• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 #include "compiler/ParseContext.h"
8 
9 #include <stdarg.h>
10 #include <stdio.h>
11 
12 #include "compiler/glslang.h"
13 #include "compiler/preprocessor/SourceLocation.h"
14 
15 ///////////////////////////////////////////////////////////////////////
16 //
17 // Sub- vector and matrix fields
18 //
19 ////////////////////////////////////////////////////////////////////////
20 
21 //
22 // Look at a '.' field selector string and change it into offsets
23 // for a vector.
24 //
parseVectorFields(const TString & compString,int vecSize,TVectorFields & fields,const TSourceLoc & line)25 bool TParseContext::parseVectorFields(const TString& compString, int vecSize, TVectorFields& fields, const TSourceLoc& line)
26 {
27     fields.num = (int) compString.size();
28     if (fields.num > 4) {
29         error(line, "illegal vector field selection", compString.c_str());
30         return false;
31     }
32 
33     enum {
34         exyzw,
35         ergba,
36         estpq
37     } fieldSet[4];
38 
39     for (int i = 0; i < fields.num; ++i) {
40         switch (compString[i])  {
41         case 'x':
42             fields.offsets[i] = 0;
43             fieldSet[i] = exyzw;
44             break;
45         case 'r':
46             fields.offsets[i] = 0;
47             fieldSet[i] = ergba;
48             break;
49         case 's':
50             fields.offsets[i] = 0;
51             fieldSet[i] = estpq;
52             break;
53         case 'y':
54             fields.offsets[i] = 1;
55             fieldSet[i] = exyzw;
56             break;
57         case 'g':
58             fields.offsets[i] = 1;
59             fieldSet[i] = ergba;
60             break;
61         case 't':
62             fields.offsets[i] = 1;
63             fieldSet[i] = estpq;
64             break;
65         case 'z':
66             fields.offsets[i] = 2;
67             fieldSet[i] = exyzw;
68             break;
69         case 'b':
70             fields.offsets[i] = 2;
71             fieldSet[i] = ergba;
72             break;
73         case 'p':
74             fields.offsets[i] = 2;
75             fieldSet[i] = estpq;
76             break;
77 
78         case 'w':
79             fields.offsets[i] = 3;
80             fieldSet[i] = exyzw;
81             break;
82         case 'a':
83             fields.offsets[i] = 3;
84             fieldSet[i] = ergba;
85             break;
86         case 'q':
87             fields.offsets[i] = 3;
88             fieldSet[i] = estpq;
89             break;
90         default:
91             error(line, "illegal vector field selection", compString.c_str());
92             return false;
93         }
94     }
95 
96     for (int i = 0; i < fields.num; ++i) {
97         if (fields.offsets[i] >= vecSize) {
98             error(line, "vector field selection out of range",  compString.c_str());
99             return false;
100         }
101 
102         if (i > 0) {
103             if (fieldSet[i] != fieldSet[i-1]) {
104                 error(line, "illegal - vector component fields not from the same set", compString.c_str());
105                 return false;
106             }
107         }
108     }
109 
110     return true;
111 }
112 
113 
114 //
115 // Look at a '.' field selector string and change it into offsets
116 // for a matrix.
117 //
parseMatrixFields(const TString & compString,int matSize,TMatrixFields & fields,const TSourceLoc & line)118 bool TParseContext::parseMatrixFields(const TString& compString, int matSize, TMatrixFields& fields, const TSourceLoc& line)
119 {
120     fields.wholeRow = false;
121     fields.wholeCol = false;
122     fields.row = -1;
123     fields.col = -1;
124 
125     if (compString.size() != 2) {
126         error(line, "illegal length of matrix field selection", compString.c_str());
127         return false;
128     }
129 
130     if (compString[0] == '_') {
131         if (compString[1] < '0' || compString[1] > '3') {
132             error(line, "illegal matrix field selection", compString.c_str());
133             return false;
134         }
135         fields.wholeCol = true;
136         fields.col = compString[1] - '0';
137     } else if (compString[1] == '_') {
138         if (compString[0] < '0' || compString[0] > '3') {
139             error(line, "illegal matrix field selection", compString.c_str());
140             return false;
141         }
142         fields.wholeRow = true;
143         fields.row = compString[0] - '0';
144     } else {
145         if (compString[0] < '0' || compString[0] > '3' ||
146             compString[1] < '0' || compString[1] > '3') {
147             error(line, "illegal matrix field selection", compString.c_str());
148             return false;
149         }
150         fields.row = compString[0] - '0';
151         fields.col = compString[1] - '0';
152     }
153 
154     if (fields.row >= matSize || fields.col >= matSize) {
155         error(line, "matrix field selection out of range", compString.c_str());
156         return false;
157     }
158 
159     return true;
160 }
161 
162 ///////////////////////////////////////////////////////////////////////
163 //
164 // Errors
165 //
166 ////////////////////////////////////////////////////////////////////////
167 
168 //
169 // Track whether errors have occurred.
170 //
recover()171 void TParseContext::recover()
172 {
173 }
174 
175 //
176 // Used by flex/bison to output all syntax and parsing errors.
177 //
error(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)178 void TParseContext::error(const TSourceLoc& loc,
179                           const char* reason, const char* token,
180                           const char* extraInfo)
181 {
182     pp::SourceLocation srcLoc;
183     srcLoc.file = loc.first_file;
184     srcLoc.line = loc.first_line;
185     diagnostics.writeInfo(pp::Diagnostics::PP_ERROR,
186                           srcLoc, reason, token, extraInfo);
187 
188 }
189 
warning(const TSourceLoc & loc,const char * reason,const char * token,const char * extraInfo)190 void TParseContext::warning(const TSourceLoc& loc,
191                             const char* reason, const char* token,
192                             const char* extraInfo) {
193     pp::SourceLocation srcLoc;
194     srcLoc.file = loc.first_file;
195     srcLoc.line = loc.first_line;
196     diagnostics.writeInfo(pp::Diagnostics::PP_WARNING,
197                           srcLoc, reason, token, extraInfo);
198 }
199 
trace(const char * str)200 void TParseContext::trace(const char* str)
201 {
202     diagnostics.writeDebug(str);
203 }
204 
205 //
206 // Same error message for all places assignments don't work.
207 //
assignError(const TSourceLoc & line,const char * op,TString left,TString right)208 void TParseContext::assignError(const TSourceLoc& line, const char* op, TString left, TString right)
209 {
210     std::stringstream extraInfoStream;
211     extraInfoStream << "cannot convert from '" << right << "' to '" << left << "'";
212     std::string extraInfo = extraInfoStream.str();
213     error(line, "", op, extraInfo.c_str());
214 }
215 
216 //
217 // Same error message for all places unary operations don't work.
218 //
unaryOpError(const TSourceLoc & line,const char * op,TString operand)219 void TParseContext::unaryOpError(const TSourceLoc& line, const char* op, TString operand)
220 {
221     std::stringstream extraInfoStream;
222     extraInfoStream << "no operation '" << op << "' exists that takes an operand of type " << operand
223                     << " (or there is no acceptable conversion)";
224     std::string extraInfo = extraInfoStream.str();
225     error(line, " wrong operand type", op, extraInfo.c_str());
226 }
227 
228 //
229 // Same error message for all binary operations don't work.
