1 /*
2 **
3 ** Copyright 2012, The Android Open Source Project
4 **
5 ** Licensed under the Apache License, Version 2.0 (the "License");
6 ** you may not use this file except in compliance with the License.
7 ** You may obtain a copy of the License at
8 **
9 ** http://www.apache.org/licenses/LICENSE-2.0
10 **
11 ** Unless required by applicable law or agreed to in writing, software
12 ** distributed under the License is distributed on an "AS IS" BASIS,
13 ** WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
14 ** See the License for the specific language governing permissions and
15 ** limitations under the License.
16 */
17
18
19 #define LOG_TAG "AudioFlinger"
20 //#define LOG_NDEBUG 0
21 #define ATRACE_TAG ATRACE_TAG_AUDIO
22
23 #include "Configuration.h"
24 #include <math.h>
25 #include <fcntl.h>
26 #include <sys/stat.h>
27 #include <cutils/properties.h>
28 #include <media/AudioParameter.h>
29 #include <utils/Log.h>
30 #include <utils/Trace.h>
31
32 #include <private/media/AudioTrackShared.h>
33 #include <hardware/audio.h>
34 #include <audio_effects/effect_ns.h>
35 #include <audio_effects/effect_aec.h>
36 #include <audio_utils/primitives.h>
37
38 // NBAIO implementations
39 #include <media/nbaio/AudioStreamOutSink.h>
40 #include <media/nbaio/MonoPipe.h>
41 #include <media/nbaio/MonoPipeReader.h>
42 #include <media/nbaio/Pipe.h>
43 #include <media/nbaio/PipeReader.h>
44 #include <media/nbaio/SourceAudioBufferProvider.h>
45
46 #include <powermanager/PowerManager.h>
47
48 #include <common_time/cc_helper.h>
49 #include <common_time/local_clock.h>
50
51 #include "AudioFlinger.h"
52 #include "AudioMixer.h"
53 #include "FastMixer.h"
54 #include "ServiceUtilities.h"
55 #include "SchedulingPolicyService.h"
56
57 #ifdef ADD_BATTERY_DATA
58 #include <media/IMediaPlayerService.h>
59 #include <media/IMediaDeathNotifier.h>
60 #endif
61
62 #ifdef DEBUG_CPU_USAGE
63 #include <cpustats/CentralTendencyStatistics.h>
64 #include <cpustats/ThreadCpuUsage.h>
65 #endif
66
67 // ----------------------------------------------------------------------------
68
69 // Note: the following macro is used for extremely verbose logging message. In
70 // order to run with ALOG_ASSERT turned on, we need to have LOG_NDEBUG set to
71 // 0; but one side effect of this is to turn all LOGV's as well. Some messages
72 // are so verbose that we want to suppress them even when we have ALOG_ASSERT
73 // turned on. Do not uncomment the #def below unless you really know what you
74 // are doing and want to see all of the extremely verbose messages.
75 //#define VERY_VERY_VERBOSE_LOGGING
76 #ifdef VERY_VERY_VERBOSE_LOGGING
77 #define ALOGVV ALOGV
78 #else
79 #define ALOGVV(a...) do { } while(0)
80 #endif
81
82 namespace android {
83
84 // retry counts for buffer fill timeout
85 // 50 * ~20msecs = 1 second
86 static const int8_t kMaxTrackRetries = 50;
87 static const int8_t kMaxTrackStartupRetries = 50;
88 // allow less retry attempts on direct output thread.
89 // direct outputs can be a scarce resource in audio hardware and should
90 // be released as quickly as possible.
91 static const int8_t kMaxTrackRetriesDirect = 2;
92
93 // don't warn about blocked writes or record buffer overflows more often than this
94 static const nsecs_t kWarningThrottleNs = seconds(5);
95
96 // RecordThread loop sleep time upon application overrun or audio HAL read error
97 static const int kRecordThreadSleepUs = 5000;
98
99 // maximum time to wait for setParameters to complete
100 static const nsecs_t kSetParametersTimeoutNs = seconds(2);
101
102 // minimum sleep time for the mixer thread loop when tracks are active but in underrun
103 static const uint32_t kMinThreadSleepTimeUs = 5000;
104 // maximum divider applied to the active sleep time in the mixer thread loop
105 static const uint32_t kMaxThreadSleepTimeShift = 2;
106
107 // minimum normal mix buffer size, expressed in milliseconds rather than frames
108 static const uint32_t kMinNormalMixBufferSizeMs = 20;
109 // maximum normal mix buffer size
110 static const uint32_t kMaxNormalMixBufferSizeMs = 24;
111
112 // Offloaded output thread standby delay: allows track transition without going to standby
113 static const nsecs_t kOffloadStandbyDelayNs = seconds(1);
114
115 // Whether to use fast mixer
116 static const enum {
117 FastMixer_Never, // never initialize or use: for debugging only
118 FastMixer_Always, // always initialize and use, even if not needed: for debugging only
119 // normal mixer multiplier is 1
120 FastMixer_Static, // initialize if needed, then use all the time if initialized,
121 // multiplier is calculated based on min & max normal mixer buffer size
122 FastMixer_Dynamic, // initialize if needed, then use dynamically depending on track load,
123 // multiplier is calculated based on min & max normal mixer buffer size
124 // FIXME for FastMixer_Dynamic:
125 // Supporting this option will require fixing HALs that can't handle large writes.
126 // For example, one HAL implementation returns an error from a large write,
127 // and another HAL implementation corrupts memory, possibly in the sample rate converter.
128 // We could either fix the HAL implementations, or provide a wrapper that breaks
129 // up large writes into smaller ones, and the wrapper would need to deal with scheduler.
130 } kUseFastMixer = FastMixer_Static;
131
132 // Priorities for requestPriority
133 static const int kPriorityAudioApp = 2;
134 static const int kPriorityFastMixer = 3;
135
136 // IAudioFlinger::createTrack() reports back to client the total size of shared memory area
137 // for the track. The client then sub-divides this into smaller buffers for its use.
138 // Currently the client uses N-buffering by default, but doesn't tell us about the value of N.
139 // So for now we just assume that client is double-buffered for fast tracks.
140 // FIXME It would be better for client to tell AudioFlinger the value of N,
141 // so AudioFlinger could allocate the right amount of memory.
142 // See the client's minBufCount and mNotificationFramesAct calculations for details.
143 static const int kFastTrackMultiplier = 2;
144
145 // ----------------------------------------------------------------------------
146
147 #ifdef ADD_BATTERY_DATA
148 // To collect the amplifier usage
addBatteryData(uint32_t params)149 static void addBatteryData(uint32_t params) {
150 sp<IMediaPlayerService> service = IMediaDeathNotifier::getMediaPlayerService();
151 if (service == NULL) {
152 // it already logged
153 return;
154 }
155
156 service->addBatteryData(params);
157 }
158 #endif
159
160
161 // ----------------------------------------------------------------------------
162 // CPU Stats
163 // ----------------------------------------------------------------------------
164
165 class CpuStats {
166 public:
167 CpuStats();
168 void sample(const String8 &title);
169 #ifdef DEBUG_CPU_USAGE
170 private:
171 ThreadCpuUsage mCpuUsage; // instantaneous thread CPU usage in wall clock ns
172 CentralTendencyStatistics mWcStats; // statistics on thread CPU usage in wall clock ns
173
174 CentralTendencyStatistics mHzStats; // statistics on thread CPU usage in cycles
175
176 int mCpuNum; // thread's current CPU number
177 int mCpukHz; // frequency of thread's current CPU in kHz
178 #endif
179 };
180
CpuStats()181 CpuStats::CpuStats()
182 #ifdef DEBUG_CPU_USAGE
183 : mCpuNum(-1), mCpukHz(-1)
184 #endif
185 {
186 }
187
sample(const String8 & title)188 void CpuStats::sample(const String8 &title) {
189 #ifdef DEBUG_CPU_USAGE
190 // get current thread's delta CPU time in wall clock ns
191 double wcNs;
192 bool valid = mCpuUsage.sampleAndEnable(wcNs);
193
194 // record sample for wall clock statistics
195 if (valid) {
196 mWcStats.sample(wcNs);
197 }
198
199 // get the current CPU number
200 int cpuNum = sched_getcpu();
201
202 // get the current CPU frequency in kHz
203 int cpukHz = mCpuUsage.getCpukHz(cpuNum);
204
205 // check if either CPU number or frequency changed
206 if (cpuNum != mCpuNum || cpukHz != mCpukHz) {
207 mCpuNum = cpuNum;
208 mCpukHz = cpukHz;
209 // ignore sample for purposes of cycles
210 valid = false;
211 }
212
213 // if no change in CPU number or frequency, then record sample for cycle statistics
214 if (valid && mCpukHz > 0) {
215 double cycles = wcNs * cpukHz * 0.000001;
216 mHzStats.sample(cycles);
217 }
218
219 unsigned n = mWcStats.n();
220 // mCpuUsage.elapsed() is expensive, so don't call it every loop
221 if ((n & 127) == 1) {
222 long long elapsed = mCpuUsage.elapsed();
223 if (elapsed >= DEBUG_CPU_USAGE * 1000000000LL) {
224 double perLoop = elapsed / (double) n;
225 double perLoop100 = perLoop * 0.01;
226 double perLoop1k = perLoop * 0.001;
227 double mean = mWcStats.mean();
228 double stddev = mWcStats.stddev();
229 double minimum = mWcStats.minimum();
230 double maximum = mWcStats.maximum();
231 double meanCycles = mHzStats.mean();
232 double stddevCycles = mHzStats.stddev();
233 double minCycles = mHzStats.minimum();
234 double maxCycles = mHzStats.maximum();
235 mCpuUsage.resetElapsed();
236 mWcStats.reset();
237 mHzStats.reset();
238 ALOGD("CPU usage for %s over past %.1f secs\n"
239 " (%u mixer loops at %.1f mean ms per loop):\n"
240 " us per mix loop: mean=%.0f stddev=%.0f min=%.0f max=%.0f\n"
241 " %% of wall: mean=%.1f stddev=%.1f min=%.1f max=%.1f\n"
242 " MHz: mean=%.1f, stddev=%.1f, min=%.1f max=%.1f",
243 title.string(),
244 elapsed * .000000001, n, perLoop * .000001,
245 mean * .001,
246 stddev * .001,
247 minimum * .001,
248 maximum * .001,
249 mean / perLoop100,
250 stddev / perLoop100,
251 minimum / perLoop100,
252 maximum / perLoop100,
253 meanCycles / perLoop1k,
254 stddevCycles / perLoop1k,
255 minCycles / perLoop1k,
256 maxCycles / perLoop1k);
257
258 }
259 }
260 #endif
261 };
262
263 // ----------------------------------------------------------------------------
264 // ThreadBase
265 // ----------------------------------------------------------------------------
266
ThreadBase(const sp<AudioFlinger> & audioFlinger,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,type_t type)267 AudioFlinger::ThreadBase::ThreadBase(const sp<AudioFlinger>& audioFlinger, audio_io_handle_t id,
268 audio_devices_t outDevice, audio_devices_t inDevice, type_t type)
269 : Thread(false /*canCallJava*/),
270 mType(type),
271 mAudioFlinger(audioFlinger),
272 // mSampleRate, mFrameCount, mChannelMask, mChannelCount, mFrameSize, and mFormat are
273 // set by PlaybackThread::readOutputParameters() or RecordThread::readInputParameters()
274 mParamStatus(NO_ERROR),
275 //FIXME: mStandby should be true here. Is this some kind of hack?
276 mStandby(false), mOutDevice(outDevice), mInDevice(inDevice),
277 mAudioSource(AUDIO_SOURCE_DEFAULT), mId(id),
278 // mName will be set by concrete (non-virtual) subclass
279 mDeathRecipient(new PMDeathRecipient(this))
280 {
281 }
282
~ThreadBase()283 AudioFlinger::ThreadBase::~ThreadBase()
284 {
285 // mConfigEvents should be empty, but just in case it isn't, free the memory it owns
286 for (size_t i = 0; i < mConfigEvents.size(); i++) {
287 delete mConfigEvents[i];
288 }
289 mConfigEvents.clear();
290
291 mParamCond.broadcast();
292 // do not lock the mutex in destructor
293 releaseWakeLock_l();
294 if (mPowerManager != 0) {
295 sp<IBinder> binder = mPowerManager->asBinder();
296 binder->unlinkToDeath(mDeathRecipient);
297 }
298 }
299
exit()300 void AudioFlinger::ThreadBase::exit()
301 {
302 ALOGV("ThreadBase::exit");
303 // do any cleanup required for exit to succeed
304 preExit();
305 {
306 // This lock prevents the following race in thread (uniprocessor for illustration):
307 // if (!exitPending()) {
308 // // context switch from here to exit()
309 // // exit() calls requestExit(), what exitPending() observes
310 // // exit() calls signal(), which is dropped since no waiters
311 // // context switch back from exit() to here
312 // mWaitWorkCV.wait(...);
313 // // now thread is hung
314 // }
315 AutoMutex lock(mLock);
316 requestExit();
317 mWaitWorkCV.broadcast();
318 }
319 // When Thread::requestExitAndWait is made virtual and this method is renamed to
320 // "virtual status_t requestExitAndWait()", replace by "return Thread::requestExitAndWait();"
321 requestExitAndWait();
322 }
323
setParameters(const String8 & keyValuePairs)324 status_t AudioFlinger::ThreadBase::setParameters(const String8& keyValuePairs)
325 {
326 status_t status;
327
328 ALOGV("ThreadBase::setParameters() %s", keyValuePairs.string());
329 Mutex::Autolock _l(mLock);
330
331 mNewParameters.add(keyValuePairs);
332 mWaitWorkCV.signal();
333 // wait condition with timeout in case the thread loop has exited
334 // before the request could be processed
335 if (mParamCond.waitRelative(mLock, kSetParametersTimeoutNs) == NO_ERROR) {
336 status = mParamStatus;
337 mWaitWorkCV.signal();
338 } else {
339 status = TIMED_OUT;
340 }
341 return status;
342 }
343
sendIoConfigEvent(int event,int param)344 void AudioFlinger::ThreadBase::sendIoConfigEvent(int event, int param)
345 {
346 Mutex::Autolock _l(mLock);
347 sendIoConfigEvent_l(event, param);
348 }
349
350 // sendIoConfigEvent_l() must be called with ThreadBase::mLock held
sendIoConfigEvent_l(int event,int param)351 void AudioFlinger::ThreadBase::sendIoConfigEvent_l(int event, int param)
352 {
353 IoConfigEvent *ioEvent = new IoConfigEvent(event, param);
354 mConfigEvents.add(static_cast<ConfigEvent *>(ioEvent));
355 ALOGV("sendIoConfigEvent() num events %d event %d, param %d", mConfigEvents.size(), event,
356 param);
357 mWaitWorkCV.signal();
358 }
359
360 // sendPrioConfigEvent_l() must be called with ThreadBase::mLock held
sendPrioConfigEvent_l(pid_t pid,pid_t tid,int32_t prio)361 void AudioFlinger::ThreadBase::sendPrioConfigEvent_l(pid_t pid, pid_t tid, int32_t prio)
362 {
363 PrioConfigEvent *prioEvent = new PrioConfigEvent(pid, tid, prio);
364 mConfigEvents.add(static_cast<ConfigEvent *>(prioEvent));
365 ALOGV("sendPrioConfigEvent_l() num events %d pid %d, tid %d prio %d",
366 mConfigEvents.size(), pid, tid, prio);
367 mWaitWorkCV.signal();
368 }
369
processConfigEvents()370 void AudioFlinger::ThreadBase::processConfigEvents()
371 {
372 mLock.lock();
373 while (!mConfigEvents.isEmpty()) {
374 ALOGV("processConfigEvents() remaining events %d", mConfigEvents.size());
375 ConfigEvent *event = mConfigEvents[0];
376 mConfigEvents.removeAt(0);
377 // release mLock before locking AudioFlinger mLock: lock order is always
378 // AudioFlinger then ThreadBase to avoid cross deadlock
379 mLock.unlock();
380 switch(event->type()) {
381 case CFG_EVENT_PRIO: {
382 PrioConfigEvent *prioEvent = static_cast<PrioConfigEvent *>(event);
383 // FIXME Need to understand why this has be done asynchronously
384 int err = requestPriority(prioEvent->pid(), prioEvent->tid(), prioEvent->prio(),
385 true /*asynchronous*/);
386 if (err != 0) {
387 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; "
388 "error %d",
389 prioEvent->prio(), prioEvent->pid(), prioEvent->tid(), err);
390 }
391 } break;
392 case CFG_EVENT_IO: {
393 IoConfigEvent *ioEvent = static_cast<IoConfigEvent *>(event);
394 mAudioFlinger->mLock.lock();
395 audioConfigChanged_l(ioEvent->event(), ioEvent->param());
396 mAudioFlinger->mLock.unlock();
397 } break;
398 default:
399 ALOGE("processConfigEvents() unknown event type %d", event->type());
400 break;
401 }
402 delete event;
403 mLock.lock();
404 }
405 mLock.unlock();
406 }
407
dumpBase(int fd,const Vector<String16> & args)408 void AudioFlinger::ThreadBase::dumpBase(int fd, const Vector<String16>& args)
409 {
410 const size_t SIZE = 256;
411 char buffer[SIZE];
412 String8 result;
413
414 bool locked = AudioFlinger::dumpTryLock(mLock);
415 if (!locked) {
416 snprintf(buffer, SIZE, "thread %p maybe dead locked\n", this);
417 write(fd, buffer, strlen(buffer));
418 }
419
420 snprintf(buffer, SIZE, "io handle: %d\n", mId);
421 result.append(buffer);
422 snprintf(buffer, SIZE, "TID: %d\n", getTid());
423 result.append(buffer);
424 snprintf(buffer, SIZE, "standby: %d\n", mStandby);
425 result.append(buffer);
426 snprintf(buffer, SIZE, "Sample rate: %u\n", mSampleRate);
427 result.append(buffer);
428 snprintf(buffer, SIZE, "HAL frame count: %d\n", mFrameCount);
429 result.append(buffer);
430 snprintf(buffer, SIZE, "Channel Count: %u\n", mChannelCount);
431 result.append(buffer);
432 snprintf(buffer, SIZE, "Channel Mask: 0x%08x\n", mChannelMask);
433 result.append(buffer);
434 snprintf(buffer, SIZE, "Format: %d\n", mFormat);
435 result.append(buffer);
436 snprintf(buffer, SIZE, "Frame size: %u\n", mFrameSize);
437 result.append(buffer);
438
439 snprintf(buffer, SIZE, "\nPending setParameters commands: \n");
440 result.append(buffer);
441 result.append(" Index Command");
442 for (size_t i = 0; i < mNewParameters.size(); ++i) {
443 snprintf(buffer, SIZE, "\n %02d ", i);
444 result.append(buffer);
445 result.append(mNewParameters[i]);
446 }
447
448 snprintf(buffer, SIZE, "\n\nPending config events: \n");
449 result.append(buffer);
450 for (size_t i = 0; i < mConfigEvents.size(); i++) {
451 mConfigEvents[i]->dump(buffer, SIZE);
452 result.append(buffer);
453 }
454 result.append("\n");
455
456 write(fd, result.string(), result.size());
457
458 if (locked) {
459 mLock.unlock();
460 }
461 }
462
dumpEffectChains(int fd,const Vector<String16> & args)463 void AudioFlinger::ThreadBase::dumpEffectChains(int fd, const Vector<String16>& args)
464 {
465 const size_t SIZE = 256;
466 char buffer[SIZE];
467 String8 result;
468
469 snprintf(buffer, SIZE, "\n- %d Effect Chains:\n", mEffectChains.size());
470 write(fd, buffer, strlen(buffer));
471
472 for (size_t i = 0; i < mEffectChains.size(); ++i) {
473 sp<EffectChain> chain = mEffectChains[i];
474 if (chain != 0) {
475 chain->dump(fd, args);
476 }
477 }
478 }
479
acquireWakeLock(int uid)480 void AudioFlinger::ThreadBase::acquireWakeLock(int uid)
481 {
482 Mutex::Autolock _l(mLock);
483 acquireWakeLock_l(uid);
484 }
485
getWakeLockTag()486 String16 AudioFlinger::ThreadBase::getWakeLockTag()
487 {
488 switch (mType) {
489 case MIXER:
490 return String16("AudioMix");
491 case DIRECT:
492 return String16("AudioDirectOut");
493 case DUPLICATING:
494 return String16("AudioDup");
495 case RECORD:
496 return String16("AudioIn");
497 case OFFLOAD:
498 return String16("AudioOffload");
499 default:
500 ALOG_ASSERT(false);
501 return String16("AudioUnknown");
502 }
503 }
504
acquireWakeLock_l(int uid)505 void AudioFlinger::ThreadBase::acquireWakeLock_l(int uid)
506 {
507 getPowerManager_l();
508 if (mPowerManager != 0) {
509 sp<IBinder> binder = new BBinder();
510 status_t status;
511 if (uid >= 0) {
512 status = mPowerManager->acquireWakeLockWithUid(POWERMANAGER_PARTIAL_WAKE_LOCK,
513 binder,
514 getWakeLockTag(),
515 String16("media"),
516 uid);
517 } else {
518 status = mPowerManager->acquireWakeLock(POWERMANAGER_PARTIAL_WAKE_LOCK,
519 binder,
520 getWakeLockTag(),
521 String16("media"));
522 }
523 if (status == NO_ERROR) {
524 mWakeLockToken = binder;
525 }
526 ALOGV("acquireWakeLock_l() %s status %d", mName, status);
527 }
528 }
529
releaseWakeLock()530 void AudioFlinger::ThreadBase::releaseWakeLock()
531 {
532 Mutex::Autolock _l(mLock);
533 releaseWakeLock_l();
534 }
535
releaseWakeLock_l()536 void AudioFlinger::ThreadBase::releaseWakeLock_l()
537 {
538 if (mWakeLockToken != 0) {
539 ALOGV("releaseWakeLock_l() %s", mName);
540 if (mPowerManager != 0) {
541 mPowerManager->releaseWakeLock(mWakeLockToken, 0);
542 }
543 mWakeLockToken.clear();
544 }
545 }
546
updateWakeLockUids(const SortedVector<int> & uids)547 void AudioFlinger::ThreadBase::updateWakeLockUids(const SortedVector<int> &uids) {
548 Mutex::Autolock _l(mLock);
549 updateWakeLockUids_l(uids);
550 }
551
getPowerManager_l()552 void AudioFlinger::ThreadBase::getPowerManager_l() {
553
554 if (mPowerManager == 0) {
555 // use checkService() to avoid blocking if power service is not up yet
556 sp<IBinder> binder =
557 defaultServiceManager()->checkService(String16("power"));
558 if (binder == 0) {
559 ALOGW("Thread %s cannot connect to the power manager service", mName);
560 } else {
561 mPowerManager = interface_cast<IPowerManager>(binder);
562 binder->linkToDeath(mDeathRecipient);
563 }
564 }
565 }
566
updateWakeLockUids_l(const SortedVector<int> & uids)567 void AudioFlinger::ThreadBase::updateWakeLockUids_l(const SortedVector<int> &uids) {
568
569 getPowerManager_l();
570 if (mWakeLockToken == NULL) {
571 ALOGE("no wake lock to update!");
572 return;
573 }
574 if (mPowerManager != 0) {
575 sp<IBinder> binder = new BBinder();
576 status_t status;
577 status = mPowerManager->updateWakeLockUids(mWakeLockToken, uids.size(), uids.array());
578 ALOGV("acquireWakeLock_l() %s status %d", mName, status);
579 }
580 }
581
clearPowerManager()582 void AudioFlinger::ThreadBase::clearPowerManager()
583 {
584 Mutex::Autolock _l(mLock);
585 releaseWakeLock_l();
586 mPowerManager.clear();
587 }
588
binderDied(const wp<IBinder> & who)589 void AudioFlinger::ThreadBase::PMDeathRecipient::binderDied(const wp<IBinder>& who)
590 {
591 sp<ThreadBase> thread = mThread.promote();
592 if (thread != 0) {
593 thread->clearPowerManager();
594 }
595 ALOGW("power manager service died !!!");
596 }
597
setEffectSuspended(const effect_uuid_t * type,bool suspend,int sessionId)598 void AudioFlinger::ThreadBase::setEffectSuspended(
599 const effect_uuid_t *type, bool suspend, int sessionId)
600 {
601 Mutex::Autolock _l(mLock);
602 setEffectSuspended_l(type, suspend, sessionId);
603 }
604
setEffectSuspended_l(const effect_uuid_t * type,bool suspend,int sessionId)605 void AudioFlinger::ThreadBase::setEffectSuspended_l(
606 const effect_uuid_t *type, bool suspend, int sessionId)
607 {
608 sp<EffectChain> chain = getEffectChain_l(sessionId);
609 if (chain != 0) {
610 if (type != NULL) {
611 chain->setEffectSuspended_l(type, suspend);
612 } else {
613 chain->setEffectSuspendedAll_l(suspend);
614 }
615 }
616
617 updateSuspendedSessions_l(type, suspend, sessionId);
618 }
619
checkSuspendOnAddEffectChain_l(const sp<EffectChain> & chain)620 void AudioFlinger::ThreadBase::checkSuspendOnAddEffectChain_l(const sp<EffectChain>& chain)
621 {
622 ssize_t index = mSuspendedSessions.indexOfKey(chain->sessionId());
623 if (index < 0) {
624 return;
625 }
626
627 const KeyedVector <int, sp<SuspendedSessionDesc> >& sessionEffects =
628 mSuspendedSessions.valueAt(index);
629
630 for (size_t i = 0; i < sessionEffects.size(); i++) {
631 sp<SuspendedSessionDesc> desc = sessionEffects.valueAt(i);
632 for (int j = 0; j < desc->mRefCount; j++) {
633 if (sessionEffects.keyAt(i) == EffectChain::kKeyForSuspendAll) {
634 chain->setEffectSuspendedAll_l(true);
635 } else {
636 ALOGV("checkSuspendOnAddEffectChain_l() suspending effects %08x",
637 desc->mType.timeLow);
638 chain->setEffectSuspended_l(&desc->mType, true);
639 }
640 }
641 }
642 }
643
updateSuspendedSessions_l(const effect_uuid_t * type,bool suspend,int sessionId)644 void AudioFlinger::ThreadBase::updateSuspendedSessions_l(const effect_uuid_t *type,
645 bool suspend,
646 int sessionId)
647 {
648 ssize_t index = mSuspendedSessions.indexOfKey(sessionId);
649
650 KeyedVector <int, sp<SuspendedSessionDesc> > sessionEffects;
651
652 if (suspend) {
653 if (index >= 0) {
654 sessionEffects = mSuspendedSessions.valueAt(index);
655 } else {
656 mSuspendedSessions.add(sessionId, sessionEffects);
657 }
658 } else {
659 if (index < 0) {
660 return;
661 }
662 sessionEffects = mSuspendedSessions.valueAt(index);
663 }
664
665
666 int key = EffectChain::kKeyForSuspendAll;
667 if (type != NULL) {
668 key = type->timeLow;
669 }
670 index = sessionEffects.indexOfKey(key);
671
672 sp<SuspendedSessionDesc> desc;
673 if (suspend) {
674 if (index >= 0) {
675 desc = sessionEffects.valueAt(index);
676 } else {
677 desc = new SuspendedSessionDesc();
678 if (type != NULL) {
679 desc->mType = *type;
680 }
681 sessionEffects.add(key, desc);
682 ALOGV("updateSuspendedSessions_l() suspend adding effect %08x", key);
683 }
684 desc->mRefCount++;
685 } else {
686 if (index < 0) {
687 return;
688 }
689 desc = sessionEffects.valueAt(index);
690 if (--desc->mRefCount == 0) {
691 ALOGV("updateSuspendedSessions_l() restore removing effect %08x", key);
692 sessionEffects.removeItemsAt(index);
693 if (sessionEffects.isEmpty()) {
694 ALOGV("updateSuspendedSessions_l() restore removing session %d",
695 sessionId);
696 mSuspendedSessions.removeItem(sessionId);
697 }
698 }
699 }
700 if (!sessionEffects.isEmpty()) {
701 mSuspendedSessions.replaceValueFor(sessionId, sessionEffects);
702 }
703 }
704
checkSuspendOnEffectEnabled(const sp<EffectModule> & effect,bool enabled,int sessionId)705 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled(const sp<EffectModule>& effect,
706 bool enabled,
707 int sessionId)
708 {
709 Mutex::Autolock _l(mLock);
710 checkSuspendOnEffectEnabled_l(effect, enabled, sessionId);
711 }
712
checkSuspendOnEffectEnabled_l(const sp<EffectModule> & effect,bool enabled,int sessionId)713 void AudioFlinger::ThreadBase::checkSuspendOnEffectEnabled_l(const sp<EffectModule>& effect,
714 bool enabled,
715 int sessionId)
716 {
717 if (mType != RECORD) {
718 // suspend all effects in AUDIO_SESSION_OUTPUT_MIX when enabling any effect on
719 // another session. This gives the priority to well behaved effect control panels
720 // and applications not using global effects.
