• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 
2 /*
3  * Author : Stephen Smalley, <sds@epoch.ncsc.mil>
4  */
5 /*
6  * Updated: Trusted Computer Solutions, Inc. <dgoeddel@trustedcs.com>
7  *
8  *	Support for enhanced MLS infrastructure.
9  *
10  * Updated: Frank Mayer <mayerf@tresys.com>
11  *          and Karl MacMillan <kmacmillan@tresys.com>
12  *
13  * 	Added conditional policy language extensions
14  *
15  * Updated: Red Hat, Inc.  James Morris <jmorris@redhat.com>
16  *
17  *      Fine-grained netlink support
18  *      IPv6 support
19  *      Code cleanup
20  *
21  * Copyright (C) 2004-2005 Trusted Computer Solutions, Inc.
22  * Copyright (C) 2003 - 2004 Tresys Technology, LLC
23  * Copyright (C) 2003 - 2004 Red Hat, Inc.
24  *
25  *  This library is free software; you can redistribute it and/or
26  *  modify it under the terms of the GNU Lesser General Public
27  *  License as published by the Free Software Foundation; either
28  *  version 2.1 of the License, or (at your option) any later version.
29  *
30  *  This library is distributed in the hope that it will be useful,
31  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
32  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
33  *  Lesser General Public License for more details.
34  *
35  *  You should have received a copy of the GNU Lesser General Public
36  *  License along with this library; if not, write to the Free Software
37  *  Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA  02110-1301  USA
38  */
39 
40 /* FLASK */
41 
42 /*
43  * Implementation of the security services.
44  */
45 
46 /* Initial sizes malloc'd for sepol_compute_av_reason_buffer() support */
47 #define REASON_BUF_SIZE 2048
48 #define EXPR_BUF_SIZE 1024
49 #define STACK_LEN 32
50 
51 #include <stdlib.h>
52 #include <sys/types.h>
53 #include <sys/socket.h>
54 #include <netinet/in.h>
55 #include <arpa/inet.h>
56 
57 #include <sepol/policydb/policydb.h>
58 #include <sepol/policydb/sidtab.h>
59 #include <sepol/policydb/services.h>
60 #include <sepol/policydb/conditional.h>
61 #include <sepol/policydb/flask.h>
62 #include <sepol/policydb/util.h>
63 
64 #include "debug.h"
65 #include "private.h"
66 #include "context.h"
67 #include "av_permissions.h"
68 #include "dso.h"
69 #include "mls.h"
70 
71 #define BUG() do { ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
72 #define BUG_ON(x) do { if (x) ERR(NULL, "Badness at %s:%d", __FILE__, __LINE__); } while (0)
73 
74 static int selinux_enforcing = 1;
75 
76 static sidtab_t mysidtab, *sidtab = &mysidtab;
77 static policydb_t mypolicydb, *policydb = &mypolicydb;
78 
79 /* Used by sepol_compute_av_reason_buffer() to keep track of entries */
80 static int reason_buf_used;
81 static int reason_buf_len;
82 
83 /* Stack services for RPN to infix conversion. */
84 static char **stack;
85 static int stack_len;
86 static int next_stack_entry;
87 
push(char * expr_ptr)88 static void push(char *expr_ptr)
89 {
90 	if (next_stack_entry >= stack_len) {
91 		char **new_stack = stack;
92 		int new_stack_len;
93 
94 		if (stack_len == 0)
95 			new_stack_len = STACK_LEN;
96 		else
97 			new_stack_len = stack_len * 2;
98 
99 		new_stack = realloc(stack, new_stack_len * sizeof(*stack));
100 		if (!new_stack) {
101 			ERR(NULL, "unable to allocate stack space");
102 			return;
103 		}
104 		stack_len = new_stack_len;
105 		stack = new_stack;
106 	}
107 	stack[next_stack_entry] = expr_ptr;
108 	next_stack_entry++;
109 }
110 
pop(void)111 static char *pop(void)
112 {
113 	next_stack_entry--;
114 	if (next_stack_entry < 0) {
115 		next_stack_entry = 0;
116 		ERR(NULL, "pop called with no stack entries");
117 		return NULL;
118 	}
119 	return stack[next_stack_entry];
120 }
121 /* End Stack services */
122 
sepol_set_sidtab(sidtab_t * s)123 int hidden sepol_set_sidtab(sidtab_t * s)
124 {
125 	sidtab = s;
126 	return 0;
127 }
128 
sepol_set_policydb(policydb_t * p)129 int hidden sepol_set_policydb(policydb_t * p)
130 {
131 	policydb = p;
132 	return 0;
133 }
134 
sepol_set_policydb_from_file(FILE * fp)135 int sepol_set_policydb_from_file(FILE * fp)
136 {
137 	struct policy_file pf;
138 
139 	policy_file_init(&pf);
140 	pf.fp = fp;
141 	pf.type = PF_USE_STDIO;
142 	if (mypolicydb.policy_type)
143 		policydb_destroy(&mypolicydb);
144 	if (policydb_init(&mypolicydb)) {
145 		ERR(NULL, "Out of memory!");
146 		return -1;
147 	}
148 	if (policydb_read(&mypolicydb, &pf, 0)) {
149 		policydb_destroy(&mypolicydb);
150 		ERR(NULL, "can't read binary policy: %s", strerror(errno));
151 		return -1;
152 	}
153 	policydb = &mypolicydb;
154 	return sepol_sidtab_init(sidtab);
155 }
156 
157 /*
158  * The largest sequence number that has been used when
159  * providing an access decision to the access vector cache.
160  * The sequence number only changes when a policy change
161  * occurs.
162  */
163 static uint32_t latest_granting = 0;
164 
165 /*
166  * cat_expr_buf adds a string to an expression buffer and handles
167  * realloc's if buffer is too small. The array of expression text
168  * buffer pointers and its counter are globally defined here as
169  * constraint_expr_eval_reason() sets them up and cat_expr_buf
170  * updates the e_buf pointer.
171  */
172 static int expr_counter;
173 static char **expr_list;
174 static int expr_buf_used;
175 static int expr_buf_len;
176 
cat_expr_buf(char * e_buf,char * string)177 static void cat_expr_buf(char *e_buf, char *string)
178 {
179 	int len, new_buf_len;
180 	char *p, *new_buf = e_buf;
181 
182 	while (1) {
183 		p = e_buf + expr_buf_used;
184 		len = snprintf(p, expr_buf_len - expr_buf_used, "%s", string);
185 		if (len < 0 || len >= expr_buf_len - expr_buf_used) {
186 			new_buf_len = expr_buf_len + EXPR_BUF_SIZE;
187 			new_buf = realloc(e_buf, new_buf_len);
188 			if (!new_buf) {
189 				ERR(NULL, "failed to realloc expr buffer");
190 				return;
191 			}
192 			/* Update new ptr in expr list and locally + new len */
193 			expr_list[expr_counter] = new_buf;
194 			e_buf = new_buf;
195 			expr_buf_len = new_buf_len;
196 		} else {
197 			expr_buf_used += len;
198 			return;
199 		}
200 	}
201 }
202 
203 /*
204  * If the POLICY_KERN version is >= POLICYDB_VERSION_CONSTRAINT_NAMES,
205  * then for 'types' only, read the types_names->types list as it will
206  * contain a list of types and attributes that were defined in the
207  * policy source.
208  * For user and role plus types (for policy vers <
209  * POLICYDB_VERSION_CONSTRAINT_NAMES) just read the e->names list.