230 //
binaryOpError(const TSourceLoc & line,const char * op,TString left,TString right)231 void TParseContext::binaryOpError(const TSourceLoc& line, const char* op, TString left, TString right)
232 {
233     std::stringstream extraInfoStream;
234     extraInfoStream << "no operation '" << op << "' exists that takes a left-hand operand of type '" << left
235                     << "' and a right operand of type '" << right << "' (or there is no acceptable conversion)";
236     std::string extraInfo = extraInfoStream.str();
237     error(line, " wrong operand types ", op, extraInfo.c_str());
238 }
239 
precisionErrorCheck(const TSourceLoc & line,TPrecision precision,TBasicType type)240 bool TParseContext::precisionErrorCheck(const TSourceLoc& line, TPrecision precision, TBasicType type){
241     if (!checksPrecisionErrors)
242         return false;
243     switch( type ){
244     case EbtFloat:
245         if( precision == EbpUndefined ){
246             error( line, "No precision specified for (float)", "" );
247             return true;
248         }
249         break;
250     case EbtInt:
251         if( precision == EbpUndefined ){
252             error( line, "No precision specified (int)", "" );
253             return true;
254         }
255         break;
256     default:
257         return false;
258     }
259     return false;
260 }
261 
262 //
263 // Both test and if necessary, spit out an error, to see if the node is really
264 // an l-value that can be operated on this way.
265 //
266 // Returns true if the was an error.
267 //
lValueErrorCheck(const TSourceLoc & line,const char * op,TIntermTyped * node)268 bool TParseContext::lValueErrorCheck(const TSourceLoc& line, const char* op, TIntermTyped* node)
269 {
270     TIntermSymbol* symNode = node->getAsSymbolNode();
271     TIntermBinary* binaryNode = node->getAsBinaryNode();
272 
273     if (binaryNode) {
274         bool errorReturn;
275 
276         switch(binaryNode->getOp()) {
277         case EOpIndexDirect:
278         case EOpIndexIndirect:
279         case EOpIndexDirectStruct:
280             return lValueErrorCheck(line, op, binaryNode->getLeft());
281         case EOpVectorSwizzle:
282             errorReturn = lValueErrorCheck(line, op, binaryNode->getLeft());
283             if (!errorReturn) {
284                 int offset[4] = {0,0,0,0};
285 
286                 TIntermTyped* rightNode = binaryNode->getRight();
287                 TIntermAggregate *aggrNode = rightNode->getAsAggregate();
288 
289                 for (TIntermSequence::iterator p = aggrNode->getSequence().begin();
290                                                p != aggrNode->getSequence().end(); p++) {
291                     int value = (*p)->getAsTyped()->getAsConstantUnion()->getIConst(0);
292                     offset[value]++;
293                     if (offset[value] > 1) {
294                         error(line, " l-value of swizzle cannot have duplicate components", op);
295 
296                         return true;
297                     }
298                 }
299             }
300 
301             return errorReturn;
302         default:
303             break;
304         }
305         error(line, " l-value required", op);
306 
307         return true;
308     }
309 
310 
311     const char* symbol = 0;
312     if (symNode != 0)
313         symbol = symNode->getSymbol().c_str();
314 
315     const char* message = 0;
316     switch (node->getQualifier()) {
317     case EvqConst:          message = "can't modify a const";        break;
318     case EvqConstReadOnly:  message = "can't modify a const";        break;
319     case EvqAttribute:      message = "can't modify an attribute";   break;
320     case EvqUniform:        message = "can't modify a uniform";      break;
321     case EvqVaryingIn:      message = "can't modify a varying";      break;
322     case EvqFragCoord:      message = "can't modify gl_FragCoord";   break;
323     case EvqFrontFacing:    message = "can't modify gl_FrontFacing"; break;
324     case EvqPointCoord:     message = "can't modify gl_PointCoord";  break;
325     default:
326 
327         //
328         // Type that can't be written to?
329         //
330         switch (node->getBasicType()) {
331         case EbtSampler2D:
332         case EbtSamplerCube:
333             message = "can't modify a sampler";
334             break;
335         case EbtVoid:
336             message = "can't modify void";
337             break;
338         default:
339             break;
340         }
341     }
342 
343     if (message == 0 && binaryNode == 0 && symNode == 0) {
344         error(line, " l-value required", op);
345 
346         return true;
347     }
348 
349 
350     //
351     // Everything else is okay, no error.
352     //
353     if (message == 0)
354         return false;
355 
356     //
357     // If we get here, we have an error and a message.
358     //
359     if (symNode) {
360         std::stringstream extraInfoStream;
361         extraInfoStream << "\"" << symbol << "\" (" << message << ")";
362         std::string extraInfo = extraInfoStream.str();
363         error(line, " l-value required", op, extraInfo.c_str());
364     }
365     else {
366         std::stringstream extraInfoStream;
367         extraInfoStream << "(" << message << ")";
368         std::string extraInfo = extraInfoStream.str();
369         error(line, " l-value required", op, extraInfo.c_str());
370     }
371 
372     return true;
373 }
374 
375 //
376 // Both test, and if necessary spit out an error, to see if the node is really
377 // a constant.
378 //
379 // Returns true if the was an error.
380 //
constErrorCheck(TIntermTyped * node)381 bool TParseContext::constErrorCheck(TIntermTyped* node)
382 {
383     if (node->getQualifier() == EvqConst)
384         return false;
385 
386     error(node->getLine(), "constant expression required", "");
387 
388     return true;
389 }
390 
391 //
392 // Both test, and if necessary spit out an error, to see if the node is really
393 // an integer.
394 //
395 // Returns true if the was an error.
396 //
integerErrorCheck(TIntermTyped * node,const char * token)397 bool TParseContext::integerErrorCheck(TIntermTyped* node, const char* token)
398 {
399     if (node->getBasicType() == EbtInt && node->getNominalSize() == 1)
400         return false;
401 
402     error(node->getLine(), "integer expression required", token);
403 
404     return true;
405 }
406 
407 //
408 // Both test, and if necessary spit out an error, to see if we are currently
409 // globally scoped.
410 //
411 // Returns true if the was an error.
412 //
globalErrorCheck(const TSourceLoc & line,bool global,const char * token)413 bool TParseContext::globalErrorCheck(const TSourceLoc& line, bool global, const char* token)
414 {
415     if (global)
416         return false;
417 
418     error(line, "only allowed at global scope", token);
419 
420     return true;
421 }
422 
423 //
424 // For now, keep it simple:  if it starts "gl_", it's reserved, independent
425 // of scope.  Except, if the symbol table is at the built-in push-level,
426 // which is when we are parsing built-ins.
427 // Also checks for "webgl_" and "_webgl_" reserved identifiers if parsing a
428 // webgl shader.
429 //
430 // Returns true if there was an error.
