429 //
430 // Returns true if there was an error.
431 //
reservedErrorCheck(const TSourceLoc & line,const TString & identifier)432 bool TParseContext::reservedErrorCheck(const TSourceLoc& line, const TString& identifier)
433 {
434 static const char* reservedErrMsg = "reserved built-in name";
435 if (!symbolTable.atBuiltInLevel()) {
436 if (identifier.compare(0, 3, "gl_") == 0) {
437 error(line, reservedErrMsg, "gl_");
438 return true;
439 }
440 if (isWebGLBasedSpec(shaderSpec)) {
441 if (identifier.compare(0, 6, "webgl_") == 0) {
442 error(line, reservedErrMsg, "webgl_");
443 return true;
444 }
445 if (identifier.compare(0, 7, "_webgl_") == 0) {
446 error(line, reservedErrMsg, "_webgl_");
447 return true;
448 }
449 if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) {
450 error(line, reservedErrMsg, "css_");
451 return true;
452 }
453 }
454 if (identifier.find("__") != TString::npos) {
455 error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
456 return true;
457 }
458 }
459
460 return false;
461 }
462
463 //
464 // Make sure there is enough data provided to the constructor to build
465 // something of the type of the constructor. Also returns the type of
466 // the constructor.
467 //
468 // Returns true if there was an error in construction.
469 //
constructorErrorCheck(const TSourceLoc & line,TIntermNode * node,TFunction & function,TOperator op,TType * type)470 bool TParseContext::constructorErrorCheck(const TSourceLoc& line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
471 {
472 *type = function.getReturnType();
473
474 bool constructingMatrix = false;
475 switch(op) {
476 case EOpConstructMat2:
477 case EOpConstructMat3:
478 case EOpConstructMat4:
479 constructingMatrix = true;
480 break;
481 default:
482 break;
483 }
484
485 //
486 // Note: It's okay to have too many components available, but not okay to have unused
487 // arguments. 'full' will go to true when enough args have been seen. If we loop
488 // again, there is an extra argument, so 'overfull' will become true.
489 //
490
491 size_t size = 0;
492 bool constType = true;
493 bool full = false;
494 bool overFull = false;
495 bool matrixInMatrix = false;
496 bool arrayArg = false;
497 for (size_t i = 0; i < function.getParamCount(); ++i) {
498 const TParameter& param = function.getParam(i);
499 size += param.type->getObjectSize();
500
501 if (constructingMatrix && param.type->isMatrix())
502 matrixInMatrix = true;
503 if (full)
504 overFull = true;
505 if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
506 full = true;
507 if (param.type->getQualifier() != EvqConst)
508 constType = false;
509 if (param.type->isArray())
510 arrayArg = true;
511 }
512
513 if (constType)
514 type->setQualifier(EvqConst);
515
516 if (type->isArray() && static_cast<size_t>(type->getArraySize()) != function.getParamCount()) {
517 error(line, "array constructor needs one argument per array element", "constructor");
518 return true;
519 }
520
521 if (arrayArg && op != EOpConstructStruct) {
522 error(line, "constructing from a non-dereferenced array", "constructor");
523 return true;
524 }
525
526 if (matrixInMatrix && !type->isArray()) {
527 if (function.getParamCount() != 1) {
528 error(line, "constructing matrix from matrix can only take one argument", "constructor");
529 return true;
530 }
531 }
532
533 if (overFull) {
534 error(line, "too many arguments", "constructor");
535 return true;
536 }
537
538 if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->fields().size()) != function.getParamCount()) {
539 error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
540 return true;
541 }
542
543 if (!type->isMatrix() || !matrixInMatrix) {
544 if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
545 (op == EOpConstructStruct && size < type->getObjectSize())) {
546 error(line, "not enough data provided for construction", "constructor");
547 return true;
548 }
549 }
550
551 TIntermTyped *typed = node ? node->getAsTyped() : 0;
552 if (typed == 0) {
553 error(line, "constructor argument does not have a type", "constructor");
554 return true;
555 }
556 if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
557 error(line, "cannot convert a sampler", "constructor");
558 return true;
559 }
560 if (typed->getBasicType() == EbtVoid) {
561 error(line, "cannot convert a void", "constructor");
562 return true;
563 }
564
565 return false;
566 }
567
568 // This function checks to see if a void variable has been declared and raise an error message for such a case
569 //
570 // returns true in case of an error
571 //
voidErrorCheck(const TSourceLoc & line,const TString & identifier,const TPublicType & pubType)572 bool TParseContext::voidErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& pubType)
573 {
574 if (pubType.type == EbtVoid) {
575 error(line, "illegal use of type 'void'", identifier.c_str());
576 return true;
577 }
578
579 return false;
580 }
581
582 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