210  */
get_name_list(constraint_expr_t * e,int type,char * src,char * op,int failed)211 static void get_name_list(constraint_expr_t *e, int type,
212 							char *src, char *op, int failed)
213 {
214 	ebitmap_t *types;
215 	int rc = 0;
216 	unsigned int i;
217 	char tmp_buf[128];
218 	int counter = 0;
219 
220 	if (policydb->policy_type == POLICY_KERN &&
221 			policydb->policyvers >= POLICYDB_VERSION_CONSTRAINT_NAMES &&
222 			type == CEXPR_TYPE)
223 		types = &e->type_names->types;
224 	else
225 		types = &e->names;
226 
227 	/* Find out how many entries */
228 	for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
229 		rc = ebitmap_get_bit(types, i);
230 		if (rc == 0)
231 			continue;
232 		else
233 			counter++;
234 	}
235 	snprintf(tmp_buf, sizeof(tmp_buf), "(%s%s", src, op);
236 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
237 
238 	if (counter == 0)
239 		cat_expr_buf(expr_list[expr_counter], "<empty_set> ");
240 	if (counter > 1)
241 		cat_expr_buf(expr_list[expr_counter], " {");
242 	if (counter >= 1) {
243 		for (i = ebitmap_startbit(types); i < ebitmap_length(types); i++) {
244 			rc = ebitmap_get_bit(types, i);
245 			if (rc == 0)
246 				continue;
247 
248 			/* Collect entries */
249 			switch (type) {
250 			case CEXPR_USER:
251 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
252 							policydb->p_user_val_to_name[i]);
253 				break;
254 			case CEXPR_ROLE:
255 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
256 							policydb->p_role_val_to_name[i]);
257 				break;
258 			case CEXPR_TYPE:
259 				snprintf(tmp_buf, sizeof(tmp_buf), " %s",
260 							policydb->p_type_val_to_name[i]);
261 				break;
262 			}
263 			cat_expr_buf(expr_list[expr_counter], tmp_buf);
264 		}
265 	}
266 	if (counter > 1)
267 		cat_expr_buf(expr_list[expr_counter], " }");
268 	if (failed)
269 		cat_expr_buf(expr_list[expr_counter], " -Fail-) ");
270 	else
271 		cat_expr_buf(expr_list[expr_counter], ") ");
272 
273 	return;
274 }
275 
msgcat(char * src,char * tgt,char * op,int failed)276 static void msgcat(char *src, char *tgt, char *op, int failed)
277 {
278 	char tmp_buf[128];
279 	if (failed)
280 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s -Fail-) ",
281 				src, op, tgt);
282 	else
283 		snprintf(tmp_buf, sizeof(tmp_buf), "(%s %s %s) ",
284 				src, op, tgt);
285 	cat_expr_buf(expr_list[expr_counter], tmp_buf);
286 }
287 
288 /* Returns a buffer with class, statement type and permissions */
get_class_info(sepol_security_class_t tclass,constraint_node_t * constraint,context_struct_t * xcontext)289 static char *get_class_info(sepol_security_class_t tclass,
290 							constraint_node_t *constraint,
291 							context_struct_t *xcontext)
292 {
293 	constraint_expr_t *e;
294 	int mls, state_num;
295 
296 	/* Find if MLS statement or not */
297 	mls = 0;
298 	for (e = constraint->expr; e; e = e->next) {
299 		if (e->attr >= CEXPR_L1L2) {
300 			mls = 1;
301 			break;
302 		}
303 	}
304 
305 	/* Determine statement type */
306 	char *statements[] = {
307 		"constrain ",			/* 0 */
308 		"mlsconstrain ",		/* 1 */
309 		"validatetrans ",		/* 2 */
310 		"mlsvalidatetrans ",	/* 3 */
311 		0 };
312 
313 	if (xcontext == NULL)
314 		state_num = mls + 0;
315 	else
316 		state_num = mls + 2;
317 
318 	int class_buf_len = 0;
319 	int new_class_buf_len;
320 	int len, buf_used;
321 	char *class_buf = NULL, *p;
322 	char *new_class_buf = NULL;
323 
324 	while (1) {
325 		new_class_buf_len = class_buf_len + EXPR_BUF_SIZE;
326 		new_class_buf = realloc(class_buf, new_class_buf_len);
327 			if (!new_class_buf)
328 				return NULL;
329 		class_buf_len = new_class_buf_len;
330 		class_buf = new_class_buf;
331 		buf_used = 0;
332 		p = class_buf;
333 
334 		/* Add statement type */
335 		len = snprintf(p, class_buf_len - buf_used, "%s", statements[state_num]);
336 		if (len < 0 || len >= class_buf_len - buf_used)
337 			continue;
338 
339 		/* Add class entry */
340 		p += len;
341 		buf_used += len;
342 		len = snprintf(p, class_buf_len - buf_used, "%s ",
343 				policydb->p_class_val_to_name[tclass - 1]);
344 		if (len < 0 || len >= class_buf_len - buf_used)
345 			continue;
346 
347 		/* Add permission entries */
348 		p += len;
349 		buf_used += len;
350 		len = snprintf(p, class_buf_len - buf_used, "{%s } (",
351 				sepol_av_to_string(policydb, tclass, constraint->permissions));
352 		if (len < 0 || len >= class_buf_len - buf_used)
353 			continue;
354 		break;
355 	}
356 	return class_buf;
357 }
358 
359 /*
360  * Modified version of constraint_expr_eval that will process each
361  * constraint as before but adds the information to text buffers that
362  * will hold various components. The expression will be in RPN format,
363  * therefore there is a stack based RPN to infix converter to produce
364  * the final readable constraint.
365  *
366  * Return the boolean value of a constraint expression
367  * when it is applied to the specified source and target
368  * security contexts.
369  *
370  * xcontext is a special beast...  It is used by the validatetrans rules
371  * only.  For these rules, scontext is the context before the transition,
372  * tcontext is the context after the transition, and xcontext is the
373  * context of the process performing the transition.  All other callers
374  * of constraint_expr_eval_reason should pass in NULL for xcontext.
375  *
376  * This function will also build a buffer as the constraint is processed
377  * for analysis. If this option is not required, then:
378  *      'tclass' should be '0' and r_buf MUST be NULL.
379  */
constraint_expr_eval_reason(context_struct_t * scontext,context_struct_t * tcontext,context_struct_t * xcontext,sepol_security_class_t tclass,constraint_node_t * constraint,char ** r_buf,unsigned int flags)380 static int constraint_expr_eval_reason(context_struct_t *scontext,
381 				context_struct_t *tcontext,
382 				context_struct_t *xcontext,
383 				sepol_security_class_t tclass,
384 				constraint_node_t *constraint,
385 				char **r_buf,
386 				unsigned int flags)
387 {
388 	uint32_t val1, val2;
389 	context_struct_t *c;
390 	role_datum_t *r1, *r2;
391 	mls_level_t *l1, *l2;
392 	constraint_expr_t *e;
393 	int s[CEXPR_MAXDEPTH];
394 	int sp = -1;
395 	char tmp_buf[128];
396 
397 /*
398  * Define the s_t_x_num values that make up r1, t2 etc. in text strings
399  * Set 1 = source, 2 = target, 3 = xcontext for validatetrans
400  */
401 #define SOURCE  1
402 #define TARGET  2
403 #define XTARGET 3
404 
405 	int s_t_x_num = SOURCE;
406 
407 	/* Set 0 = fail, u = CEXPR_USER, r = CEXPR_ROLE, t = CEXPR_TYPE */
408 	int u_r_t = 0;
409 
410 	char *src = NULL;
411 	char *tgt = NULL;
412 	int rc = 0, x;
413 	char *class_buf = NULL;
414 
415 	class_buf = get_class_info(tclass, constraint, xcontext);
416 	if (!class_buf) {
417 		ERR(NULL, "failed to allocate class buffer");
418 		return -ENOMEM;
419 	}
420 
421 	/* Original function but with buffer support */
422 	int expr_list_len = 0;
423 	expr_counter = 0;
424 	expr_list = NULL;
425 	for (e = constraint->expr; e; e = e->next) {
426 		/* Allocate a stack to hold expression buffer entries */
427 		if (expr_counter >= expr_list_len) {
428 			char **new_expr_list = expr_list;
429 			int new_expr_list_len;
430 
431 			if (expr_list_len == 0)
432 				new_expr_list_len = STACK_LEN;
433 			else
434 				new_expr_list_len = expr_list_len * 2;
435 
436 			new_expr_list = realloc(expr_list,
437 					new_expr_list_len * sizeof(*expr_list));
438 			if (!new_expr_list) {
439 				ERR(NULL, "failed to allocate expr buffer stack");
440 				rc = -ENOMEM;
441 				goto out;
442 			}
443 			expr_list_len = new_expr_list_len;
444 			expr_list = new_expr_list;
445 		}
446 
447 		/*
448 		 * malloc a buffer to store each expression text component. If
449 		 * buffer is too small cat_expr_buf() will realloc extra space.
450 		 */
451 		expr_buf_len = EXPR_BUF_SIZE;
452 		expr_list[expr_counter] = malloc(expr_buf_len);
453 		if (!expr_list[expr_counter]) {
454 			ERR(NULL, "failed to allocate expr buffer");
455 			rc = -ENOMEM;
456 			goto out;
457 		}
458 		expr_buf_used = 0;
459 
460 		/* Now process each expression of the constraint */
461 		switch (e->expr_type) {
462 		case CEXPR_NOT:
463 			BUG_ON(sp < 0);
464 			s[sp] = !s[sp];
465 			cat_expr_buf(expr_list[expr_counter], "not");
466 			break;
467 		case CEXPR_AND:
468 			BUG_ON(sp < 1);
469 			sp--;
470 			s[sp] &= s[sp + 1];
471 			cat_expr_buf(expr_list[expr_counter], "and");
472 			break;
473 		case CEXPR_OR:
474 			BUG_ON(sp < 1);
475 			sp--;
476 			s[sp] |= s[sp + 1];
477 			cat_expr_buf(expr_list[expr_counter], "or");
478 			break;
479 		case CEXPR_ATTR:
480 			if (sp == (CEXPR_MAXDEPTH - 1))