721 // Enabling post processing in AUDIO_SESSION_OUTPUT_STAGE session does not affect
722 // global effects
723 if ((sessionId != AUDIO_SESSION_OUTPUT_MIX) && (sessionId != AUDIO_SESSION_OUTPUT_STAGE)) {
724 setEffectSuspended_l(NULL, enabled, AUDIO_SESSION_OUTPUT_MIX);
725 }
726 }
727
728 sp<EffectChain> chain = getEffectChain_l(sessionId);
729 if (chain != 0) {
730 chain->checkSuspendOnEffectEnabled(effect, enabled);
731 }
732 }
733
734 // ThreadBase::createEffect_l() must be called with AudioFlinger::mLock held
createEffect_l(const sp<AudioFlinger::Client> & client,const sp<IEffectClient> & effectClient,int32_t priority,int sessionId,effect_descriptor_t * desc,int * enabled,status_t * status)735 sp<AudioFlinger::EffectHandle> AudioFlinger::ThreadBase::createEffect_l(
736 const sp<AudioFlinger::Client>& client,
737 const sp<IEffectClient>& effectClient,
738 int32_t priority,
739 int sessionId,
740 effect_descriptor_t *desc,
741 int *enabled,
742 status_t *status
743 )
744 {
745 sp<EffectModule> effect;
746 sp<EffectHandle> handle;
747 status_t lStatus;
748 sp<EffectChain> chain;
749 bool chainCreated = false;
750 bool effectCreated = false;
751 bool effectRegistered = false;
752
753 lStatus = initCheck();
754 if (lStatus != NO_ERROR) {
755 ALOGW("createEffect_l() Audio driver not initialized.");
756 goto Exit;
757 }
758
759 // Allow global effects only on offloaded and mixer threads
760 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
761 switch (mType) {
762 case MIXER:
763 case OFFLOAD:
764 break;
765 case DIRECT:
766 case DUPLICATING:
767 case RECORD:
768 default:
769 ALOGW("createEffect_l() Cannot add global effect %s on thread %s", desc->name, mName);
770 lStatus = BAD_VALUE;
771 goto Exit;
772 }
773 }
774
775 // Only Pre processor effects are allowed on input threads and only on input threads
776 if ((mType == RECORD) != ((desc->flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_PRE_PROC)) {
777 ALOGW("createEffect_l() effect %s (flags %08x) created on wrong thread type %d",
778 desc->name, desc->flags, mType);
779 lStatus = BAD_VALUE;
780 goto Exit;
781 }
782
783 ALOGV("createEffect_l() thread %p effect %s on session %d", this, desc->name, sessionId);
784
785 { // scope for mLock
786 Mutex::Autolock _l(mLock);
787
788 // check for existing effect chain with the requested audio session
789 chain = getEffectChain_l(sessionId);
790 if (chain == 0) {
791 // create a new chain for this session
792 ALOGV("createEffect_l() new effect chain for session %d", sessionId);
793 chain = new EffectChain(this, sessionId);
794 addEffectChain_l(chain);
795 chain->setStrategy(getStrategyForSession_l(sessionId));
796 chainCreated = true;
797 } else {
798 effect = chain->getEffectFromDesc_l(desc);
799 }
800
801 ALOGV("createEffect_l() got effect %p on chain %p", effect.get(), chain.get());
802
803 if (effect == 0) {
804 int id = mAudioFlinger->nextUniqueId();
805 // Check CPU and memory usage
806 lStatus = AudioSystem::registerEffect(desc, mId, chain->strategy(), sessionId, id);
807 if (lStatus != NO_ERROR) {
808 goto Exit;
809 }
810 effectRegistered = true;
811 // create a new effect module if none present in the chain
812 effect = new EffectModule(this, chain, desc, id, sessionId);
813 lStatus = effect->status();
814 if (lStatus != NO_ERROR) {
815 goto Exit;
816 }
817 effect->setOffloaded(mType == OFFLOAD, mId);
818
819 lStatus = chain->addEffect_l(effect);
820 if (lStatus != NO_ERROR) {
821 goto Exit;
822 }
823 effectCreated = true;
824
825 effect->setDevice(mOutDevice);
826 effect->setDevice(mInDevice);
827 effect->setMode(mAudioFlinger->getMode());
828 effect->setAudioSource(mAudioSource);
829 }
830 // create effect handle and connect it to effect module
831 handle = new EffectHandle(effect, client, effectClient, priority);
832 lStatus = effect->addHandle(handle.get());
833 if (enabled != NULL) {
834 *enabled = (int)effect->isEnabled();
835 }
836 }
837
838 Exit:
839 if (lStatus != NO_ERROR && lStatus != ALREADY_EXISTS) {
840 Mutex::Autolock _l(mLock);
841 if (effectCreated) {
842 chain->removeEffect_l(effect);
843 }
844 if (effectRegistered) {
845 AudioSystem::unregisterEffect(effect->id());
846 }
847 if (chainCreated) {
848 removeEffectChain_l(chain);
849 }
850 handle.clear();
851 }
852
853 if (status != NULL) {
854 *status = lStatus;
855 }
856 return handle;
857 }
858
getEffect(int sessionId,int effectId)859 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect(int sessionId, int effectId)
860 {
861 Mutex::Autolock _l(mLock);
862 return getEffect_l(sessionId, effectId);
863 }
864
getEffect_l(int sessionId,int effectId)865 sp<AudioFlinger::EffectModule> AudioFlinger::ThreadBase::getEffect_l(int sessionId, int effectId)
866 {
867 sp<EffectChain> chain = getEffectChain_l(sessionId);
868 return chain != 0 ? chain->getEffectFromId_l(effectId) : 0;
869 }
870
871 // PlaybackThread::addEffect_l() must be called with AudioFlinger::mLock and
872 // PlaybackThread::mLock held
addEffect_l(const sp<EffectModule> & effect)873 status_t AudioFlinger::ThreadBase::addEffect_l(const sp<EffectModule>& effect)
874 {
875 // check for existing effect chain with the requested audio session
876 int sessionId = effect->sessionId();
877 sp<EffectChain> chain = getEffectChain_l(sessionId);
878 bool chainCreated = false;
879
880 ALOGD_IF((mType == OFFLOAD) && !effect->isOffloadable(),
881 "addEffect_l() on offloaded thread %p: effect %s does not support offload flags %x",
882 this, effect->desc().name, effect->desc().flags);
883
884 if (chain == 0) {
885 // create a new chain for this session
886 ALOGV("addEffect_l() new effect chain for session %d", sessionId);
887 chain = new EffectChain(this, sessionId);
888 addEffectChain_l(chain);
889 chain->setStrategy(getStrategyForSession_l(sessionId));
890 chainCreated = true;
891 }
892 ALOGV("addEffect_l() %p chain %p effect %p", this, chain.get(), effect.get());
893
894 if (chain->getEffectFromId_l(effect->id()) != 0) {
895 ALOGW("addEffect_l() %p effect %s already present in chain %p",
896 this, effect->desc().name, chain.get());
897 return BAD_VALUE;
898 }
899
900 effect->setOffloaded(mType == OFFLOAD, mId);
901
902 status_t status = chain->addEffect_l(effect);
903 if (status != NO_ERROR) {
904 if (chainCreated) {
905 removeEffectChain_l(chain);
906 }
907 return status;
908 }
909
910 effect->setDevice(mOutDevice);
911 effect->setDevice(mInDevice);
912 effect->setMode(mAudioFlinger->getMode());
913 effect->setAudioSource(mAudioSource);
914 return NO_ERROR;
915 }
916
removeEffect_l(const sp<EffectModule> & effect)917 void AudioFlinger::ThreadBase::removeEffect_l(const sp<EffectModule>& effect) {
918
919 ALOGV("removeEffect_l() %p effect %p", this, effect.get());
920 effect_descriptor_t desc = effect->desc();
921 if ((desc.flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
922 detachAuxEffect_l(effect->id());
923 }
924
925 sp<EffectChain> chain = effect->chain().promote();
926 if (chain != 0) {
927 // remove effect chain if removing last effect
928 if (chain->removeEffect_l(effect) == 0) {
929 removeEffectChain_l(chain);
930 }
931 } else {
932 ALOGW("removeEffect_l() %p cannot promote chain for effect %p", this, effect.get());
933 }
934 }
935
lockEffectChains_l(Vector<sp<AudioFlinger::EffectChain>> & effectChains)936 void AudioFlinger::ThreadBase::lockEffectChains_l(
937 Vector< sp<AudioFlinger::EffectChain> >& effectChains)
938 {
939 effectChains = mEffectChains;
940 for (size_t i = 0; i < mEffectChains.size(); i++) {
941 mEffectChains[i]->lock();
942 }
943 }
944
unlockEffectChains(const Vector<sp<AudioFlinger::EffectChain>> & effectChains)945 void AudioFlinger::ThreadBase::unlockEffectChains(
946 const Vector< sp<AudioFlinger::EffectChain> >& effectChains)
947 {
948 for (size_t i = 0; i < effectChains.size(); i++) {
949 effectChains[i]->unlock();
950 }
951 }
952
getEffectChain(int sessionId)953 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain(int sessionId)
954 {
955 Mutex::Autolock _l(mLock);
956 return getEffectChain_l(sessionId);
957 }
958
getEffectChain_l(int sessionId) const959 sp<AudioFlinger::EffectChain> AudioFlinger::ThreadBase::getEffectChain_l(int sessionId) const
960 {
961 size_t size = mEffectChains.size();
962 for (size_t i = 0; i < size; i++) {
963 if (mEffectChains[i]->sessionId() == sessionId) {
964 return mEffectChains[i];
965 }
966 }
967 return 0;
968 }
969
setMode(audio_mode_t mode)970 void AudioFlinger::ThreadBase::setMode(audio_mode_t mode)
971 {
972 Mutex::Autolock _l(mLock);
973 size_t size = mEffectChains.size();
974 for (size_t i = 0; i < size; i++) {
975 mEffectChains[i]->setMode_l(mode);
976 }
977 }
978
disconnectEffect(const sp<EffectModule> & effect,EffectHandle * handle,bool unpinIfLast)979 void AudioFlinger::ThreadBase::disconnectEffect(const sp<EffectModule>& effect,
980 EffectHandle *handle,
981 bool unpinIfLast) {
982
983 Mutex::Autolock _l(mLock);
984 ALOGV("disconnectEffect() %p effect %p", this, effect.get());
985 // delete the effect module if removing last handle on it
986 if (effect->removeHandle(handle) == 0) {
987 if (!effect->isPinned() || unpinIfLast) {
988 removeEffect_l(effect);
989 AudioSystem::unregisterEffect(effect->id());
990 }
991 }
992 }
993
994 // ----------------------------------------------------------------------------
995 // Playback
996 // ----------------------------------------------------------------------------
997
PlaybackThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type)998 AudioFlinger::PlaybackThread::PlaybackThread(const sp<AudioFlinger>& audioFlinger,
999 AudioStreamOut* output,
1000 audio_io_handle_t id,
1001 audio_devices_t device,
1002 type_t type)
1003 : ThreadBase(audioFlinger, id, device, AUDIO_DEVICE_NONE, type),
1004 mNormalFrameCount(0), mMixBuffer(NULL),
1005 mAllocMixBuffer(NULL), mSuspended(0), mBytesWritten(0),
1006 mActiveTracksGeneration(0),
1007 // mStreamTypes[] initialized in constructor body
1008 mOutput(output),
1009 mLastWriteTime(0), mNumWrites(0), mNumDelayedWrites(0), mInWrite(false),
1010 mMixerStatus(MIXER_IDLE),
1011 mMixerStatusIgnoringFastTracks(MIXER_IDLE),
1012 standbyDelay(AudioFlinger::mStandbyTimeInNsecs),
1013 mBytesRemaining(0),
1014 mCurrentWriteLength(0),
1015 mUseAsyncWrite(false),
1016 mWriteAckSequence(0),
1017 mDrainSequence(0),
1018 mSignalPending(false),
1019 mScreenState(AudioFlinger::mScreenState),
1020 // index 0 is reserved for normal mixer's submix
1021 mFastTrackAvailMask(((1 << FastMixerState::kMaxFastTracks) - 1) & ~1),
1022 // mLatchD, mLatchQ,
1023 mLatchDValid(false), mLatchQValid(false)
1024 {
1025 snprintf(mName, kNameLength, "AudioOut_%X", id);
1026 mNBLogWriter = audioFlinger->newWriter_l(kLogSize, mName);
1027
1028 // Assumes constructor is called by AudioFlinger with it's mLock held, but
1029 // it would be safer to explicitly pass initial masterVolume/masterMute as
1030 // parameter.
1031 //
1032 // If the HAL we are using has support for master volume or master mute,
1033 // then do not attenuate or mute during mixing (just leave the volume at 1.0
1034 // and the mute set to false).
1035 mMasterVolume = audioFlinger->masterVolume_l();
1036 mMasterMute = audioFlinger->masterMute_l();
1037 if (mOutput && mOutput->audioHwDev) {
1038 if (mOutput->audioHwDev->canSetMasterVolume()) {
1039 mMasterVolume = 1.0;
1040 }
1041
1042 if (mOutput->audioHwDev->canSetMasterMute()) {
1043 mMasterMute = false;
1044 }
1045 }
1046
1047 readOutputParameters();
1048
1049 // mStreamTypes[AUDIO_STREAM_CNT] is initialized by stream_type_t default constructor
1050 // There is no AUDIO_STREAM_MIN, and ++ operator does not compile
1051 for (audio_stream_type_t stream = (audio_stream_type_t) 0; stream < AUDIO_STREAM_CNT;
1052 stream = (audio_stream_type_t) (stream + 1)) {
1053 mStreamTypes[stream].volume = mAudioFlinger->streamVolume_l(stream);
1054 mStreamTypes[stream].mute = mAudioFlinger->streamMute_l(stream);
1055 }
1056 // mStreamTypes[AUDIO_STREAM_CNT] exists but isn't explicitly initialized here,
1057 // because mAudioFlinger doesn't have one to copy from
1058 }
1059
~PlaybackThread()1060 AudioFlinger::PlaybackThread::~PlaybackThread()
1061 {
1062 mAudioFlinger->unregisterWriter(mNBLogWriter);
1063 delete [] mAllocMixBuffer;
1064 }
1065
dump(int fd,const Vector<String16> & args)1066 void AudioFlinger::PlaybackThread::dump(int fd, const Vector<String16>& args)
1067 {
1068 dumpInternals(fd, args);
1069 dumpTracks(fd, args);
1070 dumpEffectChains(fd, args);
1071 }
1072
dumpTracks(int fd,const Vector<String16> & args)1073 void AudioFlinger::PlaybackThread::dumpTracks(int fd, const Vector<String16>& args)
1074 {
1075 const size_t SIZE = 256;
1076 char buffer[SIZE];
1077 String8 result;
1078
1079 result.appendFormat("Output thread %p stream volumes in dB:\n ", this);
1080 for (int i = 0; i < AUDIO_STREAM_CNT; ++i) {
1081 const stream_type_t *st = &mStreamTypes[i];
1082 if (i > 0) {
1083 result.appendFormat(", ");
1084 }
1085 result.appendFormat("%d:%.2g", i, 20.0 * log10(st->volume));
1086 if (st->mute) {
1087 result.append("M");
1088 }
1089 }
1090 result.append("\n");
1091 write(fd, result.string(), result.length());
1092 result.clear();
1093
1094 snprintf(buffer, SIZE, "Output thread %p tracks\n", this);
1095 result.append(buffer);
1096 Track::appendDumpHeader(result);
1097 for (size_t i = 0; i < mTracks.size(); ++i) {
1098 sp<Track> track = mTracks[i];
1099 if (track != 0) {
1100 track->dump(buffer, SIZE);
1101 result.append(buffer);
1102 }
1103 }
1104
1105 snprintf(buffer, SIZE, "Output thread %p active tracks\n", this);
1106 result.append(buffer);
1107 Track::appendDumpHeader(result);
1108 for (size_t i = 0; i < mActiveTracks.size(); ++i) {
1109 sp<Track> track = mActiveTracks[i].promote();
1110 if (track != 0) {
1111 track->dump(buffer, SIZE);
1112 result.append(buffer);
1113 }
1114 }
1115 write(fd, result.string(), result.size());
1116
1117 // These values are "raw"; they will wrap around. See prepareTracks_l() for a better way.
1118 FastTrackUnderruns underruns = getFastTrackUnderruns(0);
1119 fdprintf(fd, "Normal mixer raw underrun counters: partial=%u empty=%u\n",
1120 underruns.mBitFields.mPartial, underruns.mBitFields.mEmpty);
1121 }
1122
dumpInternals(int fd,const Vector<String16> & args)1123 void AudioFlinger::PlaybackThread::dumpInternals(int fd, const Vector<String16>& args)
1124 {
1125 const size_t SIZE = 256;
1126 char buffer[SIZE];
1127 String8 result;
1128
1129 snprintf(buffer, SIZE, "\nOutput thread %p internals\n", this);
1130 result.append(buffer);
1131 snprintf(buffer, SIZE, "Normal frame count: %d\n", mNormalFrameCount);
1132 result.append(buffer);
1133 snprintf(buffer, SIZE, "last write occurred (msecs): %llu\n",
1134 ns2ms(systemTime() - mLastWriteTime));
1135 result.append(buffer);
1136 snprintf(buffer, SIZE, "total writes: %d\n", mNumWrites);
1137 result.append(buffer);
1138 snprintf(buffer, SIZE, "delayed writes: %d\n", mNumDelayedWrites);
1139 result.append(buffer);
1140 snprintf(buffer, SIZE, "blocked in write: %d\n", mInWrite);
1141 result.append(buffer);
1142 snprintf(buffer, SIZE, "suspend count: %d\n", mSuspended);
1143 result.append(buffer);
1144 snprintf(buffer, SIZE, "mix buffer : %p\n", mMixBuffer);
1145 result.append(buffer);
1146 write(fd, result.string(), result.size());
1147 fdprintf(fd, "Fast track availMask=%#x\n", mFastTrackAvailMask);
1148
1149 dumpBase(fd, args);
1150 }
1151
1152 // Thread virtuals
readyToRun()1153 status_t AudioFlinger::PlaybackThread::readyToRun()
1154 {
1155 status_t status = initCheck();
1156 if (status == NO_ERROR) {
1157 ALOGI("AudioFlinger's thread %p ready to run", this);
1158 } else {
1159 ALOGE("No working audio driver found.");
1160 }
1161 return status;
1162 }
1163
onFirstRef()1164 void AudioFlinger::PlaybackThread::onFirstRef()
1165 {
1166 run(mName, ANDROID_PRIORITY_URGENT_AUDIO);
1167 }
1168
1169 // ThreadBase virtuals
preExit()1170 void AudioFlinger::PlaybackThread::preExit()
1171 {
1172 ALOGV(" preExit()");
1173 // FIXME this is using hard-coded strings but in the future, this functionality will be
1174 // converted to use audio HAL extensions required to support tunneling
1175 mOutput->stream->common.set_parameters(&mOutput->stream->common, "exiting=1");
1176 }
1177
1178 // PlaybackThread::createTrack_l() must be called with AudioFlinger::mLock held
createTrack_l(const sp<AudioFlinger::Client> & client,audio_stream_type_t streamType,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,const sp<IMemory> & sharedBuffer,int sessionId,IAudioFlinger::track_flags_t * flags,pid_t tid,int uid,status_t * status)1179 sp<AudioFlinger::PlaybackThread::Track> AudioFlinger::PlaybackThread::createTrack_l(
1180 const sp<AudioFlinger::Client>& client,
1181 audio_stream_type_t streamType,
1182 uint32_t sampleRate,
1183 audio_format_t format,
1184 audio_channel_mask_t channelMask,
1185 size_t frameCount,
1186 const sp<IMemory>& sharedBuffer,
1187 int sessionId,
1188 IAudioFlinger::track_flags_t *flags,
1189 pid_t tid,
1190 int uid,
1191 status_t *status)
1192 {
1193 sp<Track> track;
1194 status_t lStatus;
1195
1196 bool isTimed = (*flags & IAudioFlinger::TRACK_TIMED) != 0;
1197
1198 // client expresses a preference for FAST, but we get the final say
1199 if (*flags & IAudioFlinger::TRACK_FAST) {
1200 if (
1201 // not timed
1202 (!isTimed) &&
1203 // either of these use cases:
1204 (
1205 // use case 1: shared buffer with any frame count
1206 (
1207 (sharedBuffer != 0)
1208 ) ||
1209 // use case 2: callback handler and frame count is default or at least as large as HAL
1210 (
1211 (tid != -1) &&
1212 ((frameCount == 0) ||
1213 (frameCount >= mFrameCount))
1214 )
1215 ) &&
1216 // PCM data
1217 audio_is_linear_pcm(format) &&
1218 // mono or stereo
1219 ( (channelMask == AUDIO_CHANNEL_OUT_MONO) ||
1220 (channelMask == AUDIO_CHANNEL_OUT_STEREO) ) &&
1221 #ifndef FAST_TRACKS_AT_NON_NATIVE_SAMPLE_RATE
1222 // hardware sample rate
1223 (sampleRate == mSampleRate) &&
1224 #endif
1225 // normal mixer has an associated fast mixer
1226 hasFastMixer() &&
1227 // there are sufficient fast track slots available
1228 (mFastTrackAvailMask != 0)
1229 // FIXME test that MixerThread for this fast track has a capable output HAL
1230 // FIXME add a permission test also?
1231 ) {
1232 // if frameCount not specified, then it defaults to fast mixer (HAL) frame count
1233 if (frameCount == 0) {
1234 frameCount = mFrameCount * kFastTrackMultiplier;
1235 }
1236 ALOGV("AUDIO_OUTPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
1237 frameCount, mFrameCount);
1238 } else {
1239 ALOGV("AUDIO_OUTPUT_FLAG_FAST denied: isTimed=%d sharedBuffer=%p frameCount=%d "
1240 "mFrameCount=%d format=%d isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
1241 "hasFastMixer=%d tid=%d fastTrackAvailMask=%#x",
1242 isTimed, sharedBuffer.get(), frameCount, mFrameCount, format,
1243 audio_is_linear_pcm(format),
1244 channelMask, sampleRate, mSampleRate, hasFastMixer(), tid, mFastTrackAvailMask);
1245 *flags &= ~IAudioFlinger::TRACK_FAST;
1246 // For compatibility with AudioTrack calculation, buffer depth is forced
1247 // to be at least 2 x the normal mixer frame count and cover audio hardware latency.
1248 // This is probably too conservative, but legacy application code may depend on it.
1249 // If you change this calculation, also review the start threshold which is related.
1250 uint32_t latencyMs = mOutput->stream->get_latency(mOutput->stream);
1251 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
1252 if (minBufCount < 2) {
1253 minBufCount = 2;
1254 }
1255 size_t minFrameCount = mNormalFrameCount * minBufCount;
1256 if (frameCount < minFrameCount) {
1257 frameCount = minFrameCount;
1258 }
1259 }
1260 }
1261
1262 if (mType == DIRECT) {
1263 if ((format & AUDIO_FORMAT_MAIN_MASK) == AUDIO_FORMAT_PCM) {
1264 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1265 ALOGE("createTrack_l() Bad parameter: sampleRate %u format %d, channelMask 0x%08x "
1266 "for output %p with format %d",
1267 sampleRate, format, channelMask, mOutput, mFormat);
1268 lStatus = BAD_VALUE;
1269 goto Exit;
1270 }
1271 }
1272 } else if (mType == OFFLOAD) {
1273 if (sampleRate != mSampleRate || format != mFormat || channelMask != mChannelMask) {
1274 ALOGE("createTrack_l() Bad parameter: sampleRate %d format %d, channelMask 0x%08x \""
1275 "for output %p with format %d",
1276 sampleRate, format, channelMask, mOutput, mFormat);
1277 lStatus = BAD_VALUE;
1278 goto Exit;
1279 }
1280 } else {
1281 if ((format & AUDIO_FORMAT_MAIN_MASK) != AUDIO_FORMAT_PCM) {
1282 ALOGE("createTrack_l() Bad parameter: format %d \""
1283 "for output %p with format %d",
1284 format, mOutput, mFormat);
1285 lStatus = BAD_VALUE;
1286 goto Exit;
1287 }
1288 // Resampler implementation limits input sampling rate to 2 x output sampling rate.
1289 if (sampleRate > mSampleRate*2) {
1290 ALOGE("Sample rate out of range: %u mSampleRate %u", sampleRate, mSampleRate);
1291 lStatus = BAD_VALUE;
1292 goto Exit;
1293 }
1294 }
1295
1296 lStatus = initCheck();
1297 if (lStatus != NO_ERROR) {
1298 ALOGE("Audio driver not initialized.");
1299 goto Exit;
1300 }
1301
1302 { // scope for mLock
1303 Mutex::Autolock _l(mLock);
1304
1305 // all tracks in same audio session must share the same routing strategy otherwise
1306 // conflicts will happen when tracks are moved from one output to another by audio policy
1307 // manager
1308 uint32_t strategy = AudioSystem::getStrategyForStream(streamType);
1309 for (size_t i = 0; i < mTracks.size(); ++i) {
1310 sp<Track> t = mTracks[i];
1311 if (t != 0 && !t->isOutputTrack()) {
1312 uint32_t actual = AudioSystem::getStrategyForStream(t->streamType());
1313 if (sessionId == t->sessionId() && strategy != actual) {
1314 ALOGE("createTrack_l() mismatched strategy; expected %u but found %u",
1315 strategy, actual);
1316 lStatus = BAD_VALUE;
1317 goto Exit;
1318 }
1319 }
1320 }
1321
1322 if (!isTimed) {
1323 track = new Track(this, client, streamType, sampleRate, format,
1324 channelMask, frameCount, sharedBuffer, sessionId, uid, *flags);
1325 } else {
1326 track = TimedTrack::create(this, client, streamType, sampleRate, format,
1327 channelMask, frameCount, sharedBuffer, sessionId, uid);
1328 }
1329
1330 if (track == 0 || track->getCblk() == NULL || track->name() < 0) {
1331 lStatus = NO_MEMORY;
1332 // track must be cleared from the caller as the caller has the AF lock
1333 goto Exit;
1334 }
1335
1336 mTracks.add(track);
1337
1338 sp<EffectChain> chain = getEffectChain_l(sessionId);
1339 if (chain != 0) {
1340 ALOGV("createTrack_l() setting main buffer %p", chain->inBuffer());
1341 track->setMainBuffer(chain->inBuffer());
1342 chain->setStrategy(AudioSystem::getStrategyForStream(track->streamType()));
1343 chain->incTrackCnt();
1344 }
1345
1346 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
1347 pid_t callingPid = IPCThreadState::self()->getCallingPid();
1348 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
1349 // so ask activity manager to do this on our behalf
1350 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
1351 }
1352 }
1353
1354 lStatus = NO_ERROR;
1355
1356 Exit:
1357 if (status) {
1358 *status = lStatus;
1359 }
1360 return track;
1361 }
1362
correctLatency_l(uint32_t latency) const1363 uint32_t AudioFlinger::PlaybackThread::correctLatency_l(uint32_t latency) const
1364 {
1365 return latency;
1366 }
1367
latency() const1368 uint32_t AudioFlinger::PlaybackThread::latency() const
1369 {
1370 Mutex::Autolock _l(mLock);
1371 return latency_l();
1372 }
latency_l() const1373 uint32_t AudioFlinger::PlaybackThread::latency_l() const
1374 {
1375 if (initCheck() == NO_ERROR) {
1376 return correctLatency_l(mOutput->stream->get_latency(mOutput->stream));
1377 } else {
1378 return 0;
1379 }
1380 }
1381
setMasterVolume(float value)1382 void AudioFlinger::PlaybackThread::setMasterVolume(float value)
1383 {
1384 Mutex::Autolock _l(mLock);
1385 // Don't apply master volume in SW if our HAL can do it for us.