583 //
584 // returns true in case of an error
585 //
boolErrorCheck(const TSourceLoc & line,const TIntermTyped * type)586 bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TIntermTyped* type)
587 {
588 if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
589 error(line, "boolean expression expected", "");
590 return true;
591 }
592
593 return false;
594 }
595
596 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
597 //
598 // returns true in case of an error
599 //
boolErrorCheck(const TSourceLoc & line,const TPublicType & pType)600 bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TPublicType& pType)
601 {
602 if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) {
603 error(line, "boolean expression expected", "");
604 return true;
605 }
606
607 return false;
608 }
609
samplerErrorCheck(const TSourceLoc & line,const TPublicType & pType,const char * reason)610 bool TParseContext::samplerErrorCheck(const TSourceLoc& line, const TPublicType& pType, const char* reason)
611 {
612 if (pType.type == EbtStruct) {
613 if (containsSampler(*pType.userDef)) {
614 error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
615
616 return true;
617 }
618
619 return false;
620 } else if (IsSampler(pType.type)) {
621 error(line, reason, getBasicString(pType.type));
622
623 return true;
624 }
625
626 return false;
627 }
628
structQualifierErrorCheck(const TSourceLoc & line,const TPublicType & pType)629 bool TParseContext::structQualifierErrorCheck(const TSourceLoc& line, const TPublicType& pType)
630 {
631 if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) &&
632 pType.type == EbtStruct) {
633 error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
634
635 return true;
636 }
637
638 if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
639 return true;
640
641 return false;
642 }
643
parameterSamplerErrorCheck(const TSourceLoc & line,TQualifier qualifier,const TType & type)644 bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc& line, TQualifier qualifier, const TType& type)
645 {
646 if ((qualifier == EvqOut || qualifier == EvqInOut) &&
647 type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
648 error(line, "samplers cannot be output parameters", type.getBasicString());
649 return true;
650 }
651
652 return false;
653 }
654
containsSampler(TType & type)655 bool TParseContext::containsSampler(TType& type)
656 {
657 if (IsSampler(type.getBasicType()))
658 return true;
659
660 if (type.getBasicType() == EbtStruct) {
661 const TFieldList& fields = type.getStruct()->fields();
662 for (unsigned int i = 0; i < fields.size(); ++i) {
663 if (containsSampler(*fields[i]->type()))
664 return true;
665 }
666 }
667
668 return false;
669 }
670
671 //
672 // Do size checking for an array type's size.
673 //
674 // Returns true if there was an error.
675 //
arraySizeErrorCheck(const TSourceLoc & line,TIntermTyped * expr,int & size)676 bool TParseContext::arraySizeErrorCheck(const TSourceLoc& line, TIntermTyped* expr, int& size)
677 {
678 TIntermConstantUnion* constant = expr->getAsConstantUnion();
679 if (constant == 0 || constant->getBasicType() != EbtInt) {
680 error(line, "array size must be a constant integer expression", "");
681 return true;
682 }
683
684 size = constant->getIConst(0);
685
686 if (size <= 0) {
687 error(line, "array size must be a positive integer", "");
688 size = 1;
689 return true;
690 }
691
692 return false;
693 }
694
695 //
696 // See if this qualifier can be an array.
697 //
698 // Returns true if there is an error.
699 //
arrayQualifierErrorCheck(const TSourceLoc & line,TPublicType type)700 bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc& line, TPublicType type)
701 {
702 if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) {
703 error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
704 return true;
705 }
706
707 return false;
708 }
709
710 //
711 // See if this type can be an array.
712 //
713 // Returns true if there is an error.
714 //
arrayTypeErrorCheck(const TSourceLoc & line,TPublicType type)715 bool TParseContext::arrayTypeErrorCheck(const TSourceLoc& line, TPublicType type)
716 {
717 //
718 // Can the type be an array?
719 //
720 if (type.array) {
721 error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
722 return true;
723 }
724
725 return false;
726 }
727
728 //
729 // Do all the semantic checking for declaring an array, with and
730 // without a size, and make the right changes to the symbol table.
731 //
732 // size == 0 means no specified size.
733 //
734 // Returns true if there was an error.
735 //
arrayErrorCheck(const TSourceLoc & line,TString & identifier,TPublicType type,TVariable * & variable)736 bool TParseContext::arrayErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType type, TVariable*& variable)
737 {
738 //
739 // Don't check for reserved word use until after we know it's not in the symbol table,
740 // because reserved arrays can be redeclared.