431 //
reservedErrorCheck(const TSourceLoc & line,const TString & identifier)432 bool TParseContext::reservedErrorCheck(const TSourceLoc& line, const TString& identifier)
433 {
434     static const char* reservedErrMsg = "reserved built-in name";
435     if (!symbolTable.atBuiltInLevel()) {
436         if (identifier.compare(0, 3, "gl_") == 0) {
437             error(line, reservedErrMsg, "gl_");
438             return true;
439         }
440         if (isWebGLBasedSpec(shaderSpec)) {
441             if (identifier.compare(0, 6, "webgl_") == 0) {
442                 error(line, reservedErrMsg, "webgl_");
443                 return true;
444             }
445             if (identifier.compare(0, 7, "_webgl_") == 0) {
446                 error(line, reservedErrMsg, "_webgl_");
447                 return true;
448             }
449             if (shaderSpec == SH_CSS_SHADERS_SPEC && identifier.compare(0, 4, "css_") == 0) {
450                 error(line, reservedErrMsg, "css_");
451                 return true;
452             }
453         }
454         if (identifier.find("__") != TString::npos) {
455             error(line, "identifiers containing two consecutive underscores (__) are reserved as possible future keywords", identifier.c_str());
456             return true;
457         }
458     }
459 
460     return false;
461 }
462 
463 //
464 // Make sure there is enough data provided to the constructor to build
465 // something of the type of the constructor.  Also returns the type of
466 // the constructor.
467 //
468 // Returns true if there was an error in construction.
469 //
constructorErrorCheck(const TSourceLoc & line,TIntermNode * node,TFunction & function,TOperator op,TType * type)470 bool TParseContext::constructorErrorCheck(const TSourceLoc& line, TIntermNode* node, TFunction& function, TOperator op, TType* type)
471 {
472     *type = function.getReturnType();
473 
474     bool constructingMatrix = false;
475     switch(op) {
476     case EOpConstructMat2:
477     case EOpConstructMat3:
478     case EOpConstructMat4:
479         constructingMatrix = true;
480         break;
481     default:
482         break;
483     }
484 
485     //
486     // Note: It's okay to have too many components available, but not okay to have unused
487     // arguments.  'full' will go to true when enough args have been seen.  If we loop
488     // again, there is an extra argument, so 'overfull' will become true.
489     //
490 
491     size_t size = 0;
492     bool constType = true;
493     bool full = false;
494     bool overFull = false;
495     bool matrixInMatrix = false;
496     bool arrayArg = false;
497     for (size_t i = 0; i < function.getParamCount(); ++i) {
498         const TParameter& param = function.getParam(i);
499         size += param.type->getObjectSize();
500 
501         if (constructingMatrix && param.type->isMatrix())
502             matrixInMatrix = true;
503         if (full)
504             overFull = true;
505         if (op != EOpConstructStruct && !type->isArray() && size >= type->getObjectSize())
506             full = true;
507         if (param.type->getQualifier() != EvqConst)
508             constType = false;
509         if (param.type->isArray())
510             arrayArg = true;
511     }
512 
513     if (constType)
514         type->setQualifier(EvqConst);
515 
516     if (type->isArray() && static_cast<size_t>(type->getArraySize()) != function.getParamCount()) {
517         error(line, "array constructor needs one argument per array element", "constructor");
518         return true;
519     }
520 
521     if (arrayArg && op != EOpConstructStruct) {
522         error(line, "constructing from a non-dereferenced array", "constructor");
523         return true;
524     }
525 
526     if (matrixInMatrix && !type->isArray()) {
527         if (function.getParamCount() != 1) {
528           error(line, "constructing matrix from matrix can only take one argument", "constructor");
529           return true;
530         }
531     }
532 
533     if (overFull) {
534         error(line, "too many arguments", "constructor");
535         return true;
536     }
537 
538     if (op == EOpConstructStruct && !type->isArray() && int(type->getStruct()->fields().size()) != function.getParamCount()) {
539         error(line, "Number of constructor parameters does not match the number of structure fields", "constructor");
540         return true;
541     }
542 
543     if (!type->isMatrix() || !matrixInMatrix) {
544         if ((op != EOpConstructStruct && size != 1 && size < type->getObjectSize()) ||
545             (op == EOpConstructStruct && size < type->getObjectSize())) {
546             error(line, "not enough data provided for construction", "constructor");
547             return true;
548         }
549     }
550 
551     TIntermTyped *typed = node ? node->getAsTyped() : 0;
552     if (typed == 0) {
553         error(line, "constructor argument does not have a type", "constructor");
554         return true;
555     }
556     if (op != EOpConstructStruct && IsSampler(typed->getBasicType())) {
557         error(line, "cannot convert a sampler", "constructor");
558         return true;
559     }
560     if (typed->getBasicType() == EbtVoid) {
561         error(line, "cannot convert a void", "constructor");
562         return true;
563     }
564 
565     return false;
566 }
567 
568 // This function checks to see if a void variable has been declared and raise an error message for such a case
569 //
570 // returns true in case of an error
571 //
voidErrorCheck(const TSourceLoc & line,const TString & identifier,const TPublicType & pubType)572 bool TParseContext::voidErrorCheck(const TSourceLoc& line, const TString& identifier, const TPublicType& pubType)
573 {
574     if (pubType.type == EbtVoid) {
575         error(line, "illegal use of type 'void'", identifier.c_str());
576         return true;
577     }
578 
579     return false;
580 }
581 
582 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
583 //
584 // returns true in case of an error
585 //
boolErrorCheck(const TSourceLoc & line,const TIntermTyped * type)586 bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TIntermTyped* type)
587 {
588     if (type->getBasicType() != EbtBool || type->isArray() || type->isMatrix() || type->isVector()) {
589         error(line, "boolean expression expected", "");
590         return true;
591     }
592 
593     return false;
594 }
595 
596 // This function checks to see if the node (for the expression) contains a scalar boolean expression or not
597 //
598 // returns true in case of an error
599 //
boolErrorCheck(const TSourceLoc & line,const TPublicType & pType)600 bool TParseContext::boolErrorCheck(const TSourceLoc& line, const TPublicType& pType)
601 {
602     if (pType.type != EbtBool || pType.array || pType.matrix || (pType.size > 1)) {
603         error(line, "boolean expression expected", "");
604         return true;
605     }
606 
607     return false;
608 }
609 
samplerErrorCheck(const TSourceLoc & line,const TPublicType & pType,const char * reason)610 bool TParseContext::samplerErrorCheck(const TSourceLoc& line, const TPublicType& pType, const char* reason)
611 {
612     if (pType.type == EbtStruct) {
613         if (containsSampler(*pType.userDef)) {
614             error(line, reason, getBasicString(pType.type), "(structure contains a sampler)");
615 
616             return true;
617         }
618 
619         return false;
620     } else if (IsSampler(pType.type)) {
621         error(line, reason, getBasicString(pType.type));
622 
623         return true;
624     }
625 
626     return false;
627 }
628 
structQualifierErrorCheck(const TSourceLoc & line,const TPublicType & pType)629 bool TParseContext::structQualifierErrorCheck(const TSourceLoc& line, const TPublicType& pType)
630 {
631     if ((pType.qualifier == EvqVaryingIn || pType.qualifier == EvqVaryingOut || pType.qualifier == EvqAttribute) &&
632         pType.type == EbtStruct) {
633         error(line, "cannot be used with a structure", getQualifierString(pType.qualifier));
634 
635         return true;
636     }
637 
638     if (pType.qualifier != EvqUniform && samplerErrorCheck(line, pType, "samplers must be uniform"))
639         return true;
640 
641     return false;
642 }
643 
parameterSamplerErrorCheck(const TSourceLoc & line,TQualifier qualifier,const TType & type)644 bool TParseContext::parameterSamplerErrorCheck(const TSourceLoc& line, TQualifier qualifier, const TType& type)
645 {
646     if ((qualifier == EvqOut || qualifier == EvqInOut) &&
647              type.getBasicType() != EbtStruct && IsSampler(type.getBasicType())) {
648         error(line, "samplers cannot be output parameters", type.getBasicString());
649         return true;
650     }
651 
652     return false;
653 }
654 
containsSampler(TType & type)655 bool TParseContext::containsSampler(TType& type)
656 {
657     if (IsSampler(type.getBasicType()))
658         return true;
659 
660     if (type.getBasicType() == EbtStruct) {
661         const TFieldList& fields = type.getStruct()->fields();
662         for (unsigned int i = 0; i < fields.size(); ++i) {
663             if (containsSampler(*fields[i]->type()))
664                 return true;
665         }
666     }
667 
668     return false;
669 }
670 
671 //
672 // Do size checking for an array type's size.