1386 if (mOutput && mOutput->audioHwDev &&
1387 mOutput->audioHwDev->canSetMasterVolume()) {
1388 mMasterVolume = 1.0;
1389 } else {
1390 mMasterVolume = value;
1391 }
1392 }
1393
setMasterMute(bool muted)1394 void AudioFlinger::PlaybackThread::setMasterMute(bool muted)
1395 {
1396 Mutex::Autolock _l(mLock);
1397 // Don't apply master mute in SW if our HAL can do it for us.
1398 if (mOutput && mOutput->audioHwDev &&
1399 mOutput->audioHwDev->canSetMasterMute()) {
1400 mMasterMute = false;
1401 } else {
1402 mMasterMute = muted;
1403 }
1404 }
1405
setStreamVolume(audio_stream_type_t stream,float value)1406 void AudioFlinger::PlaybackThread::setStreamVolume(audio_stream_type_t stream, float value)
1407 {
1408 Mutex::Autolock _l(mLock);
1409 mStreamTypes[stream].volume = value;
1410 broadcast_l();
1411 }
1412
setStreamMute(audio_stream_type_t stream,bool muted)1413 void AudioFlinger::PlaybackThread::setStreamMute(audio_stream_type_t stream, bool muted)
1414 {
1415 Mutex::Autolock _l(mLock);
1416 mStreamTypes[stream].mute = muted;
1417 broadcast_l();
1418 }
1419
streamVolume(audio_stream_type_t stream) const1420 float AudioFlinger::PlaybackThread::streamVolume(audio_stream_type_t stream) const
1421 {
1422 Mutex::Autolock _l(mLock);
1423 return mStreamTypes[stream].volume;
1424 }
1425
1426 // addTrack_l() must be called with ThreadBase::mLock held
addTrack_l(const sp<Track> & track)1427 status_t AudioFlinger::PlaybackThread::addTrack_l(const sp<Track>& track)
1428 {
1429 status_t status = ALREADY_EXISTS;
1430
1431 // set retry count for buffer fill
1432 track->mRetryCount = kMaxTrackStartupRetries;
1433 if (mActiveTracks.indexOf(track) < 0) {
1434 // the track is newly added, make sure it fills up all its
1435 // buffers before playing. This is to ensure the client will
1436 // effectively get the latency it requested.
1437 if (!track->isOutputTrack()) {
1438 TrackBase::track_state state = track->mState;
1439 mLock.unlock();
1440 status = AudioSystem::startOutput(mId, track->streamType(), track->sessionId());
1441 mLock.lock();
1442 // abort track was stopped/paused while we released the lock
1443 if (state != track->mState) {
1444 if (status == NO_ERROR) {
1445 mLock.unlock();
1446 AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
1447 mLock.lock();
1448 }
1449 return INVALID_OPERATION;
1450 }
1451 // abort if start is rejected by audio policy manager
1452 if (status != NO_ERROR) {
1453 return PERMISSION_DENIED;
1454 }
1455 #ifdef ADD_BATTERY_DATA
1456 // to track the speaker usage
1457 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStart);
1458 #endif
1459 }
1460
1461 track->mFillingUpStatus = track->sharedBuffer() != 0 ? Track::FS_FILLED : Track::FS_FILLING;
1462 track->mResetDone = false;
1463 track->mPresentationCompleteFrames = 0;
1464 mActiveTracks.add(track);
1465 mWakeLockUids.add(track->uid());
1466 mActiveTracksGeneration++;
1467 mLatestActiveTrack = track;
1468 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1469 if (chain != 0) {
1470 ALOGV("addTrack_l() starting track on chain %p for session %d", chain.get(),
1471 track->sessionId());
1472 chain->incActiveTrackCnt();
1473 }
1474
1475 status = NO_ERROR;
1476 }
1477
1478 ALOGV("signal playback thread");
1479 broadcast_l();
1480
1481 return status;
1482 }
1483
destroyTrack_l(const sp<Track> & track)1484 bool AudioFlinger::PlaybackThread::destroyTrack_l(const sp<Track>& track)
1485 {
1486 track->terminate();
1487 // active tracks are removed by threadLoop()
1488 bool trackActive = (mActiveTracks.indexOf(track) >= 0);
1489 track->mState = TrackBase::STOPPED;
1490 if (!trackActive) {
1491 removeTrack_l(track);
1492 } else if (track->isFastTrack() || track->isOffloaded()) {
1493 track->mState = TrackBase::STOPPING_1;
1494 }
1495
1496 return trackActive;
1497 }
1498
removeTrack_l(const sp<Track> & track)1499 void AudioFlinger::PlaybackThread::removeTrack_l(const sp<Track>& track)
1500 {
1501 track->triggerEvents(AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE);
1502 mTracks.remove(track);
1503 deleteTrackName_l(track->name());
1504 // redundant as track is about to be destroyed, for dumpsys only
1505 track->mName = -1;
1506 if (track->isFastTrack()) {
1507 int index = track->mFastIndex;
1508 ALOG_ASSERT(0 < index && index < (int)FastMixerState::kMaxFastTracks);
1509 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << index)));
1510 mFastTrackAvailMask |= 1 << index;
1511 // redundant as track is about to be destroyed, for dumpsys only
1512 track->mFastIndex = -1;
1513 }
1514 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
1515 if (chain != 0) {
1516 chain->decTrackCnt();
1517 }
1518 }
1519
broadcast_l()1520 void AudioFlinger::PlaybackThread::broadcast_l()
1521 {
1522 // Thread could be blocked waiting for async
1523 // so signal it to handle state changes immediately
1524 // If threadLoop is currently unlocked a signal of mWaitWorkCV will
1525 // be lost so we also flag to prevent it blocking on mWaitWorkCV
1526 mSignalPending = true;
1527 mWaitWorkCV.broadcast();
1528 }
1529
getParameters(const String8 & keys)1530 String8 AudioFlinger::PlaybackThread::getParameters(const String8& keys)
1531 {
1532 Mutex::Autolock _l(mLock);
1533 if (initCheck() != NO_ERROR) {
1534 return String8();
1535 }
1536
1537 char *s = mOutput->stream->common.get_parameters(&mOutput->stream->common, keys.string());
1538 const String8 out_s8(s);
1539 free(s);
1540 return out_s8;
1541 }
1542
1543 // audioConfigChanged_l() must be called with AudioFlinger::mLock held
audioConfigChanged_l(int event,int param)1544 void AudioFlinger::PlaybackThread::audioConfigChanged_l(int event, int param) {
1545 AudioSystem::OutputDescriptor desc;
1546 void *param2 = NULL;
1547
1548 ALOGV("PlaybackThread::audioConfigChanged_l, thread %p, event %d, param %d", this, event,
1549 param);
1550
1551 switch (event) {
1552 case AudioSystem::OUTPUT_OPENED:
1553 case AudioSystem::OUTPUT_CONFIG_CHANGED:
1554 desc.channelMask = mChannelMask;
1555 desc.samplingRate = mSampleRate;
1556 desc.format = mFormat;
1557 desc.frameCount = mNormalFrameCount; // FIXME see
1558 // AudioFlinger::frameCount(audio_io_handle_t)
1559 desc.latency = latency();
1560 param2 = &desc;
1561 break;
1562
1563 case AudioSystem::STREAM_CONFIG_CHANGED:
1564 param2 = ¶m;
1565 case AudioSystem::OUTPUT_CLOSED:
1566 default:
1567 break;
1568 }
1569 mAudioFlinger->audioConfigChanged_l(event, mId, param2);
1570 }
1571
writeCallback()1572 void AudioFlinger::PlaybackThread::writeCallback()
1573 {
1574 ALOG_ASSERT(mCallbackThread != 0);
1575 mCallbackThread->resetWriteBlocked();
1576 }
1577
drainCallback()1578 void AudioFlinger::PlaybackThread::drainCallback()
1579 {
1580 ALOG_ASSERT(mCallbackThread != 0);
1581 mCallbackThread->resetDraining();
1582 }
1583
resetWriteBlocked(uint32_t sequence)1584 void AudioFlinger::PlaybackThread::resetWriteBlocked(uint32_t sequence)
1585 {
1586 Mutex::Autolock _l(mLock);
1587 // reject out of sequence requests
1588 if ((mWriteAckSequence & 1) && (sequence == mWriteAckSequence)) {
1589 mWriteAckSequence &= ~1;
1590 mWaitWorkCV.signal();
1591 }
1592 }
1593
resetDraining(uint32_t sequence)1594 void AudioFlinger::PlaybackThread::resetDraining(uint32_t sequence)
1595 {
1596 Mutex::Autolock _l(mLock);
1597 // reject out of sequence requests
1598 if ((mDrainSequence & 1) && (sequence == mDrainSequence)) {
1599 mDrainSequence &= ~1;
1600 mWaitWorkCV.signal();
1601 }
1602 }
1603
1604 // static
asyncCallback(stream_callback_event_t event,void * param,void * cookie)1605 int AudioFlinger::PlaybackThread::asyncCallback(stream_callback_event_t event,
1606 void *param,
1607 void *cookie)
1608 {
1609 AudioFlinger::PlaybackThread *me = (AudioFlinger::PlaybackThread *)cookie;
1610 ALOGV("asyncCallback() event %d", event);
1611 switch (event) {
1612 case STREAM_CBK_EVENT_WRITE_READY:
1613 me->writeCallback();
1614 break;
1615 case STREAM_CBK_EVENT_DRAIN_READY:
1616 me->drainCallback();
1617 break;
1618 default:
1619 ALOGW("asyncCallback() unknown event %d", event);
1620 break;
1621 }
1622 return 0;
1623 }
1624
readOutputParameters()1625 void AudioFlinger::PlaybackThread::readOutputParameters()
1626 {
1627 // unfortunately we have no way of recovering from errors here, hence the LOG_FATAL
1628 mSampleRate = mOutput->stream->common.get_sample_rate(&mOutput->stream->common);
1629 mChannelMask = mOutput->stream->common.get_channels(&mOutput->stream->common);
1630 if (!audio_is_output_channel(mChannelMask)) {
1631 LOG_FATAL("HAL channel mask %#x not valid for output", mChannelMask);
1632 }
1633 if ((mType == MIXER || mType == DUPLICATING) && mChannelMask != AUDIO_CHANNEL_OUT_STEREO) {
1634 LOG_FATAL("HAL channel mask %#x not supported for mixed output; "
1635 "must be AUDIO_CHANNEL_OUT_STEREO", mChannelMask);
1636 }
1637 mChannelCount = popcount(mChannelMask);
1638 mFormat = mOutput->stream->common.get_format(&mOutput->stream->common);
1639 if (!audio_is_valid_format(mFormat)) {
1640 LOG_FATAL("HAL format %d not valid for output", mFormat);
1641 }
1642 if ((mType == MIXER || mType == DUPLICATING) && mFormat != AUDIO_FORMAT_PCM_16_BIT) {
1643 LOG_FATAL("HAL format %d not supported for mixed output; must be AUDIO_FORMAT_PCM_16_BIT",
1644 mFormat);
1645 }
1646 mFrameSize = audio_stream_frame_size(&mOutput->stream->common);
1647 mFrameCount = mOutput->stream->common.get_buffer_size(&mOutput->stream->common) / mFrameSize;
1648 if (mFrameCount & 15) {
1649 ALOGW("HAL output buffer size is %u frames but AudioMixer requires multiples of 16 frames",
1650 mFrameCount);
1651 }
1652
1653 if ((mOutput->flags & AUDIO_OUTPUT_FLAG_NON_BLOCKING) &&
1654 (mOutput->stream->set_callback != NULL)) {
1655 if (mOutput->stream->set_callback(mOutput->stream,
1656 AudioFlinger::PlaybackThread::asyncCallback, this) == 0) {
1657 mUseAsyncWrite = true;
1658 mCallbackThread = new AudioFlinger::AsyncCallbackThread(this);
1659 }
1660 }
1661
1662 // Calculate size of normal mix buffer relative to the HAL output buffer size
1663 double multiplier = 1.0;
1664 if (mType == MIXER && (kUseFastMixer == FastMixer_Static ||
1665 kUseFastMixer == FastMixer_Dynamic)) {
1666 size_t minNormalFrameCount = (kMinNormalMixBufferSizeMs * mSampleRate) / 1000;
1667 size_t maxNormalFrameCount = (kMaxNormalMixBufferSizeMs * mSampleRate) / 1000;
1668 // round up minimum and round down maximum to nearest 16 frames to satisfy AudioMixer
1669 minNormalFrameCount = (minNormalFrameCount + 15) & ~15;
1670 maxNormalFrameCount = maxNormalFrameCount & ~15;
1671 if (maxNormalFrameCount < minNormalFrameCount) {
1672 maxNormalFrameCount = minNormalFrameCount;
1673 }
1674 multiplier = (double) minNormalFrameCount / (double) mFrameCount;
1675 if (multiplier <= 1.0) {
1676 multiplier = 1.0;
1677 } else if (multiplier <= 2.0) {
1678 if (2 * mFrameCount <= maxNormalFrameCount) {
1679 multiplier = 2.0;
1680 } else {
1681 multiplier = (double) maxNormalFrameCount / (double) mFrameCount;
1682 }
1683 } else {
1684 // prefer an even multiplier, for compatibility with doubling of fast tracks due to HAL
1685 // SRC (it would be unusual for the normal mix buffer size to not be a multiple of fast
1686 // track, but we sometimes have to do this to satisfy the maximum frame count
1687 // constraint)
1688 // FIXME this rounding up should not be done if no HAL SRC
1689 uint32_t truncMult = (uint32_t) multiplier;
1690 if ((truncMult & 1)) {
1691 if ((truncMult + 1) * mFrameCount <= maxNormalFrameCount) {
1692 ++truncMult;
1693 }
1694 }
1695 multiplier = (double) truncMult;
1696 }
1697 }
1698 mNormalFrameCount = multiplier * mFrameCount;
1699 // round up to nearest 16 frames to satisfy AudioMixer
1700 mNormalFrameCount = (mNormalFrameCount + 15) & ~15;
1701 ALOGI("HAL output buffer size %u frames, normal mix buffer size %u frames", mFrameCount,
1702 mNormalFrameCount);
1703
1704 delete[] mAllocMixBuffer;
1705 size_t align = (mFrameSize < sizeof(int16_t)) ? sizeof(int16_t) : mFrameSize;
1706 mAllocMixBuffer = new int8_t[mNormalFrameCount * mFrameSize + align - 1];
1707 mMixBuffer = (int16_t *) ((((size_t)mAllocMixBuffer + align - 1) / align) * align);
1708 memset(mMixBuffer, 0, mNormalFrameCount * mFrameSize);
1709
1710 // force reconfiguration of effect chains and engines to take new buffer size and audio
1711 // parameters into account
1712 // Note that mLock is not held when readOutputParameters() is called from the constructor
1713 // but in this case nothing is done below as no audio sessions have effect yet so it doesn't
1714 // matter.
1715 // create a copy of mEffectChains as calling moveEffectChain_l() can reorder some effect chains
1716 Vector< sp<EffectChain> > effectChains = mEffectChains;
1717 for (size_t i = 0; i < effectChains.size(); i ++) {
1718 mAudioFlinger->moveEffectChain_l(effectChains[i]->sessionId(), this, this, false);
1719 }
1720 }
1721
1722
getRenderPosition(size_t * halFrames,size_t * dspFrames)1723 status_t AudioFlinger::PlaybackThread::getRenderPosition(size_t *halFrames, size_t *dspFrames)
1724 {
1725 if (halFrames == NULL || dspFrames == NULL) {
1726 return BAD_VALUE;
1727 }
1728 Mutex::Autolock _l(mLock);
1729 if (initCheck() != NO_ERROR) {
1730 return INVALID_OPERATION;
1731 }
1732 size_t framesWritten = mBytesWritten / mFrameSize;
1733 *halFrames = framesWritten;
1734
1735 if (isSuspended()) {
1736 // return an estimation of rendered frames when the output is suspended
1737 size_t latencyFrames = (latency_l() * mSampleRate) / 1000;
1738 *dspFrames = framesWritten >= latencyFrames ? framesWritten - latencyFrames : 0;
1739 return NO_ERROR;
1740 } else {
1741 return mOutput->stream->get_render_position(mOutput->stream, dspFrames);
1742 }
1743 }
1744
hasAudioSession(int sessionId) const1745 uint32_t AudioFlinger::PlaybackThread::hasAudioSession(int sessionId) const
1746 {
1747 Mutex::Autolock _l(mLock);
1748 uint32_t result = 0;
1749 if (getEffectChain_l(sessionId) != 0) {
1750 result = EFFECT_SESSION;
1751 }
1752
1753 for (size_t i = 0; i < mTracks.size(); ++i) {
1754 sp<Track> track = mTracks[i];
1755 if (sessionId == track->sessionId() && !track->isInvalid()) {
1756 result |= TRACK_SESSION;
1757 break;
1758 }
1759 }
1760
1761 return result;
1762 }
1763
getStrategyForSession_l(int sessionId)1764 uint32_t AudioFlinger::PlaybackThread::getStrategyForSession_l(int sessionId)
1765 {
1766 // session AUDIO_SESSION_OUTPUT_MIX is placed in same strategy as MUSIC stream so that
1767 // it is moved to correct output by audio policy manager when A2DP is connected or disconnected
1768 if (sessionId == AUDIO_SESSION_OUTPUT_MIX) {
1769 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
1770 }
1771 for (size_t i = 0; i < mTracks.size(); i++) {
1772 sp<Track> track = mTracks[i];
1773 if (sessionId == track->sessionId() && !track->isInvalid()) {
1774 return AudioSystem::getStrategyForStream(track->streamType());
1775 }
1776 }
1777 return AudioSystem::getStrategyForStream(AUDIO_STREAM_MUSIC);
1778 }
1779
1780
getOutput() const1781 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::getOutput() const
1782 {
1783 Mutex::Autolock _l(mLock);
1784 return mOutput;
1785 }
1786
clearOutput()1787 AudioFlinger::AudioStreamOut* AudioFlinger::PlaybackThread::clearOutput()
1788 {
1789 Mutex::Autolock _l(mLock);
1790 AudioStreamOut *output = mOutput;
1791 mOutput = NULL;
1792 // FIXME FastMixer might also have a raw ptr to mOutputSink;
1793 // must push a NULL and wait for ack
1794 mOutputSink.clear();
1795 mPipeSink.clear();
1796 mNormalSink.clear();
1797 return output;
1798 }
1799
1800 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const1801 audio_stream_t* AudioFlinger::PlaybackThread::stream() const
1802 {
1803 if (mOutput == NULL) {
1804 return NULL;
1805 }
1806 return &mOutput->stream->common;
1807 }
1808
activeSleepTimeUs() const1809 uint32_t AudioFlinger::PlaybackThread::activeSleepTimeUs() const
1810 {
1811 return (uint32_t)((uint32_t)((mNormalFrameCount * 1000) / mSampleRate) * 1000);
1812 }
1813
setSyncEvent(const sp<SyncEvent> & event)1814 status_t AudioFlinger::PlaybackThread::setSyncEvent(const sp<SyncEvent>& event)
1815 {
1816 if (!isValidSyncEvent(event)) {
1817 return BAD_VALUE;
1818 }
1819
1820 Mutex::Autolock _l(mLock);
1821
1822 for (size_t i = 0; i < mTracks.size(); ++i) {
1823 sp<Track> track = mTracks[i];
1824 if (event->triggerSession() == track->sessionId()) {
1825 (void) track->setSyncEvent(event);
1826 return NO_ERROR;
1827 }
1828 }
1829
1830 return NAME_NOT_FOUND;
1831 }
1832
isValidSyncEvent(const sp<SyncEvent> & event) const1833 bool AudioFlinger::PlaybackThread::isValidSyncEvent(const sp<SyncEvent>& event) const
1834 {
1835 return event->type() == AudioSystem::SYNC_EVENT_PRESENTATION_COMPLETE;
1836 }
1837
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)1838 void AudioFlinger::PlaybackThread::threadLoop_removeTracks(
1839 const Vector< sp<Track> >& tracksToRemove)
1840 {
1841 size_t count = tracksToRemove.size();
1842 if (count) {
1843 for (size_t i = 0 ; i < count ; i++) {
1844 const sp<Track>& track = tracksToRemove.itemAt(i);
1845 if (!track->isOutputTrack()) {
1846 AudioSystem::stopOutput(mId, track->streamType(), track->sessionId());
1847 #ifdef ADD_BATTERY_DATA
1848 // to track the speaker usage
1849 addBatteryData(IMediaPlayerService::kBatteryDataAudioFlingerStop);
1850 #endif
1851 if (track->isTerminated()) {
1852 AudioSystem::releaseOutput(mId);
1853 }
1854 }
1855 }
1856 }
1857 }
1858
checkSilentMode_l()1859 void AudioFlinger::PlaybackThread::checkSilentMode_l()
1860 {
1861 if (!mMasterMute) {
1862 char value[PROPERTY_VALUE_MAX];
1863 if (property_get("ro.audio.silent", value, "0") > 0) {
1864 char *endptr;
1865 unsigned long ul = strtoul(value, &endptr, 0);
1866 if (*endptr == '\0' && ul != 0) {
1867 ALOGD("Silence is golden");
1868 // The setprop command will not allow a property to be changed after
1869 // the first time it is set, so we don't have to worry about un-muting.
1870 setMasterMute_l(true);
1871 }
1872 }
1873 }
1874 }
1875
1876 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_write()1877 ssize_t AudioFlinger::PlaybackThread::threadLoop_write()
1878 {
1879 // FIXME rewrite to reduce number of system calls
1880 mLastWriteTime = systemTime();
1881 mInWrite = true;
1882 ssize_t bytesWritten;
1883
1884 // If an NBAIO sink is present, use it to write the normal mixer's submix
1885 if (mNormalSink != 0) {
1886 #define mBitShift 2 // FIXME
1887 size_t count = mBytesRemaining >> mBitShift;
1888 size_t offset = (mCurrentWriteLength - mBytesRemaining) >> 1;
1889 ATRACE_BEGIN("write");
1890 // update the setpoint when AudioFlinger::mScreenState changes
1891 uint32_t screenState = AudioFlinger::mScreenState;
1892 if (screenState != mScreenState) {
1893 mScreenState = screenState;
1894 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
1895 if (pipe != NULL) {
1896 pipe->setAvgFrames((mScreenState & 1) ?
1897 (pipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
1898 }
1899 }
1900 ssize_t framesWritten = mNormalSink->write(mMixBuffer + offset, count);
1901 ATRACE_END();
1902 if (framesWritten > 0) {
1903 bytesWritten = framesWritten << mBitShift;
1904 } else {
1905 bytesWritten = framesWritten;
1906 }
1907 status_t status = mNormalSink->getTimestamp(mLatchD.mTimestamp);
1908 if (status == NO_ERROR) {
1909 size_t totalFramesWritten = mNormalSink->framesWritten();
1910 if (totalFramesWritten >= mLatchD.mTimestamp.mPosition) {
1911 mLatchD.mUnpresentedFrames = totalFramesWritten - mLatchD.mTimestamp.mPosition;
1912 mLatchDValid = true;
1913 }
1914 }
1915 // otherwise use the HAL / AudioStreamOut directly
1916 } else {
1917 // Direct output and offload threads
1918 size_t offset = (mCurrentWriteLength - mBytesRemaining);
1919 if (mUseAsyncWrite) {
1920 ALOGW_IF(mWriteAckSequence & 1, "threadLoop_write(): out of sequence write request");
1921 mWriteAckSequence += 2;
1922 mWriteAckSequence |= 1;
1923 ALOG_ASSERT(mCallbackThread != 0);
1924 mCallbackThread->setWriteBlocked(mWriteAckSequence);
1925 }
1926 // FIXME We should have an implementation of timestamps for direct output threads.
1927 // They are used e.g for multichannel PCM playback over HDMI.
1928 bytesWritten = mOutput->stream->write(mOutput->stream,
1929 (char *)mMixBuffer + offset, mBytesRemaining);
1930 if (mUseAsyncWrite &&
1931 ((bytesWritten < 0) || (bytesWritten == (ssize_t)mBytesRemaining))) {
1932 // do not wait for async callback in case of error of full write
1933 mWriteAckSequence &= ~1;
1934 ALOG_ASSERT(mCallbackThread != 0);
1935 mCallbackThread->setWriteBlocked(mWriteAckSequence);
1936 }
1937 }
1938
1939 mNumWrites++;
1940 mInWrite = false;
1941 mStandby = false;
1942 return bytesWritten;
1943 }
1944
threadLoop_drain()1945 void AudioFlinger::PlaybackThread::threadLoop_drain()
1946 {
1947 if (mOutput->stream->drain) {
1948 ALOGV("draining %s", (mMixerStatus == MIXER_DRAIN_TRACK) ? "early" : "full");
1949 if (mUseAsyncWrite) {
1950 ALOGW_IF(mDrainSequence & 1, "threadLoop_drain(): out of sequence drain request");
1951 mDrainSequence |= 1;
1952 ALOG_ASSERT(mCallbackThread != 0);
1953 mCallbackThread->setDraining(mDrainSequence);
1954 }
1955 mOutput->stream->drain(mOutput->stream,
1956 (mMixerStatus == MIXER_DRAIN_TRACK) ? AUDIO_DRAIN_EARLY_NOTIFY
1957 : AUDIO_DRAIN_ALL);
1958 }
1959 }
1960
threadLoop_exit()1961 void AudioFlinger::PlaybackThread::threadLoop_exit()
1962 {
1963 // Default implementation has nothing to do
1964 }
1965
1966 /*
1967 The derived values that are cached:
1968 - mixBufferSize from frame count * frame size
1969 - activeSleepTime from activeSleepTimeUs()
1970 - idleSleepTime from idleSleepTimeUs()
1971 - standbyDelay from mActiveSleepTimeUs (DIRECT only)
1972 - maxPeriod from frame count and sample rate (MIXER only)
1973
1974 The parameters that affect these derived values are:
1975 - frame count
1976 - frame size
1977 - sample rate
1978 - device type: A2DP or not
1979 - device latency
1980 - format: PCM or not
1981 - active sleep time
1982 - idle sleep time
1983 */
1984
cacheParameters_l()1985 void AudioFlinger::PlaybackThread::cacheParameters_l()
1986 {
1987 mixBufferSize = mNormalFrameCount * mFrameSize;
1988 activeSleepTime = activeSleepTimeUs();
1989 idleSleepTime = idleSleepTimeUs();
1990 }
1991
invalidateTracks(audio_stream_type_t streamType)1992 void AudioFlinger::PlaybackThread::invalidateTracks(audio_stream_type_t streamType)
1993 {
1994 ALOGV("MixerThread::invalidateTracks() mixer %p, streamType %d, mTracks.size %d",
1995 this, streamType, mTracks.size());
1996 Mutex::Autolock _l(mLock);
1997
1998 size_t size = mTracks.size();
1999 for (size_t i = 0; i < size; i++) {
2000 sp<Track> t = mTracks[i];
2001 if (t->streamType() == streamType) {
2002 t->invalidate();
2003 }
2004 }
2005 }
2006
addEffectChain_l(const sp<EffectChain> & chain)2007 status_t AudioFlinger::PlaybackThread::addEffectChain_l(const sp<EffectChain>& chain)
2008 {
2009 int session = chain->sessionId();
2010 int16_t *buffer = mMixBuffer;
2011 bool ownsBuffer = false;
2012
2013 ALOGV("addEffectChain_l() %p on thread %p for session %d", chain.get(), this, session);
2014 if (session > 0) {
2015 // Only one effect chain can be present in direct output thread and it uses
2016 // the mix buffer as input
2017 if (mType != DIRECT) {
2018 size_t numSamples = mNormalFrameCount * mChannelCount;
2019 buffer = new int16_t[numSamples];
2020 memset(buffer, 0, numSamples * sizeof(int16_t));
2021 ALOGV("addEffectChain_l() creating new input buffer %p session %d", buffer, session);
2022 ownsBuffer = true;
2023 }
2024
2025 // Attach all tracks with same session ID to this chain.