741 //
742
743 bool builtIn = false;
744 bool sameScope = false;
745 TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope);
746 if (symbol == 0 || !sameScope) {
747 if (reservedErrorCheck(line, identifier))
748 return true;
749
750 variable = new TVariable(&identifier, TType(type));
751
752 if (type.arraySize)
753 variable->getType().setArraySize(type.arraySize);
754
755 if (! symbolTable.insert(*variable)) {
756 delete variable;
757 error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
758 return true;
759 }
760 } else {
761 if (! symbol->isVariable()) {
762 error(line, "variable expected", identifier.c_str());
763 return true;
764 }
765
766 variable = static_cast<TVariable*>(symbol);
767 if (! variable->getType().isArray()) {
768 error(line, "redeclaring non-array as array", identifier.c_str());
769 return true;
770 }
771 if (variable->getType().getArraySize() > 0) {
772 error(line, "redeclaration of array with size", identifier.c_str());
773 return true;
774 }
775
776 if (! variable->getType().sameElementType(TType(type))) {
777 error(line, "redeclaration of array with a different type", identifier.c_str());
778 return true;
779 }
780
781 if (type.arraySize)
782 variable->getType().setArraySize(type.arraySize);
783 }
784
785 if (voidErrorCheck(line, identifier, type))
786 return true;
787
788 return false;
789 }
790
791 //
792 // Enforce non-initializer type/qualifier rules.
793 //
794 // Returns true if there was an error.
795 //
nonInitConstErrorCheck(const TSourceLoc & line,TString & identifier,TPublicType & type,bool array)796 bool TParseContext::nonInitConstErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType& type, bool array)
797 {
798 if (type.qualifier == EvqConst)
799 {
800 // Make the qualifier make sense.
801 type.qualifier = EvqTemporary;
802
803 if (array)
804 {
805 error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
806 }
807 else if (type.isStructureContainingArrays())
808 {
809 error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
810 }
811 else
812 {
813 error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
814 }
815
816 return true;
817 }
818
819 return false;
820 }
821
822 //
823 // Do semantic checking for a variable declaration that has no initializer,
824 // and update the symbol table.
825 //
826 // Returns true if there was an error.
827 //
nonInitErrorCheck(const TSourceLoc & line,TString & identifier,TPublicType & type,TVariable * & variable)828 bool TParseContext::nonInitErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType& type, TVariable*& variable)
829 {
830 if (reservedErrorCheck(line, identifier))
831 recover();
832
833 variable = new TVariable(&identifier, TType(type));
834
835 if (! symbolTable.insert(*variable)) {
836 error(line, "redefinition", variable->getName().c_str());
837 delete variable;
838 variable = 0;
839 return true;
840 }
841
842 if (voidErrorCheck(line, identifier, type))
843 return true;
844
845 return false;
846 }
847
paramErrorCheck(const TSourceLoc & line,TQualifier qualifier,TQualifier paramQualifier,TType * type)848 bool TParseContext::paramErrorCheck(const TSourceLoc& line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
849 {
850 if (qualifier != EvqConst && qualifier != EvqTemporary) {
851 error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
852 return true;
853 }
854 if (qualifier == EvqConst && paramQualifier != EvqIn) {
855 error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
856 return true;
857 }
858
859 if (qualifier == EvqConst)
860 type->setQualifier(EvqConstReadOnly);
861 else
862 type->setQualifier(paramQualifier);
863
864 return false;
865 }
866
extensionErrorCheck(const TSourceLoc & line,const TString & extension)867 bool TParseContext::extensionErrorCheck(const TSourceLoc& line, const TString& extension)
868 {
869 const TExtensionBehavior& extBehavior = extensionBehavior();
870 TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
871 if (iter == extBehavior.end()) {
872 error(line, "extension", extension.c_str(), "is not supported");
873 return true;
874 }
875 // In GLSL ES, an extension's default behavior is "disable".
876 if (iter->second == EBhDisable || iter->second == EBhUndefined) {
877 error(line, "extension", extension.c_str(), "is disabled");
878 return true;
879 }
880 if (iter->second == EBhWarn) {
881 warning(line, "extension", extension.c_str(), "is being used");
882 return false;
883 }
884
885 return false;
886 }
887
supportsExtension(const char * extension)888 bool TParseContext::supportsExtension(const char* extension)
889 {
890 const TExtensionBehavior& extbehavior = extensionBehavior();
891 TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
892 return (iter != extbehavior.end());
893 }
894
isExtensionEnabled(const char * extension) const895 bool TParseContext::isExtensionEnabled(const char* extension) const
896 {
897 const TExtensionBehavior& extbehavior = extensionBehavior();
898 TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
899
900 if (iter == extbehavior.end())
901 {
902 return false;
903 }
904
905 return (iter->second == EBhEnable || iter->second == EBhRequire);
906 }
907
908 /////////////////////////////////////////////////////////////////////////////////
909 //
910 // Non-Errors.