481 				goto out;
482 
483 			switch (e->attr) {
484 			case CEXPR_USER:
485 				val1 = scontext->user;
486 				val2 = tcontext->user;
487 				free(src); src = strdup("u1");
488 				free(tgt); tgt = strdup("u2");
489 				break;
490 			case CEXPR_TYPE:
491 				val1 = scontext->type;
492 				val2 = tcontext->type;
493 				free(src); src = strdup("t1");
494 				free(tgt); tgt = strdup("t2");
495 				break;
496 			case CEXPR_ROLE:
497 				val1 = scontext->role;
498 				val2 = tcontext->role;
499 				r1 = policydb->role_val_to_struct[val1 - 1];
500 				r2 = policydb->role_val_to_struct[val2 - 1];
501 				free(src); src = strdup("r1");
502 				free(tgt); tgt = strdup("r2");
503 
504 				switch (e->op) {
505 				case CEXPR_DOM:
506 					s[++sp] = ebitmap_get_bit(&r1->dominates, val2 - 1);
507 					msgcat(src, tgt, "dom", s[sp] == 0);
508 					expr_counter++;
509 					continue;
510 				case CEXPR_DOMBY:
511 					s[++sp] = ebitmap_get_bit(&r2->dominates, val1 - 1);
512 					msgcat(src, tgt, "domby", s[sp] == 0);
513 					expr_counter++;
514 					continue;
515 				case CEXPR_INCOMP:
516 					s[++sp] = (!ebitmap_get_bit(&r1->dominates, val2 - 1)
517 						 && !ebitmap_get_bit(&r2->dominates, val1 - 1));
518 					msgcat(src, tgt, "incomp", s[sp] == 0);
519 					expr_counter++;
520 					continue;
521 				default:
522 					break;
523 				}
524 				break;
525 			case CEXPR_L1L2:
526 				l1 = &(scontext->range.level[0]);
527 				l2 = &(tcontext->range.level[0]);
528 				free(src); src = strdup("l1");
529 				free(tgt); tgt = strdup("l2");
530 				goto mls_ops;
531 			case CEXPR_L1H2:
532 				l1 = &(scontext->range.level[0]);
533 				l2 = &(tcontext->range.level[1]);
534 				free(src); src = strdup("l1");
535 				free(tgt); tgt = strdup("h2");
536 				goto mls_ops;
537 			case CEXPR_H1L2:
538 				l1 = &(scontext->range.level[1]);
539 				l2 = &(tcontext->range.level[0]);
540 				free(src); src = strdup("h1");
541 				free(tgt); tgt = strdup("l2");
542 				goto mls_ops;
543 			case CEXPR_H1H2:
544 				l1 = &(scontext->range.level[1]);
545 				l2 = &(tcontext->range.level[1]);
546 				free(src); src = strdup("h1");
547 				free(tgt); tgt = strdup("h2");
548 				goto mls_ops;
549 			case CEXPR_L1H1:
550 				l1 = &(scontext->range.level[0]);
551 				l2 = &(scontext->range.level[1]);
552 				free(src); src = strdup("l1");
553 				free(tgt); tgt = strdup("h1");
554 				goto mls_ops;
555 			case CEXPR_L2H2:
556 				l1 = &(tcontext->range.level[0]);
557 				l2 = &(tcontext->range.level[1]);
558 				free(src); src = strdup("l2");
559 				free(tgt); tgt = strdup("h2");
560 mls_ops:
561 				switch (e->op) {
562 				case CEXPR_EQ:
563 					s[++sp] = mls_level_eq(l1, l2);
564 					msgcat(src, tgt, "eq", s[sp] == 0);
565 					expr_counter++;
566 					continue;
567 				case CEXPR_NEQ:
568 					s[++sp] = !mls_level_eq(l1, l2);
569 					msgcat(src, tgt, "!=", s[sp] == 0);
570 					expr_counter++;
571 					continue;
572 				case CEXPR_DOM:
573 					s[++sp] = mls_level_dom(l1, l2);
574 					msgcat(src, tgt, "dom", s[sp] == 0);
575 					expr_counter++;
576 					continue;
577 				case CEXPR_DOMBY:
578 					s[++sp] = mls_level_dom(l2, l1);
579 					msgcat(src, tgt, "domby", s[sp] == 0);
580 					expr_counter++;
581 					continue;
582 				case CEXPR_INCOMP:
583 					s[++sp] = mls_level_incomp(l2, l1);
584 					msgcat(src, tgt, "incomp", s[sp] == 0);
585 					expr_counter++;
586 					continue;
587 				default:
588 					BUG();
589 					goto out;
590 				}
591 				break;
592 			default:
593 				BUG();
594 				goto out;
595 			}
596 
597 			switch (e->op) {
598 			case CEXPR_EQ:
599 				s[++sp] = (val1 == val2);
600 				msgcat(src, tgt, "==", s[sp] == 0);
601 				break;
602 			case CEXPR_NEQ:
603 				s[++sp] = (val1 != val2);
604 				msgcat(src, tgt, "!=", s[sp] == 0);
605 				break;
606 			default:
607 				BUG();
608 				goto out;
609 			}
610 			break;
611 		case CEXPR_NAMES:
612 			if (sp == (CEXPR_MAXDEPTH - 1))
613 				goto out;
614 			s_t_x_num = SOURCE;
615 			c = scontext;
616 			if (e->attr & CEXPR_TARGET) {
617 				s_t_x_num = TARGET;
618 				c = tcontext;
619 			} else if (e->attr & CEXPR_XTARGET) {
620 				s_t_x_num = XTARGET;
621 				c = xcontext;
622 			}
623 			if (!c) {
624 				BUG();
625 				goto out;
626 			}
627 			if (e->attr & CEXPR_USER) {
628 				u_r_t = CEXPR_USER;
629 				val1 = c->user;
630 				snprintf(tmp_buf, sizeof(tmp_buf), "u%d ", s_t_x_num);
631 				free(src); src = strdup(tmp_buf);
632 			} else if (e->attr & CEXPR_ROLE) {
633 				u_r_t = CEXPR_ROLE;
634 				val1 = c->role;
635 				snprintf(tmp_buf, sizeof(tmp_buf), "r%d ", s_t_x_num);
636 				free(src); src = strdup(tmp_buf);
637 			} else if (e->attr & CEXPR_TYPE) {
638 				u_r_t = CEXPR_TYPE;
639 				val1 = c->type;
640 				snprintf(tmp_buf, sizeof(tmp_buf), "t%d ", s_t_x_num);
641 				free(src); src = strdup(tmp_buf);
642 			} else {
643 				BUG();
644 				goto out;
645 			}
646 
647 			switch (e->op) {
648 			case CEXPR_EQ:
649 				s[++sp] = ebitmap_get_bit(&e->names, val1 - 1);
650 				get_name_list(e, u_r_t, src, "==", s[sp] == 0);
651 				break;
652 
653 			case CEXPR_NEQ:
654 				s[++sp] = !ebitmap_get_bit(&e->names, val1 - 1);
655 				get_name_list(e, u_r_t, src, "!=", s[sp] == 0);
656 				break;
657 			default:
658 				BUG();
659 				goto out;
660 			}
661 			break;
662 		default:
663 			BUG();
664 			goto out;
665 		}
666 		expr_counter++;
667 	}
668 
669 	/*
670 	 * At this point each expression of the constraint is in
671 	 * expr_list[n+1] and in RPN format. Now convert to 'infix'
672 	 */
673 
674 	/*
675 	 * Save expr count but zero expr_counter to detect if
676 	 * 'BUG(); goto out;' was called as we need to release any used
677 	 * expr_list malloc's. Normally they are released by the RPN to
678 	 * infix code.
679 	 */
680 	int expr_count = expr_counter;
681 	expr_counter = 0;
682 
683 	/*
684 	 * The array of expression answer buffer pointers and counter.
685 	 * Generate the same number of answer buffer entries as expression
686 	 * buffers (as there will never be more).
687 	 */
688 	char **answer_list;
689 	int answer_counter = 0;
690 
691 	answer_list = malloc(expr_count * sizeof(*answer_list));
692 	if (!answer_list) {
693 		ERR(NULL, "failed to allocate answer stack");
694 		rc = -ENOMEM;
695 		goto out;
696 	}
697 
698 	/* The pop operands */
699 	char *a;
700 	char *b;
701 	int a_len, b_len;
702 
703 	/* Convert constraint from RPN to infix notation. */
704 	for (x = 0; x != expr_count; x++) {
705 		if (strncmp(expr_list[x], "and", 3) == 0 || strncmp(expr_list[x],
706 					"or", 2) == 0) {
707 			b = pop();
708 			b_len = strlen(b);
709 			a = pop();
710 			a_len = strlen(a);
711 
712 			/* get a buffer to hold the answer */
713 			answer_list[answer_counter] = malloc(a_len + b_len + 8);
714 			if (!answer_list[answer_counter]) {
715 				ERR(NULL, "failed to allocate answer buffer");
716 				rc = -ENOMEM;
717 				goto out;
718 			}
719 			memset(answer_list[answer_counter], '\0', a_len + b_len + 8);
720 
721 			sprintf(answer_list[answer_counter], "%s %s %s", a,
722 					expr_list[x], b);
723 			push(answer_list[answer_counter++]);
724 			free(a);
725 			free(b);
726 		} else if (strncmp(expr_list[x], "not", 3) == 0) {
727 			b = pop();
728 			b_len = strlen(b);
729 
730 			answer_list[answer_counter] = malloc(b_len + 8);
731 			if (!answer_list[answer_counter]) {
732 				ERR(NULL, "failed to allocate answer buffer");
733 				rc = -ENOMEM;
734 				goto out;
735 			}
736 			memset(answer_list[answer_counter], '\0', b_len + 8);
737 
738 			if (strncmp(b, "not", 3) == 0)
739 				sprintf(answer_list[answer_counter], "%s (%s)",
740 						expr_list[x], b);
741 			else
742 				sprintf(answer_list[answer_counter], "%s%s",
743 						expr_list[x], b);
744 			push(answer_list[answer_counter++]);
745 			free(b);
746 		} else {
747 			push(expr_list[x]);
748 		}
749 	}
750 	/* Get the final answer from tos and build constraint text */
751 	a = pop();
752 
753 	/* Constraint calculation: rc = 0 is denied, rc = 1 is granted */
754 	sprintf(tmp_buf, "Constraint %s\n", s[0] ? "GRANTED" : "DENIED");
755 
756 	int len, new_buf_len;
757 	char *p, **new_buf = r_buf;
758 	/*
759 	 * These contain the constraint components that are added to the
760 	 * callers reason buffer.
761 	 */
762 	char *buffers[] = { class_buf, a, "); ", tmp_buf, 0 };
763 
764 	/*
765 	 * This will add the constraints to the callers reason buffer (who is
766 	 * responsible for freeing the memory). It will handle any realloc's
767 	 * should the buffer be too short.
768 	 * The reason_buf_used and reason_buf_len counters are defined
769 	 * globally as multiple constraints can be in the buffer.