2026 for (size_t i = 0; i < mTracks.size(); ++i) {
2027 sp<Track> track = mTracks[i];
2028 if (session == track->sessionId()) {
2029 ALOGV("addEffectChain_l() track->setMainBuffer track %p buffer %p", track.get(),
2030 buffer);
2031 track->setMainBuffer(buffer);
2032 chain->incTrackCnt();
2033 }
2034 }
2035
2036 // indicate all active tracks in the chain
2037 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2038 sp<Track> track = mActiveTracks[i].promote();
2039 if (track == 0) {
2040 continue;
2041 }
2042 if (session == track->sessionId()) {
2043 ALOGV("addEffectChain_l() activating track %p on session %d", track.get(), session);
2044 chain->incActiveTrackCnt();
2045 }
2046 }
2047 }
2048
2049 chain->setInBuffer(buffer, ownsBuffer);
2050 chain->setOutBuffer(mMixBuffer);
2051 // Effect chain for session AUDIO_SESSION_OUTPUT_STAGE is inserted at end of effect
2052 // chains list in order to be processed last as it contains output stage effects
2053 // Effect chain for session AUDIO_SESSION_OUTPUT_MIX is inserted before
2054 // session AUDIO_SESSION_OUTPUT_STAGE to be processed
2055 // after track specific effects and before output stage
2056 // It is therefore mandatory that AUDIO_SESSION_OUTPUT_MIX == 0 and
2057 // that AUDIO_SESSION_OUTPUT_STAGE < AUDIO_SESSION_OUTPUT_MIX
2058 // Effect chain for other sessions are inserted at beginning of effect
2059 // chains list to be processed before output mix effects. Relative order between other
2060 // sessions is not important
2061 size_t size = mEffectChains.size();
2062 size_t i = 0;
2063 for (i = 0; i < size; i++) {
2064 if (mEffectChains[i]->sessionId() < session) {
2065 break;
2066 }
2067 }
2068 mEffectChains.insertAt(chain, i);
2069 checkSuspendOnAddEffectChain_l(chain);
2070
2071 return NO_ERROR;
2072 }
2073
removeEffectChain_l(const sp<EffectChain> & chain)2074 size_t AudioFlinger::PlaybackThread::removeEffectChain_l(const sp<EffectChain>& chain)
2075 {
2076 int session = chain->sessionId();
2077
2078 ALOGV("removeEffectChain_l() %p from thread %p for session %d", chain.get(), this, session);
2079
2080 for (size_t i = 0; i < mEffectChains.size(); i++) {
2081 if (chain == mEffectChains[i]) {
2082 mEffectChains.removeAt(i);
2083 // detach all active tracks from the chain
2084 for (size_t i = 0 ; i < mActiveTracks.size() ; ++i) {
2085 sp<Track> track = mActiveTracks[i].promote();
2086 if (track == 0) {
2087 continue;
2088 }
2089 if (session == track->sessionId()) {
2090 ALOGV("removeEffectChain_l(): stopping track on chain %p for session Id: %d",
2091 chain.get(), session);
2092 chain->decActiveTrackCnt();
2093 }
2094 }
2095
2096 // detach all tracks with same session ID from this chain
2097 for (size_t i = 0; i < mTracks.size(); ++i) {
2098 sp<Track> track = mTracks[i];
2099 if (session == track->sessionId()) {
2100 track->setMainBuffer(mMixBuffer);
2101 chain->decTrackCnt();
2102 }
2103 }
2104 break;
2105 }
2106 }
2107 return mEffectChains.size();
2108 }
2109
attachAuxEffect(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2110 status_t AudioFlinger::PlaybackThread::attachAuxEffect(
2111 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2112 {
2113 Mutex::Autolock _l(mLock);
2114 return attachAuxEffect_l(track, EffectId);
2115 }
2116
attachAuxEffect_l(const sp<AudioFlinger::PlaybackThread::Track> track,int EffectId)2117 status_t AudioFlinger::PlaybackThread::attachAuxEffect_l(
2118 const sp<AudioFlinger::PlaybackThread::Track> track, int EffectId)
2119 {
2120 status_t status = NO_ERROR;
2121
2122 if (EffectId == 0) {
2123 track->setAuxBuffer(0, NULL);
2124 } else {
2125 // Auxiliary effects are always in audio session AUDIO_SESSION_OUTPUT_MIX
2126 sp<EffectModule> effect = getEffect_l(AUDIO_SESSION_OUTPUT_MIX, EffectId);
2127 if (effect != 0) {
2128 if ((effect->desc().flags & EFFECT_FLAG_TYPE_MASK) == EFFECT_FLAG_TYPE_AUXILIARY) {
2129 track->setAuxBuffer(EffectId, (int32_t *)effect->inBuffer());
2130 } else {
2131 status = INVALID_OPERATION;
2132 }
2133 } else {
2134 status = BAD_VALUE;
2135 }
2136 }
2137 return status;
2138 }
2139
detachAuxEffect_l(int effectId)2140 void AudioFlinger::PlaybackThread::detachAuxEffect_l(int effectId)
2141 {
2142 for (size_t i = 0; i < mTracks.size(); ++i) {
2143 sp<Track> track = mTracks[i];
2144 if (track->auxEffectId() == effectId) {
2145 attachAuxEffect_l(track, 0);
2146 }
2147 }
2148 }
2149
threadLoop()2150 bool AudioFlinger::PlaybackThread::threadLoop()
2151 {
2152 Vector< sp<Track> > tracksToRemove;
2153
2154 standbyTime = systemTime();
2155
2156 // MIXER
2157 nsecs_t lastWarning = 0;
2158
2159 // DUPLICATING
2160 // FIXME could this be made local to while loop?
2161 writeFrames = 0;
2162
2163 int lastGeneration = 0;
2164
2165 cacheParameters_l();
2166 sleepTime = idleSleepTime;
2167
2168 if (mType == MIXER) {
2169 sleepTimeShift = 0;
2170 }
2171
2172 CpuStats cpuStats;
2173 const String8 myName(String8::format("thread %p type %d TID %d", this, mType, gettid()));
2174
2175 acquireWakeLock();
2176
2177 // mNBLogWriter->log can only be called while thread mutex mLock is held.
2178 // So if you need to log when mutex is unlocked, set logString to a non-NULL string,
2179 // and then that string will be logged at the next convenient opportunity.
2180 const char *logString = NULL;
2181
2182 checkSilentMode_l();
2183
2184 while (!exitPending())
2185 {
2186 cpuStats.sample(myName);
2187
2188 Vector< sp<EffectChain> > effectChains;
2189
2190 processConfigEvents();
2191
2192 { // scope for mLock
2193
2194 Mutex::Autolock _l(mLock);
2195
2196 if (logString != NULL) {
2197 mNBLogWriter->logTimestamp();
2198 mNBLogWriter->log(logString);
2199 logString = NULL;
2200 }
2201
2202 if (mLatchDValid) {
2203 mLatchQ = mLatchD;
2204 mLatchDValid = false;
2205 mLatchQValid = true;
2206 }
2207
2208 if (checkForNewParameters_l()) {
2209 cacheParameters_l();
2210 }
2211
2212 saveOutputTracks();
2213 if (mSignalPending) {
2214 // A signal was raised while we were unlocked
2215 mSignalPending = false;
2216 } else if (waitingAsyncCallback_l()) {
2217 if (exitPending()) {
2218 break;
2219 }
2220 releaseWakeLock_l();
2221 mWakeLockUids.clear();
2222 mActiveTracksGeneration++;
2223 ALOGV("wait async completion");
2224 mWaitWorkCV.wait(mLock);
2225 ALOGV("async completion/wake");
2226 acquireWakeLock_l();
2227 standbyTime = systemTime() + standbyDelay;
2228 sleepTime = 0;
2229
2230 continue;
2231 }
2232 if ((!mActiveTracks.size() && systemTime() > standbyTime) ||
2233 isSuspended()) {
2234 // put audio hardware into standby after short delay
2235 if (shouldStandby_l()) {
2236
2237 threadLoop_standby();
2238
2239 mStandby = true;
2240 }
2241
2242 if (!mActiveTracks.size() && mConfigEvents.isEmpty()) {
2243 // we're about to wait, flush the binder command buffer
2244 IPCThreadState::self()->flushCommands();
2245
2246 clearOutputTracks();
2247
2248 if (exitPending()) {
2249 break;
2250 }
2251
2252 releaseWakeLock_l();
2253 mWakeLockUids.clear();
2254 mActiveTracksGeneration++;
2255 // wait until we have something to do...
2256 ALOGV("%s going to sleep", myName.string());
2257 mWaitWorkCV.wait(mLock);
2258 ALOGV("%s waking up", myName.string());
2259 acquireWakeLock_l();
2260
2261 mMixerStatus = MIXER_IDLE;
2262 mMixerStatusIgnoringFastTracks = MIXER_IDLE;
2263 mBytesWritten = 0;
2264 mBytesRemaining = 0;
2265 checkSilentMode_l();
2266
2267 standbyTime = systemTime() + standbyDelay;
2268 sleepTime = idleSleepTime;
2269 if (mType == MIXER) {
2270 sleepTimeShift = 0;
2271 }
2272
2273 continue;
2274 }
2275 }
2276 // mMixerStatusIgnoringFastTracks is also updated internally
2277 mMixerStatus = prepareTracks_l(&tracksToRemove);
2278
2279 // compare with previously applied list
2280 if (lastGeneration != mActiveTracksGeneration) {
2281 // update wakelock
2282 updateWakeLockUids_l(mWakeLockUids);
2283 lastGeneration = mActiveTracksGeneration;
2284 }
2285
2286 // prevent any changes in effect chain list and in each effect chain
2287 // during mixing and effect process as the audio buffers could be deleted
2288 // or modified if an effect is created or deleted
2289 lockEffectChains_l(effectChains);
2290 } // mLock scope ends
2291
2292 if (mBytesRemaining == 0) {
2293 mCurrentWriteLength = 0;
2294 if (mMixerStatus == MIXER_TRACKS_READY) {
2295 // threadLoop_mix() sets mCurrentWriteLength
2296 threadLoop_mix();
2297 } else if ((mMixerStatus != MIXER_DRAIN_TRACK)
2298 && (mMixerStatus != MIXER_DRAIN_ALL)) {
2299 // threadLoop_sleepTime sets sleepTime to 0 if data
2300 // must be written to HAL
2301 threadLoop_sleepTime();
2302 if (sleepTime == 0) {
2303 mCurrentWriteLength = mixBufferSize;
2304 }
2305 }
2306 mBytesRemaining = mCurrentWriteLength;
2307 if (isSuspended()) {
2308 sleepTime = suspendSleepTimeUs();
2309 // simulate write to HAL when suspended
2310 mBytesWritten += mixBufferSize;
2311 mBytesRemaining = 0;
2312 }
2313
2314 // only process effects if we're going to write
2315 if (sleepTime == 0 && mType != OFFLOAD) {
2316 for (size_t i = 0; i < effectChains.size(); i ++) {
2317 effectChains[i]->process_l();
2318 }
2319 }
2320 }
2321 // Process effect chains for offloaded thread even if no audio
2322 // was read from audio track: process only updates effect state
2323 // and thus does have to be synchronized with audio writes but may have
2324 // to be called while waiting for async write callback
2325 if (mType == OFFLOAD) {
2326 for (size_t i = 0; i < effectChains.size(); i ++) {
2327 effectChains[i]->process_l();
2328 }
2329 }
2330
2331 // enable changes in effect chain
2332 unlockEffectChains(effectChains);
2333
2334 if (!waitingAsyncCallback()) {
2335 // sleepTime == 0 means we must write to audio hardware
2336 if (sleepTime == 0) {
2337 if (mBytesRemaining) {
2338 ssize_t ret = threadLoop_write();
2339 if (ret < 0) {
2340 mBytesRemaining = 0;
2341 } else {
2342 mBytesWritten += ret;
2343 mBytesRemaining -= ret;
2344 }
2345 } else if ((mMixerStatus == MIXER_DRAIN_TRACK) ||
2346 (mMixerStatus == MIXER_DRAIN_ALL)) {
2347 threadLoop_drain();
2348 }
2349 if (mType == MIXER) {
2350 // write blocked detection
2351 nsecs_t now = systemTime();
2352 nsecs_t delta = now - mLastWriteTime;
2353 if (!mStandby && delta > maxPeriod) {
2354 mNumDelayedWrites++;
2355 if ((now - lastWarning) > kWarningThrottleNs) {
2356 ATRACE_NAME("underrun");
2357 ALOGW("write blocked for %llu msecs, %d delayed writes, thread %p",
2358 ns2ms(delta), mNumDelayedWrites, this);
2359 lastWarning = now;
2360 }
2361 }
2362 }
2363
2364 } else {
2365 usleep(sleepTime);
2366 }
2367 }
2368
2369 // Finally let go of removed track(s), without the lock held
2370 // since we can't guarantee the destructors won't acquire that
2371 // same lock. This will also mutate and push a new fast mixer state.
2372 threadLoop_removeTracks(tracksToRemove);
2373 tracksToRemove.clear();
2374
2375 // FIXME I don't understand the need for this here;
2376 // it was in the original code but maybe the
2377 // assignment in saveOutputTracks() makes this unnecessary?
2378 clearOutputTracks();
2379
2380 // Effect chains will be actually deleted here if they were removed from
2381 // mEffectChains list during mixing or effects processing
2382 effectChains.clear();
2383
2384 // FIXME Note that the above .clear() is no longer necessary since effectChains
2385 // is now local to this block, but will keep it for now (at least until merge done).
2386 }
2387
2388 threadLoop_exit();
2389
2390 // for DuplicatingThread, standby mode is handled by the outputTracks, otherwise ...
2391 if (mType == MIXER || mType == DIRECT || mType == OFFLOAD) {
2392 // put output stream into standby mode
2393 if (!mStandby) {
2394 mOutput->stream->common.standby(&mOutput->stream->common);
2395 }
2396 }
2397
2398 releaseWakeLock();
2399 mWakeLockUids.clear();
2400 mActiveTracksGeneration++;
2401
2402 ALOGV("Thread %p type %d exiting", this, mType);
2403 return false;
2404 }
2405
2406 // removeTracks_l() must be called with ThreadBase::mLock held
removeTracks_l(const Vector<sp<Track>> & tracksToRemove)2407 void AudioFlinger::PlaybackThread::removeTracks_l(const Vector< sp<Track> >& tracksToRemove)
2408 {
2409 size_t count = tracksToRemove.size();
2410 if (count) {
2411 for (size_t i=0 ; i<count ; i++) {
2412 const sp<Track>& track = tracksToRemove.itemAt(i);
2413 mActiveTracks.remove(track);
2414 mWakeLockUids.remove(track->uid());
2415 mActiveTracksGeneration++;
2416 ALOGV("removeTracks_l removing track on session %d", track->sessionId());
2417 sp<EffectChain> chain = getEffectChain_l(track->sessionId());
2418 if (chain != 0) {
2419 ALOGV("stopping track on chain %p for session Id: %d", chain.get(),
2420 track->sessionId());
2421 chain->decActiveTrackCnt();
2422 }
2423 if (track->isTerminated()) {
2424 removeTrack_l(track);
2425 }
2426 }
2427 }
2428
2429 }
2430
getTimestamp_l(AudioTimestamp & timestamp)2431 status_t AudioFlinger::PlaybackThread::getTimestamp_l(AudioTimestamp& timestamp)
2432 {
2433 if (mNormalSink != 0) {
2434 return mNormalSink->getTimestamp(timestamp);
2435 }
2436 if (mType == OFFLOAD && mOutput->stream->get_presentation_position) {
2437 uint64_t position64;
2438 int ret = mOutput->stream->get_presentation_position(
2439 mOutput->stream, &position64, ×tamp.mTime);
2440 if (ret == 0) {
2441 timestamp.mPosition = (uint32_t)position64;
2442 return NO_ERROR;
2443 }
2444 }
2445 return INVALID_OPERATION;
2446 }
2447 // ----------------------------------------------------------------------------
2448
MixerThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device,type_t type)2449 AudioFlinger::MixerThread::MixerThread(const sp<AudioFlinger>& audioFlinger, AudioStreamOut* output,
2450 audio_io_handle_t id, audio_devices_t device, type_t type)
2451 : PlaybackThread(audioFlinger, output, id, device, type),
2452 // mAudioMixer below
2453 // mFastMixer below
2454 mFastMixerFutex(0)
2455 // mOutputSink below
2456 // mPipeSink below
2457 // mNormalSink below
2458 {
2459 ALOGV("MixerThread() id=%d device=%#x type=%d", id, device, type);
2460 ALOGV("mSampleRate=%u, mChannelMask=%#x, mChannelCount=%u, mFormat=%d, mFrameSize=%u, "
2461 "mFrameCount=%d, mNormalFrameCount=%d",
2462 mSampleRate, mChannelMask, mChannelCount, mFormat, mFrameSize, mFrameCount,
2463 mNormalFrameCount);
2464 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
2465
2466 // FIXME - Current mixer implementation only supports stereo output
2467 if (mChannelCount != FCC_2) {
2468 ALOGE("Invalid audio hardware channel count %d", mChannelCount);
2469 }
2470
2471 // create an NBAIO sink for the HAL output stream, and negotiate
2472 mOutputSink = new AudioStreamOutSink(output->stream);
2473 size_t numCounterOffers = 0;
2474 const NBAIO_Format offers[1] = {Format_from_SR_C(mSampleRate, mChannelCount)};
2475 ssize_t index = mOutputSink->negotiate(offers, 1, NULL, numCounterOffers);
2476 ALOG_ASSERT(index == 0);
2477
2478 // initialize fast mixer depending on configuration
2479 bool initFastMixer;
2480 switch (kUseFastMixer) {
2481 case FastMixer_Never:
2482 initFastMixer = false;
2483 break;
2484 case FastMixer_Always:
2485 initFastMixer = true;
2486 break;
2487 case FastMixer_Static:
2488 case FastMixer_Dynamic:
2489 initFastMixer = mFrameCount < mNormalFrameCount;
2490 break;
2491 }
2492 if (initFastMixer) {
2493
2494 // create a MonoPipe to connect our submix to FastMixer
2495 NBAIO_Format format = mOutputSink->format();
2496 // This pipe depth compensates for scheduling latency of the normal mixer thread.
2497 // When it wakes up after a maximum latency, it runs a few cycles quickly before
2498 // finally blocking. Note the pipe implementation rounds up the request to a power of 2.
2499 MonoPipe *monoPipe = new MonoPipe(mNormalFrameCount * 4, format, true /*writeCanBlock*/);
2500 const NBAIO_Format offers[1] = {format};
2501 size_t numCounterOffers = 0;
2502 ssize_t index = monoPipe->negotiate(offers, 1, NULL, numCounterOffers);
2503 ALOG_ASSERT(index == 0);
2504 monoPipe->setAvgFrames((mScreenState & 1) ?
2505 (monoPipe->maxFrames() * 7) / 8 : mNormalFrameCount * 2);
2506 mPipeSink = monoPipe;
2507
2508 #ifdef TEE_SINK
2509 if (mTeeSinkOutputEnabled) {
2510 // create a Pipe to archive a copy of FastMixer's output for dumpsys
2511 Pipe *teeSink = new Pipe(mTeeSinkOutputFrames, format);
2512 numCounterOffers = 0;
2513 index = teeSink->negotiate(offers, 1, NULL, numCounterOffers);
2514 ALOG_ASSERT(index == 0);
2515 mTeeSink = teeSink;
2516 PipeReader *teeSource = new PipeReader(*teeSink);
2517 numCounterOffers = 0;
2518 index = teeSource->negotiate(offers, 1, NULL, numCounterOffers);
2519 ALOG_ASSERT(index == 0);
2520 mTeeSource = teeSource;
2521 }
2522 #endif
2523
2524 // create fast mixer and configure it initially with just one fast track for our submix
2525 mFastMixer = new FastMixer();
2526 FastMixerStateQueue *sq = mFastMixer->sq();
2527 #ifdef STATE_QUEUE_DUMP
2528 sq->setObserverDump(&mStateQueueObserverDump);
2529 sq->setMutatorDump(&mStateQueueMutatorDump);
2530 #endif
2531 FastMixerState *state = sq->begin();
2532 FastTrack *fastTrack = &state->mFastTracks[0];
2533 // wrap the source side of the MonoPipe to make it an AudioBufferProvider
2534 fastTrack->mBufferProvider = new SourceAudioBufferProvider(new MonoPipeReader(monoPipe));
2535 fastTrack->mVolumeProvider = NULL;
2536 fastTrack->mGeneration++;
2537 state->mFastTracksGen++;
2538 state->mTrackMask = 1;
2539 // fast mixer will use the HAL output sink
2540 state->mOutputSink = mOutputSink.get();
2541 state->mOutputSinkGen++;
2542 state->mFrameCount = mFrameCount;
2543 state->mCommand = FastMixerState::COLD_IDLE;
2544 // already done in constructor initialization list
2545 //mFastMixerFutex = 0;
2546 state->mColdFutexAddr = &mFastMixerFutex;
2547 state->mColdGen++;
2548 state->mDumpState = &mFastMixerDumpState;
2549 #ifdef TEE_SINK
2550 state->mTeeSink = mTeeSink.get();
2551 #endif
2552 mFastMixerNBLogWriter = audioFlinger->newWriter_l(kFastMixerLogSize, "FastMixer");
2553 state->mNBLogWriter = mFastMixerNBLogWriter.get();
2554 sq->end();
2555 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2556
2557 // start the fast mixer
2558 mFastMixer->run("FastMixer", PRIORITY_URGENT_AUDIO);
2559 pid_t tid = mFastMixer->getTid();
2560 int err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
2561 if (err != 0) {
2562 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
2563 kPriorityFastMixer, getpid_cached, tid, err);
2564 }
2565
2566 #ifdef AUDIO_WATCHDOG
2567 // create and start the watchdog
2568 mAudioWatchdog = new AudioWatchdog();
2569 mAudioWatchdog->setDump(&mAudioWatchdogDump);
2570 mAudioWatchdog->run("AudioWatchdog", PRIORITY_URGENT_AUDIO);
2571 tid = mAudioWatchdog->getTid();
2572 err = requestPriority(getpid_cached, tid, kPriorityFastMixer);
2573 if (err != 0) {
2574 ALOGW("Policy SCHED_FIFO priority %d is unavailable for pid %d tid %d; error %d",
2575 kPriorityFastMixer, getpid_cached, tid, err);
2576 }
2577 #endif
2578
2579 } else {
2580 mFastMixer = NULL;
2581 }
2582
2583 switch (kUseFastMixer) {
2584 case FastMixer_Never:
2585 case FastMixer_Dynamic:
2586 mNormalSink = mOutputSink;
2587 break;
2588 case FastMixer_Always:
2589 mNormalSink = mPipeSink;
2590 break;
2591 case FastMixer_Static:
2592 mNormalSink = initFastMixer ? mPipeSink : mOutputSink;
2593 break;
2594 }
2595 }
2596
~MixerThread()2597 AudioFlinger::MixerThread::~MixerThread()
2598 {
2599 if (mFastMixer != NULL) {
2600 FastMixerStateQueue *sq = mFastMixer->sq();
2601 FastMixerState *state = sq->begin();
2602 if (state->mCommand == FastMixerState::COLD_IDLE) {
2603 int32_t old = android_atomic_inc(&mFastMixerFutex);
2604 if (old == -1) {
2605 __futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
2606 }
2607 }
2608 state->mCommand = FastMixerState::EXIT;
2609 sq->end();
2610 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2611 mFastMixer->join();
2612 // Though the fast mixer thread has exited, it's state queue is still valid.
2613 // We'll use that extract the final state which contains one remaining fast track
2614 // corresponding to our sub-mix.
2615 state = sq->begin();
2616 ALOG_ASSERT(state->mTrackMask == 1);
2617 FastTrack *fastTrack = &state->mFastTracks[0];
2618 ALOG_ASSERT(fastTrack->mBufferProvider != NULL);
2619 delete fastTrack->mBufferProvider;
2620 sq->end(false /*didModify*/);
2621 delete mFastMixer;
2622 #ifdef AUDIO_WATCHDOG
2623 if (mAudioWatchdog != 0) {
2624 mAudioWatchdog->requestExit();
2625 mAudioWatchdog->requestExitAndWait();
2626 mAudioWatchdog.clear();
2627 }
2628 #endif
2629 }
2630 mAudioFlinger->unregisterWriter(mFastMixerNBLogWriter);
2631 delete mAudioMixer;
2632 }
2633
2634
correctLatency_l(uint32_t latency) const2635 uint32_t AudioFlinger::MixerThread::correctLatency_l(uint32_t latency) const
2636 {
2637 if (mFastMixer != NULL) {
2638 MonoPipe *pipe = (MonoPipe *)mPipeSink.get();
2639 latency += (pipe->getAvgFrames() * 1000) / mSampleRate;
2640 }
2641 return latency;
2642 }
2643
2644
threadLoop_removeTracks(const Vector<sp<Track>> & tracksToRemove)2645 void AudioFlinger::MixerThread::threadLoop_removeTracks(const Vector< sp<Track> >& tracksToRemove)
2646 {
2647 PlaybackThread::threadLoop_removeTracks(tracksToRemove);
2648 }
2649
threadLoop_write()2650 ssize_t AudioFlinger::MixerThread::threadLoop_write()
2651 {
2652 // FIXME we should only do one push per cycle; confirm this is true
2653 // Start the fast mixer if it's not already running
2654 if (mFastMixer != NULL) {
2655 FastMixerStateQueue *sq = mFastMixer->sq();
2656 FastMixerState *state = sq->begin();
2657 if (state->mCommand != FastMixerState::MIX_WRITE &&
2658 (kUseFastMixer != FastMixer_Dynamic || state->mTrackMask > 1)) {
2659 if (state->mCommand == FastMixerState::COLD_IDLE) {
2660 int32_t old = android_atomic_inc(&mFastMixerFutex);
2661 if (old == -1) {
2662 __futex_syscall3(&mFastMixerFutex, FUTEX_WAKE_PRIVATE, 1);
2663 }
2664 #ifdef AUDIO_WATCHDOG
2665 if (mAudioWatchdog != 0) {
2666 mAudioWatchdog->resume();
2667 }
2668 #endif
2669 }
2670 state->mCommand = FastMixerState::MIX_WRITE;
2671 mFastMixerDumpState.increaseSamplingN(mAudioFlinger->isLowRamDevice() ?