911 //
912 /////////////////////////////////////////////////////////////////////////////////
913
914 //
915 // Look up a function name in the symbol table, and make sure it is a function.
916 //
917 // Return the function symbol if found, otherwise 0.
918 //
findFunction(const TSourceLoc & line,TFunction * call,bool * builtIn)919 const TFunction* TParseContext::findFunction(const TSourceLoc& line, TFunction* call, bool *builtIn)
920 {
921 // First find by unmangled name to check whether the function name has been
922 // hidden by a variable name or struct typename.
923 // If a function is found, check for one with a matching argument list.
924 const TSymbol* symbol = symbolTable.find(call->getName(), builtIn);
925 if (symbol == 0 || symbol->isFunction()) {
926 symbol = symbolTable.find(call->getMangledName(), builtIn);
927 }
928
929 if (symbol == 0) {
930 error(line, "no matching overloaded function found", call->getName().c_str());
931 return 0;
932 }
933
934 if (!symbol->isFunction()) {
935 error(line, "function name expected", call->getName().c_str());
936 return 0;
937 }
938
939 return static_cast<const TFunction*>(symbol);
940 }
941
942 //
943 // Initializers show up in several places in the grammar. Have one set of
944 // code to handle them here.
945 //
executeInitializer(const TSourceLoc & line,TString & identifier,TPublicType & pType,TIntermTyped * initializer,TIntermNode * & intermNode,TVariable * variable)946 bool TParseContext::executeInitializer(const TSourceLoc& line, TString& identifier, TPublicType& pType,
947 TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
948 {
949 TType type = TType(pType);
950
951 if (variable == 0) {
952 if (reservedErrorCheck(line, identifier))
953 return true;
954
955 if (voidErrorCheck(line, identifier, pType))
956 return true;
957
958 //
959 // add variable to symbol table
960 //
961 variable = new TVariable(&identifier, type);
962 if (! symbolTable.insert(*variable)) {
963 error(line, "redefinition", variable->getName().c_str());
964 return true;
965 // don't delete variable, it's used by error recovery, and the pool
966 // pop will take care of the memory
967 }
968 }
969
970 //
971 // identifier must be of type constant, a global, or a temporary
972 //
973 TQualifier qualifier = variable->getType().getQualifier();
974 if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
975 error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
976 return true;
977 }
978 //
979 // test for and propagate constant
980 //
981
982 if (qualifier == EvqConst) {
983 if (qualifier != initializer->getType().getQualifier()) {
984 std::stringstream extraInfoStream;
985 extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
986 std::string extraInfo = extraInfoStream.str();
987 error(line, " assigning non-constant to", "=", extraInfo.c_str());
988 variable->getType().setQualifier(EvqTemporary);
989 return true;
990 }
991 if (type != initializer->getType()) {
992 error(line, " non-matching types for const initializer ",
993 variable->getType().getQualifierString());
994 variable->getType().setQualifier(EvqTemporary);
995 return true;
996 }
997 if (initializer->getAsConstantUnion()) {
998 variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
999 } else if (initializer->getAsSymbolNode()) {
1000 const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
1001 const TVariable* tVar = static_cast<const TVariable*>(symbol);
1002
1003 ConstantUnion* constArray = tVar->getConstPointer();
1004 variable->shareConstPointer(constArray);
1005 } else {
1006 std::stringstream extraInfoStream;
1007 extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
1008 std::string extraInfo = extraInfoStream.str();
1009 error(line, " cannot assign to", "=", extraInfo.c_str());
1010 variable->getType().setQualifier(EvqTemporary);
1011 return true;
1012 }
1013 }
1014
1015 if (qualifier != EvqConst) {
1016 TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
1017 intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
1018 if (intermNode == 0) {
1019 assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
1020 return true;
1021 }
1022 } else
1023 intermNode = 0;
1024
1025 return false;
1026 }
1027
areAllChildConst(TIntermAggregate * aggrNode)1028 bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
1029 {
1030 ASSERT(aggrNode != NULL);
1031 if (!aggrNode->isConstructor())
1032 return false;
1033
1034 bool allConstant = true;
1035
1036 // check if all the child nodes are constants so that they can be inserted into
1037 // the parent node
1038 TIntermSequence &sequence = aggrNode->getSequence() ;
1039 for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
1040 if (!(*p)->getAsTyped()->getAsConstantUnion())
1041 return false;
1042 }
1043
1044 return allConstant;
1045 }
1046
1047 // This function is used to test for the correctness of the parameters passed to various constructor functions
1048 // and also convert them to the right datatype if it is allowed and required.