673 //
674 // Returns true if there was an error.
675 //
arraySizeErrorCheck(const TSourceLoc & line,TIntermTyped * expr,int & size)676 bool TParseContext::arraySizeErrorCheck(const TSourceLoc& line, TIntermTyped* expr, int& size)
677 {
678     TIntermConstantUnion* constant = expr->getAsConstantUnion();
679     if (constant == 0 || constant->getBasicType() != EbtInt) {
680         error(line, "array size must be a constant integer expression", "");
681         return true;
682     }
683 
684     size = constant->getIConst(0);
685 
686     if (size <= 0) {
687         error(line, "array size must be a positive integer", "");
688         size = 1;
689         return true;
690     }
691 
692     return false;
693 }
694 
695 //
696 // See if this qualifier can be an array.
697 //
698 // Returns true if there is an error.
699 //
arrayQualifierErrorCheck(const TSourceLoc & line,TPublicType type)700 bool TParseContext::arrayQualifierErrorCheck(const TSourceLoc& line, TPublicType type)
701 {
702     if ((type.qualifier == EvqAttribute) || (type.qualifier == EvqConst)) {
703         error(line, "cannot declare arrays of this qualifier", TType(type).getCompleteString().c_str());
704         return true;
705     }
706 
707     return false;
708 }
709 
710 //
711 // See if this type can be an array.
712 //
713 // Returns true if there is an error.
714 //
arrayTypeErrorCheck(const TSourceLoc & line,TPublicType type)715 bool TParseContext::arrayTypeErrorCheck(const TSourceLoc& line, TPublicType type)
716 {
717     //
718     // Can the type be an array?
719     //
720     if (type.array) {
721         error(line, "cannot declare arrays of arrays", TType(type).getCompleteString().c_str());
722         return true;
723     }
724 
725     return false;
726 }
727 
728 //
729 // Do all the semantic checking for declaring an array, with and
730 // without a size, and make the right changes to the symbol table.
731 //
732 // size == 0 means no specified size.
733 //
734 // Returns true if there was an error.
735 //
arrayErrorCheck(const TSourceLoc & line,TString & identifier,TPublicType type,TVariable * & variable)736 bool TParseContext::arrayErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType type, TVariable*& variable)
737 {
738     //
739     // Don't check for reserved word use until after we know it's not in the symbol table,
740     // because reserved arrays can be redeclared.
741     //
742 
743     bool builtIn = false;
744     bool sameScope = false;
745     TSymbol* symbol = symbolTable.find(identifier, &builtIn, &sameScope);
746     if (symbol == 0 || !sameScope) {
747         if (reservedErrorCheck(line, identifier))
748             return true;
749 
750         variable = new TVariable(&identifier, TType(type));
751 
752         if (type.arraySize)
753             variable->getType().setArraySize(type.arraySize);
754 
755         if (! symbolTable.insert(*variable)) {
756             delete variable;
757             error(line, "INTERNAL ERROR inserting new symbol", identifier.c_str());
758             return true;
759         }
760     } else {
761         if (! symbol->isVariable()) {
762             error(line, "variable expected", identifier.c_str());
763             return true;
764         }
765 
766         variable = static_cast<TVariable*>(symbol);
767         if (! variable->getType().isArray()) {
768             error(line, "redeclaring non-array as array", identifier.c_str());
769             return true;
770         }
771         if (variable->getType().getArraySize() > 0) {
772             error(line, "redeclaration of array with size", identifier.c_str());
773             return true;
774         }
775 
776         if (! variable->getType().sameElementType(TType(type))) {
777             error(line, "redeclaration of array with a different type", identifier.c_str());
778             return true;
779         }
780 
781         if (type.arraySize)
782             variable->getType().setArraySize(type.arraySize);
783     }
784 
785     if (voidErrorCheck(line, identifier, type))
786         return true;
787 
788     return false;
789 }
790 
791 //
792 // Enforce non-initializer type/qualifier rules.
793 //
794 // Returns true if there was an error.
795 //
nonInitConstErrorCheck(const TSourceLoc & line,TString & identifier,TPublicType & type,bool array)796 bool TParseContext::nonInitConstErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType& type, bool array)
797 {
798     if (type.qualifier == EvqConst)
799     {
800         // Make the qualifier make sense.
801         type.qualifier = EvqTemporary;
802 
803         if (array)
804         {
805             error(line, "arrays may not be declared constant since they cannot be initialized", identifier.c_str());
806         }
807         else if (type.isStructureContainingArrays())
808         {
809             error(line, "structures containing arrays may not be declared constant since they cannot be initialized", identifier.c_str());
810         }
811         else
812         {
813             error(line, "variables with qualifier 'const' must be initialized", identifier.c_str());
814         }
815 
816         return true;
817     }
818 
819     return false;
820 }
821 
822 //
823 // Do semantic checking for a variable declaration that has no initializer,
824 // and update the symbol table.
825 //
826 // Returns true if there was an error.
827 //
nonInitErrorCheck(const TSourceLoc & line,TString & identifier,TPublicType & type,TVariable * & variable)828 bool TParseContext::nonInitErrorCheck(const TSourceLoc& line, TString& identifier, TPublicType& type, TVariable*& variable)
829 {
830     if (reservedErrorCheck(line, identifier))
831         recover();
832 
833     variable = new TVariable(&identifier, TType(type));
834 
835     if (! symbolTable.insert(*variable)) {
836         error(line, "redefinition", variable->getName().c_str());
837         delete variable;
838         variable = 0;
839         return true;
840     }
841 
842     if (voidErrorCheck(line, identifier, type))
843         return true;
844 
845     return false;
846 }
847 
paramErrorCheck(const TSourceLoc & line,TQualifier qualifier,TQualifier paramQualifier,TType * type)848 bool TParseContext::paramErrorCheck(const TSourceLoc& line, TQualifier qualifier, TQualifier paramQualifier, TType* type)
849 {
850     if (qualifier != EvqConst && qualifier != EvqTemporary) {
851         error(line, "qualifier not allowed on function parameter", getQualifierString(qualifier));
852         return true;
853     }
854     if (qualifier == EvqConst && paramQualifier != EvqIn) {
855         error(line, "qualifier not allowed with ", getQualifierString(qualifier), getQualifierString(paramQualifier));
856         return true;
857     }
858 
859     if (qualifier == EvqConst)
860         type->setQualifier(EvqConstReadOnly);
861     else
862         type->setQualifier(paramQualifier);
863 
864     return false;
865 }
866 
extensionErrorCheck(const TSourceLoc & line,const TString & extension)867 bool TParseContext::extensionErrorCheck(const TSourceLoc& line, const TString& extension)
868 {
869     const TExtensionBehavior& extBehavior = extensionBehavior();
870     TExtensionBehavior::const_iterator iter = extBehavior.find(extension.c_str());
871     if (iter == extBehavior.end()) {
872         error(line, "extension", extension.c_str(), "is not supported");
873         return true;
874     }
875     // In GLSL ES, an extension's default behavior is "disable".