2672 FastMixerDumpState::kSamplingNforLowRamDevice : FastMixerDumpState::kSamplingN);
2673 sq->end();
2674 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
2675 if (kUseFastMixer == FastMixer_Dynamic) {
2676 mNormalSink = mPipeSink;
2677 }
2678 } else {
2679 sq->end(false /*didModify*/);
2680 }
2681 }
2682 return PlaybackThread::threadLoop_write();
2683 }
2684
threadLoop_standby()2685 void AudioFlinger::MixerThread::threadLoop_standby()
2686 {
2687 // Idle the fast mixer if it's currently running
2688 if (mFastMixer != NULL) {
2689 FastMixerStateQueue *sq = mFastMixer->sq();
2690 FastMixerState *state = sq->begin();
2691 if (!(state->mCommand & FastMixerState::IDLE)) {
2692 state->mCommand = FastMixerState::COLD_IDLE;
2693 state->mColdFutexAddr = &mFastMixerFutex;
2694 state->mColdGen++;
2695 mFastMixerFutex = 0;
2696 sq->end();
2697 // BLOCK_UNTIL_PUSHED would be insufficient, as we need it to stop doing I/O now
2698 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
2699 if (kUseFastMixer == FastMixer_Dynamic) {
2700 mNormalSink = mOutputSink;
2701 }
2702 #ifdef AUDIO_WATCHDOG
2703 if (mAudioWatchdog != 0) {
2704 mAudioWatchdog->pause();
2705 }
2706 #endif
2707 } else {
2708 sq->end(false /*didModify*/);
2709 }
2710 }
2711 PlaybackThread::threadLoop_standby();
2712 }
2713
2714 // Empty implementation for standard mixer
2715 // Overridden for offloaded playback
flushOutput_l()2716 void AudioFlinger::PlaybackThread::flushOutput_l()
2717 {
2718 }
2719
waitingAsyncCallback_l()2720 bool AudioFlinger::PlaybackThread::waitingAsyncCallback_l()
2721 {
2722 return false;
2723 }
2724
shouldStandby_l()2725 bool AudioFlinger::PlaybackThread::shouldStandby_l()
2726 {
2727 return !mStandby;
2728 }
2729
waitingAsyncCallback()2730 bool AudioFlinger::PlaybackThread::waitingAsyncCallback()
2731 {
2732 Mutex::Autolock _l(mLock);
2733 return waitingAsyncCallback_l();
2734 }
2735
2736 // shared by MIXER and DIRECT, overridden by DUPLICATING
threadLoop_standby()2737 void AudioFlinger::PlaybackThread::threadLoop_standby()
2738 {
2739 ALOGV("Audio hardware entering standby, mixer %p, suspend count %d", this, mSuspended);
2740 mOutput->stream->common.standby(&mOutput->stream->common);
2741 if (mUseAsyncWrite != 0) {
2742 // discard any pending drain or write ack by incrementing sequence
2743 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
2744 mDrainSequence = (mDrainSequence + 2) & ~1;
2745 ALOG_ASSERT(mCallbackThread != 0);
2746 mCallbackThread->setWriteBlocked(mWriteAckSequence);
2747 mCallbackThread->setDraining(mDrainSequence);
2748 }
2749 }
2750
threadLoop_mix()2751 void AudioFlinger::MixerThread::threadLoop_mix()
2752 {
2753 // obtain the presentation timestamp of the next output buffer
2754 int64_t pts;
2755 status_t status = INVALID_OPERATION;
2756
2757 if (mNormalSink != 0) {
2758 status = mNormalSink->getNextWriteTimestamp(&pts);
2759 } else {
2760 status = mOutputSink->getNextWriteTimestamp(&pts);
2761 }
2762
2763 if (status != NO_ERROR) {
2764 pts = AudioBufferProvider::kInvalidPTS;
2765 }
2766
2767 // mix buffers...
2768 mAudioMixer->process(pts);
2769 mCurrentWriteLength = mixBufferSize;
2770 // increase sleep time progressively when application underrun condition clears.
2771 // Only increase sleep time if the mixer is ready for two consecutive times to avoid
2772 // that a steady state of alternating ready/not ready conditions keeps the sleep time
2773 // such that we would underrun the audio HAL.
2774 if ((sleepTime == 0) && (sleepTimeShift > 0)) {
2775 sleepTimeShift--;
2776 }
2777 sleepTime = 0;
2778 standbyTime = systemTime() + standbyDelay;
2779 //TODO: delay standby when effects have a tail
2780 }
2781
threadLoop_sleepTime()2782 void AudioFlinger::MixerThread::threadLoop_sleepTime()
2783 {
2784 // If no tracks are ready, sleep once for the duration of an output
2785 // buffer size, then write 0s to the output
2786 if (sleepTime == 0) {
2787 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
2788 sleepTime = activeSleepTime >> sleepTimeShift;
2789 if (sleepTime < kMinThreadSleepTimeUs) {
2790 sleepTime = kMinThreadSleepTimeUs;
2791 }
2792 // reduce sleep time in case of consecutive application underruns to avoid
2793 // starving the audio HAL. As activeSleepTimeUs() is larger than a buffer
2794 // duration we would end up writing less data than needed by the audio HAL if
2795 // the condition persists.
2796 if (sleepTimeShift < kMaxThreadSleepTimeShift) {
2797 sleepTimeShift++;
2798 }
2799 } else {
2800 sleepTime = idleSleepTime;
2801 }
2802 } else if (mBytesWritten != 0 || (mMixerStatus == MIXER_TRACKS_ENABLED)) {
2803 memset (mMixBuffer, 0, mixBufferSize);
2804 sleepTime = 0;
2805 ALOGV_IF(mBytesWritten == 0 && (mMixerStatus == MIXER_TRACKS_ENABLED),
2806 "anticipated start");
2807 }
2808 // TODO add standby time extension fct of effect tail
2809 }
2810
2811 // prepareTracks_l() must be called with ThreadBase::mLock held
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)2812 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::MixerThread::prepareTracks_l(
2813 Vector< sp<Track> > *tracksToRemove)
2814 {
2815
2816 mixer_state mixerStatus = MIXER_IDLE;
2817 // find out which tracks need to be processed
2818 size_t count = mActiveTracks.size();
2819 size_t mixedTracks = 0;
2820 size_t tracksWithEffect = 0;
2821 // counts only _active_ fast tracks
2822 size_t fastTracks = 0;
2823 uint32_t resetMask = 0; // bit mask of fast tracks that need to be reset
2824
2825 float masterVolume = mMasterVolume;
2826 bool masterMute = mMasterMute;
2827
2828 if (masterMute) {
2829 masterVolume = 0;
2830 }
2831 // Delegate master volume control to effect in output mix effect chain if needed
2832 sp<EffectChain> chain = getEffectChain_l(AUDIO_SESSION_OUTPUT_MIX);
2833 if (chain != 0) {
2834 uint32_t v = (uint32_t)(masterVolume * (1 << 24));
2835 chain->setVolume_l(&v, &v);
2836 masterVolume = (float)((v + (1 << 23)) >> 24);
2837 chain.clear();
2838 }
2839
2840 // prepare a new state to push
2841 FastMixerStateQueue *sq = NULL;
2842 FastMixerState *state = NULL;
2843 bool didModify = false;
2844 FastMixerStateQueue::block_t block = FastMixerStateQueue::BLOCK_UNTIL_PUSHED;
2845 if (mFastMixer != NULL) {
2846 sq = mFastMixer->sq();
2847 state = sq->begin();
2848 }
2849
2850 for (size_t i=0 ; i<count ; i++) {
2851 const sp<Track> t = mActiveTracks[i].promote();
2852 if (t == 0) {
2853 continue;
2854 }
2855
2856 // this const just means the local variable doesn't change
2857 Track* const track = t.get();
2858
2859 // process fast tracks
2860 if (track->isFastTrack()) {
2861
2862 // It's theoretically possible (though unlikely) for a fast track to be created
2863 // and then removed within the same normal mix cycle. This is not a problem, as
2864 // the track never becomes active so it's fast mixer slot is never touched.
2865 // The converse, of removing an (active) track and then creating a new track
2866 // at the identical fast mixer slot within the same normal mix cycle,
2867 // is impossible because the slot isn't marked available until the end of each cycle.
2868 int j = track->mFastIndex;
2869 ALOG_ASSERT(0 < j && j < (int)FastMixerState::kMaxFastTracks);
2870 ALOG_ASSERT(!(mFastTrackAvailMask & (1 << j)));
2871 FastTrack *fastTrack = &state->mFastTracks[j];
2872
2873 // Determine whether the track is currently in underrun condition,
2874 // and whether it had a recent underrun.
2875 FastTrackDump *ftDump = &mFastMixerDumpState.mTracks[j];
2876 FastTrackUnderruns underruns = ftDump->mUnderruns;
2877 uint32_t recentFull = (underruns.mBitFields.mFull -
2878 track->mObservedUnderruns.mBitFields.mFull) & UNDERRUN_MASK;
2879 uint32_t recentPartial = (underruns.mBitFields.mPartial -
2880 track->mObservedUnderruns.mBitFields.mPartial) & UNDERRUN_MASK;
2881 uint32_t recentEmpty = (underruns.mBitFields.mEmpty -
2882 track->mObservedUnderruns.mBitFields.mEmpty) & UNDERRUN_MASK;
2883 uint32_t recentUnderruns = recentPartial + recentEmpty;
2884 track->mObservedUnderruns = underruns;
2885 // don't count underruns that occur while stopping or pausing
2886 // or stopped which can occur when flush() is called while active
2887 if (!(track->isStopping() || track->isPausing() || track->isStopped()) &&
2888 recentUnderruns > 0) {
2889 // FIXME fast mixer will pull & mix partial buffers, but we count as a full underrun
2890 track->mAudioTrackServerProxy->tallyUnderrunFrames(recentUnderruns * mFrameCount);
2891 }
2892
2893 // This is similar to the state machine for normal tracks,
2894 // with a few modifications for fast tracks.
2895 bool isActive = true;
2896 switch (track->mState) {
2897 case TrackBase::STOPPING_1:
2898 // track stays active in STOPPING_1 state until first underrun
2899 if (recentUnderruns > 0 || track->isTerminated()) {
2900 track->mState = TrackBase::STOPPING_2;
2901 }
2902 break;
2903 case TrackBase::PAUSING:
2904 // ramp down is not yet implemented
2905 track->setPaused();
2906 break;
2907 case TrackBase::RESUMING:
2908 // ramp up is not yet implemented
2909 track->mState = TrackBase::ACTIVE;
2910 break;
2911 case TrackBase::ACTIVE:
2912 if (recentFull > 0 || recentPartial > 0) {
2913 // track has provided at least some frames recently: reset retry count
2914 track->mRetryCount = kMaxTrackRetries;
2915 }
2916 if (recentUnderruns == 0) {
2917 // no recent underruns: stay active
2918 break;
2919 }
2920 // there has recently been an underrun of some kind
2921 if (track->sharedBuffer() == 0) {
2922 // were any of the recent underruns "empty" (no frames available)?
2923 if (recentEmpty == 0) {
2924 // no, then ignore the partial underruns as they are allowed indefinitely
2925 break;
2926 }
2927 // there has recently been an "empty" underrun: decrement the retry counter
2928 if (--(track->mRetryCount) > 0) {
2929 break;
2930 }
2931 // indicate to client process that the track was disabled because of underrun;
2932 // it will then automatically call start() when data is available
2933 android_atomic_or(CBLK_DISABLED, &track->mCblk->mFlags);
2934 // remove from active list, but state remains ACTIVE [confusing but true]
2935 isActive = false;
2936 break;
2937 }
2938 // fall through
2939 case TrackBase::STOPPING_2:
2940 case TrackBase::PAUSED:
2941 case TrackBase::STOPPED:
2942 case TrackBase::FLUSHED: // flush() while active
2943 // Check for presentation complete if track is inactive
2944 // We have consumed all the buffers of this track.
2945 // This would be incomplete if we auto-paused on underrun
2946 {
2947 size_t audioHALFrames =
2948 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
2949 size_t framesWritten = mBytesWritten / mFrameSize;
2950 if (!(mStandby || track->presentationComplete(framesWritten, audioHALFrames))) {
2951 // track stays in active list until presentation is complete
2952 break;
2953 }
2954 }
2955 if (track->isStopping_2()) {
2956 track->mState = TrackBase::STOPPED;
2957 }
2958 if (track->isStopped()) {
2959 // Can't reset directly, as fast mixer is still polling this track
2960 // track->reset();
2961 // So instead mark this track as needing to be reset after push with ack
2962 resetMask |= 1 << i;
2963 }
2964 isActive = false;
2965 break;
2966 case TrackBase::IDLE:
2967 default:
2968 LOG_FATAL("unexpected track state %d", track->mState);
2969 }
2970
2971 if (isActive) {
2972 // was it previously inactive?
2973 if (!(state->mTrackMask & (1 << j))) {
2974 ExtendedAudioBufferProvider *eabp = track;
2975 VolumeProvider *vp = track;
2976 fastTrack->mBufferProvider = eabp;
2977 fastTrack->mVolumeProvider = vp;
2978 fastTrack->mSampleRate = track->mSampleRate;
2979 fastTrack->mChannelMask = track->mChannelMask;
2980 fastTrack->mGeneration++;
2981 state->mTrackMask |= 1 << j;
2982 didModify = true;
2983 // no acknowledgement required for newly active tracks
2984 }
2985 // cache the combined master volume and stream type volume for fast mixer; this
2986 // lacks any synchronization or barrier so VolumeProvider may read a stale value
2987 track->mCachedVolume = masterVolume * mStreamTypes[track->streamType()].volume;
2988 ++fastTracks;
2989 } else {
2990 // was it previously active?
2991 if (state->mTrackMask & (1 << j)) {
2992 fastTrack->mBufferProvider = NULL;
2993 fastTrack->mGeneration++;
2994 state->mTrackMask &= ~(1 << j);
2995 didModify = true;
2996 // If any fast tracks were removed, we must wait for acknowledgement
2997 // because we're about to decrement the last sp<> on those tracks.
2998 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
2999 } else {
3000 LOG_FATAL("fast track %d should have been active", j);
3001 }
3002 tracksToRemove->add(track);
3003 // Avoids a misleading display in dumpsys
3004 track->mObservedUnderruns.mBitFields.mMostRecent = UNDERRUN_FULL;
3005 }
3006 continue;
3007 }
3008
3009 { // local variable scope to avoid goto warning
3010
3011 audio_track_cblk_t* cblk = track->cblk();
3012
3013 // The first time a track is added we wait
3014 // for all its buffers to be filled before processing it
3015 int name = track->name();
3016 // make sure that we have enough frames to mix one full buffer.
3017 // enforce this condition only once to enable draining the buffer in case the client
3018 // app does not call stop() and relies on underrun to stop:
3019 // hence the test on (mMixerStatus == MIXER_TRACKS_READY) meaning the track was mixed
3020 // during last round
3021 size_t desiredFrames;
3022 uint32_t sr = track->sampleRate();
3023 if (sr == mSampleRate) {
3024 desiredFrames = mNormalFrameCount;
3025 } else {
3026 // +1 for rounding and +1 for additional sample needed for interpolation
3027 desiredFrames = (mNormalFrameCount * sr) / mSampleRate + 1 + 1;
3028 // add frames already consumed but not yet released by the resampler
3029 // because cblk->framesReady() will include these frames
3030 desiredFrames += mAudioMixer->getUnreleasedFrames(track->name());
3031 // the minimum track buffer size is normally twice the number of frames necessary
3032 // to fill one buffer and the resampler should not leave more than one buffer worth
3033 // of unreleased frames after each pass, but just in case...
3034 ALOG_ASSERT(desiredFrames <= cblk->frameCount_);
3035 }
3036 uint32_t minFrames = 1;
3037 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing() &&
3038 (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY)) {
3039 minFrames = desiredFrames;
3040 }
3041
3042 size_t framesReady = track->framesReady();
3043 if ((framesReady >= minFrames) && track->isReady() &&
3044 !track->isPaused() && !track->isTerminated())
3045 {
3046 ALOGVV("track %d s=%08x [OK] on thread %p", name, cblk->mServer, this);
3047
3048 mixedTracks++;
3049
3050 // track->mainBuffer() != mMixBuffer means there is an effect chain
3051 // connected to the track
3052 chain.clear();
3053 if (track->mainBuffer() != mMixBuffer) {
3054 chain = getEffectChain_l(track->sessionId());
3055 // Delegate volume control to effect in track effect chain if needed
3056 if (chain != 0) {
3057 tracksWithEffect++;
3058 } else {
3059 ALOGW("prepareTracks_l(): track %d attached to effect but no chain found on "
3060 "session %d",
3061 name, track->sessionId());
3062 }
3063 }
3064
3065
3066 int param = AudioMixer::VOLUME;
3067 if (track->mFillingUpStatus == Track::FS_FILLED) {
3068 // no ramp for the first volume setting
3069 track->mFillingUpStatus = Track::FS_ACTIVE;
3070 if (track->mState == TrackBase::RESUMING) {
3071 track->mState = TrackBase::ACTIVE;
3072 param = AudioMixer::RAMP_VOLUME;
3073 }
3074 mAudioMixer->setParameter(name, AudioMixer::RESAMPLE, AudioMixer::RESET, NULL);
3075 // FIXME should not make a decision based on mServer
3076 } else if (cblk->mServer != 0) {
3077 // If the track is stopped before the first frame was mixed,
3078 // do not apply ramp
3079 param = AudioMixer::RAMP_VOLUME;
3080 }
3081
3082 // compute volume for this track
3083 uint32_t vl, vr, va;
3084 if (track->isPausing() || mStreamTypes[track->streamType()].mute) {
3085 vl = vr = va = 0;
3086 if (track->isPausing()) {
3087 track->setPaused();
3088 }
3089 } else {
3090
3091 // read original volumes with volume control
3092 float typeVolume = mStreamTypes[track->streamType()].volume;
3093 float v = masterVolume * typeVolume;
3094 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3095 uint32_t vlr = proxy->getVolumeLR();
3096 vl = vlr & 0xFFFF;
3097 vr = vlr >> 16;
3098 // track volumes come from shared memory, so can't be trusted and must be clamped
3099 if (vl > MAX_GAIN_INT) {
3100 ALOGV("Track left volume out of range: %04X", vl);
3101 vl = MAX_GAIN_INT;
3102 }
3103 if (vr > MAX_GAIN_INT) {
3104 ALOGV("Track right volume out of range: %04X", vr);
3105 vr = MAX_GAIN_INT;
3106 }
3107 // now apply the master volume and stream type volume
3108 vl = (uint32_t)(v * vl) << 12;
3109 vr = (uint32_t)(v * vr) << 12;
3110 // assuming master volume and stream type volume each go up to 1.0,
3111 // vl and vr are now in 8.24 format
3112
3113 uint16_t sendLevel = proxy->getSendLevel_U4_12();
3114 // send level comes from shared memory and so may be corrupt
3115 if (sendLevel > MAX_GAIN_INT) {
3116 ALOGV("Track send level out of range: %04X", sendLevel);
3117 sendLevel = MAX_GAIN_INT;
3118 }
3119 va = (uint32_t)(v * sendLevel);
3120 }
3121
3122 // Delegate volume control to effect in track effect chain if needed
3123 if (chain != 0 && chain->setVolume_l(&vl, &vr)) {
3124 // Do not ramp volume if volume is controlled by effect
3125 param = AudioMixer::VOLUME;
3126 track->mHasVolumeController = true;
3127 } else {
3128 // force no volume ramp when volume controller was just disabled or removed
3129 // from effect chain to avoid volume spike
3130 if (track->mHasVolumeController) {
3131 param = AudioMixer::VOLUME;
3132 }
3133 track->mHasVolumeController = false;
3134 }
3135
3136 // Convert volumes from 8.24 to 4.12 format
3137 // This additional clamping is needed in case chain->setVolume_l() overshot
3138 vl = (vl + (1 << 11)) >> 12;
3139 if (vl > MAX_GAIN_INT) {
3140 vl = MAX_GAIN_INT;
3141 }
3142 vr = (vr + (1 << 11)) >> 12;
3143 if (vr > MAX_GAIN_INT) {
3144 vr = MAX_GAIN_INT;
3145 }
3146
3147 if (va > MAX_GAIN_INT) {
3148 va = MAX_GAIN_INT; // va is uint32_t, so no need to check for -
3149 }
3150
3151 // XXX: these things DON'T need to be done each time
3152 mAudioMixer->setBufferProvider(name, track);
3153 mAudioMixer->enable(name);
3154
3155 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME0, (void *)vl);
3156 mAudioMixer->setParameter(name, param, AudioMixer::VOLUME1, (void *)vr);
3157 mAudioMixer->setParameter(name, param, AudioMixer::AUXLEVEL, (void *)va);
3158 mAudioMixer->setParameter(
3159 name,
3160 AudioMixer::TRACK,
3161 AudioMixer::FORMAT, (void *)track->format());
3162 mAudioMixer->setParameter(
3163 name,
3164 AudioMixer::TRACK,
3165 AudioMixer::CHANNEL_MASK, (void *)track->channelMask());
3166 // limit track sample rate to 2 x output sample rate, which changes at re-configuration
3167 uint32_t maxSampleRate = mSampleRate * 2;
3168 uint32_t reqSampleRate = track->mAudioTrackServerProxy->getSampleRate();
3169 if (reqSampleRate == 0) {
3170 reqSampleRate = mSampleRate;
3171 } else if (reqSampleRate > maxSampleRate) {
3172 reqSampleRate = maxSampleRate;
3173 }
3174 mAudioMixer->setParameter(
3175 name,
3176 AudioMixer::RESAMPLE,
3177 AudioMixer::SAMPLE_RATE,
3178 (void *)reqSampleRate);
3179 mAudioMixer->setParameter(
3180 name,
3181 AudioMixer::TRACK,
3182 AudioMixer::MAIN_BUFFER, (void *)track->mainBuffer());
3183 mAudioMixer->setParameter(
3184 name,
3185 AudioMixer::TRACK,
3186 AudioMixer::AUX_BUFFER, (void *)track->auxBuffer());
3187
3188 // reset retry count
3189 track->mRetryCount = kMaxTrackRetries;
3190
3191 // If one track is ready, set the mixer ready if:
3192 // - the mixer was not ready during previous round OR
3193 // - no other track is not ready
3194 if (mMixerStatusIgnoringFastTracks != MIXER_TRACKS_READY ||
3195 mixerStatus != MIXER_TRACKS_ENABLED) {
3196 mixerStatus = MIXER_TRACKS_READY;
3197 }
3198 } else {
3199 if (framesReady < desiredFrames && !track->isStopped() && !track->isPaused()) {
3200 track->mAudioTrackServerProxy->tallyUnderrunFrames(desiredFrames);
3201 }
3202 // clear effect chain input buffer if an active track underruns to avoid sending
3203 // previous audio buffer again to effects
3204 chain = getEffectChain_l(track->sessionId());
3205 if (chain != 0) {
3206 chain->clearInputBuffer();
3207 }
3208
3209 ALOGVV("track %d s=%08x [NOT READY] on thread %p", name, cblk->mServer, this);
3210 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3211 track->isStopped() || track->isPaused()) {
3212 // We have consumed all the buffers of this track.
3213 // Remove it from the list of active tracks.
3214 // TODO: use actual buffer filling status instead of latency when available from
3215 // audio HAL
3216 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3217 size_t framesWritten = mBytesWritten / mFrameSize;
3218 if (mStandby || track->presentationComplete(framesWritten, audioHALFrames)) {
3219 if (track->isStopped()) {
3220 track->reset();
3221 }
3222 tracksToRemove->add(track);
3223 }
3224 } else {
3225 // No buffers for this track. Give it a few chances to
3226 // fill a buffer, then remove it from active list.
3227 if (--(track->mRetryCount) <= 0) {
3228 ALOGI("BUFFER TIMEOUT: remove(%d) from active list on thread %p", name, this);
3229 tracksToRemove->add(track);
3230 // indicate to client process that the track was disabled because of underrun;
3231 // it will then automatically call start() when data is available
3232 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3233 // If one track is not ready, mark the mixer also not ready if:
3234 // - the mixer was ready during previous round OR
3235 // - no other track is ready
3236 } else if (mMixerStatusIgnoringFastTracks == MIXER_TRACKS_READY ||
3237 mixerStatus != MIXER_TRACKS_READY) {
3238 mixerStatus = MIXER_TRACKS_ENABLED;
3239 }
3240 }
3241 mAudioMixer->disable(name);
3242 }
3243
3244 } // local variable scope to avoid goto warning
3245 track_is_ready: ;
3246
3247 }
3248
3249 // Push the new FastMixer state if necessary
3250 bool pauseAudioWatchdog = false;
3251 if (didModify) {
3252 state->mFastTracksGen++;
3253 // if the fast mixer was active, but now there are no fast tracks, then put it in cold idle
3254 if (kUseFastMixer == FastMixer_Dynamic &&
3255 state->mCommand == FastMixerState::MIX_WRITE && state->mTrackMask <= 1) {
3256 state->mCommand = FastMixerState::COLD_IDLE;
3257 state->mColdFutexAddr = &mFastMixerFutex;
3258 state->mColdGen++;
3259 mFastMixerFutex = 0;
3260 if (kUseFastMixer == FastMixer_Dynamic) {
3261 mNormalSink = mOutputSink;
3262 }
3263 // If we go into cold idle, need to wait for acknowledgement
3264 // so that fast mixer stops doing I/O.
3265 block = FastMixerStateQueue::BLOCK_UNTIL_ACKED;
3266 pauseAudioWatchdog = true;
3267 }
3268 }
3269 if (sq != NULL) {
3270 sq->end(didModify);
3271 sq->push(block);
3272 }
3273 #ifdef AUDIO_WATCHDOG
3274 if (pauseAudioWatchdog && mAudioWatchdog != 0) {
3275 mAudioWatchdog->pause();
3276 }
3277 #endif
3278
3279 // Now perform the deferred reset on fast tracks that have stopped
3280 while (resetMask != 0) {
3281 size_t i = __builtin_ctz(resetMask);
3282 ALOG_ASSERT(i < count);
3283 resetMask &= ~(1 << i);
3284 sp<Track> t = mActiveTracks[i].promote();
3285 if (t == 0) {
3286 continue;
3287 }
3288 Track* track = t.get();
3289 ALOG_ASSERT(track->isFastTrack() && track->isStopped());
3290 track->reset();
3291 }
3292
3293 // remove all the tracks that need to be...
