• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- ExecutionEngine.h - Abstract Execution Engine Interface --*- C++ -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file defines the abstract interface that implements execution support
11 // for LLVM.
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #ifndef LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
16 #define LLVM_EXECUTIONENGINE_EXECUTIONENGINE_H
17 
18 #include "llvm-c/ExecutionEngine.h"
19 #include "llvm/ADT/DenseMap.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/StringRef.h"
22 #include "llvm/ADT/ValueMap.h"
23 #include "llvm/MC/MCCodeGenInfo.h"
24 #include "llvm/Support/ErrorHandling.h"
25 #include "llvm/Support/Mutex.h"
26 #include "llvm/Support/ValueHandle.h"
27 #include "llvm/Target/TargetMachine.h"
28 #include "llvm/Target/TargetOptions.h"
29 #include <map>
30 #include <string>
31 #include <vector>
32 
33 namespace llvm {
34 
35 struct GenericValue;
36 class Constant;
37 class DataLayout;
38 class ExecutionEngine;
39 class Function;
40 class GlobalVariable;
41 class GlobalValue;
42 class JITEventListener;
43 class JITMemoryManager;
44 class MachineCodeInfo;
45 class Module;
46 class MutexGuard;
47 class ObjectCache;
48 class RTDyldMemoryManager;
49 class Triple;
50 class Type;
51 
52 /// \brief Helper class for helping synchronize access to the global address map
53 /// table.
54 class ExecutionEngineState {
55 public:
56   struct AddressMapConfig : public ValueMapConfig<const GlobalValue*> {
57     typedef ExecutionEngineState *ExtraData;
58     static sys::Mutex *getMutex(ExecutionEngineState *EES);
59     static void onDelete(ExecutionEngineState *EES, const GlobalValue *Old);
60     static void onRAUW(ExecutionEngineState *, const GlobalValue *,
61                        const GlobalValue *);
62   };
63 
64   typedef ValueMap<const GlobalValue *, void *, AddressMapConfig>
65       GlobalAddressMapTy;
66 
67 private:
68   ExecutionEngine &EE;
69 
70   /// GlobalAddressMap - A mapping between LLVM global values and their
71   /// actualized version...
72   GlobalAddressMapTy GlobalAddressMap;
73 
74   /// GlobalAddressReverseMap - This is the reverse mapping of GlobalAddressMap,
75   /// used to convert raw addresses into the LLVM global value that is emitted
76   /// at the address.  This map is not computed unless getGlobalValueAtAddress
77   /// is called at some point.
78   std::map<void *, AssertingVH<const GlobalValue> > GlobalAddressReverseMap;
79 
80 public:
81   ExecutionEngineState(ExecutionEngine &EE);
82 
getGlobalAddressMap(const MutexGuard &)83   GlobalAddressMapTy &getGlobalAddressMap(const MutexGuard &) {
84     return GlobalAddressMap;
85   }
86 
87   std::map<void*, AssertingVH<const GlobalValue> > &
getGlobalAddressReverseMap(const MutexGuard &)88   getGlobalAddressReverseMap(const MutexGuard &) {
89     return GlobalAddressReverseMap;
90   }
91 
92   /// \brief Erase an entry from the mapping table.
93   ///
94   /// \returns The address that \p ToUnmap was happed to.
95   void *RemoveMapping(const MutexGuard &, const GlobalValue *ToUnmap);
96 };
97 
98 /// \brief Abstract interface for implementation execution of LLVM modules,
99 /// designed to support both interpreter and just-in-time (JIT) compiler
100 /// implementations.
101 class ExecutionEngine {
102   /// The state object holding the global address mapping, which must be
103   /// accessed synchronously.
104   //
105   // FIXME: There is no particular need the entire map needs to be
106   // synchronized.  Wouldn't a reader-writer design be better here?
107   ExecutionEngineState EEState;
108 
109   /// The target data for the platform for which execution is being performed.
110   const DataLayout *TD;
111 
112   /// Whether lazy JIT compilation is enabled.
113   bool CompilingLazily;
114 
115   /// Whether JIT compilation of external global variables is allowed.
116   bool GVCompilationDisabled;
117 
118   /// Whether the JIT should perform lookups of external symbols (e.g.,
119   /// using dlsym).
120   bool SymbolSearchingDisabled;
121 
122   friend class EngineBuilder;  // To allow access to JITCtor and InterpCtor.