770 	 */
771 
772 	if (r_buf && ((s[0] == 0) || ((s[0] == 1 &&
773 				(flags & SHOW_GRANTED) == SHOW_GRANTED)))) {
774 		for (x = 0; buffers[x] != NULL; x++) {
775 			while (1) {
776 				p = *r_buf + reason_buf_used;
777 				len = snprintf(p, reason_buf_len - reason_buf_used,
778 						"%s", buffers[x]);
779 				if (len < 0 || len >= reason_buf_len - reason_buf_used) {
780 					new_buf_len = reason_buf_len + REASON_BUF_SIZE;
781 					*new_buf = realloc(*r_buf, new_buf_len);
782 					if (!new_buf) {
783 						ERR(NULL, "failed to realloc reason buffer");
784 						goto out1;
785 					}
786 					**r_buf = **new_buf;
787 					reason_buf_len = new_buf_len;
788 					continue;
789 				} else {
790 					reason_buf_used += len;
791 					break;
792 				}
793 			}
794 		}
795 	}
796 
797 out1:
798 	rc = s[0];
799 	free(a);
800 
801 out:
802 	free(class_buf);
803 	free(src);
804 	free(tgt);
805 
806 	if (expr_counter) {
807 		for (x = 0; expr_list[x] != NULL; x++)
808 			free(expr_list[x]);
809 	}
810 	return rc;
811 }
812 
813 /*
814  * Compute access vectors based on a context structure pair for
815  * the permissions in a particular class.
816  */
context_struct_compute_av(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** r_buf,unsigned int flags)817 static int context_struct_compute_av(context_struct_t * scontext,
818 				     context_struct_t * tcontext,
819 				     sepol_security_class_t tclass,
820 				     sepol_access_vector_t requested,
821 				     struct sepol_av_decision *avd,
822 				     unsigned int *reason,
823 				     char **r_buf,
824 					 unsigned int flags)
825 {
826 	constraint_node_t *constraint;
827 	struct role_allow *ra;
828 	avtab_key_t avkey;
829 	class_datum_t *tclass_datum;
830 	avtab_ptr_t node;
831 	ebitmap_t *sattr, *tattr;
832 	ebitmap_node_t *snode, *tnode;
833 	unsigned int i, j;
834 
835 	if (!tclass || tclass > policydb->p_classes.nprim) {
836 		ERR(NULL, "unrecognized class %d", tclass);
837 		return -EINVAL;
838 	}
839 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
840 
841 	/*
842 	 * Initialize the access vectors to the default values.
843 	 */
844 	avd->allowed = 0;
845 	avd->decided = 0xffffffff;
846 	avd->auditallow = 0;
847 	avd->auditdeny = 0xffffffff;
848 	avd->seqno = latest_granting;
849 	*reason = 0;
850 
851 	/*
852 	 * If a specific type enforcement rule was defined for
853 	 * this permission check, then use it.
854 	 */
855 	avkey.target_class = tclass;
856 	avkey.specified = AVTAB_AV;
857 	sattr = &policydb->type_attr_map[scontext->type - 1];
858 	tattr = &policydb->type_attr_map[tcontext->type - 1];
859 	ebitmap_for_each_bit(sattr, snode, i) {
860 		if (!ebitmap_node_get_bit(snode, i))
861 			continue;
862 		ebitmap_for_each_bit(tattr, tnode, j) {
863 			if (!ebitmap_node_get_bit(tnode, j))
864 				continue;
865 			avkey.source_type = i + 1;
866 			avkey.target_type = j + 1;
867 			for (node =
868 			     avtab_search_node(&policydb->te_avtab, &avkey);
869 			     node != NULL;
870 			     node =
871 			     avtab_search_node_next(node, avkey.specified)) {
872 				if (node->key.specified == AVTAB_ALLOWED)
873 					avd->allowed |= node->datum.data;
874 				else if (node->key.specified ==
875 					 AVTAB_AUDITALLOW)
876 					avd->auditallow |= node->datum.data;
877 				else if (node->key.specified == AVTAB_AUDITDENY)
878 					avd->auditdeny &= node->datum.data;
879 			}
880 
881 			/* Check conditional av table for additional permissions */
882 			cond_compute_av(&policydb->te_cond_avtab, &avkey, avd);
883 
884 		}
885 	}
886 
887 	if (requested & ~avd->allowed) {
888 		*reason |= SEPOL_COMPUTEAV_TE;
889 		requested &= avd->allowed;
890 	}
891 
892 	/*
893 	 * Remove any permissions prohibited by a constraint (this includes
894 	 * the MLS policy).
895 	 */
896 	constraint = tclass_datum->constraints;
897 	while (constraint) {
898 		if ((constraint->permissions & (avd->allowed)) &&
899 		    !constraint_expr_eval_reason(scontext, tcontext, NULL,
900 					  tclass, constraint, r_buf, flags)) {
901 			avd->allowed =
902 			    (avd->allowed) & ~(constraint->permissions);
903 		}
904 		constraint = constraint->next;
905 	}
906 
907 	if (requested & ~avd->allowed) {
908 		*reason |= SEPOL_COMPUTEAV_CONS;
909 		requested &= avd->allowed;
910 	}
911 
912 	/*
913 	 * If checking process transition permission and the
914 	 * role is changing, then check the (current_role, new_role)
915 	 * pair.
916 	 */
917 	if (tclass == SECCLASS_PROCESS &&
918 	    (avd->allowed & (PROCESS__TRANSITION | PROCESS__DYNTRANSITION)) &&
919 	    scontext->role != tcontext->role) {
920 		for (ra = policydb->role_allow; ra; ra = ra->next) {
921 			if (scontext->role == ra->role &&
922 			    tcontext->role == ra->new_role)
923 				break;
924 		}
925 		if (!ra)
926 			avd->allowed = (avd->allowed) & ~(PROCESS__TRANSITION |
927 							  PROCESS__DYNTRANSITION);
928 	}
929 
930 	if (requested & ~avd->allowed) {
931 		*reason |= SEPOL_COMPUTEAV_RBAC;
932 		requested &= avd->allowed;
933 	}
934 
935 	return 0;
936 }
937 
sepol_validate_transition(sepol_security_id_t oldsid,sepol_security_id_t newsid,sepol_security_id_t tasksid,sepol_security_class_t tclass)938 int hidden sepol_validate_transition(sepol_security_id_t oldsid,
939 				     sepol_security_id_t newsid,
940 				     sepol_security_id_t tasksid,
941 				     sepol_security_class_t tclass)
942 {
943 	context_struct_t *ocontext;
944 	context_struct_t *ncontext;
945 	context_struct_t *tcontext;
946 	class_datum_t *tclass_datum;
947 	constraint_node_t *constraint;
948 
949 	if (!tclass || tclass > policydb->p_classes.nprim) {
950 		ERR(NULL, "unrecognized class %d", tclass);
951 		return -EINVAL;
952 	}
953 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
954 
955 	ocontext = sepol_sidtab_search(sidtab, oldsid);
956 	if (!ocontext) {
957 		ERR(NULL, "unrecognized SID %d", oldsid);
958 		return -EINVAL;
959 	}
960 
961 	ncontext = sepol_sidtab_search(sidtab, newsid);
962 	if (!ncontext) {
963 		ERR(NULL, "unrecognized SID %d", newsid);
964 		return -EINVAL;
965 	}
966 
967 	tcontext = sepol_sidtab_search(sidtab, tasksid);
968 	if (!tcontext) {
969 		ERR(NULL, "unrecognized SID %d", tasksid);
970 		return -EINVAL;
971 	}
972 
973 	constraint = tclass_datum->validatetrans;
974 	while (constraint) {
975 		if (!constraint_expr_eval_reason(ocontext, ncontext, tcontext,
976 					  0, constraint, NULL, 0)) {
977 			return -EPERM;
978 		}
979 		constraint = constraint->next;
980 	}
981 
982 	return 0;
983 }
984 
sepol_compute_av_reason(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason)985 int hidden sepol_compute_av_reason(sepol_security_id_t ssid,
986 				   sepol_security_id_t tsid,
987 				   sepol_security_class_t tclass,
988 				   sepol_access_vector_t requested,
989 				   struct sepol_av_decision *avd,
990 				   unsigned int *reason)
991 {
992 	context_struct_t *scontext = 0, *tcontext = 0;
993 	int rc = 0;
994 
995 	scontext = sepol_sidtab_search(sidtab, ssid);
996 	if (!scontext) {
997 		ERR(NULL, "unrecognized SID %d", ssid);
998 		rc = -EINVAL;
999 		goto out;
1000 	}
1001 	tcontext = sepol_sidtab_search(sidtab, tsid);
1002 	if (!tcontext) {
1003 		ERR(NULL, "unrecognized SID %d", tsid);
1004 		rc = -EINVAL;
1005 		goto out;
1006 	}
1007 
1008 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1009 					requested, avd, reason, NULL, 0);
1010       out:
1011 	return rc;
1012 }
1013 
1014 /*
1015  * sepol_compute_av_reason_buffer - the reason buffer is malloc'd to
1016  * REASON_BUF_SIZE. If the buffer size is exceeded, then it is realloc'd
1017  * in the constraint_expr_eval_reason() function.
1018  */
sepol_compute_av_reason_buffer(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd,unsigned int * reason,char ** reason_buf,unsigned int flags)1019 int hidden sepol_compute_av_reason_buffer(sepol_security_id_t ssid,
1020 				   sepol_security_id_t tsid,
1021 				   sepol_security_class_t tclass,
1022 				   sepol_access_vector_t requested,
1023 				   struct sepol_av_decision *avd,
1024 				   unsigned int *reason,
1025 				   char **reason_buf,
1026 				   unsigned int flags)
1027 {
1028 	context_struct_t *scontext = 0, *tcontext = 0;
1029 	int rc = 0;
1030 
1031 	scontext = sepol_sidtab_search(sidtab, ssid);
1032 	if (!scontext) {
1033 		ERR(NULL, "unrecognized SID %d", ssid);
1034 		rc = -EINVAL;
1035 		goto out;
1036 	}
1037 	tcontext = sepol_sidtab_search(sidtab, tsid);
1038 	if (!tcontext) {
1039 		ERR(NULL, "unrecognized SID %d", tsid);
1040 		rc = -EINVAL;
1041 		goto out;
1042 	}
1043 
1044 	/*
1045 	 * Set the buffer to NULL as constraints may not be processed.