3294 removeTracks_l(*tracksToRemove);
3295
3296 // mix buffer must be cleared if all tracks are connected to an
3297 // effect chain as in this case the mixer will not write to
3298 // mix buffer and track effects will accumulate into it
3299 if ((mBytesRemaining == 0) && ((mixedTracks != 0 && mixedTracks == tracksWithEffect) ||
3300 (mixedTracks == 0 && fastTracks > 0))) {
3301 // FIXME as a performance optimization, should remember previous zero status
3302 memset(mMixBuffer, 0, mNormalFrameCount * mChannelCount * sizeof(int16_t));
3303 }
3304
3305 // if any fast tracks, then status is ready
3306 mMixerStatusIgnoringFastTracks = mixerStatus;
3307 if (fastTracks > 0) {
3308 mixerStatus = MIXER_TRACKS_READY;
3309 }
3310 return mixerStatus;
3311 }
3312
3313 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,int sessionId)3314 int AudioFlinger::MixerThread::getTrackName_l(audio_channel_mask_t channelMask, int sessionId)
3315 {
3316 return mAudioMixer->getTrackName(channelMask, sessionId);
3317 }
3318
3319 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)3320 void AudioFlinger::MixerThread::deleteTrackName_l(int name)
3321 {
3322 ALOGV("remove track (%d) and delete from mixer", name);
3323 mAudioMixer->deleteTrackName(name);
3324 }
3325
3326 // checkForNewParameters_l() must be called with ThreadBase::mLock held
checkForNewParameters_l()3327 bool AudioFlinger::MixerThread::checkForNewParameters_l()
3328 {
3329 // if !&IDLE, holds the FastMixer state to restore after new parameters processed
3330 FastMixerState::Command previousCommand = FastMixerState::HOT_IDLE;
3331 bool reconfig = false;
3332
3333 while (!mNewParameters.isEmpty()) {
3334
3335 if (mFastMixer != NULL) {
3336 FastMixerStateQueue *sq = mFastMixer->sq();
3337 FastMixerState *state = sq->begin();
3338 if (!(state->mCommand & FastMixerState::IDLE)) {
3339 previousCommand = state->mCommand;
3340 state->mCommand = FastMixerState::HOT_IDLE;
3341 sq->end();
3342 sq->push(FastMixerStateQueue::BLOCK_UNTIL_ACKED);
3343 } else {
3344 sq->end(false /*didModify*/);
3345 }
3346 }
3347
3348 status_t status = NO_ERROR;
3349 String8 keyValuePair = mNewParameters[0];
3350 AudioParameter param = AudioParameter(keyValuePair);
3351 int value;
3352
3353 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
3354 reconfig = true;
3355 }
3356 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
3357 if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
3358 status = BAD_VALUE;
3359 } else {
3360 reconfig = true;
3361 }
3362 }
3363 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
3364 if ((audio_channel_mask_t) value != AUDIO_CHANNEL_OUT_STEREO) {
3365 status = BAD_VALUE;
3366 } else {
3367 reconfig = true;
3368 }
3369 }
3370 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
3371 // do not accept frame count changes if tracks are open as the track buffer
3372 // size depends on frame count and correct behavior would not be guaranteed
3373 // if frame count is changed after track creation
3374 if (!mTracks.isEmpty()) {
3375 status = INVALID_OPERATION;
3376 } else {
3377 reconfig = true;
3378 }
3379 }
3380 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
3381 #ifdef ADD_BATTERY_DATA
3382 // when changing the audio output device, call addBatteryData to notify
3383 // the change
3384 if (mOutDevice != value) {
3385 uint32_t params = 0;
3386 // check whether speaker is on
3387 if (value & AUDIO_DEVICE_OUT_SPEAKER) {
3388 params |= IMediaPlayerService::kBatteryDataSpeakerOn;
3389 }
3390
3391 audio_devices_t deviceWithoutSpeaker
3392 = AUDIO_DEVICE_OUT_ALL & ~AUDIO_DEVICE_OUT_SPEAKER;
3393 // check if any other device (except speaker) is on
3394 if (value & deviceWithoutSpeaker ) {
3395 params |= IMediaPlayerService::kBatteryDataOtherAudioDeviceOn;
3396 }
3397
3398 if (params != 0) {
3399 addBatteryData(params);
3400 }
3401 }
3402 #endif
3403
3404 // forward device change to effects that have requested to be
3405 // aware of attached audio device.
3406 if (value != AUDIO_DEVICE_NONE) {
3407 mOutDevice = value;
3408 for (size_t i = 0; i < mEffectChains.size(); i++) {
3409 mEffectChains[i]->setDevice_l(mOutDevice);
3410 }
3411 }
3412 }
3413
3414 if (status == NO_ERROR) {
3415 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3416 keyValuePair.string());
3417 if (!mStandby && status == INVALID_OPERATION) {
3418 mOutput->stream->common.standby(&mOutput->stream->common);
3419 mStandby = true;
3420 mBytesWritten = 0;
3421 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3422 keyValuePair.string());
3423 }
3424 if (status == NO_ERROR && reconfig) {
3425 readOutputParameters();
3426 delete mAudioMixer;
3427 mAudioMixer = new AudioMixer(mNormalFrameCount, mSampleRate);
3428 for (size_t i = 0; i < mTracks.size() ; i++) {
3429 int name = getTrackName_l(mTracks[i]->mChannelMask, mTracks[i]->mSessionId);
3430 if (name < 0) {
3431 break;
3432 }
3433 mTracks[i]->mName = name;
3434 }
3435 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
3436 }
3437 }
3438
3439 mNewParameters.removeAt(0);
3440
3441 mParamStatus = status;
3442 mParamCond.signal();
3443 // wait for condition with time out in case the thread calling ThreadBase::setParameters()
3444 // already timed out waiting for the status and will never signal the condition.
3445 mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
3446 }
3447
3448 if (!(previousCommand & FastMixerState::IDLE)) {
3449 ALOG_ASSERT(mFastMixer != NULL);
3450 FastMixerStateQueue *sq = mFastMixer->sq();
3451 FastMixerState *state = sq->begin();
3452 ALOG_ASSERT(state->mCommand == FastMixerState::HOT_IDLE);
3453 state->mCommand = previousCommand;
3454 sq->end();
3455 sq->push(FastMixerStateQueue::BLOCK_UNTIL_PUSHED);
3456 }
3457
3458 return reconfig;
3459 }
3460
3461
dumpInternals(int fd,const Vector<String16> & args)3462 void AudioFlinger::MixerThread::dumpInternals(int fd, const Vector<String16>& args)
3463 {
3464 const size_t SIZE = 256;
3465 char buffer[SIZE];
3466 String8 result;
3467
3468 PlaybackThread::dumpInternals(fd, args);
3469
3470 snprintf(buffer, SIZE, "AudioMixer tracks: %08x\n", mAudioMixer->trackNames());
3471 result.append(buffer);
3472 write(fd, result.string(), result.size());
3473
3474 // Make a non-atomic copy of fast mixer dump state so it won't change underneath us
3475 const FastMixerDumpState copy(mFastMixerDumpState);
3476 copy.dump(fd);
3477
3478 #ifdef STATE_QUEUE_DUMP
3479 // Similar for state queue
3480 StateQueueObserverDump observerCopy = mStateQueueObserverDump;
3481 observerCopy.dump(fd);
3482 StateQueueMutatorDump mutatorCopy = mStateQueueMutatorDump;
3483 mutatorCopy.dump(fd);
3484 #endif
3485
3486 #ifdef TEE_SINK
3487 // Write the tee output to a .wav file
3488 dumpTee(fd, mTeeSource, mId);
3489 #endif
3490
3491 #ifdef AUDIO_WATCHDOG
3492 if (mAudioWatchdog != 0) {
3493 // Make a non-atomic copy of audio watchdog dump so it won't change underneath us
3494 AudioWatchdogDump wdCopy = mAudioWatchdogDump;
3495 wdCopy.dump(fd);
3496 }
3497 #endif
3498 }
3499
idleSleepTimeUs() const3500 uint32_t AudioFlinger::MixerThread::idleSleepTimeUs() const
3501 {
3502 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000) / 2;
3503 }
3504
suspendSleepTimeUs() const3505 uint32_t AudioFlinger::MixerThread::suspendSleepTimeUs() const
3506 {
3507 return (uint32_t)(((mNormalFrameCount * 1000) / mSampleRate) * 1000);
3508 }
3509
cacheParameters_l()3510 void AudioFlinger::MixerThread::cacheParameters_l()
3511 {
3512 PlaybackThread::cacheParameters_l();
3513
3514 // FIXME: Relaxed timing because of a certain device that can't meet latency
3515 // Should be reduced to 2x after the vendor fixes the driver issue
3516 // increase threshold again due to low power audio mode. The way this warning
3517 // threshold is calculated and its usefulness should be reconsidered anyway.
3518 maxPeriod = seconds(mNormalFrameCount) / mSampleRate * 15;
3519 }
3520
3521 // ----------------------------------------------------------------------------
3522
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,audio_devices_t device)3523 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
3524 AudioStreamOut* output, audio_io_handle_t id, audio_devices_t device)
3525 : PlaybackThread(audioFlinger, output, id, device, DIRECT)
3526 // mLeftVolFloat, mRightVolFloat
3527 {
3528 }
3529
DirectOutputThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device,ThreadBase::type_t type)3530 AudioFlinger::DirectOutputThread::DirectOutputThread(const sp<AudioFlinger>& audioFlinger,
3531 AudioStreamOut* output, audio_io_handle_t id, uint32_t device,
3532 ThreadBase::type_t type)
3533 : PlaybackThread(audioFlinger, output, id, device, type)
3534 // mLeftVolFloat, mRightVolFloat
3535 {
3536 }
3537
~DirectOutputThread()3538 AudioFlinger::DirectOutputThread::~DirectOutputThread()
3539 {
3540 }
3541
processVolume_l(Track * track,bool lastTrack)3542 void AudioFlinger::DirectOutputThread::processVolume_l(Track *track, bool lastTrack)
3543 {
3544 audio_track_cblk_t* cblk = track->cblk();
3545 float left, right;
3546
3547 if (mMasterMute || mStreamTypes[track->streamType()].mute) {
3548 left = right = 0;
3549 } else {
3550 float typeVolume = mStreamTypes[track->streamType()].volume;
3551 float v = mMasterVolume * typeVolume;
3552 AudioTrackServerProxy *proxy = track->mAudioTrackServerProxy;
3553 uint32_t vlr = proxy->getVolumeLR();
3554 float v_clamped = v * (vlr & 0xFFFF);
3555 if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
3556 left = v_clamped/MAX_GAIN;
3557 v_clamped = v * (vlr >> 16);
3558 if (v_clamped > MAX_GAIN) v_clamped = MAX_GAIN;
3559 right = v_clamped/MAX_GAIN;
3560 }
3561
3562 if (lastTrack) {
3563 if (left != mLeftVolFloat || right != mRightVolFloat) {
3564 mLeftVolFloat = left;
3565 mRightVolFloat = right;
3566
3567 // Convert volumes from float to 8.24
3568 uint32_t vl = (uint32_t)(left * (1 << 24));
3569 uint32_t vr = (uint32_t)(right * (1 << 24));
3570
3571 // Delegate volume control to effect in track effect chain if needed
3572 // only one effect chain can be present on DirectOutputThread, so if
3573 // there is one, the track is connected to it
3574 if (!mEffectChains.isEmpty()) {
3575 mEffectChains[0]->setVolume_l(&vl, &vr);
3576 left = (float)vl / (1 << 24);
3577 right = (float)vr / (1 << 24);
3578 }
3579 if (mOutput->stream->set_volume) {
3580 mOutput->stream->set_volume(mOutput->stream, left, right);
3581 }
3582 }
3583 }
3584 }
3585
3586
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3587 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::DirectOutputThread::prepareTracks_l(
3588 Vector< sp<Track> > *tracksToRemove
3589 )
3590 {
3591 size_t count = mActiveTracks.size();
3592 mixer_state mixerStatus = MIXER_IDLE;
3593
3594 // find out which tracks need to be processed
3595 for (size_t i = 0; i < count; i++) {
3596 sp<Track> t = mActiveTracks[i].promote();
3597 // The track died recently
3598 if (t == 0) {
3599 continue;
3600 }
3601
3602 Track* const track = t.get();
3603 audio_track_cblk_t* cblk = track->cblk();
3604 // Only consider last track started for volume and mixer state control.
3605 // In theory an older track could underrun and restart after the new one starts
3606 // but as we only care about the transition phase between two tracks on a
3607 // direct output, it is not a problem to ignore the underrun case.
3608 sp<Track> l = mLatestActiveTrack.promote();
3609 bool last = l.get() == track;
3610
3611 // The first time a track is added we wait
3612 // for all its buffers to be filled before processing it
3613 uint32_t minFrames;
3614 if ((track->sharedBuffer() == 0) && !track->isStopped() && !track->isPausing()) {
3615 minFrames = mNormalFrameCount;
3616 } else {
3617 minFrames = 1;
3618 }
3619
3620 if ((track->framesReady() >= minFrames) && track->isReady() &&
3621 !track->isPaused() && !track->isTerminated())
3622 {
3623 ALOGVV("track %d s=%08x [OK]", track->name(), cblk->mServer);
3624
3625 if (track->mFillingUpStatus == Track::FS_FILLED) {
3626 track->mFillingUpStatus = Track::FS_ACTIVE;
3627 // make sure processVolume_l() will apply new volume even if 0
3628 mLeftVolFloat = mRightVolFloat = -1.0;
3629 if (track->mState == TrackBase::RESUMING) {
3630 track->mState = TrackBase::ACTIVE;
3631 }
3632 }
3633
3634 // compute volume for this track
3635 processVolume_l(track, last);
3636 if (last) {
3637 // reset retry count
3638 track->mRetryCount = kMaxTrackRetriesDirect;
3639 mActiveTrack = t;
3640 mixerStatus = MIXER_TRACKS_READY;
3641 }
3642 } else {
3643 // clear effect chain input buffer if the last active track started underruns
3644 // to avoid sending previous audio buffer again to effects
3645 if (!mEffectChains.isEmpty() && last) {
3646 mEffectChains[0]->clearInputBuffer();
3647 }
3648
3649 ALOGVV("track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
3650 if ((track->sharedBuffer() != 0) || track->isTerminated() ||
3651 track->isStopped() || track->isPaused()) {
3652 // We have consumed all the buffers of this track.
3653 // Remove it from the list of active tracks.
3654 // TODO: implement behavior for compressed audio
3655 size_t audioHALFrames = (latency_l() * mSampleRate) / 1000;
3656 size_t framesWritten = mBytesWritten / mFrameSize;
3657 if (mStandby || !last ||
3658 track->presentationComplete(framesWritten, audioHALFrames)) {
3659 if (track->isStopped()) {
3660 track->reset();
3661 }
3662 tracksToRemove->add(track);
3663 }
3664 } else {
3665 // No buffers for this track. Give it a few chances to
3666 // fill a buffer, then remove it from active list.
3667 // Only consider last track started for mixer state control
3668 if (--(track->mRetryCount) <= 0) {
3669 ALOGV("BUFFER TIMEOUT: remove(%d) from active list", track->name());
3670 tracksToRemove->add(track);
3671 // indicate to client process that the track was disabled because of underrun;
3672 // it will then automatically call start() when data is available
3673 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
3674 } else if (last) {
3675 mixerStatus = MIXER_TRACKS_ENABLED;
3676 }
3677 }
3678 }
3679 }
3680
3681 // remove all the tracks that need to be...
3682 removeTracks_l(*tracksToRemove);
3683
3684 return mixerStatus;
3685 }
3686
threadLoop_mix()3687 void AudioFlinger::DirectOutputThread::threadLoop_mix()
3688 {
3689 size_t frameCount = mFrameCount;
3690 int8_t *curBuf = (int8_t *)mMixBuffer;
3691 // output audio to hardware
3692 while (frameCount) {
3693 AudioBufferProvider::Buffer buffer;
3694 buffer.frameCount = frameCount;
3695 mActiveTrack->getNextBuffer(&buffer);
3696 if (buffer.raw == NULL) {
3697 memset(curBuf, 0, frameCount * mFrameSize);
3698 break;
3699 }
3700 memcpy(curBuf, buffer.raw, buffer.frameCount * mFrameSize);
3701 frameCount -= buffer.frameCount;
3702 curBuf += buffer.frameCount * mFrameSize;
3703 mActiveTrack->releaseBuffer(&buffer);
3704 }
3705 mCurrentWriteLength = curBuf - (int8_t *)mMixBuffer;
3706 sleepTime = 0;
3707 standbyTime = systemTime() + standbyDelay;
3708 mActiveTrack.clear();
3709 }
3710
threadLoop_sleepTime()3711 void AudioFlinger::DirectOutputThread::threadLoop_sleepTime()
3712 {
3713 if (sleepTime == 0) {
3714 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
3715 sleepTime = activeSleepTime;
3716 } else {
3717 sleepTime = idleSleepTime;
3718 }
3719 } else if (mBytesWritten != 0 && audio_is_linear_pcm(mFormat)) {
3720 memset(mMixBuffer, 0, mFrameCount * mFrameSize);
3721 sleepTime = 0;
3722 }
3723 }
3724
3725 // getTrackName_l() must be called with ThreadBase::mLock held
getTrackName_l(audio_channel_mask_t channelMask,int sessionId)3726 int AudioFlinger::DirectOutputThread::getTrackName_l(audio_channel_mask_t channelMask,
3727 int sessionId)
3728 {
3729 return 0;
3730 }
3731
3732 // deleteTrackName_l() must be called with ThreadBase::mLock held
deleteTrackName_l(int name)3733 void AudioFlinger::DirectOutputThread::deleteTrackName_l(int name)
3734 {
3735 }
3736
3737 // checkForNewParameters_l() must be called with ThreadBase::mLock held
checkForNewParameters_l()3738 bool AudioFlinger::DirectOutputThread::checkForNewParameters_l()
3739 {
3740 bool reconfig = false;
3741
3742 while (!mNewParameters.isEmpty()) {
3743 status_t status = NO_ERROR;
3744 String8 keyValuePair = mNewParameters[0];
3745 AudioParameter param = AudioParameter(keyValuePair);
3746 int value;
3747
3748 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
3749 // do not accept frame count changes if tracks are open as the track buffer
3750 // size depends on frame count and correct behavior would not be garantied
3751 // if frame count is changed after track creation
3752 if (!mTracks.isEmpty()) {
3753 status = INVALID_OPERATION;
3754 } else {
3755 reconfig = true;
3756 }
3757 }
3758 if (status == NO_ERROR) {
3759 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3760 keyValuePair.string());
3761 if (!mStandby && status == INVALID_OPERATION) {
3762 mOutput->stream->common.standby(&mOutput->stream->common);
3763 mStandby = true;
3764 mBytesWritten = 0;
3765 status = mOutput->stream->common.set_parameters(&mOutput->stream->common,
3766 keyValuePair.string());
3767 }
3768 if (status == NO_ERROR && reconfig) {
3769 readOutputParameters();
3770 sendIoConfigEvent_l(AudioSystem::OUTPUT_CONFIG_CHANGED);
3771 }
3772 }
3773
3774 mNewParameters.removeAt(0);
3775
3776 mParamStatus = status;
3777 mParamCond.signal();
3778 // wait for condition with time out in case the thread calling ThreadBase::setParameters()
3779 // already timed out waiting for the status and will never signal the condition.
3780 mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
3781 }
3782 return reconfig;
3783 }
3784
activeSleepTimeUs() const3785 uint32_t AudioFlinger::DirectOutputThread::activeSleepTimeUs() const
3786 {
3787 uint32_t time;
3788 if (audio_is_linear_pcm(mFormat)) {
3789 time = PlaybackThread::activeSleepTimeUs();
3790 } else {
3791 time = 10000;
3792 }
3793 return time;
3794 }
3795
idleSleepTimeUs() const3796 uint32_t AudioFlinger::DirectOutputThread::idleSleepTimeUs() const
3797 {
3798 uint32_t time;
3799 if (audio_is_linear_pcm(mFormat)) {
3800 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000) / 2;
3801 } else {
3802 time = 10000;
3803 }
3804 return time;
3805 }
3806
suspendSleepTimeUs() const3807 uint32_t AudioFlinger::DirectOutputThread::suspendSleepTimeUs() const
3808 {
3809 uint32_t time;
3810 if (audio_is_linear_pcm(mFormat)) {
3811 time = (uint32_t)(((mFrameCount * 1000) / mSampleRate) * 1000);
3812 } else {
3813 time = 10000;
3814 }
3815 return time;
3816 }
3817
cacheParameters_l()3818 void AudioFlinger::DirectOutputThread::cacheParameters_l()
3819 {
3820 PlaybackThread::cacheParameters_l();
3821
3822 // use shorter standby delay as on normal output to release
3823 // hardware resources as soon as possible
3824 if (audio_is_linear_pcm(mFormat)) {
3825 standbyDelay = microseconds(activeSleepTime*2);
3826 } else {
3827 standbyDelay = kOffloadStandbyDelayNs;
3828 }
3829 }
3830
3831 // ----------------------------------------------------------------------------
3832
AsyncCallbackThread(const wp<AudioFlinger::PlaybackThread> & playbackThread)3833 AudioFlinger::AsyncCallbackThread::AsyncCallbackThread(
3834 const wp<AudioFlinger::PlaybackThread>& playbackThread)
3835 : Thread(false /*canCallJava*/),
3836 mPlaybackThread(playbackThread),
3837 mWriteAckSequence(0),
3838 mDrainSequence(0)
3839 {
3840 }
3841
~AsyncCallbackThread()3842 AudioFlinger::AsyncCallbackThread::~AsyncCallbackThread()
3843 {
3844 }
3845
onFirstRef()3846 void AudioFlinger::AsyncCallbackThread::onFirstRef()
3847 {
3848 run("Offload Cbk", ANDROID_PRIORITY_URGENT_AUDIO);
3849 }
3850
threadLoop()3851 bool AudioFlinger::AsyncCallbackThread::threadLoop()
3852 {
3853 while (!exitPending()) {
3854 uint32_t writeAckSequence;
3855 uint32_t drainSequence;
3856
3857 {
3858 Mutex::Autolock _l(mLock);
3859 while (!((mWriteAckSequence & 1) ||
3860 (mDrainSequence & 1) ||
3861 exitPending())) {
3862 mWaitWorkCV.wait(mLock);
3863 }
3864
3865 if (exitPending()) {
3866 break;
3867 }
3868 ALOGV("AsyncCallbackThread mWriteAckSequence %d mDrainSequence %d",
3869 mWriteAckSequence, mDrainSequence);
3870 writeAckSequence = mWriteAckSequence;
3871 mWriteAckSequence &= ~1;
3872 drainSequence = mDrainSequence;
3873 mDrainSequence &= ~1;
3874 }
3875 {
3876 sp<AudioFlinger::PlaybackThread> playbackThread = mPlaybackThread.promote();
3877 if (playbackThread != 0) {
3878 if (writeAckSequence & 1) {
3879 playbackThread->resetWriteBlocked(writeAckSequence >> 1);
3880 }
3881 if (drainSequence & 1) {
3882 playbackThread->resetDraining(drainSequence >> 1);
3883 }
3884 }
3885 }
3886 }
3887 return false;
3888 }
3889
exit()3890 void AudioFlinger::AsyncCallbackThread::exit()
3891 {
3892 ALOGV("AsyncCallbackThread::exit");
3893 Mutex::Autolock _l(mLock);
3894 requestExit();
3895 mWaitWorkCV.broadcast();
3896 }
3897
setWriteBlocked(uint32_t sequence)3898 void AudioFlinger::AsyncCallbackThread::setWriteBlocked(uint32_t sequence)
3899 {
3900 Mutex::Autolock _l(mLock);
3901 // bit 0 is cleared
3902 mWriteAckSequence = sequence << 1;
3903 }
3904
resetWriteBlocked()3905 void AudioFlinger::AsyncCallbackThread::resetWriteBlocked()
3906 {
3907 Mutex::Autolock _l(mLock);
3908 // ignore unexpected callbacks
3909 if (mWriteAckSequence & 2) {
3910 mWriteAckSequence |= 1;
3911 mWaitWorkCV.signal();
3912 }
3913 }
3914
setDraining(uint32_t sequence)3915 void AudioFlinger::AsyncCallbackThread::setDraining(uint32_t sequence)
3916 {
3917 Mutex::Autolock _l(mLock);
3918 // bit 0 is cleared
3919 mDrainSequence = sequence << 1;
3920 }
3921
resetDraining()3922 void AudioFlinger::AsyncCallbackThread::resetDraining()
3923 {
3924 Mutex::Autolock _l(mLock);
3925 // ignore unexpected callbacks
3926 if (mDrainSequence & 2) {
3927 mDrainSequence |= 1;
3928 mWaitWorkCV.signal();
3929 }
3930 }
3931
3932
3933 // ----------------------------------------------------------------------------
OffloadThread(const sp<AudioFlinger> & audioFlinger,AudioStreamOut * output,audio_io_handle_t id,uint32_t device)3934 AudioFlinger::OffloadThread::OffloadThread(const sp<AudioFlinger>& audioFlinger,
3935 AudioStreamOut* output, audio_io_handle_t id, uint32_t device)
3936 : DirectOutputThread(audioFlinger, output, id, device, OFFLOAD),
3937 mHwPaused(false),
3938 mFlushPending(false),
3939 mPausedBytesRemaining(0)
3940 {
3941 //FIXME: mStandby should be set to true by ThreadBase constructor
3942 mStandby = true;
3943 }
3944
threadLoop_exit()3945 void AudioFlinger::OffloadThread::threadLoop_exit()
3946 {
3947 if (mFlushPending || mHwPaused) {
3948 // If a flush is pending or track was paused, just discard buffered data
3949 flushHw_l();
3950 } else {
3951 mMixerStatus = MIXER_DRAIN_ALL;
3952 threadLoop_drain();
3953 }
3954 mCallbackThread->exit();
3955 PlaybackThread::threadLoop_exit();
3956 }
3957
prepareTracks_l(Vector<sp<Track>> * tracksToRemove)3958 AudioFlinger::PlaybackThread::mixer_state AudioFlinger::OffloadThread::prepareTracks_l(
3959 Vector< sp<Track> > *tracksToRemove
3960 )
3961 {
3962 size_t count = mActiveTracks.size();
3963
3964 mixer_state mixerStatus = MIXER_IDLE;
3965 bool doHwPause = false;
3966 bool doHwResume = false;
3967
3968 ALOGV("OffloadThread::prepareTracks_l active tracks %d", count);
3969
3970 // find out which tracks need to be processed
3971 for (size_t i = 0; i < count; i++) {
3972 sp<Track> t = mActiveTracks[i].promote();
3973 // The track died recently
3974 if (t == 0) {
3975 continue;
3976 }
3977 Track* const track = t.get();
3978 audio_track_cblk_t* cblk = track->cblk();
3979 // Only consider last track started for volume and mixer state control.
3980 // In theory an older track could underrun and restart after the new one starts
3981 // but as we only care about the transition phase between two tracks on a
3982 // direct output, it is not a problem to ignore the underrun case.