876     if (iter->second == EBhDisable || iter->second == EBhUndefined) {
877         error(line, "extension", extension.c_str(), "is disabled");
878         return true;
879     }
880     if (iter->second == EBhWarn) {
881         warning(line, "extension", extension.c_str(), "is being used");
882         return false;
883     }
884 
885     return false;
886 }
887 
supportsExtension(const char * extension)888 bool TParseContext::supportsExtension(const char* extension)
889 {
890     const TExtensionBehavior& extbehavior = extensionBehavior();
891     TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
892     return (iter != extbehavior.end());
893 }
894 
isExtensionEnabled(const char * extension) const895 bool TParseContext::isExtensionEnabled(const char* extension) const
896 {
897     const TExtensionBehavior& extbehavior = extensionBehavior();
898     TExtensionBehavior::const_iterator iter = extbehavior.find(extension);
899 
900     if (iter == extbehavior.end())
901     {
902         return false;
903     }
904 
905     return (iter->second == EBhEnable || iter->second == EBhRequire);
906 }
907 
908 /////////////////////////////////////////////////////////////////////////////////
909 //
910 // Non-Errors.
911 //
912 /////////////////////////////////////////////////////////////////////////////////
913 
914 //
915 // Look up a function name in the symbol table, and make sure it is a function.
916 //
917 // Return the function symbol if found, otherwise 0.
918 //
findFunction(const TSourceLoc & line,TFunction * call,bool * builtIn)919 const TFunction* TParseContext::findFunction(const TSourceLoc& line, TFunction* call, bool *builtIn)
920 {
921     // First find by unmangled name to check whether the function name has been
922     // hidden by a variable name or struct typename.
923     // If a function is found, check for one with a matching argument list.
924     const TSymbol* symbol = symbolTable.find(call->getName(), builtIn);
925     if (symbol == 0 || symbol->isFunction()) {
926         symbol = symbolTable.find(call->getMangledName(), builtIn);
927     }
928 
929     if (symbol == 0) {
930         error(line, "no matching overloaded function found", call->getName().c_str());
931         return 0;
932     }
933 
934     if (!symbol->isFunction()) {
935         error(line, "function name expected", call->getName().c_str());
936         return 0;
937     }
938 
939     return static_cast<const TFunction*>(symbol);
940 }
941 
942 //
943 // Initializers show up in several places in the grammar.  Have one set of
944 // code to handle them here.
945 //
executeInitializer(const TSourceLoc & line,TString & identifier,TPublicType & pType,TIntermTyped * initializer,TIntermNode * & intermNode,TVariable * variable)946 bool TParseContext::executeInitializer(const TSourceLoc& line, TString& identifier, TPublicType& pType,
947                                        TIntermTyped* initializer, TIntermNode*& intermNode, TVariable* variable)
948 {
949     TType type = TType(pType);
950 
951     if (variable == 0) {
952         if (reservedErrorCheck(line, identifier))
953             return true;
954 
955         if (voidErrorCheck(line, identifier, pType))
956             return true;
957 
958         //
959         // add variable to symbol table
960         //
961         variable = new TVariable(&identifier, type);
962         if (! symbolTable.insert(*variable)) {
963             error(line, "redefinition", variable->getName().c_str());
964             return true;
965             // don't delete variable, it's used by error recovery, and the pool
966             // pop will take care of the memory
967         }
968     }
969 
970     //
971     // identifier must be of type constant, a global, or a temporary
972     //
973     TQualifier qualifier = variable->getType().getQualifier();
974     if ((qualifier != EvqTemporary) && (qualifier != EvqGlobal) && (qualifier != EvqConst)) {
975         error(line, " cannot initialize this type of qualifier ", variable->getType().getQualifierString());
976         return true;
977     }
978     //
979     // test for and propagate constant
980     //
981 
982     if (qualifier == EvqConst) {
983         if (qualifier != initializer->getType().getQualifier()) {
984             std::stringstream extraInfoStream;
985             extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
986             std::string extraInfo = extraInfoStream.str();
987             error(line, " assigning non-constant to", "=", extraInfo.c_str());
988             variable->getType().setQualifier(EvqTemporary);
989             return true;
990         }
991         if (type != initializer->getType()) {
992             error(line, " non-matching types for const initializer ",
993                 variable->getType().getQualifierString());
994             variable->getType().setQualifier(EvqTemporary);
995             return true;
996         }
997         if (initializer->getAsConstantUnion()) {
998             variable->shareConstPointer(initializer->getAsConstantUnion()->getUnionArrayPointer());
999         } else if (initializer->getAsSymbolNode()) {
1000             const TSymbol* symbol = symbolTable.find(initializer->getAsSymbolNode()->getSymbol());
1001             const TVariable* tVar = static_cast<const TVariable*>(symbol);
1002 
1003             ConstantUnion* constArray = tVar->getConstPointer();
1004             variable->shareConstPointer(constArray);
1005         } else {
1006             std::stringstream extraInfoStream;
1007             extraInfoStream << "'" << variable->getType().getCompleteString() << "'";
1008             std::string extraInfo = extraInfoStream.str();
1009             error(line, " cannot assign to", "=", extraInfo.c_str());
1010             variable->getType().setQualifier(EvqTemporary);
1011             return true;
1012         }
1013     }
1014 
1015     if (qualifier != EvqConst) {
1016         TIntermSymbol* intermSymbol = intermediate.addSymbol(variable->getUniqueId(), variable->getName(), variable->getType(), line);
1017         intermNode = intermediate.addAssign(EOpInitialize, intermSymbol, initializer, line);
1018         if (intermNode == 0) {
1019             assignError(line, "=", intermSymbol->getCompleteString(), initializer->getCompleteString());
1020             return true;
1021         }
1022     } else
1023         intermNode = 0;
1024 
1025     return false;
1026 }
1027 
areAllChildConst(TIntermAggregate * aggrNode)1028 bool TParseContext::areAllChildConst(TIntermAggregate* aggrNode)
1029 {
1030     ASSERT(aggrNode != NULL);
1031     if (!aggrNode->isConstructor())
1032         return false;
1033 
1034     bool allConstant = true;
1035 
1036     // check if all the child nodes are constants so that they can be inserted into
1037     // the parent node
1038     TIntermSequence &sequence = aggrNode->getSequence() ;
1039     for (TIntermSequence::iterator p = sequence.begin(); p != sequence.end(); ++p) {
1040         if (!(*p)->getAsTyped()->getAsConstantUnion())
1041             return false;
1042     }
1043 
1044     return allConstant;
1045 }
1046 
1047 // This function is used to test for the correctness of the parameters passed to various constructor functions
1048 // and also convert them to the right datatype if it is allowed and required.
1049 //
1050 // Returns 0 for an error or the constructed node (aggregate or typed) for no error.