1046 	 * If a buffer is required, then the routines in
1047 	 * constraint_expr_eval_reason will realloc in REASON_BUF_SIZE
1048 	 * chunks (as it gets called for each constraint processed).
1049 	 * We just make sure these start from zero.
1050 	 */
1051 	*reason_buf = NULL;
1052 	reason_buf_used = 0;
1053 	reason_buf_len = 0;
1054 
1055 	rc = context_struct_compute_av(scontext, tcontext, tclass,
1056 					   requested, avd, reason, reason_buf, flags);
1057 out:
1058 	return rc;
1059 }
1060 
sepol_compute_av(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_access_vector_t requested,struct sepol_av_decision * avd)1061 int hidden sepol_compute_av(sepol_security_id_t ssid,
1062 			    sepol_security_id_t tsid,
1063 			    sepol_security_class_t tclass,
1064 			    sepol_access_vector_t requested,
1065 			    struct sepol_av_decision *avd)
1066 {
1067 	unsigned int reason = 0;
1068 	return sepol_compute_av_reason(ssid, tsid, tclass, requested, avd,
1069 				       &reason);
1070 }
1071 
1072 /*
1073  * Return a class ID associated with the class string specified by
1074  * class_name.
1075  */
sepol_string_to_security_class(const char * class_name,sepol_security_class_t * tclass)1076 int hidden sepol_string_to_security_class(const char *class_name,
1077 			sepol_security_class_t *tclass)
1078 {
1079 	char *class = NULL;
1080 	sepol_security_class_t id;
1081 
1082 	for (id = 1;; id++) {
1083 		class = policydb->p_class_val_to_name[id - 1];
1084 		if (class == NULL) {
1085 			ERR(NULL, "could not convert %s to class id", class_name);
1086 			return STATUS_ERR;
1087 		}
1088 		if ((strcmp(class, class_name)) == 0) {
1089 			*tclass = id;
1090 			return STATUS_SUCCESS;
1091 		}
1092 	}
1093 }
1094 
1095 /*
1096  * Return access vector bit associated with the class ID and permission
1097  * string.
1098  */
sepol_string_to_av_perm(sepol_security_class_t tclass,const char * perm_name,sepol_access_vector_t * av)1099 int hidden sepol_string_to_av_perm(sepol_security_class_t tclass,
1100 					const char *perm_name,
1101 					sepol_access_vector_t *av)
1102 {
1103 	class_datum_t *tclass_datum;
1104 	perm_datum_t *perm_datum;
1105 
1106 	if (!tclass || tclass > policydb->p_classes.nprim) {
1107 		ERR(NULL, "unrecognized class %d", tclass);
1108 		return -EINVAL;
1109 	}
1110 	tclass_datum = policydb->class_val_to_struct[tclass - 1];
1111 
1112 	/* Check for unique perms then the common ones (if any) */
1113 	perm_datum = (perm_datum_t *)
1114 			hashtab_search(tclass_datum->permissions.table,
1115 			(hashtab_key_t)perm_name);
1116 	if (perm_datum != NULL) {
1117 		*av = 0x1 << (perm_datum->s.value - 1);
1118 		return STATUS_SUCCESS;
1119 	}
1120 
1121 	if (tclass_datum->comdatum == NULL)
1122 		goto out;
1123 
1124 	perm_datum = (perm_datum_t *)
1125 			hashtab_search(tclass_datum->comdatum->permissions.table,
1126 			(hashtab_key_t)perm_name);
1127 
1128 	if (perm_datum != NULL) {
1129 		*av = 0x1 << (perm_datum->s.value - 1);
1130 		return STATUS_SUCCESS;
1131 	}
1132 out:
1133 	ERR(NULL, "could not convert %s to av bit", perm_name);
1134 	return STATUS_ERR;
1135 }
1136 
1137 /*
1138  * Write the security context string representation of
1139  * the context associated with `sid' into a dynamically
1140  * allocated string of the correct size.  Set `*scontext'
1141  * to point to this string and set `*scontext_len' to
1142  * the length of the string.
1143  */
sepol_sid_to_context(sepol_security_id_t sid,sepol_security_context_t * scontext,size_t * scontext_len)1144 int hidden sepol_sid_to_context(sepol_security_id_t sid,
1145 				sepol_security_context_t * scontext,
1146 				size_t * scontext_len)
1147 {
1148 	context_struct_t *context;
1149 	int rc = 0;
1150 
1151 	context = sepol_sidtab_search(sidtab, sid);
1152 	if (!context) {
1153 		ERR(NULL, "unrecognized SID %d", sid);
1154 		rc = -EINVAL;
1155 		goto out;
1156 	}
1157 	rc = context_to_string(NULL, policydb, context, scontext, scontext_len);
1158       out:
1159 	return rc;
1160 
1161 }
1162 
1163 /*
1164  * Return a SID associated with the security context that
1165  * has the string representation specified by `scontext'.
1166  */
sepol_context_to_sid(const sepol_security_context_t scontext,size_t scontext_len,sepol_security_id_t * sid)1167 int hidden sepol_context_to_sid(const sepol_security_context_t scontext,
1168 				size_t scontext_len, sepol_security_id_t * sid)
1169 {
1170 
1171 	context_struct_t *context = NULL;
1172 
1173 	/* First, create the context */
1174 	if (context_from_string(NULL, policydb, &context,
1175 				scontext, scontext_len) < 0)
1176 		goto err;
1177 
1178 	/* Obtain the new sid */
1179 	if (sid && (sepol_sidtab_context_to_sid(sidtab, context, sid) < 0))
1180 		goto err;
1181 
1182 	context_destroy(context);
1183 	free(context);
1184 	return STATUS_SUCCESS;
1185 
1186       err:
1187 	if (context) {
1188 		context_destroy(context);
1189 		free(context);
1190 	}
1191 	ERR(NULL, "could not convert %s to sid", scontext);
1192 	return STATUS_ERR;
1193 }
1194 
compute_sid_handle_invalid_context(context_struct_t * scontext,context_struct_t * tcontext,sepol_security_class_t tclass,context_struct_t * newcontext)1195 static inline int compute_sid_handle_invalid_context(context_struct_t *
1196 						     scontext,
1197 						     context_struct_t *
1198 						     tcontext,
1199 						     sepol_security_class_t
1200 						     tclass,
1201 						     context_struct_t *
1202 						     newcontext)
1203 {
1204 	if (selinux_enforcing) {
1205 		return -EACCES;
1206 	} else {
1207 		sepol_security_context_t s, t, n;
1208 		size_t slen, tlen, nlen;
1209 
1210 		context_to_string(NULL, policydb, scontext, &s, &slen);
1211 		context_to_string(NULL, policydb, tcontext, &t, &tlen);
1212 		context_to_string(NULL, policydb, newcontext, &n, &nlen);
1213 		ERR(NULL, "invalid context %s for "
1214 		    "scontext=%s tcontext=%s tclass=%s",
1215 		    n, s, t, policydb->p_class_val_to_name[tclass - 1]);
1216 		free(s);
1217 		free(t);
1218 		free(n);
1219 		return 0;
1220 	}
1221 }
1222 
sepol_compute_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,uint32_t specified,sepol_security_id_t * out_sid)1223 static int sepol_compute_sid(sepol_security_id_t ssid,
1224 			     sepol_security_id_t tsid,
1225 			     sepol_security_class_t tclass,
1226 			     uint32_t specified, sepol_security_id_t * out_sid)
1227 {
1228 	context_struct_t *scontext = 0, *tcontext = 0, newcontext;
1229 	struct role_trans *roletr = 0;
1230 	avtab_key_t avkey;
1231 	avtab_datum_t *avdatum;
1232 	avtab_ptr_t node;
1233 	int rc = 0;
1234 
1235 	scontext = sepol_sidtab_search(sidtab, ssid);
1236 	if (!scontext) {
1237 		ERR(NULL, "unrecognized SID %d", ssid);
1238 		rc = -EINVAL;
1239 		goto out;
1240 	}
1241 	tcontext = sepol_sidtab_search(sidtab, tsid);
1242 	if (!tcontext) {
1243 		ERR(NULL, "unrecognized SID %d", tsid);
1244 		rc = -EINVAL;
1245 		goto out;
1246 	}
1247 
1248 	context_init(&newcontext);
1249 
1250 	/* Set the user identity. */
1251 	switch (specified) {
1252 	case AVTAB_TRANSITION:
1253 	case AVTAB_CHANGE:
1254 		/* Use the process user identity. */
1255 		newcontext.user = scontext->user;
1256 		break;
1257 	case AVTAB_MEMBER:
1258 		/* Use the related object owner. */
1259 		newcontext.user = tcontext->user;
1260 		break;
1261 	}
1262 
1263 	/* Set the role and type to default values. */
1264 	switch (tclass) {
1265 	case SECCLASS_PROCESS:
1266 		/* Use the current role and type of process. */
1267 		newcontext.role = scontext->role;
1268 		newcontext.type = scontext->type;
1269 		break;
1270 	default:
1271 		/* Use the well-defined object role. */
1272 		newcontext.role = OBJECT_R_VAL;
1273 		/* Use the type of the related object. */
1274 		newcontext.type = tcontext->type;
1275 	}
1276 
1277 	/* Look for a type transition/member/change rule. */
1278 	avkey.source_type = scontext->type;
1279 	avkey.target_type = tcontext->type;
1280 	avkey.target_class = tclass;
1281 	avkey.specified = specified;
1282 	avdatum = avtab_search(&policydb->te_avtab, &avkey);
1283 
1284 	/* If no permanent rule, also check for enabled conditional rules */
1285 	if (!avdatum) {
1286 		node = avtab_search_node(&policydb->te_cond_avtab, &avkey);
1287 		for (; node != NULL;
1288 		     node = avtab_search_node_next(node, specified)) {
1289 			if (node->key.specified & AVTAB_ENABLED) {
1290 				avdatum = &node->datum;
1291 				break;
1292 			}
1293 		}
1294 	}
1295 
1296 	if (avdatum) {
1297 		/* Use the type from the type transition/member/change rule. */
1298 		newcontext.type = avdatum->data;
1299 	}
1300 
1301 	/* Check for class-specific changes. */
1302 	switch (tclass) {
1303 	case SECCLASS_PROCESS:
1304 		if (specified & AVTAB_TRANSITION) {
1305 			/* Look for a role transition rule. */
1306 			for (roletr = policydb->role_tr; roletr;
1307 			     roletr = roletr->next) {
1308 				if (roletr->role == scontext->role &&
1309 				    roletr->type == tcontext->type) {
1310 					/* Use the role transition rule. */
1311 					newcontext.role = roletr->new_role;
1312 					break;
1313 				}
1314 			}
1315 		}
1316 		break;
1317 	default:
1318 		break;
1319 	}
1320 
1321 	/* Set the MLS attributes.