3983 sp<Track> l = mLatestActiveTrack.promote();
3984 bool last = l.get() == track;
3985
3986 if (track->isPausing()) {
3987 track->setPaused();
3988 if (last) {
3989 if (!mHwPaused) {
3990 doHwPause = true;
3991 mHwPaused = true;
3992 }
3993 // If we were part way through writing the mixbuffer to
3994 // the HAL we must save this until we resume
3995 // BUG - this will be wrong if a different track is made active,
3996 // in that case we want to discard the pending data in the
3997 // mixbuffer and tell the client to present it again when the
3998 // track is resumed
3999 mPausedWriteLength = mCurrentWriteLength;
4000 mPausedBytesRemaining = mBytesRemaining;
4001 mBytesRemaining = 0; // stop writing
4002 }
4003 tracksToRemove->add(track);
4004 } else if (track->framesReady() && track->isReady() &&
4005 !track->isPaused() && !track->isTerminated() && !track->isStopping_2()) {
4006 ALOGVV("OffloadThread: track %d s=%08x [OK]", track->name(), cblk->mServer);
4007 if (track->mFillingUpStatus == Track::FS_FILLED) {
4008 track->mFillingUpStatus = Track::FS_ACTIVE;
4009 // make sure processVolume_l() will apply new volume even if 0
4010 mLeftVolFloat = mRightVolFloat = -1.0;
4011 if (track->mState == TrackBase::RESUMING) {
4012 track->mState = TrackBase::ACTIVE;
4013 if (last) {
4014 if (mPausedBytesRemaining) {
4015 // Need to continue write that was interrupted
4016 mCurrentWriteLength = mPausedWriteLength;
4017 mBytesRemaining = mPausedBytesRemaining;
4018 mPausedBytesRemaining = 0;
4019 }
4020 if (mHwPaused) {
4021 doHwResume = true;
4022 mHwPaused = false;
4023 // threadLoop_mix() will handle the case that we need to
4024 // resume an interrupted write
4025 }
4026 // enable write to audio HAL
4027 sleepTime = 0;
4028 }
4029 }
4030 }
4031
4032 if (last) {
4033 sp<Track> previousTrack = mPreviousTrack.promote();
4034 if (previousTrack != 0) {
4035 if (track != previousTrack.get()) {
4036 // Flush any data still being written from last track
4037 mBytesRemaining = 0;
4038 if (mPausedBytesRemaining) {
4039 // Last track was paused so we also need to flush saved
4040 // mixbuffer state and invalidate track so that it will
4041 // re-submit that unwritten data when it is next resumed
4042 mPausedBytesRemaining = 0;
4043 // Invalidate is a bit drastic - would be more efficient
4044 // to have a flag to tell client that some of the
4045 // previously written data was lost
4046 previousTrack->invalidate();
4047 }
4048 // flush data already sent to the DSP if changing audio session as audio
4049 // comes from a different source. Also invalidate previous track to force a
4050 // seek when resuming.
4051 if (previousTrack->sessionId() != track->sessionId()) {
4052 previousTrack->invalidate();
4053 mFlushPending = true;
4054 }
4055 }
4056 }
4057 mPreviousTrack = track;
4058 // reset retry count
4059 track->mRetryCount = kMaxTrackRetriesOffload;
4060 mActiveTrack = t;
4061 mixerStatus = MIXER_TRACKS_READY;
4062 }
4063 } else {
4064 ALOGVV("OffloadThread: track %d s=%08x [NOT READY]", track->name(), cblk->mServer);
4065 if (track->isStopping_1()) {
4066 // Hardware buffer can hold a large amount of audio so we must
4067 // wait for all current track's data to drain before we say
4068 // that the track is stopped.
4069 if (mBytesRemaining == 0) {
4070 // Only start draining when all data in mixbuffer
4071 // has been written
4072 ALOGV("OffloadThread: underrun and STOPPING_1 -> draining, STOPPING_2");
4073 track->mState = TrackBase::STOPPING_2; // so presentation completes after drain
4074 // do not drain if no data was ever sent to HAL (mStandby == true)
4075 if (last && !mStandby) {
4076 // do not modify drain sequence if we are already draining. This happens
4077 // when resuming from pause after drain.
4078 if ((mDrainSequence & 1) == 0) {
4079 sleepTime = 0;
4080 standbyTime = systemTime() + standbyDelay;
4081 mixerStatus = MIXER_DRAIN_TRACK;
4082 mDrainSequence += 2;
4083 }
4084 if (mHwPaused) {
4085 // It is possible to move from PAUSED to STOPPING_1 without
4086 // a resume so we must ensure hardware is running
4087 doHwResume = true;
4088 mHwPaused = false;
4089 }
4090 }
4091 }
4092 } else if (track->isStopping_2()) {
4093 // Drain has completed or we are in standby, signal presentation complete
4094 if (!(mDrainSequence & 1) || !last || mStandby) {
4095 track->mState = TrackBase::STOPPED;
4096 size_t audioHALFrames =
4097 (mOutput->stream->get_latency(mOutput->stream)*mSampleRate) / 1000;
4098 size_t framesWritten =
4099 mBytesWritten / audio_stream_frame_size(&mOutput->stream->common);
4100 track->presentationComplete(framesWritten, audioHALFrames);
4101 track->reset();
4102 tracksToRemove->add(track);
4103 }
4104 } else {
4105 // No buffers for this track. Give it a few chances to
4106 // fill a buffer, then remove it from active list.
4107 if (--(track->mRetryCount) <= 0) {
4108 ALOGV("OffloadThread: BUFFER TIMEOUT: remove(%d) from active list",
4109 track->name());
4110 tracksToRemove->add(track);
4111 // indicate to client process that the track was disabled because of underrun;
4112 // it will then automatically call start() when data is available
4113 android_atomic_or(CBLK_DISABLED, &cblk->mFlags);
4114 } else if (last){
4115 mixerStatus = MIXER_TRACKS_ENABLED;
4116 }
4117 }
4118 }
4119 // compute volume for this track
4120 processVolume_l(track, last);
4121 }
4122
4123 // make sure the pause/flush/resume sequence is executed in the right order.
4124 // If a flush is pending and a track is active but the HW is not paused, force a HW pause
4125 // before flush and then resume HW. This can happen in case of pause/flush/resume
4126 // if resume is received before pause is executed.
4127 if (!mStandby && (doHwPause || (mFlushPending && !mHwPaused && (count != 0)))) {
4128 mOutput->stream->pause(mOutput->stream);
4129 if (!doHwPause) {
4130 doHwResume = true;
4131 }
4132 }
4133 if (mFlushPending) {
4134 flushHw_l();
4135 mFlushPending = false;
4136 }
4137 if (!mStandby && doHwResume) {
4138 mOutput->stream->resume(mOutput->stream);
4139 }
4140
4141 // remove all the tracks that need to be...
4142 removeTracks_l(*tracksToRemove);
4143
4144 return mixerStatus;
4145 }
4146
flushOutput_l()4147 void AudioFlinger::OffloadThread::flushOutput_l()
4148 {
4149 mFlushPending = true;
4150 }
4151
4152 // must be called with thread mutex locked
waitingAsyncCallback_l()4153 bool AudioFlinger::OffloadThread::waitingAsyncCallback_l()
4154 {
4155 ALOGVV("waitingAsyncCallback_l mWriteAckSequence %d mDrainSequence %d",
4156 mWriteAckSequence, mDrainSequence);
4157 if (mUseAsyncWrite && ((mWriteAckSequence & 1) || (mDrainSequence & 1))) {
4158 return true;
4159 }
4160 return false;
4161 }
4162
4163 // must be called with thread mutex locked
shouldStandby_l()4164 bool AudioFlinger::OffloadThread::shouldStandby_l()
4165 {
4166 bool TrackPaused = false;
4167
4168 // do not put the HAL in standby when paused. AwesomePlayer clear the offloaded AudioTrack
4169 // after a timeout and we will enter standby then.
4170 if (mTracks.size() > 0) {
4171 TrackPaused = mTracks[mTracks.size() - 1]->isPaused();
4172 }
4173
4174 return !mStandby && !TrackPaused;
4175 }
4176
4177
waitingAsyncCallback()4178 bool AudioFlinger::OffloadThread::waitingAsyncCallback()
4179 {
4180 Mutex::Autolock _l(mLock);
4181 return waitingAsyncCallback_l();
4182 }
4183
flushHw_l()4184 void AudioFlinger::OffloadThread::flushHw_l()
4185 {
4186 mOutput->stream->flush(mOutput->stream);
4187 // Flush anything still waiting in the mixbuffer
4188 mCurrentWriteLength = 0;
4189 mBytesRemaining = 0;
4190 mPausedWriteLength = 0;
4191 mPausedBytesRemaining = 0;
4192 if (mUseAsyncWrite) {
4193 // discard any pending drain or write ack by incrementing sequence
4194 mWriteAckSequence = (mWriteAckSequence + 2) & ~1;
4195 mDrainSequence = (mDrainSequence + 2) & ~1;
4196 ALOG_ASSERT(mCallbackThread != 0);
4197 mCallbackThread->setWriteBlocked(mWriteAckSequence);
4198 mCallbackThread->setDraining(mDrainSequence);
4199 }
4200 }
4201
4202 // ----------------------------------------------------------------------------
4203
DuplicatingThread(const sp<AudioFlinger> & audioFlinger,AudioFlinger::MixerThread * mainThread,audio_io_handle_t id)4204 AudioFlinger::DuplicatingThread::DuplicatingThread(const sp<AudioFlinger>& audioFlinger,
4205 AudioFlinger::MixerThread* mainThread, audio_io_handle_t id)
4206 : MixerThread(audioFlinger, mainThread->getOutput(), id, mainThread->outDevice(),
4207 DUPLICATING),
4208 mWaitTimeMs(UINT_MAX)
4209 {
4210 addOutputTrack(mainThread);
4211 }
4212
~DuplicatingThread()4213 AudioFlinger::DuplicatingThread::~DuplicatingThread()
4214 {
4215 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4216 mOutputTracks[i]->destroy();
4217 }
4218 }
4219
threadLoop_mix()4220 void AudioFlinger::DuplicatingThread::threadLoop_mix()
4221 {
4222 // mix buffers...
4223 if (outputsReady(outputTracks)) {
4224 mAudioMixer->process(AudioBufferProvider::kInvalidPTS);
4225 } else {
4226 memset(mMixBuffer, 0, mixBufferSize);
4227 }
4228 sleepTime = 0;
4229 writeFrames = mNormalFrameCount;
4230 mCurrentWriteLength = mixBufferSize;
4231 standbyTime = systemTime() + standbyDelay;
4232 }
4233
threadLoop_sleepTime()4234 void AudioFlinger::DuplicatingThread::threadLoop_sleepTime()
4235 {
4236 if (sleepTime == 0) {
4237 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4238 sleepTime = activeSleepTime;
4239 } else {
4240 sleepTime = idleSleepTime;
4241 }
4242 } else if (mBytesWritten != 0) {
4243 if (mMixerStatus == MIXER_TRACKS_ENABLED) {
4244 writeFrames = mNormalFrameCount;
4245 memset(mMixBuffer, 0, mixBufferSize);
4246 } else {
4247 // flush remaining overflow buffers in output tracks
4248 writeFrames = 0;
4249 }
4250 sleepTime = 0;
4251 }
4252 }
4253
threadLoop_write()4254 ssize_t AudioFlinger::DuplicatingThread::threadLoop_write()
4255 {
4256 for (size_t i = 0; i < outputTracks.size(); i++) {
4257 outputTracks[i]->write(mMixBuffer, writeFrames);
4258 }
4259 mStandby = false;
4260 return (ssize_t)mixBufferSize;
4261 }
4262
threadLoop_standby()4263 void AudioFlinger::DuplicatingThread::threadLoop_standby()
4264 {
4265 // DuplicatingThread implements standby by stopping all tracks
4266 for (size_t i = 0; i < outputTracks.size(); i++) {
4267 outputTracks[i]->stop();
4268 }
4269 }
4270
saveOutputTracks()4271 void AudioFlinger::DuplicatingThread::saveOutputTracks()
4272 {
4273 outputTracks = mOutputTracks;
4274 }
4275
clearOutputTracks()4276 void AudioFlinger::DuplicatingThread::clearOutputTracks()
4277 {
4278 outputTracks.clear();
4279 }
4280
addOutputTrack(MixerThread * thread)4281 void AudioFlinger::DuplicatingThread::addOutputTrack(MixerThread *thread)
4282 {
4283 Mutex::Autolock _l(mLock);
4284 // FIXME explain this formula
4285 size_t frameCount = (3 * mNormalFrameCount * mSampleRate) / thread->sampleRate();
4286 OutputTrack *outputTrack = new OutputTrack(thread,
4287 this,
4288 mSampleRate,
4289 mFormat,
4290 mChannelMask,
4291 frameCount,
4292 IPCThreadState::self()->getCallingUid());
4293 if (outputTrack->cblk() != NULL) {
4294 thread->setStreamVolume(AUDIO_STREAM_CNT, 1.0f);
4295 mOutputTracks.add(outputTrack);
4296 ALOGV("addOutputTrack() track %p, on thread %p", outputTrack, thread);
4297 updateWaitTime_l();
4298 }
4299 }
4300
removeOutputTrack(MixerThread * thread)4301 void AudioFlinger::DuplicatingThread::removeOutputTrack(MixerThread *thread)
4302 {
4303 Mutex::Autolock _l(mLock);
4304 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4305 if (mOutputTracks[i]->thread() == thread) {
4306 mOutputTracks[i]->destroy();
4307 mOutputTracks.removeAt(i);
4308 updateWaitTime_l();
4309 return;
4310 }
4311 }
4312 ALOGV("removeOutputTrack(): unkonwn thread: %p", thread);
4313 }
4314
4315 // caller must hold mLock
updateWaitTime_l()4316 void AudioFlinger::DuplicatingThread::updateWaitTime_l()
4317 {
4318 mWaitTimeMs = UINT_MAX;
4319 for (size_t i = 0; i < mOutputTracks.size(); i++) {
4320 sp<ThreadBase> strong = mOutputTracks[i]->thread().promote();
4321 if (strong != 0) {
4322 uint32_t waitTimeMs = (strong->frameCount() * 2 * 1000) / strong->sampleRate();
4323 if (waitTimeMs < mWaitTimeMs) {
4324 mWaitTimeMs = waitTimeMs;
4325 }
4326 }
4327 }
4328 }
4329
4330
outputsReady(const SortedVector<sp<OutputTrack>> & outputTracks)4331 bool AudioFlinger::DuplicatingThread::outputsReady(
4332 const SortedVector< sp<OutputTrack> > &outputTracks)
4333 {
4334 for (size_t i = 0; i < outputTracks.size(); i++) {
4335 sp<ThreadBase> thread = outputTracks[i]->thread().promote();
4336 if (thread == 0) {
4337 ALOGW("DuplicatingThread::outputsReady() could not promote thread on output track %p",
4338 outputTracks[i].get());
4339 return false;
4340 }
4341 PlaybackThread *playbackThread = (PlaybackThread *)thread.get();
4342 // see note at standby() declaration
4343 if (playbackThread->standby() && !playbackThread->isSuspended()) {
4344 ALOGV("DuplicatingThread output track %p on thread %p Not Ready", outputTracks[i].get(),
4345 thread.get());
4346 return false;
4347 }
4348 }
4349 return true;
4350 }
4351
activeSleepTimeUs() const4352 uint32_t AudioFlinger::DuplicatingThread::activeSleepTimeUs() const
4353 {
4354 return (mWaitTimeMs * 1000) / 2;
4355 }
4356
cacheParameters_l()4357 void AudioFlinger::DuplicatingThread::cacheParameters_l()
4358 {
4359 // updateWaitTime_l() sets mWaitTimeMs, which affects activeSleepTimeUs(), so call it first
4360 updateWaitTime_l();
4361
4362 MixerThread::cacheParameters_l();
4363 }
4364
4365 // ----------------------------------------------------------------------------
4366 // Record
4367 // ----------------------------------------------------------------------------
4368
RecordThread(const sp<AudioFlinger> & audioFlinger,AudioStreamIn * input,uint32_t sampleRate,audio_channel_mask_t channelMask,audio_io_handle_t id,audio_devices_t outDevice,audio_devices_t inDevice,const sp<NBAIO_Sink> & teeSink)4369 AudioFlinger::RecordThread::RecordThread(const sp<AudioFlinger>& audioFlinger,
4370 AudioStreamIn *input,
4371 uint32_t sampleRate,
4372 audio_channel_mask_t channelMask,
4373 audio_io_handle_t id,
4374 audio_devices_t outDevice,
4375 audio_devices_t inDevice
4376 #ifdef TEE_SINK
4377 , const sp<NBAIO_Sink>& teeSink
4378 #endif
4379 ) :
4380 ThreadBase(audioFlinger, id, outDevice, inDevice, RECORD),
4381 mInput(input), mResampler(NULL), mRsmpOutBuffer(NULL), mRsmpInBuffer(NULL),
4382 // mRsmpInIndex and mBufferSize set by readInputParameters()
4383 mReqChannelCount(popcount(channelMask)),
4384 mReqSampleRate(sampleRate)
4385 // mBytesRead is only meaningful while active, and so is cleared in start()
4386 // (but might be better to also clear here for dump?)
4387 #ifdef TEE_SINK
4388 , mTeeSink(teeSink)
4389 #endif
4390 {
4391 snprintf(mName, kNameLength, "AudioIn_%X", id);
4392
4393 readInputParameters();
4394 }
4395
4396
~RecordThread()4397 AudioFlinger::RecordThread::~RecordThread()
4398 {
4399 delete[] mRsmpInBuffer;
4400 delete mResampler;
4401 delete[] mRsmpOutBuffer;
4402 }
4403
onFirstRef()4404 void AudioFlinger::RecordThread::onFirstRef()
4405 {
4406 run(mName, PRIORITY_URGENT_AUDIO);
4407 }
4408
readyToRun()4409 status_t AudioFlinger::RecordThread::readyToRun()
4410 {
4411 status_t status = initCheck();
4412 ALOGW_IF(status != NO_ERROR,"RecordThread %p could not initialize", this);
4413 return status;
4414 }
4415
threadLoop()4416 bool AudioFlinger::RecordThread::threadLoop()
4417 {
4418 AudioBufferProvider::Buffer buffer;
4419 sp<RecordTrack> activeTrack;
4420 Vector< sp<EffectChain> > effectChains;
4421
4422 nsecs_t lastWarning = 0;
4423
4424 inputStandBy();
4425 {
4426 Mutex::Autolock _l(mLock);
4427 activeTrack = mActiveTrack;
4428 acquireWakeLock_l(activeTrack != 0 ? activeTrack->uid() : -1);
4429 }
4430
4431 // used to verify we've read at least once before evaluating how many bytes were read
4432 bool readOnce = false;
4433
4434 // start recording
4435 while (!exitPending()) {
4436
4437 processConfigEvents();
4438
4439 { // scope for mLock
4440 Mutex::Autolock _l(mLock);
4441 checkForNewParameters_l();
4442 if (mActiveTrack != 0 && activeTrack != mActiveTrack) {
4443 SortedVector<int> tmp;
4444 tmp.add(mActiveTrack->uid());
4445 updateWakeLockUids_l(tmp);
4446 }
4447 activeTrack = mActiveTrack;
4448 if (mActiveTrack == 0 && mConfigEvents.isEmpty()) {
4449 standby();
4450
4451 if (exitPending()) {
4452 break;
4453 }
4454
4455 releaseWakeLock_l();
4456 ALOGV("RecordThread: loop stopping");
4457 // go to sleep
4458 mWaitWorkCV.wait(mLock);
4459 ALOGV("RecordThread: loop starting");
4460 acquireWakeLock_l(mActiveTrack != 0 ? mActiveTrack->uid() : -1);
4461 continue;
4462 }
4463 if (mActiveTrack != 0) {
4464 if (mActiveTrack->isTerminated()) {
4465 removeTrack_l(mActiveTrack);
4466 mActiveTrack.clear();
4467 } else if (mActiveTrack->mState == TrackBase::PAUSING) {
4468 standby();
4469 mActiveTrack.clear();
4470 mStartStopCond.broadcast();
4471 } else if (mActiveTrack->mState == TrackBase::RESUMING) {
4472 if (mReqChannelCount != mActiveTrack->channelCount()) {
4473 mActiveTrack.clear();
4474 mStartStopCond.broadcast();
4475 } else if (readOnce) {
4476 // record start succeeds only if first read from audio input
4477 // succeeds
4478 if (mBytesRead >= 0) {
4479 mActiveTrack->mState = TrackBase::ACTIVE;
4480 } else {
4481 mActiveTrack.clear();
4482 }
4483 mStartStopCond.broadcast();
4484 }
4485 mStandby = false;
4486 }
4487 }
4488
4489 lockEffectChains_l(effectChains);
4490 }
4491
4492 if (mActiveTrack != 0) {
4493 if (mActiveTrack->mState != TrackBase::ACTIVE &&
4494 mActiveTrack->mState != TrackBase::RESUMING) {
4495 unlockEffectChains(effectChains);
4496 usleep(kRecordThreadSleepUs);
4497 continue;
4498 }
4499 for (size_t i = 0; i < effectChains.size(); i ++) {
4500 effectChains[i]->process_l();
4501 }
4502
4503 buffer.frameCount = mFrameCount;
4504 status_t status = mActiveTrack->getNextBuffer(&buffer);
4505 if (status == NO_ERROR) {
4506 readOnce = true;
4507 size_t framesOut = buffer.frameCount;
4508 if (mResampler == NULL) {
4509 // no resampling
4510 while (framesOut) {
4511 size_t framesIn = mFrameCount - mRsmpInIndex;
4512 if (framesIn) {
4513 int8_t *src = (int8_t *)mRsmpInBuffer + mRsmpInIndex * mFrameSize;
4514 int8_t *dst = buffer.i8 + (buffer.frameCount - framesOut) *
4515 mActiveTrack->mFrameSize;
4516 if (framesIn > framesOut)
4517 framesIn = framesOut;
4518 mRsmpInIndex += framesIn;
4519 framesOut -= framesIn;
4520 if (mChannelCount == mReqChannelCount) {
4521 memcpy(dst, src, framesIn * mFrameSize);
4522 } else {
4523 if (mChannelCount == 1) {
4524 upmix_to_stereo_i16_from_mono_i16((int16_t *)dst,
4525 (int16_t *)src, framesIn);
4526 } else {
4527 downmix_to_mono_i16_from_stereo_i16((int16_t *)dst,
4528 (int16_t *)src, framesIn);
4529 }
4530 }
4531 }
4532 if (framesOut && mFrameCount == mRsmpInIndex) {
4533 void *readInto;
4534 if (framesOut == mFrameCount && mChannelCount == mReqChannelCount) {
4535 readInto = buffer.raw;
4536 framesOut = 0;
4537 } else {
4538 readInto = mRsmpInBuffer;
4539 mRsmpInIndex = 0;
4540 }
4541 mBytesRead = mInput->stream->read(mInput->stream, readInto,
4542 mBufferSize);
4543 if (mBytesRead <= 0) {
4544 if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE))
4545 {
4546 ALOGE("Error reading audio input");
4547 // Force input into standby so that it tries to
4548 // recover at next read attempt
4549 inputStandBy();
4550 usleep(kRecordThreadSleepUs);
4551 }
4552 mRsmpInIndex = mFrameCount;
4553 framesOut = 0;
4554 buffer.frameCount = 0;
4555 }
4556 #ifdef TEE_SINK
4557 else if (mTeeSink != 0) {
4558 (void) mTeeSink->write(readInto,
4559 mBytesRead >> Format_frameBitShift(mTeeSink->format()));
4560 }
4561 #endif
4562 }
4563 }
4564 } else {
4565 // resampling
4566
4567 // resampler accumulates, but we only have one source track
4568 memset(mRsmpOutBuffer, 0, framesOut * FCC_2 * sizeof(int32_t));
4569 // alter output frame count as if we were expecting stereo samples
4570 if (mChannelCount == 1 && mReqChannelCount == 1) {
4571 framesOut >>= 1;
4572 }
4573 mResampler->resample(mRsmpOutBuffer, framesOut,
4574 this /* AudioBufferProvider* */);
4575 // ditherAndClamp() works as long as all buffers returned by
4576 // mActiveTrack->getNextBuffer() are 32 bit aligned which should be always true.
4577 if (mChannelCount == 2 && mReqChannelCount == 1) {
4578 // temporarily type pun mRsmpOutBuffer from Q19.12 to int16_t
4579 ditherAndClamp(mRsmpOutBuffer, mRsmpOutBuffer, framesOut);
4580 // the resampler always outputs stereo samples:
4581 // do post stereo to mono conversion
4582 downmix_to_mono_i16_from_stereo_i16(buffer.i16, (int16_t *)mRsmpOutBuffer,
4583 framesOut);
4584 } else {
4585 ditherAndClamp((int32_t *)buffer.raw, mRsmpOutBuffer, framesOut);
4586 }
4587 // now done with mRsmpOutBuffer
4588
4589 }
4590 if (mFramestoDrop == 0) {
4591 mActiveTrack->releaseBuffer(&buffer);
4592 } else {
4593 if (mFramestoDrop > 0) {
4594 mFramestoDrop -= buffer.frameCount;
4595 if (mFramestoDrop <= 0) {
4596 clearSyncStartEvent();
4597 }
4598 } else {
4599 mFramestoDrop += buffer.frameCount;
4600 if (mFramestoDrop >= 0 || mSyncStartEvent == 0 ||
4601 mSyncStartEvent->isCancelled()) {
4602 ALOGW("Synced record %s, session %d, trigger session %d",
4603 (mFramestoDrop >= 0) ? "timed out" : "cancelled",
4604 mActiveTrack->sessionId(),
4605 (mSyncStartEvent != 0) ? mSyncStartEvent->triggerSession() : 0);
4606 clearSyncStartEvent();
4607 }
4608 }
4609 }
4610 mActiveTrack->clearOverflow();
4611 }
4612 // client isn't retrieving buffers fast enough
4613 else {
4614 if (!mActiveTrack->setOverflow()) {
4615 nsecs_t now = systemTime();
4616 if ((now - lastWarning) > kWarningThrottleNs) {
4617 ALOGW("RecordThread: buffer overflow");
4618 lastWarning = now;
4619 }
4620 }
4621 // Release the processor for a while before asking for a new buffer.
4622 // This will give the application more chance to read from the buffer and
4623 // clear the overflow.
4624 usleep(kRecordThreadSleepUs);
4625 }
4626 }
4627 // enable changes in effect chain
4628 unlockEffectChains(effectChains);
4629 effectChains.clear();
4630 }
4631
4632 standby();
4633
4634 {
4635 Mutex::Autolock _l(mLock);
4636 for (size_t i = 0; i < mTracks.size(); i++) {
4637 sp<RecordTrack> track = mTracks[i];
4638 track->invalidate();
4639 }
4640 mActiveTrack.clear();
4641 mStartStopCond.broadcast();
4642 }
4643
4644 releaseWakeLock();
4645
4646 ALOGV("RecordThread %p exiting", this);
4647 return false;
4648 }
4649
standby()4650 void AudioFlinger::RecordThread::standby()
4651 {
4652 if (!mStandby) {
4653 inputStandBy();
4654 mStandby = true;
4655 }
4656 }
4657
inputStandBy()4658 void AudioFlinger::RecordThread::inputStandBy()
4659 {
4660 mInput->stream->common.standby(&mInput->stream->common);
4661 }
4662
createRecordTrack_l(const sp<AudioFlinger::Client> & client,uint32_t sampleRate,audio_format_t format,audio_channel_mask_t channelMask,size_t frameCount,int sessionId,int uid,IAudioFlinger::track_flags_t * flags,pid_t tid,status_t * status)4663 sp<AudioFlinger::RecordThread::RecordTrack> AudioFlinger::RecordThread::createRecordTrack_l(
4664 const sp<AudioFlinger::Client>& client,
4665 uint32_t sampleRate,
4666 audio_format_t format,
4667 audio_channel_mask_t channelMask,
4668 size_t frameCount,
4669 int sessionId,
4670 int uid,
4671 IAudioFlinger::track_flags_t *flags,
4672 pid_t tid,
4673 status_t *status)
4674 {
4675 sp<RecordTrack> track;
4676 status_t lStatus;
4677
4678 lStatus = initCheck();
4679 if (lStatus != NO_ERROR) {
4680 ALOGE("createRecordTrack_l() audio driver not initialized");
4681 goto Exit;
4682 }
4683 // client expresses a preference for FAST, but we get the final say
4684 if (*flags & IAudioFlinger::TRACK_FAST) {
4685 if (
4686 // use case: callback handler and frame count is default or at least as large as HAL
4687 (
4688 (tid != -1) &&
4689 ((frameCount == 0) ||
4690 (frameCount >= mFrameCount))
4691 ) &&
4692 // FIXME when record supports non-PCM data, also check for audio_is_linear_pcm(format)
4693 // mono or stereo
4694 ( (channelMask == AUDIO_CHANNEL_OUT_MONO) ||
4695 (channelMask == AUDIO_CHANNEL_OUT_STEREO) ) &&
4696 // hardware sample rate
4697 (sampleRate == mSampleRate) &&
4698 // record thread has an associated fast recorder
4699 hasFastRecorder()
4700 // FIXME test that RecordThread for this fast track has a capable output HAL
4701 // FIXME add a permission test also?
