• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Guava Authors
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  * http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package com.google.common.math;
18 
19 import static com.google.common.base.Preconditions.checkArgument;
20 
21 import java.math.BigInteger;
22 
23 import com.google.common.annotations.VisibleForTesting;
24 
25 /**
26  * Utilities for {@code double} primitives. Some of these are exposed in JDK 6,
27  * but we can't depend on them there.
28  *
29  * @author Louis Wasserman
30  */
31 final class DoubleUtils {
32   // TODO(user): replace with appropriate calls when we move to JDK 6
33 
DoubleUtils()34   private DoubleUtils() {
35   }
36 
next(double x, boolean up)37   static double next(double x, boolean up) {
38     // Math.nextAfter is JDK 6.
39     if (x == 0.0) {
40       return up ? Double.MIN_VALUE : -Double.MIN_VALUE;
41     }
42     long bits = Double.doubleToRawLongBits(x);
43     if ((x < 0.0) == up) {
44       bits--;
45     } else {
46       bits++;
47     }
48     return Double.longBitsToDouble(bits);
49   }
50 
51   // The mask for the significand, according to the {@link
52   // Double#doubleToRawLongBits(double)} spec.
53   static final long SIGNIFICAND_MASK = 0x000fffffffffffffL;
54 
55   // The mask for the exponent, according to the {@link
56   // Double#doubleToRawLongBits(double)} spec.
57   static final long EXPONENT_MASK = 0x7ff0000000000000L;
58 
59   // The mask for the sign, according to the {@link
60   // Double#doubleToRawLongBits(double)} spec.
61   static final long SIGN_MASK = 0x8000000000000000L;
62 
63   static final int SIGNIFICAND_BITS = 52;
64 
65   static final int EXPONENT_BIAS = 1023;
66 
67   static final int MIN_DOUBLE_EXPONENT = -1022;
68 
69   static final int MAX_DOUBLE_EXPONENT = 1023;
70 
71   /**
72    * The implicit 1 bit that is omitted in significands of normal doubles.
73    */
74   static final long IMPLICIT_BIT = SIGNIFICAND_MASK + 1;
75 
76   @VisibleForTesting
getExponent(double d)77   static int getExponent(double d) {
78     // TODO: replace with Math.getExponent in JDK 6
79     long bits = Double.doubleToRawLongBits(d);
80     int exponent = (int) ((bits & EXPONENT_MASK) >> SIGNIFICAND_BITS);
81     exponent -= EXPONENT_BIAS;
82     return exponent;
83   }
84 
85   /**
86    * Returns {@code d * 2^scale}.
87    */
scalb(double d, int scale)88   static strictfp double scalb(double d, int scale) {
89     // TODO: replace with Math.scalb in JDK 6
90     int exponent = getExponent(d);
91     switch (exponent) {
92       case MAX_DOUBLE_EXPONENT + 1: // NaN, infinity
93         return d;
94       case MIN_DOUBLE_EXPONENT - 1:
95         return d * StrictMath.pow(2.0, scale);
96       default:
97         int newExponent = exponent + scale;
98         if (MIN_DOUBLE_EXPONENT <= newExponent
99             & newExponent <= MAX_DOUBLE_EXPONENT) {
100           long bits = Double.doubleToRawLongBits(d);
101           bits &= ~EXPONENT_MASK;
102           bits |= ((long) (newExponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS;
103           return Double.longBitsToDouble(bits);
104         }
105         return d * StrictMath.pow(2.0, scale);
106     }
107   }
108 
getSignificand(double d)109   static long getSignificand(double d) {
110     checkArgument(isFinite(d), "not a normal value");
111     int exponent = getExponent(d);
112     long bits = Double.doubleToRawLongBits(d);
113     bits &= SIGNIFICAND_MASK;
114     return (exponent == MIN_DOUBLE_EXPONENT - 1)
115         ? bits << 1
116         : bits | IMPLICIT_BIT;
117   }
118 
isFinite(double d)119   static boolean isFinite(double d) {
120     return getExponent(d) <= MAX_DOUBLE_EXPONENT;
121   }
122 
isNormal(double d)123   static boolean isNormal(double d) {
124     return getExponent(d) >= MIN_DOUBLE_EXPONENT;
125   }
126 
127   /*
128    * Returns x scaled by a power of 2 such that it is in the range [1, 2). Assumes x is positive,
129    * normal, and finite.
130    */
scaleNormalize(double x)131   static double scaleNormalize(double x) {
132     long significand = Double.doubleToRawLongBits(x) & SIGNIFICAND_MASK;
133     return Double.longBitsToDouble(significand | ONE_BITS);
134   }
135 
bigToDouble(BigInteger x)136   static double bigToDouble(BigInteger x) {
137     // This is an extremely fast implementation of BigInteger.doubleValue().  JDK patch pending.
138     BigInteger absX = x.abs();
139     int exponent = absX.bitLength() - 1;
140     // exponent == floor(log2(abs(x)))
141     if (exponent < Long.SIZE - 1) {
142       return x.longValue();
143     } else if (exponent > MAX_DOUBLE_EXPONENT) {
144       return x.signum() * Double.POSITIVE_INFINITY;
145     }
146 
147     /*
148      * We need the top SIGNIFICAND_BITS + 1 bits, including the "implicit" one bit. To make
149      * rounding easier, we pick out the top SIGNIFICAND_BITS + 2 bits, so we have one to help us
150      * round up or down. twiceSignifFloor will contain the top SIGNIFICAND_BITS + 2 bits, and
151      * signifFloor the top SIGNIFICAND_BITS + 1.
152      *
153      * It helps to consider the real number signif = absX * 2^(SIGNIFICAND_BITS - exponent).
154      */
155     int shift = exponent - SIGNIFICAND_BITS - 1;
156     long twiceSignifFloor = absX.shiftRight(shift).longValue();
157     long signifFloor = twiceSignifFloor >> 1;
158     signifFloor &= SIGNIFICAND_MASK; // remove the implied bit
159 
160     /*
161      * We round up if either the fractional part of signif is strictly greater than 0.5 (which is
162      * true if the 0.5 bit is set and any lower bit is set), or if the fractional part of signif is
163      * >= 0.5 and signifFloor is odd (which is true if both the 0.5 bit and the 1 bit are set).
164      */
165     boolean increment = (twiceSignifFloor & 1) != 0
166         && ((signifFloor & 1) != 0 || absX.getLowestSetBit() < shift);
167     long signifRounded = increment ? signifFloor + 1 : signifFloor;
168     long bits = (long) ((exponent + EXPONENT_BIAS)) << SIGNIFICAND_BITS;
169     bits += signifRounded;
170     /*
171      * If signifRounded == 2^53, we'd need to set all of the significand bits to zero and add 1 to
172      * the exponent. This is exactly the behavior we get from just adding signifRounded to bits
173      * directly.  If the exponent is MAX_DOUBLE_EXPONENT, we round up (correctly) to
174      * Double.POSITIVE_INFINITY.
175      */
176     bits |= x.signum() & SIGN_MASK;
177     return Double.longBitsToDouble(bits);
178   }
179 
180   private static final long ONE_BITS = Double.doubleToRawLongBits(1.0);
181 }
182