1049 //
1050 // Returns 0 for an error or the constructed node (aggregate or typed) for no error.
1051 //
addConstructor(TIntermNode * node,const TType * type,TOperator op,TFunction * fnCall,const TSourceLoc & line)1052 TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc& line)
1053 {
1054 if (node == 0)
1055 return 0;
1056
1057 TIntermAggregate* aggrNode = node->getAsAggregate();
1058
1059 TFieldList::const_iterator memberFields;
1060 if (op == EOpConstructStruct)
1061 memberFields = type->getStruct()->fields().begin();
1062
1063 TType elementType = *type;
1064 if (type->isArray())
1065 elementType.clearArrayness();
1066
1067 bool singleArg;
1068 if (aggrNode) {
1069 if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
1070 singleArg = true;
1071 else
1072 singleArg = false;
1073 } else
1074 singleArg = true;
1075
1076 TIntermTyped *newNode;
1077 if (singleArg) {
1078 // If structure constructor or array constructor is being called
1079 // for only one parameter inside the structure, we need to call constructStruct function once.
1080 if (type->isArray())
1081 newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
1082 else if (op == EOpConstructStruct)
1083 newNode = constructStruct(node, (*memberFields)->type(), 1, node->getLine(), false);
1084 else
1085 newNode = constructBuiltIn(type, op, node, node->getLine(), false);
1086
1087 if (newNode && newNode->getAsAggregate()) {
1088 TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
1089 if (constConstructor)
1090 return constConstructor;
1091 }
1092
1093 return newNode;
1094 }
1095
1096 //
1097 // Handle list of arguments.
1098 //
1099 TIntermSequence &sequenceVector = aggrNode->getSequence() ; // Stores the information about the parameter to the constructor
1100 // if the structure constructor contains more than one parameter, then construct
1101 // each parameter
1102
1103 int paramCount = 0; // keeps a track of the constructor parameter number being checked
1104
1105 // for each parameter to the constructor call, check to see if the right type is passed or convert them
1106 // to the right type if possible (and allowed).
1107 // for structure constructors, just check if the right type is passed, no conversion is allowed.
1108
1109 for (TIntermSequence::iterator p = sequenceVector.begin();
1110 p != sequenceVector.end(); p++, paramCount++) {
1111 if (type->isArray())
1112 newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
1113 else if (op == EOpConstructStruct)
1114 newNode = constructStruct(*p, memberFields[paramCount]->type(), paramCount+1, node->getLine(), true);
1115 else
1116 newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
1117
1118 if (newNode) {
1119 *p = newNode;
1120 }
1121 }
1122
1123 TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
1124 TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
1125 if (constConstructor)
1126 return constConstructor;
1127
1128 return constructor;
1129 }
1130
foldConstConstructor(TIntermAggregate * aggrNode,const TType & type)1131 TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
1132 {
1133 bool canBeFolded = areAllChildConst(aggrNode);
1134 aggrNode->setType(type);
1135 if (canBeFolded) {
1136 bool returnVal = false;
1137 ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
1138 if (aggrNode->getSequence().size() == 1) {
1139 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type, true);
1140 }
1141 else {
1142 returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable, type);
1143 }
1144 if (returnVal)
1145 return 0;
1146
1147 return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
1148 }
1149
1150 return 0;
1151 }
1152
1153 // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
1154 // for the parameter to the constructor (passed to this function). Essentially, it converts
1155 // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
1156 // float, then float is converted to int.
1157 //
1158 // Returns 0 for an error or the constructed node.
1159 //
constructBuiltIn(const TType * type,TOperator op,TIntermNode * node,const TSourceLoc & line,bool subset)1160 TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, const TSourceLoc& line, bool subset)
1161 {
1162 TIntermTyped* newNode;
1163 TOperator basicOp;
1164
1165 //
1166 // First, convert types as needed.