1322 	   This is done last because it may allocate memory. */
1323 	rc = mls_compute_sid(policydb, scontext, tcontext, tclass, specified,
1324 			     &newcontext);
1325 	if (rc)
1326 		goto out;
1327 
1328 	/* Check the validity of the context. */
1329 	if (!policydb_context_isvalid(policydb, &newcontext)) {
1330 		rc = compute_sid_handle_invalid_context(scontext,
1331 							tcontext,
1332 							tclass, &newcontext);
1333 		if (rc)
1334 			goto out;
1335 	}
1336 	/* Obtain the sid for the context. */
1337 	rc = sepol_sidtab_context_to_sid(sidtab, &newcontext, out_sid);
1338       out:
1339 	context_destroy(&newcontext);
1340 	return rc;
1341 }
1342 
1343 /*
1344  * Compute a SID to use for labeling a new object in the
1345  * class `tclass' based on a SID pair.
1346  */
sepol_transition_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1347 int hidden sepol_transition_sid(sepol_security_id_t ssid,
1348 				sepol_security_id_t tsid,
1349 				sepol_security_class_t tclass,
1350 				sepol_security_id_t * out_sid)
1351 {
1352 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_TRANSITION, out_sid);
1353 }
1354 
1355 /*
1356  * Compute a SID to use when selecting a member of a
1357  * polyinstantiated object of class `tclass' based on
1358  * a SID pair.
1359  */
sepol_member_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1360 int hidden sepol_member_sid(sepol_security_id_t ssid,
1361 			    sepol_security_id_t tsid,
1362 			    sepol_security_class_t tclass,
1363 			    sepol_security_id_t * out_sid)
1364 {
1365 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_MEMBER, out_sid);
1366 }
1367 
1368 /*
1369  * Compute a SID to use for relabeling an object in the
1370  * class `tclass' based on a SID pair.
1371  */
sepol_change_sid(sepol_security_id_t ssid,sepol_security_id_t tsid,sepol_security_class_t tclass,sepol_security_id_t * out_sid)1372 int hidden sepol_change_sid(sepol_security_id_t ssid,
1373 			    sepol_security_id_t tsid,
1374 			    sepol_security_class_t tclass,
1375 			    sepol_security_id_t * out_sid)
1376 {
1377 	return sepol_compute_sid(ssid, tsid, tclass, AVTAB_CHANGE, out_sid);
1378 }
1379 
1380 /*
1381  * Verify that each permission that is defined under the
1382  * existing policy is still defined with the same value
1383  * in the new policy.
1384  */
validate_perm(hashtab_key_t key,hashtab_datum_t datum,void * p)1385 static int validate_perm(hashtab_key_t key, hashtab_datum_t datum, void *p)
1386 {
1387 	hashtab_t h;
1388 	perm_datum_t *perdatum, *perdatum2;
1389 
1390 	h = (hashtab_t) p;
1391 	perdatum = (perm_datum_t *) datum;
1392 
1393 	perdatum2 = (perm_datum_t *) hashtab_search(h, key);
1394 	if (!perdatum2) {
1395 		ERR(NULL, "permission %s disappeared", key);
1396 		return -1;
1397 	}
1398 	if (perdatum->s.value != perdatum2->s.value) {
1399 		ERR(NULL, "the value of permissions %s changed", key);
1400 		return -1;
1401 	}
1402 	return 0;
1403 }
1404 
1405 /*
1406  * Verify that each class that is defined under the
1407  * existing policy is still defined with the same
1408  * attributes in the new policy.
1409  */
validate_class(hashtab_key_t key,hashtab_datum_t datum,void * p)1410 static int validate_class(hashtab_key_t key, hashtab_datum_t datum, void *p)
1411 {
1412 	policydb_t *newp;
1413 	class_datum_t *cladatum, *cladatum2;
1414 
1415 	newp = (policydb_t *) p;
1416 	cladatum = (class_datum_t *) datum;
1417 
1418 	cladatum2 =
1419 	    (class_datum_t *) hashtab_search(newp->p_classes.table, key);
1420 	if (!cladatum2) {
1421 		ERR(NULL, "class %s disappeared", key);
1422 		return -1;
1423 	}
1424 	if (cladatum->s.value != cladatum2->s.value) {
1425 		ERR(NULL, "the value of class %s changed", key);
1426 		return -1;
1427 	}
1428 	if ((cladatum->comdatum && !cladatum2->comdatum) ||
1429 	    (!cladatum->comdatum && cladatum2->comdatum)) {
1430 		ERR(NULL, "the inherits clause for the access "
1431 		    "vector definition for class %s changed", key);
1432 		return -1;
1433 	}
1434 	if (cladatum->comdatum) {
1435 		if (hashtab_map
1436 		    (cladatum->comdatum->permissions.table, validate_perm,
1437 		     cladatum2->comdatum->permissions.table)) {
1438 			ERR(NULL,
1439 			    " in the access vector definition "
1440 			    "for class %s\n", key);
1441 			return -1;
1442 		}
1443 	}
1444 	if (hashtab_map(cladatum->permissions.table, validate_perm,
1445 			cladatum2->permissions.table)) {
1446 		ERR(NULL, " in access vector definition for class %s", key);
1447 		return -1;
1448 	}
1449 	return 0;
1450 }
1451 
1452 /* Clone the SID into the new SID table. */
clone_sid(sepol_security_id_t sid,context_struct_t * context,void * arg)1453 static int clone_sid(sepol_security_id_t sid,
1454 		     context_struct_t * context, void *arg)
1455 {
1456 	sidtab_t *s = arg;
1457 
1458 	return sepol_sidtab_insert(s, sid, context);
1459 }
1460 
convert_context_handle_invalid_context(context_struct_t * context)1461 static inline int convert_context_handle_invalid_context(context_struct_t *
1462 							 context)
1463 {
1464 	if (selinux_enforcing) {
1465 		return -EINVAL;
1466 	} else {
1467 		sepol_security_context_t s;
1468 		size_t len;
1469 
1470 		context_to_string(NULL, policydb, context, &s, &len);
1471 		ERR(NULL, "context %s is invalid", s);
1472 		free(s);
1473 		return 0;
1474 	}
1475 }
1476 
1477 typedef struct {
1478 	policydb_t *oldp;
1479 	policydb_t *newp;
1480 } convert_context_args_t;
1481 
1482 /*
1483  * Convert the values in the security context
1484  * structure `c' from the values specified
1485  * in the policy `p->oldp' to the values specified
1486  * in the policy `p->newp'.  Verify that the
1487  * context is valid under the new policy.
1488  */
convert_context(sepol_security_id_t key,context_struct_t * c,void * p)1489 static int convert_context(sepol_security_id_t key __attribute__ ((unused)),
1490 			   context_struct_t * c, void *p)
1491 {
1492 	convert_context_args_t *args;
1493 	context_struct_t oldc;
1494 	role_datum_t *role;
1495 	type_datum_t *typdatum;
1496 	user_datum_t *usrdatum;
1497 	sepol_security_context_t s;
1498 	size_t len;
1499 	int rc = -EINVAL;
1500 
1501 	args = (convert_context_args_t *) p;
1502 
1503 	if (context_cpy(&oldc, c))
1504 		return -ENOMEM;
1505 
1506 	/* Convert the user. */
1507 	usrdatum = (user_datum_t *) hashtab_search(args->newp->p_users.table,
1508 						   args->oldp->
1509 						   p_user_val_to_name[c->user -
1510 								      1]);
1511 
1512 	if (!usrdatum) {
1513 		goto bad;
1514 	}
1515 	c->user = usrdatum->s.value;
1516 
1517 	/* Convert the role. */
1518 	role = (role_datum_t *) hashtab_search(args->newp->p_roles.table,
1519 					       args->oldp->
1520 					       p_role_val_to_name[c->role - 1]);
1521 	if (!role) {
1522 		goto bad;
1523 	}
1524 	c->role = role->s.value;
1525 
1526 	/* Convert the type. */
1527 	typdatum = (type_datum_t *)
1528 	    hashtab_search(args->newp->p_types.table,
1529 			   args->oldp->p_type_val_to_name[c->type - 1]);
1530 	if (!typdatum) {
1531 		goto bad;
1532 	}
1533 	c->type = typdatum->s.value;
1534 
1535 	rc = mls_convert_context(args->oldp, args->newp, c);
1536 	if (rc)
1537 		goto bad;
1538 
1539 	/* Check the validity of the new context. */
1540 	if (!policydb_context_isvalid(args->newp, c)) {
1541 		rc = convert_context_handle_invalid_context(&oldc);
1542 		if (rc)
1543 			goto bad;
1544 	}
1545 
1546 	context_destroy(&oldc);
1547 	return 0;
1548 
1549       bad:
1550 	context_to_string(NULL, policydb, &oldc, &s, &len);
1551 	context_destroy(&oldc);
1552 	ERR(NULL, "invalidating context %s", s);
1553 	free(s);
1554 	return rc;
1555 }
1556 
1557 /* Reading from a policy "file". */
next_entry(void * buf,struct policy_file * fp,size_t bytes)1558 int hidden next_entry(void *buf, struct policy_file *fp, size_t bytes)
1559 {
1560 	size_t nread;
1561 
1562 	switch (fp->type) {
1563 	case PF_USE_STDIO:
1564 		nread = fread(buf, bytes, 1, fp->fp);
1565 
1566 		if (nread != 1)
1567 			return -1;
1568 		break;
1569 	case PF_USE_MEMORY:
1570 		if (bytes > fp->len)
1571 			return -1;
1572 		memcpy(buf, fp->data, bytes);
1573 		fp->data += bytes;
1574 		fp->len -= bytes;
1575 		break;
1576 	default:
1577 		return -1;
1578 	}
1579 	return 0;
1580 }
1581 
put_entry(const void * ptr,size_t size,size_t n,struct policy_file * fp)1582 size_t hidden put_entry(const void *ptr, size_t size, size_t n,
1583 			struct policy_file *fp)
1584 {
1585 	size_t bytes = size * n;
1586 
1587 	switch (fp->type) {
1588 	case PF_USE_STDIO:
1589 		return fwrite(ptr, size, n, fp->fp);
1590 	case PF_USE_MEMORY:
1591 		if (bytes > fp->len) {
1592 			errno = ENOSPC;
1593 			return 0;
1594 		}
1595 
1596 		memcpy(fp->data, ptr, bytes);
1597 		fp->data += bytes;
1598 		fp->len -= bytes;
1599 		return n;
1600 	case PF_LEN:
1601 		fp->len += bytes;
1602 		return n;
1603 	default:
1604 		return 0;
1605 	}
1606 	return 0;
1607 }
1608 
1609 /*
1610  * Read a new set of configuration data from
1611  * a policy database binary representation file.