1051 //
addConstructor(TIntermNode * node,const TType * type,TOperator op,TFunction * fnCall,const TSourceLoc & line)1052 TIntermTyped* TParseContext::addConstructor(TIntermNode* node, const TType* type, TOperator op, TFunction* fnCall, const TSourceLoc& line)
1053 {
1054     if (node == 0)
1055         return 0;
1056 
1057     TIntermAggregate* aggrNode = node->getAsAggregate();
1058 
1059     TFieldList::const_iterator memberFields;
1060     if (op == EOpConstructStruct)
1061         memberFields = type->getStruct()->fields().begin();
1062 
1063     TType elementType = *type;
1064     if (type->isArray())
1065         elementType.clearArrayness();
1066 
1067     bool singleArg;
1068     if (aggrNode) {
1069         if (aggrNode->getOp() != EOpNull || aggrNode->getSequence().size() == 1)
1070             singleArg = true;
1071         else
1072             singleArg = false;
1073     } else
1074         singleArg = true;
1075 
1076     TIntermTyped *newNode;
1077     if (singleArg) {
1078         // If structure constructor or array constructor is being called
1079         // for only one parameter inside the structure, we need to call constructStruct function once.
1080         if (type->isArray())
1081             newNode = constructStruct(node, &elementType, 1, node->getLine(), false);
1082         else if (op == EOpConstructStruct)
1083             newNode = constructStruct(node, (*memberFields)->type(), 1, node->getLine(), false);
1084         else
1085             newNode = constructBuiltIn(type, op, node, node->getLine(), false);
1086 
1087         if (newNode && newNode->getAsAggregate()) {
1088             TIntermTyped* constConstructor = foldConstConstructor(newNode->getAsAggregate(), *type);
1089             if (constConstructor)
1090                 return constConstructor;
1091         }
1092 
1093         return newNode;
1094     }
1095 
1096     //
1097     // Handle list of arguments.
1098     //
1099     TIntermSequence &sequenceVector = aggrNode->getSequence() ;    // Stores the information about the parameter to the constructor
1100     // if the structure constructor contains more than one parameter, then construct
1101     // each parameter
1102 
1103     int paramCount = 0;  // keeps a track of the constructor parameter number being checked
1104 
1105     // for each parameter to the constructor call, check to see if the right type is passed or convert them
1106     // to the right type if possible (and allowed).
1107     // for structure constructors, just check if the right type is passed, no conversion is allowed.
1108 
1109     for (TIntermSequence::iterator p = sequenceVector.begin();
1110                                    p != sequenceVector.end(); p++, paramCount++) {
1111         if (type->isArray())
1112             newNode = constructStruct(*p, &elementType, paramCount+1, node->getLine(), true);
1113         else if (op == EOpConstructStruct)
1114             newNode = constructStruct(*p, memberFields[paramCount]->type(), paramCount+1, node->getLine(), true);
1115         else
1116             newNode = constructBuiltIn(type, op, *p, node->getLine(), true);
1117 
1118         if (newNode) {
1119             *p = newNode;
1120         }
1121     }
1122 
1123     TIntermTyped* constructor = intermediate.setAggregateOperator(aggrNode, op, line);
1124     TIntermTyped* constConstructor = foldConstConstructor(constructor->getAsAggregate(), *type);
1125     if (constConstructor)
1126         return constConstructor;
1127 
1128     return constructor;
1129 }
1130 
foldConstConstructor(TIntermAggregate * aggrNode,const TType & type)1131 TIntermTyped* TParseContext::foldConstConstructor(TIntermAggregate* aggrNode, const TType& type)
1132 {
1133     bool canBeFolded = areAllChildConst(aggrNode);
1134     aggrNode->setType(type);
1135     if (canBeFolded) {
1136         bool returnVal = false;
1137         ConstantUnion* unionArray = new ConstantUnion[type.getObjectSize()];
1138         if (aggrNode->getSequence().size() == 1)  {
1139             returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable,  type, true);
1140         }
1141         else {
1142             returnVal = intermediate.parseConstTree(aggrNode->getLine(), aggrNode, unionArray, aggrNode->getOp(), symbolTable,  type);
1143         }
1144         if (returnVal)
1145             return 0;
1146 
1147         return intermediate.addConstantUnion(unionArray, type, aggrNode->getLine());
1148     }
1149 
1150     return 0;
1151 }
1152 
1153 // Function for constructor implementation. Calls addUnaryMath with appropriate EOp value
1154 // for the parameter to the constructor (passed to this function). Essentially, it converts
1155 // the parameter types correctly. If a constructor expects an int (like ivec2) and is passed a
1156 // float, then float is converted to int.
1157 //
1158 // Returns 0 for an error or the constructed node.
1159 //
constructBuiltIn(const TType * type,TOperator op,TIntermNode * node,const TSourceLoc & line,bool subset)1160 TIntermTyped* TParseContext::constructBuiltIn(const TType* type, TOperator op, TIntermNode* node, const TSourceLoc& line, bool subset)
1161 {
1162     TIntermTyped* newNode;
1163     TOperator basicOp;
1164 
1165     //
1166     // First, convert types as needed.
1167     //
1168     switch (op) {
1169     case EOpConstructVec2:
1170     case EOpConstructVec3:
1171     case EOpConstructVec4:
1172     case EOpConstructMat2:
1173     case EOpConstructMat3:
1174     case EOpConstructMat4:
1175     case EOpConstructFloat:
1176         basicOp = EOpConstructFloat;
1177         break;
1178 
1179     case EOpConstructIVec2:
1180     case EOpConstructIVec3:
1181     case EOpConstructIVec4:
1182     case EOpConstructInt:
1183         basicOp = EOpConstructInt;
1184         break;
1185 
1186     case EOpConstructBVec2:
1187     case EOpConstructBVec3:
1188     case EOpConstructBVec4:
1189     case EOpConstructBool:
1190         basicOp = EOpConstructBool;
1191         break;
1192 
1193     default:
1194         error(line, "unsupported construction", "");
1195         recover();
1196 
1197         return 0;
1198     }
1199     newNode = intermediate.addUnaryMath(basicOp, node, node->getLine(), symbolTable);
1200     if (newNode == 0) {
1201         error(line, "can't convert", "constructor");
1202         return 0;
1203     }
1204 
1205     //
1206     // Now, if there still isn't an operation to do the construction, and we need one, add one.
1207     //
1208 
1209     // Otherwise, skip out early.
1210     if (subset || (newNode != node && newNode->getType() == *type))
1211         return newNode;
1212 
1213     // setAggregateOperator will insert a new node for the constructor, as needed.
1214     return intermediate.setAggregateOperator(newNode, op, line);
1215 }
1216 
1217 // This function tests for the type of the parameters to the structures constructors. Raises
1218 // an error message if the expected type does not match the parameter passed to the constructor.
1219 //
1220 // Returns 0 for an error or the input node itself if the expected and the given parameter types match.
1221 //
constructStruct(TIntermNode * node,TType * type,int paramCount,const TSourceLoc & line,bool subset)1222 TIntermTyped* TParseContext::constructStruct(TIntermNode* node, TType* type, int paramCount, const TSourceLoc& line, bool subset)
1223 {
1224     if (*type == node->getAsTyped()->getType()) {
1225         if (subset)
1226             return node->getAsTyped();
1227         else
1228             return intermediate.setAggregateOperator(node->getAsTyped(), EOpConstructStruct, line);
1229     } else {
1230         std::stringstream extraInfoStream;
1231         extraInfoStream << "cannot convert parameter " << paramCount
1232                         << " from '" << node->getAsTyped()->getType().getBasicString()
1233                         << "' to '" << type->getBasicString() << "'";
1234         std::string extraInfo = extraInfoStream.str();
1235         error(line, "", "constructor", extraInfo.c_str());
1236         recover();
1237     }
1238 
1239     return 0;
1240 }
1241 
1242 //
1243 // This function returns the tree representation for the vector field(s) being accessed from contant vector.