1167 //
1168 switch (op) {
1169 case EOpConstructVec2:
1170 case EOpConstructVec3:
1171 case EOpConstructVec4:
1172 case EOpConstructMat2:
1173 case EOpConstructMat3:
1174 case EOpConstructMat4:
1175 case EOpConstructFloat:
1176 basicOp = EOpConstructFloat;
1177 break;
1178
1179 case EOpConstructIVec2:
1180 case EOpConstructIVec3:
1181 case EOpConstructIVec4:
1182 case EOpConstructInt:
1183 basicOp = EOpConstructInt;
1184 break;
1185
1186 case EOpConstructBVec2:
1187 case EOpConstructBVec3:
1188 case EOpConstructBVec4:
1189 case EOpConstructBool:
1190 basicOp = EOpConstructBool;
1191 break;
1192
1193 default:
1194 error(line, "unsupported construction", "");
1195 recover();
1196
1197 return 0;
1198 }
1199 newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
1200 if (newNode == 0) {
1201 error(line, "can't convert", "constructor");
1202 return 0;
1203 }
1204
1205 //
1206 // Now, if there still isn't an operation to do the construction, and we need one, add one.
1207 //
1208
1209 // Otherwise, skip out early.
1210 if (subset || (newNode != node && newNode->getType() == *type))
1211 return newNode;
1212
1213 // setAggregateOperator will insert a new node for the constructor, as needed.
1214 return intermediate.setAggregateOperator(newNode, op, line);
1215 }
1216
1217 // This function tests for the type of the parameters to the structures constructors. Raises
1218 // an error message if the expected type does not match the parameter passed to the constructor.
1219 //
1220 // Returns 0 for an error or the input node itself if the expected and the given parameter types match.
1221 //
constructStruct(TIntermNode * node,TType * type,int paramCount,const TSourceLoc & line,bool subset)1222 TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, const TSourceLoc& line, bool subset)
1223 {
1224 if (*type == node->getAsTyped()->getType()) {
1225 if (subset)
1226 return node->getAsTyped();
1227 else
1228 return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
1229 } else {
1230 std::stringstream extraInfoStream;
1231 extraInfoStream << "cannot convert parameter " << paramCount
1232 << " from '" << node->getAsTyped()->getType().getBasicString()
1233 << "' to '" << type->getBasicString() << "'";
1234 std::string extraInfo = extraInfoStream.str();
1235 error(line, "", "constructor", extraInfo.c_str());
1236 recover();
1237 }
1238
1239 return 0;
1240 }
1241
1242 //
1243 // This function returns the tree representation for the vector field(s) being accessed from contant vector.
1244 // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
1245 // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
1246 // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
1247 // a constant matrix.
1248 //
addConstVectorNode(TVectorFields & fields,TIntermTyped * node,const TSourceLoc & line)1249 TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc& line)
1250 {
1251 TIntermTyped* typedNode;
1252 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1253
1254 ConstantUnion *unionArray;
1255 if (tempConstantNode) {
1256 unionArray = tempConstantNode->getUnionArrayPointer();
1257
1258 if (!unionArray) {
1259 return node;
1260 }
1261 } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
1262 error(line, "Cannot offset into the vector", "Error");
1263 recover();
1264
1265 return 0;
1266 }
1267
1268 ConstantUnion* constArray = new ConstantUnion[fields.num];
1269
1270 for (int i = 0; i < fields.num; i++) {
1271 if (fields.offsets[i] >= node->getType().getNominalSize()) {
1272 std::stringstream extraInfoStream;
1273 extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
1274 std::string extraInfo = extraInfoStream.str();
1275 error(line, "", "[", extraInfo.c_str());
1276 recover();
1277 fields.offsets[i] = 0;
1278 }
1279
1280 constArray[i] = unionArray[fields.offsets[i]];
1281
1282 }
1283 typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
1284 return typedNode;
1285 }
1286
1287 //
1288 // This function returns the column being accessed from a constant matrix. The values are retrieved from
1289 // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
1290 // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
1291 // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
1292 //
addConstMatrixNode(int index,TIntermTyped * node,const TSourceLoc & line)1293 TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc& line)
1294 {
1295 TIntermTyped* typedNode;
1296 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1297
