• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //
2 // Copyright (c) 2002-2013 The ANGLE Project Authors. All rights reserved.
3 // Use of this source code is governed by a BSD-style license that can be
4 // found in the LICENSE file.
5 //
6 
7 #ifndef _SYMBOL_TABLE_INCLUDED_
8 #define _SYMBOL_TABLE_INCLUDED_
9 
10 //
11 // Symbol table for parsing.  Has these design characteristics:
12 //
13 // * Same symbol table can be used to compile many shaders, to preserve
14 //   effort of creating and loading with the large numbers of built-in
15 //   symbols.
16 //
17 // * Name mangling will be used to give each function a unique name
18 //   so that symbol table lookups are never ambiguous.  This allows
19 //   a simpler symbol table structure.
20 //
21 // * Pushing and popping of scope, so symbol table will really be a stack
22 //   of symbol tables.  Searched from the top, with new inserts going into
23 //   the top.
24 //
25 // * Constants:  Compile time constant symbols will keep their values
26 //   in the symbol table.  The parser can substitute constants at parse
27 //   time, including doing constant folding and constant propagation.
28 //
29 // * No temporaries:  Temporaries made from operations (+, --, .xy, etc.)
30 //   are tracked in the intermediate representation, not the symbol table.
31 //
32 
33 #include <assert.h>
34 
35 #include "common/angleutils.h"
36 #include "compiler/InfoSink.h"
37 #include "compiler/intermediate.h"
38 
39 //
40 // Symbol base class.  (Can build functions or variables out of these...)
41 //
42 class TSymbol {
43 public:
44     POOL_ALLOCATOR_NEW_DELETE();
TSymbol(const TString * n)45     TSymbol(const TString* n) :  uniqueId(0), name(n) { }
~TSymbol()46     virtual ~TSymbol() { /* don't delete name, it's from the pool */ }
47 
getName()48     const TString& getName() const { return *name; }
getMangledName()49     virtual const TString& getMangledName() const { return getName(); }
isFunction()50     virtual bool isFunction() const { return false; }
isVariable()51     virtual bool isVariable() const { return false; }
setUniqueId(int id)52     void setUniqueId(int id) { uniqueId = id; }
getUniqueId()53     int getUniqueId() const { return uniqueId; }
54     virtual void dump(TInfoSink &infoSink) const = 0;
relateToExtension(const TString & ext)55     void relateToExtension(const TString& ext) { extension = ext; }
getExtension()56     const TString& getExtension() const { return extension; }
57 
58 private:
59     DISALLOW_COPY_AND_ASSIGN(TSymbol);
60 
61     int uniqueId;      // For real comparing during code generation
62     const TString *name;
63     TString extension;
64 };
65 
66 //
67 // Variable class, meaning a symbol that's not a function.
68 //
69 // There could be a separate class heirarchy for Constant variables;
70 // Only one of int, bool, or float, (or none) is correct for
71 // any particular use, but it's easy to do this way, and doesn't
72 // seem worth having separate classes, and "getConst" can't simply return
73 // different values for different types polymorphically, so this is
74 // just simple and pragmatic.
75 //
76 class TVariable : public TSymbol {
77 public:
TSymbol(name)78     TVariable(const TString *name, const TType& t, bool uT = false ) : TSymbol(name), type(t), userType(uT), unionArray(0) { }
~TVariable()79     virtual ~TVariable() { }
isVariable()80     virtual bool isVariable() const { return true; }
getType()81     TType& getType() { return type; }
getType()82     const TType& getType() const { return type; }
isUserType()83     bool isUserType() const { return userType; }
setQualifier(TQualifier qualifier)84     void setQualifier(TQualifier qualifier) { type.setQualifier(qualifier); }
85 
86     virtual void dump(TInfoSink &infoSink) const;
87 
getConstPointer()88     ConstantUnion* getConstPointer()
89     {
90         if (!unionArray)
91             unionArray = new ConstantUnion[type.getObjectSize()];
92 
93         return unionArray;
94     }
95 
getConstPointer()96     ConstantUnion* getConstPointer() const { return unionArray; }
97 
shareConstPointer(ConstantUnion * constArray)98     void shareConstPointer( ConstantUnion *constArray)
99     {
100         if (unionArray == constArray)
101             return;
102 
103         delete[] unionArray;
104         unionArray = constArray;
105     }
106 
107 private:
108     DISALLOW_COPY_AND_ASSIGN(TVariable);
109 
110     TType type;
111     bool userType;
112     // we are assuming that Pool Allocator will free the memory allocated to unionArray
113     // when this object is destroyed
114     ConstantUnion *unionArray;
115 };
116 
117 //
118 // The function sub-class of symbols and the parser will need to
119 // share this definition of a function parameter.