1244 // If only one component of vector is accessed (v.x or v[0] where v is a contant vector), then a contant node is
1245 // returned, else an aggregate node is returned (for v.xy). The input to this function could either be the symbol
1246 // node or it could be the intermediate tree representation of accessing fields in a constant structure or column of
1247 // a constant matrix.
1248 //
addConstVectorNode(TVectorFields & fields,TIntermTyped * node,const TSourceLoc & line)1249 TIntermTyped* TParseContext::addConstVectorNode(TVectorFields& fields, TIntermTyped* node, const TSourceLoc& line)
1250 {
1251     TIntermTyped* typedNode;
1252     TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1253 
1254     ConstantUnion *unionArray;
1255     if (tempConstantNode) {
1256         unionArray = tempConstantNode->getUnionArrayPointer();
1257 
1258         if (!unionArray) {
1259             return node;
1260         }
1261     } else { // The node has to be either a symbol node or an aggregate node or a tempConstant node, else, its an error
1262         error(line, "Cannot offset into the vector", "Error");
1263         recover();
1264 
1265         return 0;
1266     }
1267 
1268     ConstantUnion* constArray = new ConstantUnion[fields.num];
1269 
1270     for (int i = 0; i < fields.num; i++) {
1271         if (fields.offsets[i] >= node->getType().getNominalSize()) {
1272             std::stringstream extraInfoStream;
1273             extraInfoStream << "vector field selection out of range '" << fields.offsets[i] << "'";
1274             std::string extraInfo = extraInfoStream.str();
1275             error(line, "", "[", extraInfo.c_str());
1276             recover();
1277             fields.offsets[i] = 0;
1278         }
1279 
1280         constArray[i] = unionArray[fields.offsets[i]];
1281 
1282     }
1283     typedNode = intermediate.addConstantUnion(constArray, node->getType(), line);
1284     return typedNode;
1285 }
1286 
1287 //
1288 // This function returns the column being accessed from a constant matrix. The values are retrieved from
1289 // the symbol table and parse-tree is built for a vector (each column of a matrix is a vector). The input
1290 // to the function could either be a symbol node (m[0] where m is a constant matrix)that represents a
1291 // constant matrix or it could be the tree representation of the constant matrix (s.m1[0] where s is a constant structure)
1292 //
addConstMatrixNode(int index,TIntermTyped * node,const TSourceLoc & line)1293 TIntermTyped* TParseContext::addConstMatrixNode(int index, TIntermTyped* node, const TSourceLoc& line)
1294 {
1295     TIntermTyped* typedNode;
1296     TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1297 
1298     if (index >= node->getType().getNominalSize()) {
1299         std::stringstream extraInfoStream;
1300         extraInfoStream << "matrix field selection out of range '" << index << "'";
1301         std::string extraInfo = extraInfoStream.str();
1302         error(line, "", "[", extraInfo.c_str());
1303         recover();
1304         index = 0;
1305     }
1306 
1307     if (tempConstantNode) {
1308          ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1309          int size = tempConstantNode->getType().getNominalSize();
1310          typedNode = intermediate.addConstantUnion(&unionArray[size*index], tempConstantNode->getType(), line);
1311     } else {
1312         error(line, "Cannot offset into the matrix", "Error");
1313         recover();
1314 
1315         return 0;
1316     }
1317 
1318     return typedNode;
1319 }
1320 
1321 
1322 //
1323 // This function returns an element of an array accessed from a constant array. The values are retrieved from
1324 // the symbol table and parse-tree is built for the type of the element. The input
1325 // to the function could either be a symbol node (a[0] where a is a constant array)that represents a
1326 // constant array or it could be the tree representation of the constant array (s.a1[0] where s is a constant structure)
1327 //
addConstArrayNode(int index,TIntermTyped * node,const TSourceLoc & line)1328 TIntermTyped* TParseContext::addConstArrayNode(int index, TIntermTyped* node, const TSourceLoc& line)
1329 {
1330     TIntermTyped* typedNode;
1331     TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1332     TType arrayElementType = node->getType();
1333     arrayElementType.clearArrayness();
1334 
1335     if (index >= node->getType().getArraySize()) {
1336         std::stringstream extraInfoStream;
1337         extraInfoStream << "array field selection out of range '" << index << "'";
1338         std::string extraInfo = extraInfoStream.str();
1339         error(line, "", "[", extraInfo.c_str());
1340         recover();
1341         index = 0;
1342     }
1343 
1344     if (tempConstantNode) {
1345          size_t arrayElementSize = arrayElementType.getObjectSize();
1346          ConstantUnion* unionArray = tempConstantNode->getUnionArrayPointer();
1347          typedNode = intermediate.addConstantUnion(&unionArray[arrayElementSize * index], tempConstantNode->getType(), line);
1348     } else {
1349         error(line, "Cannot offset into the array", "Error");
1350         recover();
1351 
1352         return 0;
1353     }
1354 
1355     return typedNode;
1356 }
1357 
1358 
1359 //
1360 // This function returns the value of a particular field inside a constant structure from the symbol table.
1361 // If there is an embedded/nested struct, it appropriately calls addConstStructNested or addConstStructFromAggr
1362 // function and returns the parse-tree with the values of the embedded/nested struct.
1363 //
addConstStruct(TString & identifier,TIntermTyped * node,const TSourceLoc & line)1364 TIntermTyped* TParseContext::addConstStruct(TString& identifier, TIntermTyped* node, const TSourceLoc& line)
1365 {
1366     const TFieldList& fields = node->getType().getStruct()->fields();
1367 
1368     size_t instanceSize = 0;
1369     for (size_t index = 0; index < fields.size(); ++index) {
1370         if (fields[index]->name() == identifier) {
1371             break;
1372         } else {
1373             instanceSize += fields[index]->type()->getObjectSize();
1374         }
1375     }
1376 
1377     TIntermTyped* typedNode = 0;
1378     TIntermConstantUnion* tempConstantNode = node->getAsConstantUnion();
1379     if (tempConstantNode) {
1380          ConstantUnion* constArray = tempConstantNode->getUnionArrayPointer();
1381 
1382          typedNode = intermediate.addConstantUnion(constArray+instanceSize, tempConstantNode->getType(), line); // type will be changed in the calling function
1383     } else {
1384         error(line, "Cannot offset into the structure", "Error");
1385         recover();
1386 
1387         return 0;
1388     }
1389 
1390     return typedNode;
1391 }
1392 
enterStructDeclaration(const TSourceLoc & line,const TString & identifier)1393 bool TParseContext::enterStructDeclaration(const TSourceLoc& line, const TString& identifier)
1394 {
1395     ++structNestingLevel;
1396 
1397     // Embedded structure definitions are not supported per GLSL ES spec.
1398     // They aren't allowed in GLSL either, but we need to detect this here
1399     // so we don't rely on the GLSL compiler to catch it.