1298 if (index >= node->getType().getNominalSize()) {
1299 std::stringstream extraInfoStream;
1300 extraInfoStream << "matrix field selection out of range '" << index << "'";
1301 std::string extraInfo = extraInfoStream.str();
1302 error(line, "", "[", extraInfo.c_str());
1303 recover();
1304 index = 0;
1305 }
1306
1307 if (tempConstantNode) {
1308 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1309 int size = tempConstantNode->getType().getNominalSize();
1310 typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
1311 } else {
1312 error(line, "Cannot offset into the matrix", "Error");
1313 recover();
1314
1315 return 0;
1316 }
1317
1318 return typedNode;
1319 }
1320
1321
1322 //
1323 // This function returns an element of an array accessed from a constant array. The values are retrieved from
1324 // the symbol table and parse-tree is built for the type of the element. The input
1325 // to the function could either be a symbol node (a[0] where a is a constant array)that represents a
1326 // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
1327 //
addConstArrayNode(int index,TIntermTyped * node,const TSourceLoc & line)1328 TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc& line)
1329 {
1330 TIntermTyped* typedNode;
1331 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1332 TType arrayElementType = node->getType();
1333 arrayElementType.clearArrayness();
1334
1335 if (index >= node->getType().getArraySize()) {
1336 std::stringstream extraInfoStream;
1337 extraInfoStream << "array field selection out of range '" << index << "'";
1338 std::string extraInfo = extraInfoStream.str();
1339 error(line, "", "[", extraInfo.c_str());
1340 recover();
1341 index = 0;
1342 }
1343
1344 if (tempConstantNode) {
1345 size_t arrayElementSize = arrayElementType.getObjectSize();
1346 ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1347 typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
1348 } else {
1349 error(line, "Cannot offset into the array", "Error");
1350 recover();
1351
1352 return 0;
1353 }
1354
1355 return typedNode;
1356 }
1357
1358
1359 //
1360 // This function returns the value of a particular field inside a constant structure from the symbol table.
1361 // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
1362 // function and returns the parse-tree with the values of the embedded/nested struct.
1363 //
addConstStruct(TString & identifier,TIntermTyped * node,const TSourceLoc & line)1364 TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, const TSourceLoc& line)
1365 {
1366 const TFieldList& fields = node->getType().getStruct()->fields();
1367
1368 size_t instanceSize = 0;
1369 for (size_t index = 0; index < fields.size(); ++index) {
1370 if (fields[index]->name() == identifier) {
1371 break;
1372 } else {
1373 instanceSize += fields[index]->type()->getObjectSize();
1374 }
1375 }
1376
1377 TIntermTyped* typedNode = 0;
1378 TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1379 if (tempConstantNode) {
1380 ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
1381
1382 typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
1383 } else {
1384 error(line, "Cannot offset into the structure", "Error");
1385 recover();
1386
1387 return 0;
1388 }
1389
1390 return typedNode;
1391 }
1392
enterStructDeclaration(const TSourceLoc & line,const TString & identifier)1393 bool TParseContext::enterStructDeclaration(const TSourceLoc& line, const TString& identifier)
1394 {
1395 ++structNestingLevel;
1396
1397 // Embedded structure definitions are not supported per GLSL ES spec.
1398 // They aren't allowed in GLSL either, but we need to detect this here
1399 // so we don't rely on the GLSL compiler to catch it.
1400 if (structNestingLevel > 1) {
1401 error(line, "", "Embedded struct definitions are not allowed");
1402 return true;
1403 }
1404
1405 return false;
1406 }
1407
exitStructDeclaration()1408 void TParseContext::exitStructDeclaration()
1409 {
1410 --structNestingLevel;
1411 }
1412
1413 namespace {
1414
1415 const int kWebGLMaxStructNesting = 4;
1416
1417 } // namespace
1418
structNestingErrorCheck(const TSourceLoc & line,const TField & field)1419 bool TParseContext::structNestingErrorCheck(const TSourceLoc& line, const TField& field)
1420 {
1421 if (!isWebGLBasedSpec(shaderSpec)) {
1422 return false;
1423 }
1424
1425 if (field.type()->getBasicType() != EbtStruct) {
1426 return false;
1427 }
1428
1429 // We're already inside a structure definition at this point, so add
1430 // one to the field's struct nesting.