120 //
121 struct TParameter {
122     TString *name;
123     TType* type;
124 };
125 
126 //
127 // The function sub-class of a symbol.
128 //
129 class TFunction : public TSymbol {
130 public:
TFunction(TOperator o)131     TFunction(TOperator o) :
132         TSymbol(0),
133         returnType(TType(EbtVoid, EbpUndefined)),
134         op(o),
135         defined(false) { }
136     TFunction(const TString *name, TType& retType, TOperator tOp = EOpNull) :
TSymbol(name)137         TSymbol(name),
138         returnType(retType),
139         mangledName(TFunction::mangleName(*name)),
140         op(tOp),
141         defined(false) { }
142     virtual ~TFunction();
isFunction()143     virtual bool isFunction() const { return true; }
144 
mangleName(const TString & name)145     static TString mangleName(const TString& name) { return name + '('; }
unmangleName(const TString & mangledName)146     static TString unmangleName(const TString& mangledName)
147     {
148         return TString(mangledName.c_str(), mangledName.find_first_of('('));
149     }
150 
addParameter(TParameter & p)151     void addParameter(TParameter& p)
152     {
153         parameters.push_back(p);
154         mangledName = mangledName + p.type->getMangledName();
155     }
156 
getMangledName()157     const TString& getMangledName() const { return mangledName; }
getReturnType()158     const TType& getReturnType() const { return returnType; }
159 
relateToOperator(TOperator o)160     void relateToOperator(TOperator o) { op = o; }
getBuiltInOp()161     TOperator getBuiltInOp() const { return op; }
162 
setDefined()163     void setDefined() { defined = true; }
isDefined()164     bool isDefined() { return defined; }
165 
getParamCount()166     size_t getParamCount() const { return parameters.size(); }
getParam(size_t i)167     const TParameter& getParam(size_t i) const { return parameters[i]; }
168 
169     virtual void dump(TInfoSink &infoSink) const;
170 
171 private:
172     DISALLOW_COPY_AND_ASSIGN(TFunction);
173 
174     typedef TVector<TParameter> TParamList;
175     TParamList parameters;
176     TType returnType;
177     TString mangledName;
178     TOperator op;
179     bool defined;
180 };
181 
182 
183 class TSymbolTableLevel {
184 public:
185     typedef TMap<TString, TSymbol*> tLevel;
186     typedef tLevel::const_iterator const_iterator;
187     typedef const tLevel::value_type tLevelPair;
188     typedef std::pair<tLevel::iterator, bool> tInsertResult;
189 
TSymbolTableLevel()190     TSymbolTableLevel() { }
191     ~TSymbolTableLevel();
192 
insert(const TString & name,TSymbol & symbol)193     bool insert(const TString &name, TSymbol &symbol)
194     {
195         //
196         // returning true means symbol was added to the table
197         //
198         tInsertResult result = level.insert(tLevelPair(name, &symbol));
199 
200         return result.second;
201     }
202 
insert(TSymbol & symbol)203     bool insert(TSymbol &symbol)
204     {
205         return insert(symbol.getMangledName(), symbol);
206     }
207 
find(const TString & name)208     TSymbol* find(const TString& name) const
209     {
210         tLevel::const_iterator it = level.find(name);
211         if (it == level.end())
212             return 0;
213         else
214             return (*it).second;
215     }
216 
begin()217     const_iterator begin() const
218     {
219         return level.begin();
220     }
221 
end()222     const_iterator end() const
223     {
224         return level.end();
225     }
226 
227     void relateToOperator(const char* name, TOperator op);
228     void relateToExtension(const char* name, const TString& ext);
229     void dump(TInfoSink &infoSink) const;
230 
231 protected:
232     tLevel level;
233 };
234 
235 class TSymbolTable {
236 public:
TSymbolTable()237     TSymbolTable() : uniqueId(0)
238     {
239         //
240         // The symbol table cannot be used until push() is called, but
241         // the lack of an initial call to push() can be used to detect
242         // that the symbol table has not been preloaded with built-ins.
243         //
244     }
245     ~TSymbolTable();
246 
247     //
248     // When the symbol table is initialized with the built-ins, there should
249     // 'push' calls, so that built-ins are at level 0 and the shader
250     // globals are at level 1.