1400     if (structNestingLevel > 1) {
1401         error(line, "", "Embedded struct definitions are not allowed");
1402         return true;
1403     }
1404 
1405     return false;
1406 }
1407 
exitStructDeclaration()1408 void TParseContext::exitStructDeclaration()
1409 {
1410     --structNestingLevel;
1411 }
1412 
1413 namespace {
1414 
1415 const int kWebGLMaxStructNesting = 4;
1416 
1417 }  // namespace
1418 
structNestingErrorCheck(const TSourceLoc & line,const TField & field)1419 bool TParseContext::structNestingErrorCheck(const TSourceLoc& line, const TField& field)
1420 {
1421     if (!isWebGLBasedSpec(shaderSpec)) {
1422         return false;
1423     }
1424 
1425     if (field.type()->getBasicType() != EbtStruct) {
1426         return false;
1427     }
1428 
1429     // We're already inside a structure definition at this point, so add
1430     // one to the field's struct nesting.
1431     if (1 + field.type()->getDeepestStructNesting() > kWebGLMaxStructNesting) {
1432         std::stringstream reasonStream;
1433         reasonStream << "Reference of struct type "
1434                      << field.type()->getStruct()->name().c_str()
1435                      << " exceeds maximum allowed nesting level of "
1436                      << kWebGLMaxStructNesting;
1437         std::string reason = reasonStream.str();
1438         error(line, reason.c_str(), field.name().c_str(), "");
1439         return true;
1440     }
1441 
1442     return false;
1443 }
1444 
1445 //
1446 // Parse an array index expression
1447 //
addIndexExpression(TIntermTyped * baseExpression,const TSourceLoc & location,TIntermTyped * indexExpression)1448 TIntermTyped* TParseContext::addIndexExpression(TIntermTyped *baseExpression, const TSourceLoc& location, TIntermTyped *indexExpression)
1449 {
1450     TIntermTyped *indexedExpression = NULL;
1451 
1452     if (!baseExpression->isArray() && !baseExpression->isMatrix() && !baseExpression->isVector())
1453     {
1454         if (baseExpression->getAsSymbolNode())
1455         {
1456             error(location, " left of '[' is not of type array, matrix, or vector ", baseExpression->getAsSymbolNode()->getSymbol().c_str());
1457         }
1458         else
1459         {
1460             error(location, " left of '[' is not of type array, matrix, or vector ", "expression");
1461         }
1462         recover();
1463     }
1464 
1465     if (indexExpression->getQualifier() == EvqConst)
1466     {
1467         int index = indexExpression->getAsConstantUnion()->getIConst(0);
1468         if (index < 0)
1469         {
1470             std::stringstream infoStream;
1471             infoStream << index;
1472             std::string info = infoStream.str();
1473             error(location, "negative index", info.c_str());
1474             recover();
1475             index = 0;
1476         }
1477         if (baseExpression->getType().getQualifier() == EvqConst)
1478         {
1479             if (baseExpression->isArray())
1480             {
1481                 // constant folding for arrays
1482                 indexedExpression = addConstArrayNode(index, baseExpression, location);
1483             }
1484             else if (baseExpression->isVector())
1485             {
1486                 // constant folding for vectors
1487                 TVectorFields fields;
1488                 fields.num = 1;
1489                 fields.offsets[0] = index; // need to do it this way because v.xy sends fields integer array
1490                 indexedExpression = addConstVectorNode(fields, baseExpression, location);
1491             }
1492             else if (baseExpression->isMatrix())
1493             {
1494                 // constant folding for matrices
1495                 indexedExpression = addConstMatrixNode(index, baseExpression, location);
1496             }
1497         }
1498         else
1499         {
1500             if (baseExpression->isArray())
1501             {
1502                 if (index >= baseExpression->getType().getArraySize())
1503                 {
1504                     std::stringstream extraInfoStream;
1505                     extraInfoStream << "array index out of range '" << index << "'";
1506                     std::string extraInfo = extraInfoStream.str();
1507                     error(location, "", "[", extraInfo.c_str());
1508                     recover();
1509                     index = baseExpression->getType().getArraySize() - 1;
1510                 }
1511                 else if (baseExpression->getQualifier() == EvqFragData && index > 0 && !isExtensionEnabled("GL_EXT_draw_buffers"))
1512                 {
1513                     error(location, "", "[", "array indexes for gl_FragData must be zero when GL_EXT_draw_buffers is disabled");
1514                     recover();
1515                     index = 0;
1516                 }
1517             }
1518             else if ((baseExpression->isVector() || baseExpression->isMatrix()) && baseExpression->getType().getNominalSize() <= index)
1519             {
1520                 std::stringstream extraInfoStream;
1521                 extraInfoStream << "field selection out of range '" << index << "'";
1522                 std::string extraInfo = extraInfoStream.str();
1523                 error(location, "", "[", extraInfo.c_str());
1524                 recover();
1525                 index = baseExpression->getType().getNominalSize() - 1;
1526             }
1527 
1528             indexExpression->getAsConstantUnion()->getUnionArrayPointer()->setIConst(index);
1529             indexedExpression = intermediate.addIndex(EOpIndexDirect, baseExpression, indexExpression, location);
1530         }
1531     }
1532     else
1533     {
1534         indexedExpression = intermediate.addIndex(EOpIndexIndirect, baseExpression, indexExpression, location);
1535     }
1536 
1537     if (indexedExpression == 0)
1538     {
1539         ConstantUnion *unionArray = new ConstantUnion[1];
1540         unionArray->setFConst(0.0f);
1541         indexedExpression = intermediate.addConstantUnion(unionArray, TType(EbtFloat, EbpHigh, EvqConst), location);
1542     }
1543     else if (baseExpression->isArray())
1544     {
1545         const TType &baseType = baseExpression->getType();
1546         if (baseType.getStruct())
1547         {
1548             TType copyOfType(baseType.getStruct());
1549             indexedExpression->setType(copyOfType);
1550         }
1551         else
1552         {
1553             indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), EvqTemporary, baseExpression->getNominalSize(), baseExpression->isMatrix()));
1554         }
1555 
1556         if (baseExpression->getType().getQualifier() == EvqConst)
1557         {
1558             indexedExpression->getTypePointer()->setQualifier(EvqConst);
1559         }
1560     }
1561     else if (baseExpression->isMatrix())
1562     {
1563         TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
1564         indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier, baseExpression->getNominalSize()));
1565     }
1566     else if (baseExpression->isVector())
1567     {
1568         TQualifier qualifier = baseExpression->getType().getQualifier() == EvqConst ? EvqConst : EvqTemporary;
1569         indexedExpression->setType(TType(baseExpression->getBasicType(), baseExpression->getPrecision(), qualifier));
1570     }
1571     else
1572     {
1573         indexedExpression->setType(baseExpression->getType());
1574     }
1575 
1576     return indexedExpression;
1577 }
1578 
1579 //
1580 // Parse an array of strings using yyparse.
1581 //
1582 // Returns 0 for success.
1583 //
PaParseStrings(size_t count,const char * const string[],const int length[],TParseContext * context)1584 int PaParseStrings(size_t count, const char* const string[], const int length[],
1585                    TParseContext* context) {
1586     if ((count == 0) || (string == NULL))
1587         return 1;
1588 
1589     if (glslang_initialize(context))
1590         return 1;
1591 
1592     int error = glslang_scan(count, string, length, context);
1593     if (!error)
1594         error = glslang_parse(context);
1595 
1596     glslang_finalize(context);
1597 
1598     return (error == 0) && (context->numErrors() == 0) ? 0 : 1;
1599 }
1600 
1601 
1602 
1603