4702 ) {
4703 // if frameCount not specified, then it defaults to fast recorder (HAL) frame count
4704 if (frameCount == 0) {
4705 frameCount = mFrameCount * kFastTrackMultiplier;
4706 }
4707 ALOGV("AUDIO_INPUT_FLAG_FAST accepted: frameCount=%d mFrameCount=%d",
4708 frameCount, mFrameCount);
4709 } else {
4710 ALOGV("AUDIO_INPUT_FLAG_FAST denied: frameCount=%d "
4711 "mFrameCount=%d format=%d isLinear=%d channelMask=%#x sampleRate=%u mSampleRate=%u "
4712 "hasFastRecorder=%d tid=%d",
4713 frameCount, mFrameCount, format,
4714 audio_is_linear_pcm(format),
4715 channelMask, sampleRate, mSampleRate, hasFastRecorder(), tid);
4716 *flags &= ~IAudioFlinger::TRACK_FAST;
4717 // For compatibility with AudioRecord calculation, buffer depth is forced
4718 // to be at least 2 x the record thread frame count and cover audio hardware latency.
4719 // This is probably too conservative, but legacy application code may depend on it.
4720 // If you change this calculation, also review the start threshold which is related.
4721 uint32_t latencyMs = 50; // FIXME mInput->stream->get_latency(mInput->stream);
4722 size_t mNormalFrameCount = 2048; // FIXME
4723 uint32_t minBufCount = latencyMs / ((1000 * mNormalFrameCount) / mSampleRate);
4724 if (minBufCount < 2) {
4725 minBufCount = 2;
4726 }
4727 size_t minFrameCount = mNormalFrameCount * minBufCount;
4728 if (frameCount < minFrameCount) {
4729 frameCount = minFrameCount;
4730 }
4731 }
4732 }
4733
4734 // FIXME use flags and tid similar to createTrack_l()
4735
4736 { // scope for mLock
4737 Mutex::Autolock _l(mLock);
4738
4739 track = new RecordTrack(this, client, sampleRate,
4740 format, channelMask, frameCount, sessionId, uid);
4741
4742 if (track->getCblk() == 0) {
4743 ALOGE("createRecordTrack_l() no control block");
4744 lStatus = NO_MEMORY;
4745 // track must be cleared from the caller as the caller has the AF lock
4746 goto Exit;
4747 }
4748 mTracks.add(track);
4749
4750 // disable AEC and NS if the device is a BT SCO headset supporting those pre processings
4751 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
4752 mAudioFlinger->btNrecIsOff();
4753 setEffectSuspended_l(FX_IID_AEC, suspend, sessionId);
4754 setEffectSuspended_l(FX_IID_NS, suspend, sessionId);
4755
4756 if ((*flags & IAudioFlinger::TRACK_FAST) && (tid != -1)) {
4757 pid_t callingPid = IPCThreadState::self()->getCallingPid();
4758 // we don't have CAP_SYS_NICE, nor do we want to have it as it's too powerful,
4759 // so ask activity manager to do this on our behalf
4760 sendPrioConfigEvent_l(callingPid, tid, kPriorityAudioApp);
4761 }
4762 }
4763 lStatus = NO_ERROR;
4764
4765 Exit:
4766 if (status) {
4767 *status = lStatus;
4768 }
4769 return track;
4770 }
4771
start(RecordThread::RecordTrack * recordTrack,AudioSystem::sync_event_t event,int triggerSession)4772 status_t AudioFlinger::RecordThread::start(RecordThread::RecordTrack* recordTrack,
4773 AudioSystem::sync_event_t event,
4774 int triggerSession)
4775 {
4776 ALOGV("RecordThread::start event %d, triggerSession %d", event, triggerSession);
4777 sp<ThreadBase> strongMe = this;
4778 status_t status = NO_ERROR;
4779
4780 if (event == AudioSystem::SYNC_EVENT_NONE) {
4781 clearSyncStartEvent();
4782 } else if (event != AudioSystem::SYNC_EVENT_SAME) {
4783 mSyncStartEvent = mAudioFlinger->createSyncEvent(event,
4784 triggerSession,
4785 recordTrack->sessionId(),
4786 syncStartEventCallback,
4787 this);
4788 // Sync event can be cancelled by the trigger session if the track is not in a
4789 // compatible state in which case we start record immediately
4790 if (mSyncStartEvent->isCancelled()) {
4791 clearSyncStartEvent();
4792 } else {
4793 // do not wait for the event for more than AudioSystem::kSyncRecordStartTimeOutMs
4794 mFramestoDrop = - ((AudioSystem::kSyncRecordStartTimeOutMs * mReqSampleRate) / 1000);
4795 }
4796 }
4797
4798 {
4799 AutoMutex lock(mLock);
4800 if (mActiveTrack != 0) {
4801 if (recordTrack != mActiveTrack.get()) {
4802 status = -EBUSY;
4803 } else if (mActiveTrack->mState == TrackBase::PAUSING) {
4804 mActiveTrack->mState = TrackBase::ACTIVE;
4805 }
4806 return status;
4807 }
4808
4809 recordTrack->mState = TrackBase::IDLE;
4810 mActiveTrack = recordTrack;
4811 mLock.unlock();
4812 status_t status = AudioSystem::startInput(mId);
4813 mLock.lock();
4814 if (status != NO_ERROR) {
4815 mActiveTrack.clear();
4816 clearSyncStartEvent();
4817 return status;
4818 }
4819 mRsmpInIndex = mFrameCount;
4820 mBytesRead = 0;
4821 if (mResampler != NULL) {
4822 mResampler->reset();
4823 }
4824 mActiveTrack->mState = TrackBase::RESUMING;
4825 // signal thread to start
4826 ALOGV("Signal record thread");
4827 mWaitWorkCV.broadcast();
4828 // do not wait for mStartStopCond if exiting
4829 if (exitPending()) {
4830 mActiveTrack.clear();
4831 status = INVALID_OPERATION;
4832 goto startError;
4833 }
4834 mStartStopCond.wait(mLock);
4835 if (mActiveTrack == 0) {
4836 ALOGV("Record failed to start");
4837 status = BAD_VALUE;
4838 goto startError;
4839 }
4840 ALOGV("Record started OK");
4841 return status;
4842 }
4843
4844 startError:
4845 AudioSystem::stopInput(mId);
4846 clearSyncStartEvent();
4847 return status;
4848 }
4849
clearSyncStartEvent()4850 void AudioFlinger::RecordThread::clearSyncStartEvent()
4851 {
4852 if (mSyncStartEvent != 0) {
4853 mSyncStartEvent->cancel();
4854 }
4855 mSyncStartEvent.clear();
4856 mFramestoDrop = 0;
4857 }
4858
syncStartEventCallback(const wp<SyncEvent> & event)4859 void AudioFlinger::RecordThread::syncStartEventCallback(const wp<SyncEvent>& event)
4860 {
4861 sp<SyncEvent> strongEvent = event.promote();
4862
4863 if (strongEvent != 0) {
4864 RecordThread *me = (RecordThread *)strongEvent->cookie();
4865 me->handleSyncStartEvent(strongEvent);
4866 }
4867 }
4868
handleSyncStartEvent(const sp<SyncEvent> & event)4869 void AudioFlinger::RecordThread::handleSyncStartEvent(const sp<SyncEvent>& event)
4870 {
4871 if (event == mSyncStartEvent) {
4872 // TODO: use actual buffer filling status instead of 2 buffers when info is available
4873 // from audio HAL
4874 mFramestoDrop = mFrameCount * 2;
4875 }
4876 }
4877
stop(RecordThread::RecordTrack * recordTrack)4878 bool AudioFlinger::RecordThread::stop(RecordThread::RecordTrack* recordTrack) {
4879 ALOGV("RecordThread::stop");
4880 AutoMutex _l(mLock);
4881 if (recordTrack != mActiveTrack.get() || recordTrack->mState == TrackBase::PAUSING) {
4882 return false;
4883 }
4884 recordTrack->mState = TrackBase::PAUSING;
4885 // do not wait for mStartStopCond if exiting
4886 if (exitPending()) {
4887 return true;
4888 }
4889 mStartStopCond.wait(mLock);
4890 // if we have been restarted, recordTrack == mActiveTrack.get() here
4891 if (exitPending() || recordTrack != mActiveTrack.get()) {
4892 ALOGV("Record stopped OK");
4893 return true;
4894 }
4895 return false;
4896 }
4897
isValidSyncEvent(const sp<SyncEvent> & event) const4898 bool AudioFlinger::RecordThread::isValidSyncEvent(const sp<SyncEvent>& event) const
4899 {
4900 return false;
4901 }
4902
setSyncEvent(const sp<SyncEvent> & event)4903 status_t AudioFlinger::RecordThread::setSyncEvent(const sp<SyncEvent>& event)
4904 {
4905 #if 0 // This branch is currently dead code, but is preserved in case it will be needed in future
4906 if (!isValidSyncEvent(event)) {
4907 return BAD_VALUE;
4908 }
4909
4910 int eventSession = event->triggerSession();
4911 status_t ret = NAME_NOT_FOUND;
4912
4913 Mutex::Autolock _l(mLock);
4914
4915 for (size_t i = 0; i < mTracks.size(); i++) {
4916 sp<RecordTrack> track = mTracks[i];
4917 if (eventSession == track->sessionId()) {
4918 (void) track->setSyncEvent(event);
4919 ret = NO_ERROR;
4920 }
4921 }
4922 return ret;
4923 #else
4924 return BAD_VALUE;
4925 #endif
4926 }
4927
4928 // destroyTrack_l() must be called with ThreadBase::mLock held
destroyTrack_l(const sp<RecordTrack> & track)4929 void AudioFlinger::RecordThread::destroyTrack_l(const sp<RecordTrack>& track)
4930 {
4931 track->terminate();
4932 track->mState = TrackBase::STOPPED;
4933 // active tracks are removed by threadLoop()
4934 if (mActiveTrack != track) {
4935 removeTrack_l(track);
4936 }
4937 }
4938
removeTrack_l(const sp<RecordTrack> & track)4939 void AudioFlinger::RecordThread::removeTrack_l(const sp<RecordTrack>& track)
4940 {
4941 mTracks.remove(track);
4942 // need anything related to effects here?
4943 }
4944
dump(int fd,const Vector<String16> & args)4945 void AudioFlinger::RecordThread::dump(int fd, const Vector<String16>& args)
4946 {
4947 dumpInternals(fd, args);
4948 dumpTracks(fd, args);
4949 dumpEffectChains(fd, args);
4950 }
4951
dumpInternals(int fd,const Vector<String16> & args)4952 void AudioFlinger::RecordThread::dumpInternals(int fd, const Vector<String16>& args)
4953 {
4954 const size_t SIZE = 256;
4955 char buffer[SIZE];
4956 String8 result;
4957
4958 snprintf(buffer, SIZE, "\nInput thread %p internals\n", this);
4959 result.append(buffer);
4960
4961 if (mActiveTrack != 0) {
4962 snprintf(buffer, SIZE, "In index: %d\n", mRsmpInIndex);
4963 result.append(buffer);
4964 snprintf(buffer, SIZE, "Buffer size: %u bytes\n", mBufferSize);
4965 result.append(buffer);
4966 snprintf(buffer, SIZE, "Resampling: %d\n", (mResampler != NULL));
4967 result.append(buffer);
4968 snprintf(buffer, SIZE, "Out channel count: %u\n", mReqChannelCount);
4969 result.append(buffer);
4970 snprintf(buffer, SIZE, "Out sample rate: %u\n", mReqSampleRate);
4971 result.append(buffer);
4972 } else {
4973 result.append("No active record client\n");
4974 }
4975
4976 write(fd, result.string(), result.size());
4977
4978 dumpBase(fd, args);
4979 }
4980
dumpTracks(int fd,const Vector<String16> & args)4981 void AudioFlinger::RecordThread::dumpTracks(int fd, const Vector<String16>& args)
4982 {
4983 const size_t SIZE = 256;
4984 char buffer[SIZE];
4985 String8 result;
4986
4987 snprintf(buffer, SIZE, "Input thread %p tracks\n", this);
4988 result.append(buffer);
4989 RecordTrack::appendDumpHeader(result);
4990 for (size_t i = 0; i < mTracks.size(); ++i) {
4991 sp<RecordTrack> track = mTracks[i];
4992 if (track != 0) {
4993 track->dump(buffer, SIZE);
4994 result.append(buffer);
4995 }
4996 }
4997
4998 if (mActiveTrack != 0) {
4999 snprintf(buffer, SIZE, "\nInput thread %p active tracks\n", this);
5000 result.append(buffer);
5001 RecordTrack::appendDumpHeader(result);
5002 mActiveTrack->dump(buffer, SIZE);
5003 result.append(buffer);
5004
5005 }
5006 write(fd, result.string(), result.size());
5007 }
5008
5009 // AudioBufferProvider interface
getNextBuffer(AudioBufferProvider::Buffer * buffer,int64_t pts)5010 status_t AudioFlinger::RecordThread::getNextBuffer(AudioBufferProvider::Buffer* buffer, int64_t pts)
5011 {
5012 size_t framesReq = buffer->frameCount;
5013 size_t framesReady = mFrameCount - mRsmpInIndex;
5014 int channelCount;
5015
5016 if (framesReady == 0) {
5017 mBytesRead = mInput->stream->read(mInput->stream, mRsmpInBuffer, mBufferSize);
5018 if (mBytesRead <= 0) {
5019 if ((mBytesRead < 0) && (mActiveTrack->mState == TrackBase::ACTIVE)) {
5020 ALOGE("RecordThread::getNextBuffer() Error reading audio input");
5021 // Force input into standby so that it tries to
5022 // recover at next read attempt
5023 inputStandBy();
5024 usleep(kRecordThreadSleepUs);
5025 }
5026 buffer->raw = NULL;
5027 buffer->frameCount = 0;
5028 return NOT_ENOUGH_DATA;
5029 }
5030 mRsmpInIndex = 0;
5031 framesReady = mFrameCount;
5032 }
5033
5034 if (framesReq > framesReady) {
5035 framesReq = framesReady;
5036 }
5037
5038 if (mChannelCount == 1 && mReqChannelCount == 2) {
5039 channelCount = 1;
5040 } else {
5041 channelCount = 2;
5042 }
5043 buffer->raw = mRsmpInBuffer + mRsmpInIndex * channelCount;
5044 buffer->frameCount = framesReq;
5045 return NO_ERROR;
5046 }
5047
5048 // AudioBufferProvider interface
releaseBuffer(AudioBufferProvider::Buffer * buffer)5049 void AudioFlinger::RecordThread::releaseBuffer(AudioBufferProvider::Buffer* buffer)
5050 {
5051 mRsmpInIndex += buffer->frameCount;
5052 buffer->frameCount = 0;
5053 }
5054
checkForNewParameters_l()5055 bool AudioFlinger::RecordThread::checkForNewParameters_l()
5056 {
5057 bool reconfig = false;
5058
5059 while (!mNewParameters.isEmpty()) {
5060 status_t status = NO_ERROR;
5061 String8 keyValuePair = mNewParameters[0];
5062 AudioParameter param = AudioParameter(keyValuePair);
5063 int value;
5064 audio_format_t reqFormat = mFormat;
5065 uint32_t reqSamplingRate = mReqSampleRate;
5066 uint32_t reqChannelCount = mReqChannelCount;
5067
5068 if (param.getInt(String8(AudioParameter::keySamplingRate), value) == NO_ERROR) {
5069 reqSamplingRate = value;
5070 reconfig = true;
5071 }
5072 if (param.getInt(String8(AudioParameter::keyFormat), value) == NO_ERROR) {
5073 if ((audio_format_t) value != AUDIO_FORMAT_PCM_16_BIT) {
5074 status = BAD_VALUE;
5075 } else {
5076 reqFormat = (audio_format_t) value;
5077 reconfig = true;
5078 }
5079 }
5080 if (param.getInt(String8(AudioParameter::keyChannels), value) == NO_ERROR) {
5081 reqChannelCount = popcount(value);
5082 reconfig = true;
5083 }
5084 if (param.getInt(String8(AudioParameter::keyFrameCount), value) == NO_ERROR) {
5085 // do not accept frame count changes if tracks are open as the track buffer
5086 // size depends on frame count and correct behavior would not be guaranteed
5087 // if frame count is changed after track creation
5088 if (mActiveTrack != 0) {
5089 status = INVALID_OPERATION;
5090 } else {
5091 reconfig = true;
5092 }
5093 }
5094 if (param.getInt(String8(AudioParameter::keyRouting), value) == NO_ERROR) {
5095 // forward device change to effects that have requested to be
5096 // aware of attached audio device.
5097 for (size_t i = 0; i < mEffectChains.size(); i++) {
5098 mEffectChains[i]->setDevice_l(value);
5099 }
5100
5101 // store input device and output device but do not forward output device to audio HAL.
5102 // Note that status is ignored by the caller for output device
5103 // (see AudioFlinger::setParameters()
5104 if (audio_is_output_devices(value)) {
5105 mOutDevice = value;
5106 status = BAD_VALUE;
5107 } else {
5108 mInDevice = value;
5109 // disable AEC and NS if the device is a BT SCO headset supporting those
5110 // pre processings
5111 if (mTracks.size() > 0) {
5112 bool suspend = audio_is_bluetooth_sco_device(mInDevice) &&
5113 mAudioFlinger->btNrecIsOff();
5114 for (size_t i = 0; i < mTracks.size(); i++) {
5115 sp<RecordTrack> track = mTracks[i];
5116 setEffectSuspended_l(FX_IID_AEC, suspend, track->sessionId());
5117 setEffectSuspended_l(FX_IID_NS, suspend, track->sessionId());
5118 }
5119 }
5120 }
5121 }
5122 if (param.getInt(String8(AudioParameter::keyInputSource), value) == NO_ERROR &&
5123 mAudioSource != (audio_source_t)value) {
5124 // forward device change to effects that have requested to be
5125 // aware of attached audio device.
5126 for (size_t i = 0; i < mEffectChains.size(); i++) {
5127 mEffectChains[i]->setAudioSource_l((audio_source_t)value);
5128 }
5129 mAudioSource = (audio_source_t)value;
5130 }
5131 if (status == NO_ERROR) {
5132 status = mInput->stream->common.set_parameters(&mInput->stream->common,
5133 keyValuePair.string());
5134 if (status == INVALID_OPERATION) {
5135 inputStandBy();
5136 status = mInput->stream->common.set_parameters(&mInput->stream->common,
5137 keyValuePair.string());
5138 }
5139 if (reconfig) {
5140 if (status == BAD_VALUE &&
5141 reqFormat == mInput->stream->common.get_format(&mInput->stream->common) &&
5142 reqFormat == AUDIO_FORMAT_PCM_16_BIT &&
5143 (mInput->stream->common.get_sample_rate(&mInput->stream->common)
5144 <= (2 * reqSamplingRate)) &&
5145 popcount(mInput->stream->common.get_channels(&mInput->stream->common))
5146 <= FCC_2 &&
5147 (reqChannelCount <= FCC_2)) {
5148 status = NO_ERROR;
5149 }
5150 if (status == NO_ERROR) {
5151 readInputParameters();
5152 sendIoConfigEvent_l(AudioSystem::INPUT_CONFIG_CHANGED);
5153 }
5154 }
5155 }
5156
5157 mNewParameters.removeAt(0);
5158
5159 mParamStatus = status;
5160 mParamCond.signal();
5161 // wait for condition with time out in case the thread calling ThreadBase::setParameters()
5162 // already timed out waiting for the status and will never signal the condition.
5163 mWaitWorkCV.waitRelative(mLock, kSetParametersTimeoutNs);
5164 }
5165 return reconfig;
5166 }
5167
getParameters(const String8 & keys)5168 String8 AudioFlinger::RecordThread::getParameters(const String8& keys)
5169 {
5170 Mutex::Autolock _l(mLock);
5171 if (initCheck() != NO_ERROR) {
5172 return String8();
5173 }
5174
5175 char *s = mInput->stream->common.get_parameters(&mInput->stream->common, keys.string());
5176 const String8 out_s8(s);
5177 free(s);
5178 return out_s8;
5179 }
5180
audioConfigChanged_l(int event,int param)5181 void AudioFlinger::RecordThread::audioConfigChanged_l(int event, int param) {
5182 AudioSystem::OutputDescriptor desc;
5183 void *param2 = NULL;
5184
5185 switch (event) {
5186 case AudioSystem::INPUT_OPENED:
5187 case AudioSystem::INPUT_CONFIG_CHANGED:
5188 desc.channelMask = mChannelMask;
5189 desc.samplingRate = mSampleRate;
5190 desc.format = mFormat;
5191 desc.frameCount = mFrameCount;
5192 desc.latency = 0;
5193 param2 = &desc;
5194 break;
5195
5196 case AudioSystem::INPUT_CLOSED:
5197 default:
5198 break;
5199 }
5200 mAudioFlinger->audioConfigChanged_l(event, mId, param2);
5201 }
5202
readInputParameters()5203 void AudioFlinger::RecordThread::readInputParameters()
5204 {
5205 delete[] mRsmpInBuffer;
5206 // mRsmpInBuffer is always assigned a new[] below
5207 delete[] mRsmpOutBuffer;
5208 mRsmpOutBuffer = NULL;
5209 delete mResampler;
5210 mResampler = NULL;
5211
5212 mSampleRate = mInput->stream->common.get_sample_rate(&mInput->stream->common);
5213 mChannelMask = mInput->stream->common.get_channels(&mInput->stream->common);
5214 mChannelCount = popcount(mChannelMask);
5215 mFormat = mInput->stream->common.get_format(&mInput->stream->common);
5216 if (mFormat != AUDIO_FORMAT_PCM_16_BIT) {
5217 ALOGE("HAL format %d not supported; must be AUDIO_FORMAT_PCM_16_BIT", mFormat);
5218 }
5219 mFrameSize = audio_stream_frame_size(&mInput->stream->common);
5220 mBufferSize = mInput->stream->common.get_buffer_size(&mInput->stream->common);
5221 mFrameCount = mBufferSize / mFrameSize;
5222 mRsmpInBuffer = new int16_t[mFrameCount * mChannelCount];
5223
5224 if (mSampleRate != mReqSampleRate && mChannelCount <= FCC_2 && mReqChannelCount <= FCC_2)
5225 {
5226 int channelCount;
5227 // optimization: if mono to mono, use the resampler in stereo to stereo mode to avoid
5228 // stereo to mono post process as the resampler always outputs stereo.
5229 if (mChannelCount == 1 && mReqChannelCount == 2) {
5230 channelCount = 1;
5231 } else {
5232 channelCount = 2;
5233 }
5234 mResampler = AudioResampler::create(16, channelCount, mReqSampleRate);
5235 mResampler->setSampleRate(mSampleRate);
5236 mResampler->setVolume(AudioMixer::UNITY_GAIN, AudioMixer::UNITY_GAIN);
5237 mRsmpOutBuffer = new int32_t[mFrameCount * FCC_2];
5238
5239 // optmization: if mono to mono, alter input frame count as if we were inputing
5240 // stereo samples
5241 if (mChannelCount == 1 && mReqChannelCount == 1) {
5242 mFrameCount >>= 1;
5243 }
5244
5245 }
5246 mRsmpInIndex = mFrameCount;
5247 }
5248
getInputFramesLost()5249 unsigned int AudioFlinger::RecordThread::getInputFramesLost()
5250 {
5251 Mutex::Autolock _l(mLock);
5252 if (initCheck() != NO_ERROR) {
5253 return 0;
5254 }
5255
5256 return mInput->stream->get_input_frames_lost(mInput->stream);
5257 }
5258
hasAudioSession(int sessionId) const5259 uint32_t AudioFlinger::RecordThread::hasAudioSession(int sessionId) const
5260 {
5261 Mutex::Autolock _l(mLock);
5262 uint32_t result = 0;
5263 if (getEffectChain_l(sessionId) != 0) {
5264 result = EFFECT_SESSION;
5265 }
5266
5267 for (size_t i = 0; i < mTracks.size(); ++i) {
5268 if (sessionId == mTracks[i]->sessionId()) {
5269 result |= TRACK_SESSION;
5270 break;
5271 }
5272 }
5273
5274 return result;
5275 }
5276
sessionIds() const5277 KeyedVector<int, bool> AudioFlinger::RecordThread::sessionIds() const
5278 {
5279 KeyedVector<int, bool> ids;
5280 Mutex::Autolock _l(mLock);
5281 for (size_t j = 0; j < mTracks.size(); ++j) {
5282 sp<RecordThread::RecordTrack> track = mTracks[j];
5283 int sessionId = track->sessionId();
5284 if (ids.indexOfKey(sessionId) < 0) {
5285 ids.add(sessionId, true);
5286 }
5287 }
5288 return ids;
5289 }
5290
clearInput()5291 AudioFlinger::AudioStreamIn* AudioFlinger::RecordThread::clearInput()
5292 {
5293 Mutex::Autolock _l(mLock);
5294 AudioStreamIn *input = mInput;
5295 mInput = NULL;
5296 return input;
5297 }
5298
5299 // this method must always be called either with ThreadBase mLock held or inside the thread loop
stream() const5300 audio_stream_t* AudioFlinger::RecordThread::stream() const
5301 {
5302 if (mInput == NULL) {
5303 return NULL;
5304 }
5305 return &mInput->stream->common;
5306 }
5307
addEffectChain_l(const sp<EffectChain> & chain)5308 status_t AudioFlinger::RecordThread::addEffectChain_l(const sp<EffectChain>& chain)
5309 {
5310 // only one chain per input thread
5311 if (mEffectChains.size() != 0) {
5312 return INVALID_OPERATION;
5313 }
5314 ALOGV("addEffectChain_l() %p on thread %p", chain.get(), this);
5315
5316 chain->setInBuffer(NULL);
5317 chain->setOutBuffer(NULL);
5318
5319 checkSuspendOnAddEffectChain_l(chain);
5320
5321 mEffectChains.add(chain);
5322
5323 return NO_ERROR;
5324 }
5325
removeEffectChain_l(const sp<EffectChain> & chain)5326 size_t AudioFlinger::RecordThread::removeEffectChain_l(const sp<EffectChain>& chain)
5327 {
5328 ALOGV("removeEffectChain_l() %p from thread %p", chain.get(), this);
5329 ALOGW_IF(mEffectChains.size() != 1,
5330 "removeEffectChain_l() %p invalid chain size %d on thread %p",
5331 chain.get(), mEffectChains.size(), this);
5332 if (mEffectChains.size() == 1) {
5333 mEffectChains.removeAt(0);
5334 }
5335 return 0;
5336 }
5337
5338 }; // namespace android
5339