123 
124 protected:
125   /// The list of Modules that we are JIT'ing from.  We use a SmallVector to
126   /// optimize for the case where there is only one module.
127   SmallVector<Module*, 1> Modules;
128 
setDataLayout(const DataLayout * td)129   void setDataLayout(const DataLayout *td) { TD = td; }
130 
131   /// getMemoryforGV - Allocate memory for a global variable.
132   virtual char *getMemoryForGV(const GlobalVariable *GV);
133 
134   // To avoid having libexecutionengine depend on the JIT and interpreter
135   // libraries, the execution engine implementations set these functions to ctor
136   // pointers at startup time if they are linked in.
137   static ExecutionEngine *(*JITCtor)(
138     Module *M,
139     std::string *ErrorStr,
140     JITMemoryManager *JMM,
141     bool GVsWithCode,
142     TargetMachine *TM);
143   static ExecutionEngine *(*MCJITCtor)(
144     Module *M,
145     std::string *ErrorStr,
146     RTDyldMemoryManager *MCJMM,
147     bool GVsWithCode,
148     TargetMachine *TM);
149   static ExecutionEngine *(*InterpCtor)(Module *M, std::string *ErrorStr);
150 
151   /// LazyFunctionCreator - If an unknown function is needed, this function
152   /// pointer is invoked to create it.  If this returns null, the JIT will
153   /// abort.
154   void *(*LazyFunctionCreator)(const std::string &);
155 
156   /// ExceptionTableRegister - If Exception Handling is set, the JIT will
157   /// register dwarf tables with this function.
158   typedef void (*EERegisterFn)(void*);
159   EERegisterFn ExceptionTableRegister;
160   EERegisterFn ExceptionTableDeregister;
161   /// This maps functions to their exception tables frames.
162   DenseMap<const Function*, void*> AllExceptionTables;
163 
164 
165 public:
166   /// lock - This lock protects the ExecutionEngine, JIT, JITResolver and
167   /// JITEmitter classes.  It must be held while changing the internal state of
168   /// any of those classes.
169   sys::Mutex lock;
170 
171   //===--------------------------------------------------------------------===//
172   //  ExecutionEngine Startup
173   //===--------------------------------------------------------------------===//
174 
175   virtual ~ExecutionEngine();
176 
177   /// create - This is the factory method for creating an execution engine which
178   /// is appropriate for the current machine.  This takes ownership of the
179   /// module.
180   ///
181   /// \param GVsWithCode - Allocating globals with code breaks
182   /// freeMachineCodeForFunction and is probably unsafe and bad for performance.
183   /// However, we have clients who depend on this behavior, so we must support
184   /// it.  Eventually, when we're willing to break some backwards compatibility,
185   /// this flag should be flipped to false, so that by default
186   /// freeMachineCodeForFunction works.
187   static ExecutionEngine *create(Module *M,
188                                  bool ForceInterpreter = false,
189                                  std::string *ErrorStr = 0,
190                                  CodeGenOpt::Level OptLevel =
191                                  CodeGenOpt::Default,
192                                  bool GVsWithCode = true);
193 
194   /// createJIT - This is the factory method for creating a JIT for the current
195   /// machine, it does not fall back to the interpreter.  This takes ownership
196   /// of the Module and JITMemoryManager if successful.
197   ///
198   /// Clients should make sure to initialize targets prior to calling this
199   /// function.
200   static ExecutionEngine *createJIT(Module *M,
201                                     std::string *ErrorStr = 0,
202                                     JITMemoryManager *JMM = 0,
203                                     CodeGenOpt::Level OptLevel =
204                                     CodeGenOpt::Default,
205                                     bool GVsWithCode = true,
206                                     Reloc::Model RM = Reloc::Default,
207                                     CodeModel::Model CMM =
208                                     CodeModel::JITDefault);
209 
210   /// addModule - Add a Module to the list of modules that we can JIT from.
211   /// Note that this takes ownership of the Module: when the ExecutionEngine is
212   /// destroyed, it destroys the Module as well.
addModule(Module * M)213   virtual void addModule(Module *M) {
214     Modules.push_back(M);
215   }
216 
217   //===--------------------------------------------------------------------===//
218 
getDataLayout()219   const DataLayout *getDataLayout() const { return TD; }
220 
221   /// removeModule - Remove a Module from the list of modules.  Returns true if
222   /// M is found.
223   virtual bool removeModule(Module *M);
224 
225   /// FindFunctionNamed - Search all of the active modules to find the one that
226   /// defines FnName.  This is very slow operation and shouldn't be used for
227   /// general code.