1612  *
1613  * Verify that each class that is defined under the
1614  * existing policy is still defined with the same
1615  * attributes in the new policy.
1616  *
1617  * Convert the context structures in the SID table to the
1618  * new representation and verify that all entries
1619  * in the SID table are valid under the new policy.
1620  *
1621  * Change the active policy database to use the new
1622  * configuration data.
1623  *
1624  * Reset the access vector cache.
1625  */
sepol_load_policy(void * data,size_t len)1626 int hidden sepol_load_policy(void *data, size_t len)
1627 {
1628 	policydb_t oldpolicydb, newpolicydb;
1629 	sidtab_t oldsidtab, newsidtab;
1630 	convert_context_args_t args;
1631 	int rc = 0;
1632 	struct policy_file file, *fp;
1633 
1634 	policy_file_init(&file);
1635 	file.type = PF_USE_MEMORY;
1636 	file.data = data;
1637 	file.len = len;
1638 	fp = &file;
1639 
1640 	if (policydb_init(&newpolicydb))
1641 		return -ENOMEM;
1642 
1643 	if (policydb_read(&newpolicydb, fp, 1)) {
1644 		policydb_destroy(&mypolicydb);
1645 		return -EINVAL;
1646 	}
1647 
1648 	sepol_sidtab_init(&newsidtab);
1649 
1650 	/* Verify that the existing classes did not change. */
1651 	if (hashtab_map
1652 	    (policydb->p_classes.table, validate_class, &newpolicydb)) {
1653 		ERR(NULL, "the definition of an existing class changed");
1654 		rc = -EINVAL;
1655 		goto err;
1656 	}
1657 
1658 	/* Clone the SID table. */
1659 	sepol_sidtab_shutdown(sidtab);
1660 	if (sepol_sidtab_map(sidtab, clone_sid, &newsidtab)) {
1661 		rc = -ENOMEM;
1662 		goto err;
1663 	}
1664 
1665 	/* Convert the internal representations of contexts
1666 	   in the new SID table and remove invalid SIDs. */
1667 	args.oldp = policydb;
1668 	args.newp = &newpolicydb;
1669 	sepol_sidtab_map_remove_on_error(&newsidtab, convert_context, &args);
1670 
1671 	/* Save the old policydb and SID table to free later. */
1672 	memcpy(&oldpolicydb, policydb, sizeof *policydb);
1673 	sepol_sidtab_set(&oldsidtab, sidtab);
1674 
1675 	/* Install the new policydb and SID table. */
1676 	memcpy(policydb, &newpolicydb, sizeof *policydb);
1677 	sepol_sidtab_set(sidtab, &newsidtab);
1678 
1679 	/* Free the old policydb and SID table. */
1680 	policydb_destroy(&oldpolicydb);
1681 	sepol_sidtab_destroy(&oldsidtab);
1682 
1683 	return 0;
1684 
1685       err:
1686 	sepol_sidtab_destroy(&newsidtab);
1687 	policydb_destroy(&newpolicydb);
1688 	return rc;
1689 
1690 }
1691 
1692 /*
1693  * Return the SIDs to use for an unlabeled file system
1694  * that is being mounted from the device with the
1695  * the kdevname `name'.  The `fs_sid' SID is returned for
1696  * the file system and the `file_sid' SID is returned
1697  * for all files within that file system.
1698  */
sepol_fs_sid(char * name,sepol_security_id_t * fs_sid,sepol_security_id_t * file_sid)1699 int hidden sepol_fs_sid(char *name,
1700 			sepol_security_id_t * fs_sid,
1701 			sepol_security_id_t * file_sid)
1702 {
1703 	int rc = 0;
1704 	ocontext_t *c;
1705 
1706 	c = policydb->ocontexts[OCON_FS];
1707 	while (c) {
1708 		if (strcmp(c->u.name, name) == 0)
1709 			break;
1710 		c = c->next;
1711 	}
1712 
1713 	if (c) {
1714 		if (!c->sid[0] || !c->sid[1]) {
1715 			rc = sepol_sidtab_context_to_sid(sidtab,
1716 							 &c->context[0],
1717 							 &c->sid[0]);
1718 			if (rc)
1719 				goto out;
1720 			rc = sepol_sidtab_context_to_sid(sidtab,
1721 							 &c->context[1],
1722 							 &c->sid[1]);
1723 			if (rc)
1724 				goto out;
1725 		}
1726 		*fs_sid = c->sid[0];
1727 		*file_sid = c->sid[1];
1728 	} else {
1729 		*fs_sid = SECINITSID_FS;
1730 		*file_sid = SECINITSID_FILE;
1731 	}
1732 
1733       out:
1734 	return rc;
1735 }
1736 
1737 /*
1738  * Return the SID of the port specified by
1739  * `domain', `type', `protocol', and `port'.
1740  */
sepol_port_sid(uint16_t domain,uint16_t type,uint8_t protocol,uint16_t port,sepol_security_id_t * out_sid)1741 int hidden sepol_port_sid(uint16_t domain __attribute__ ((unused)),
1742 			  uint16_t type __attribute__ ((unused)),
1743 			  uint8_t protocol,
1744 			  uint16_t port, sepol_security_id_t * out_sid)
1745 {
1746 	ocontext_t *c;
1747 	int rc = 0;
1748 
1749 	c = policydb->ocontexts[OCON_PORT];
1750 	while (c) {
1751 		if (c->u.port.protocol == protocol &&
1752 		    c->u.port.low_port <= port && c->u.port.high_port >= port)
1753 			break;
1754 		c = c->next;
1755 	}
1756 
1757 	if (c) {
1758 		if (!c->sid[0]) {
1759 			rc = sepol_sidtab_context_to_sid(sidtab,
1760 							 &c->context[0],
1761 							 &c->sid[0]);
1762 			if (rc)
1763 				goto out;
1764 		}
1765 		*out_sid = c->sid[0];
1766 	} else {
1767 		*out_sid = SECINITSID_PORT;
1768 	}
1769 
1770       out:
1771 	return rc;
1772 }
1773 
1774 /*
1775  * Return the SIDs to use for a network interface
1776  * with the name `name'.  The `if_sid' SID is returned for
1777  * the interface and the `msg_sid' SID is returned as
1778  * the default SID for messages received on the
1779  * interface.
1780  */
sepol_netif_sid(char * name,sepol_security_id_t * if_sid,sepol_security_id_t * msg_sid)1781 int hidden sepol_netif_sid(char *name,
1782 			   sepol_security_id_t * if_sid,
1783 			   sepol_security_id_t * msg_sid)
1784 {
1785 	int rc = 0;
1786 	ocontext_t *c;
1787 
1788 	c = policydb->ocontexts[OCON_NETIF];
1789 	while (c) {
1790 		if (strcmp(name, c->u.name) == 0)
1791 			break;
1792 		c = c->next;
1793 	}
1794 
1795 	if (c) {
1796 		if (!c->sid[0] || !c->sid[1]) {
1797 			rc = sepol_sidtab_context_to_sid(sidtab,
1798 							 &c->context[0],
1799 							 &c->sid[0]);
1800 			if (rc)
1801 				goto out;
1802 			rc = sepol_sidtab_context_to_sid(sidtab,
1803 							 &c->context[1],
1804 							 &c->sid[1]);
1805 			if (rc)
1806 				goto out;
1807 		}
1808 		*if_sid = c->sid[0];
1809 		*msg_sid = c->sid[1];
1810 	} else {
1811 		*if_sid = SECINITSID_NETIF;
1812 		*msg_sid = SECINITSID_NETMSG;
1813 	}
1814 
1815       out:
1816 	return rc;
1817 }
1818 
match_ipv6_addrmask(uint32_t * input,uint32_t * addr,uint32_t * mask)1819 static int match_ipv6_addrmask(uint32_t * input, uint32_t * addr,
1820 			       uint32_t * mask)
1821 {
1822 	int i, fail = 0;
1823 
1824 	for (i = 0; i < 4; i++)
1825 		if (addr[i] != (input[i] & mask[i])) {
1826 			fail = 1;
1827 			break;
1828 		}
1829 
1830 	return !fail;
1831 }
1832 
1833 /*
1834  * Return the SID of the node specified by the address
1835  * `addrp' where `addrlen' is the length of the address
1836  * in bytes and `domain' is the communications domain or
1837  * address family in which the address should be interpreted.