251     //
isEmpty()252     bool isEmpty() { return table.size() == 0; }
atBuiltInLevel()253     bool atBuiltInLevel() { return table.size() == 1; }
atGlobalLevel()254     bool atGlobalLevel() { return table.size() <= 2; }
push()255     void push()
256     {
257         table.push_back(new TSymbolTableLevel);
258         precisionStack.push_back(new PrecisionStackLevel);
259     }
260 
pop()261     void pop()
262     {
263         delete table.back();
264         table.pop_back();
265 
266         delete precisionStack.back();
267         precisionStack.pop_back();
268     }
269 
insert(TSymbol & symbol)270     bool insert(TSymbol& symbol)
271     {
272         symbol.setUniqueId(++uniqueId);
273         return table[currentLevel()]->insert(symbol);
274     }
275 
insertConstInt(const char * name,int value)276     bool insertConstInt(const char *name, int value)
277     {
278         TVariable *constant = new TVariable(NewPoolTString(name), TType(EbtInt, EbpUndefined, EvqConst, 1));
279         constant->getConstPointer()->setIConst(value);
280         return insert(*constant);
281     }
282 
283     bool insertBuiltIn(TType *rvalue, const char *name, TType *ptype1, TType *ptype2 = 0, TType *ptype3 = 0)
284     {
285         TFunction *function = new TFunction(NewPoolTString(name), *rvalue);
286 
287         TParameter param1 = {NULL, ptype1};
288         function->addParameter(param1);
289 
290         if(ptype2)
291         {
292             TParameter param2 = {NULL, ptype2};
293             function->addParameter(param2);
294         }
295 
296         if(ptype3)
297         {
298             TParameter param3 = {NULL, ptype3};
299             function->addParameter(param3);
300         }
301 
302         return insert(*function);
303     }
304 
305     TSymbol* find(const TString& name, bool* builtIn = 0, bool *sameScope = 0)
306     {
307         int level = currentLevel();
308         TSymbol* symbol;
309         do {
310             symbol = table[level]->find(name);
311             --level;
312         } while (symbol == 0 && level >= 0);
313         level++;
314         if (builtIn)
315             *builtIn = level == 0;
316         if (sameScope)
317             *sameScope = level == currentLevel();
318         return symbol;
319     }
320 
findBuiltIn(const TString & name)321     TSymbol* findBuiltIn(const TString &name)
322     {
323         return table[0]->find(name);
324     }
325 
getOuterLevel()326     TSymbolTableLevel* getOuterLevel() {
327         assert(table.size() >= 2);
328         return table[currentLevel() - 1];
329     }
330 
relateToOperator(const char * name,TOperator op)331     void relateToOperator(const char* name, TOperator op) {
332         table[0]->relateToOperator(name, op);
333     }
relateToExtension(const char * name,const TString & ext)334     void relateToExtension(const char* name, const TString& ext) {
335         table[0]->relateToExtension(name, ext);
336     }
337     void dump(TInfoSink &infoSink) const;
338 
setDefaultPrecision(const TPublicType & type,TPrecision prec)339     bool setDefaultPrecision(const TPublicType& type, TPrecision prec) {
340         if (!supportsPrecision(type.type))
341             return false;
342         if (type.size != 1 || type.matrix || type.array)
343             return false; // Not allowed to set for aggregate types
344         int indexOfLastElement = static_cast<int>(precisionStack.size()) - 1;
345         (*precisionStack[indexOfLastElement])[type.type] = prec; // Uses map operator [], overwrites the current value
346         return true;
347     }
348 
349     // Searches down the precisionStack for a precision qualifier for the specified TBasicType
getDefaultPrecision(TBasicType type)350     TPrecision getDefaultPrecision(TBasicType type) {
351         if (!supportsPrecision(type))
352             return EbpUndefined;
353         int level = static_cast<int>(precisionStack.size()) - 1;
354         assert(level >= 0); // Just to be safe. Should not happen.
355         PrecisionStackLevel::iterator it;
356         TPrecision prec = EbpUndefined; // If we dont find anything we return this. Should we error check this?
357         while (level >= 0) {
358             it = precisionStack[level]->find(type);
359             if (it != precisionStack[level]->end()) {
360                 prec = (*it).second;
361                 break;
362             }
363             level--;
364         }
365         return prec;
366     }
367 
368 private:
currentLevel()369     int currentLevel() const { return static_cast<int>(table.size()) - 1; }
370 
supportsPrecision(TBasicType type)371     bool supportsPrecision(TBasicType type) {
372       // Only supports precision for int, float, and sampler types.
373       return type == EbtFloat || type == EbtInt || IsSampler(type);
374     }
375 
376     int uniqueId;     // for unique identification in code generation
377     std::vector<TSymbolTableLevel*> table;
378     typedef TMap<TBasicType, TPrecision> PrecisionStackLevel;
379     std::vector<PrecisionStackLevel*> precisionStack;
380 };
381 
382 #endif // _SYMBOL_TABLE_INCLUDED_
383