1431 if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) {
1432 std::stringstream reasonStream;
1433 reasonStream << "Reference of struct type "
1434 << field.type()->getStruct()->name().c_str()
1435 << " exceeds maximum allowed nesting level of "
1436 << kWebGLMaxStructNesting;
1437 std::string reason = reasonStream.str();
1438 error(line, reason.c_str(), field.name().c_str(), "");
1439 return true;
1440 }
1441
1442 return false;
1443 }
1444
1445 //
1446 // Parse an array index expression
1447 //
addIndexExpression(TIntermTyped * baseExpression,const TSourceLoc & location,TIntermTyped * indexExpression)1448 TIntermTyped* TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc& location, TIntermTyped *indexExpression)
1449 {
1450 TIntermTyped *indexedExpression = NULL;
1451
1452 if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
1453 {
1454 if (baseExpression->getAsSymbolNode())
1455 {
1456 error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str());
1457 }
1458 else
1459 {
1460 error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
1461 }
1462 recover();
1463 }
1464
1465 if (indexExpression->getQualifier() == EvqConst)
1466 {
1467 int index = indexExpression->getAsConstantUnion()->getIConst(0);
1468 if (index < 0)
1469 {
1470 std::stringstream infoStream;
1471 infoStream << index;
1472 std::string info = infoStream.str();
1473 error(location, "negative index", info.c_str());
1474 recover();
1475 index = 0;
1476 }
1477 if (baseExpression->getType().getQualifier() == EvqConst)
1478 {
1479 if (baseExpression->isArray())
1480 {
1481 // constant folding for arrays
1482 indexedExpression = addConstArrayNode(index, baseExpression, location);
1483 }
1484 else if (baseExpression->isVector())
1485 {
1486 // constant folding for vectors
1487 TVectorFields fields;
1488 fields.num = 1;
1489 fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
1490 indexedExpression = addConstVectorNode(fields, baseExpression, location);
1491 }
1492 else if (baseExpression->isMatrix())
1493 {
1494 // constant folding for matrices
1495 indexedExpression = addConstMatrixNode(index, baseExpression, location);
1496 }
1497 }
1498 else
1499 {
1500 if (baseExpression->isArray())
1501 {
1502 if (index >= baseExpression->getType().getArraySize())
1503 {
1504 std::stringstream extraInfoStream;
1505 extraInfoStream << "array index out of range '" << index << "'";
1506 std::string extraInfo = extraInfoStream.str();
1507 error(location, "", "[", extraInfo.c_str());
1508 recover();
1509 index = baseExpression->getType().getArraySize() - 1;
1510 }
1511 else if (baseExpression->getQualifier() == EvqFragData && index > 0 && !isExtensionEnabled("GL_EXT_draw_buffers"))
1512 {
1513 error(location, "", "[", "array indexes for gl_FragData must be zero when GL_EXT_draw_buffers is disabled");
1514 recover();
1515 index = 0;
1516 }
1517 }
1518 else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index)
1519 {
1520 std::stringstream extraInfoStream;
1521 extraInfoStream << "field selection out of range '" << index << "'";
1522 std::string extraInfo = extraInfoStream.str();
1523 error(location, "", "[", extraInfo.c_str());
1524 recover();
1525 index = baseExpression->getType().getNominalSize() - 1;
1526 }
1527
1528 indexExpression->getAsConstantUnion()->getUnionArrayPointer()->setIConst(index);
1529 indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
1530 }
1531 }
1532 else
1533 {
1534 indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
1535 }
1536
1537 if (indexedExpression == 0)
1538 {
1539 ConstantUnion *unionArray = new ConstantUnion[1];
1540 unionArray->setFConst(0.0f);
1541 indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location);
1542 }
1543 else if (baseExpression->isArray())
1544 {
1545 const TType &baseType = baseExpression->getType();
1546 if (baseType.getStruct())
1547 {
1548 TType copyOfType(baseType.getStruct());
1549 indexedExpression->setType(copyOfType);
1550 }
1551 else
1552 {
1553 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, baseExpression->getNominalSize(), baseExpression->isMatrix()));
1554 }
1555
1556 if (baseExpression->getType().getQualifier() == EvqConst)
1557 {
1558 indexedExpression->getTypePointer()->setQualifier(EvqConst);
1559 }
1560 }
1561 else if (baseExpression->isMatrix())
1562 {
1563 TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
1564 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, baseExpression->getNominalSize()));
1565 }
1566 else if (baseExpression->isVector())
1567 {
1568 TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
1569 indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
1570 }
1571 else
1572 {
1573 indexedExpression->setType(baseExpression->getType());
1574 }
1575
1576 return indexedExpression;
1577 }
1578
1579 //
1580 // Parse an array of strings using yyparse.
1581 //
1582 // Returns 0 for success.
1583 //
PaParseStrings(size_t count,const char * const string[],const int length[],TParseContext * context)1584 int PaParseStrings(size_t count, const char* const string[], const int length[],
1585 TParseContext* context) {
1586 if ((count == 0) || (string == NULL))
1587 return 1;
1588
1589 if (glslang_initialize(context))
1590 return 1;
1591
1592 int error = glslang_scan(count, string, length, context);
1593 if (!error)
1594 error = glslang_parse(context);
1595
1596 glslang_finalize(context);
1597
1598 return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
1599 }
1600
1601
1602
1603