1838  */
sepol_node_sid(uint16_t domain,void * addrp,size_t addrlen,sepol_security_id_t * out_sid)1839 int hidden sepol_node_sid(uint16_t domain,
1840 			  void *addrp,
1841 			  size_t addrlen, sepol_security_id_t * out_sid)
1842 {
1843 	int rc = 0;
1844 	ocontext_t *c;
1845 
1846 	switch (domain) {
1847 	case AF_INET:{
1848 			uint32_t addr;
1849 
1850 			if (addrlen != sizeof(uint32_t)) {
1851 				rc = -EINVAL;
1852 				goto out;
1853 			}
1854 
1855 			addr = *((uint32_t *) addrp);
1856 
1857 			c = policydb->ocontexts[OCON_NODE];
1858 			while (c) {
1859 				if (c->u.node.addr == (addr & c->u.node.mask))
1860 					break;
1861 				c = c->next;
1862 			}
1863 			break;
1864 		}
1865 
1866 	case AF_INET6:
1867 		if (addrlen != sizeof(uint64_t) * 2) {
1868 			rc = -EINVAL;
1869 			goto out;
1870 		}
1871 
1872 		c = policydb->ocontexts[OCON_NODE6];
1873 		while (c) {
1874 			if (match_ipv6_addrmask(addrp, c->u.node6.addr,
1875 						c->u.node6.mask))
1876 				break;
1877 			c = c->next;
1878 		}
1879 		break;
1880 
1881 	default:
1882 		*out_sid = SECINITSID_NODE;
1883 		goto out;
1884 	}
1885 
1886 	if (c) {
1887 		if (!c->sid[0]) {
1888 			rc = sepol_sidtab_context_to_sid(sidtab,
1889 							 &c->context[0],
1890 							 &c->sid[0]);
1891 			if (rc)
1892 				goto out;
1893 		}
1894 		*out_sid = c->sid[0];
1895 	} else {
1896 		*out_sid = SECINITSID_NODE;
1897 	}
1898 
1899       out:
1900 	return rc;
1901 }
1902 
1903 /*
1904  * Generate the set of SIDs for legal security contexts
1905  * for a given user that can be reached by `fromsid'.
1906  * Set `*sids' to point to a dynamically allocated
1907  * array containing the set of SIDs.  Set `*nel' to the
1908  * number of elements in the array.
1909  */
1910 #define SIDS_NEL 25
1911 
sepol_get_user_sids(sepol_security_id_t fromsid,char * username,sepol_security_id_t ** sids,uint32_t * nel)1912 int hidden sepol_get_user_sids(sepol_security_id_t fromsid,
1913 			       char *username,
1914 			       sepol_security_id_t ** sids, uint32_t * nel)
1915 {
1916 	context_struct_t *fromcon, usercon;
1917 	sepol_security_id_t *mysids, *mysids2, sid;
1918 	uint32_t mynel = 0, maxnel = SIDS_NEL;
1919 	user_datum_t *user;
1920 	role_datum_t *role;
1921 	struct sepol_av_decision avd;
1922 	int rc = 0;
1923 	unsigned int i, j, reason;
1924 	ebitmap_node_t *rnode, *tnode;
1925 
1926 	fromcon = sepol_sidtab_search(sidtab, fromsid);
1927 	if (!fromcon) {
1928 		rc = -EINVAL;
1929 		goto out;
1930 	}
1931 
1932 	user = (user_datum_t *) hashtab_search(policydb->p_users.table,
1933 					       username);
1934 	if (!user) {
1935 		rc = -EINVAL;
1936 		goto out;
1937 	}
1938 	usercon.user = user->s.value;
1939 
1940 	mysids = malloc(maxnel * sizeof(sepol_security_id_t));
1941 	if (!mysids) {
1942 		rc = -ENOMEM;
1943 		goto out;
1944 	}
1945 	memset(mysids, 0, maxnel * sizeof(sepol_security_id_t));
1946 
1947 	ebitmap_for_each_bit(&user->roles.roles, rnode, i) {
1948 		if (!ebitmap_node_get_bit(rnode, i))
1949 			continue;
1950 		role = policydb->role_val_to_struct[i];
1951 		usercon.role = i + 1;
1952 		ebitmap_for_each_bit(&role->types.types, tnode, j) {
1953 			if (!ebitmap_node_get_bit(tnode, j))
1954 				continue;
1955 			usercon.type = j + 1;
1956 			if (usercon.type == fromcon->type)
1957 				continue;
1958 
1959 			if (mls_setup_user_range
1960 			    (fromcon, user, &usercon, policydb->mls))
1961 				continue;
1962 
1963 			rc = context_struct_compute_av(fromcon, &usercon,
1964 						       SECCLASS_PROCESS,
1965 						       PROCESS__TRANSITION,
1966 						       &avd, &reason, NULL, 0);
1967 			if (rc || !(avd.allowed & PROCESS__TRANSITION))
1968 				continue;
1969 			rc = sepol_sidtab_context_to_sid(sidtab, &usercon,
1970 							 &sid);
1971 			if (rc) {
1972 				free(mysids);
1973 				goto out;
1974 			}
1975 			if (mynel < maxnel) {
1976 				mysids[mynel++] = sid;
1977 			} else {
1978 				maxnel += SIDS_NEL;
1979 				mysids2 =
1980 				    malloc(maxnel *
1981 					   sizeof(sepol_security_id_t));
1982 
1983 				if (!mysids2) {
1984 					rc = -ENOMEM;
1985 					free(mysids);
1986 					goto out;
1987 				}
1988 				memset(mysids2, 0,
1989 				       maxnel * sizeof(sepol_security_id_t));
1990 				memcpy(mysids2, mysids,
1991 				       mynel * sizeof(sepol_security_id_t));
1992 				free(mysids);
1993 				mysids = mysids2;
1994 				mysids[mynel++] = sid;
1995 			}
1996 		}
1997 	}
1998 
1999 	*sids = mysids;
2000 	*nel = mynel;
2001 
2002       out:
2003 	return rc;
2004 }
2005 
2006 /*
2007  * Return the SID to use for a file in a filesystem
2008  * that cannot support a persistent label mapping or use another
2009  * fixed labeling behavior like transition SIDs or task SIDs.
2010  */
sepol_genfs_sid(const char * fstype,char * path,sepol_security_class_t sclass,sepol_security_id_t * sid)2011 int hidden sepol_genfs_sid(const char *fstype,
2012 			   char *path,
2013 			   sepol_security_class_t sclass,
2014 			   sepol_security_id_t * sid)
2015 {
2016 	size_t len;
2017 	genfs_t *genfs;
2018 	ocontext_t *c;
2019 	int rc = 0, cmp = 0;
2020 
2021 	for (genfs = policydb->genfs; genfs; genfs = genfs->next) {
2022 		cmp = strcmp(fstype, genfs->fstype);
2023 		if (cmp <= 0)
2024 			break;
2025 	}
2026 
2027 	if (!genfs || cmp) {
2028 		*sid = SECINITSID_UNLABELED;
2029 		rc = -ENOENT;
2030 		goto out;
2031 	}
2032 
2033 	for (c = genfs->head; c; c = c->next) {
2034 		len = strlen(c->u.name);
2035 		if ((!c->v.sclass || sclass == c->v.sclass) &&
2036 		    (strncmp(c->u.name, path, len) == 0))
2037 			break;
2038 	}
2039 
2040 	if (!c) {
2041 		*sid = SECINITSID_UNLABELED;
2042 		rc = -ENOENT;
2043 		goto out;
2044 	}
2045 
2046 	if (!c->sid[0]) {
2047 		rc = sepol_sidtab_context_to_sid(sidtab,
2048 						 &c->context[0], &c->sid[0]);
2049 		if (rc)
2050 			goto out;
2051 	}
2052 
2053 	*sid = c->sid[0];
2054       out:
2055 	return rc;
2056 }
2057 
sepol_fs_use(const char * fstype,unsigned int * behavior,sepol_security_id_t * sid)2058 int hidden sepol_fs_use(const char *fstype,
2059 			unsigned int *behavior, sepol_security_id_t * sid)
2060 {
2061 	int rc = 0;
2062 	ocontext_t *c;
2063 
2064 	c = policydb->ocontexts[OCON_FSUSE];
2065 	while (c) {
2066 		if (strcmp(fstype, c->u.name) == 0)
2067 			break;
2068 		c = c->next;
2069 	}
2070 
2071 	if (c) {
2072 		*behavior = c->v.behavior;
2073 		if (!c->sid[0]) {
2074 			rc = sepol_sidtab_context_to_sid(sidtab,
2075 							 &c->context[0],
2076 							 &c->sid[0]);
2077 			if (rc)
2078 				goto out;
2079 		}
2080 		*sid = c->sid[0];
2081 	} else {
2082 		rc = sepol_genfs_sid(fstype, "/", SECCLASS_DIR, sid);
2083 		if (rc) {
2084 			*behavior = SECURITY_FS_USE_NONE;
2085 			rc = 0;
2086 		} else {
2087 			*behavior = SECURITY_FS_USE_GENFS;
2088 		}
2089 	}
2090 
2091       out:
2092 	return rc;
2093 }
2094 
2095 /* FLASK */
2096