228   Function *FindFunctionNamed(const char *FnName);
229 
230   /// runFunction - Execute the specified function with the specified arguments,
231   /// and return the result.
232   virtual GenericValue runFunction(Function *F,
233                                 const std::vector<GenericValue> &ArgValues) = 0;
234 
235   /// getPointerToNamedFunction - This method returns the address of the
236   /// specified function by using the dlsym function call.  As such it is only
237   /// useful for resolving library symbols, not code generated symbols.
238   ///
239   /// If AbortOnFailure is false and no function with the given name is
240   /// found, this function silently returns a null pointer. Otherwise,
241   /// it prints a message to stderr and aborts.
242   ///
243   virtual void *getPointerToNamedFunction(const std::string &Name,
244                                           bool AbortOnFailure = true) = 0;
245 
246   /// mapSectionAddress - map a section to its target address space value.
247   /// Map the address of a JIT section as returned from the memory manager
248   /// to the address in the target process as the running code will see it.
249   /// This is the address which will be used for relocation resolution.
mapSectionAddress(const void * LocalAddress,uint64_t TargetAddress)250   virtual void mapSectionAddress(const void *LocalAddress, uint64_t TargetAddress) {
251     llvm_unreachable("Re-mapping of section addresses not supported with this "
252                      "EE!");
253   }
254 
255   /// finalizeObject - ensure the module is fully processed and is usable.
256   ///
257   /// It is the user-level function for completing the process of making the
258   /// object usable for execution.  It should be called after sections within an
259   /// object have been relocated using mapSectionAddress.  When this method is
260   /// called the MCJIT execution engine will reapply relocations for a loaded
261   /// object.  This method has no effect for the legacy JIT engine or the
262   /// interpeter.
finalizeObject()263   virtual void finalizeObject() {}
264 
265   /// runStaticConstructorsDestructors - This method is used to execute all of
266   /// the static constructors or destructors for a program.
267   ///
268   /// \param isDtors - Run the destructors instead of constructors.
269   void runStaticConstructorsDestructors(bool isDtors);
270 
271   /// runStaticConstructorsDestructors - This method is used to execute all of
272   /// the static constructors or destructors for a particular module.
273   ///
274   /// \param isDtors - Run the destructors instead of constructors.
275   void runStaticConstructorsDestructors(Module *module, bool isDtors);
276 
277 
278   /// runFunctionAsMain - This is a helper function which wraps runFunction to
279   /// handle the common task of starting up main with the specified argc, argv,
280   /// and envp parameters.
281   int runFunctionAsMain(Function *Fn, const std::vector<std::string> &argv,
282                         const char * const * envp);
283 
284 
285   /// addGlobalMapping - Tell the execution engine that the specified global is
286   /// at the specified location.  This is used internally as functions are JIT'd
287   /// and as global variables are laid out in memory.  It can and should also be
288   /// used by clients of the EE that want to have an LLVM global overlay
289   /// existing data in memory.  Mappings are automatically removed when their
290   /// GlobalValue is destroyed.
291   void addGlobalMapping(const GlobalValue *GV, void *Addr);
292 
293   /// clearAllGlobalMappings - Clear all global mappings and start over again,
294   /// for use in dynamic compilation scenarios to move globals.
295   void clearAllGlobalMappings();
296 
297   /// clearGlobalMappingsFromModule - Clear all global mappings that came from a
298   /// particular module, because it has been removed from the JIT.
299   void clearGlobalMappingsFromModule(Module *M);
300 
301   /// updateGlobalMapping - Replace an existing mapping for GV with a new
302   /// address.  This updates both maps as required.  If "Addr" is null, the
303   /// entry for the global is removed from the mappings.  This returns the old
304   /// value of the pointer, or null if it was not in the map.
305   void *updateGlobalMapping(const GlobalValue *GV, void *Addr);
306 
307   /// getPointerToGlobalIfAvailable - This returns the address of the specified
308   /// global value if it is has already been codegen'd, otherwise it returns
309   /// null.
310   void *getPointerToGlobalIfAvailable(const GlobalValue *GV);
311 
312   /// getPointerToGlobal - This returns the address of the specified global
313   /// value. This may involve code generation if it's a function.
314   void *getPointerToGlobal(const GlobalValue *GV);
315 
316   /// getPointerToFunction - The different EE's represent function bodies in
317   /// different ways.  They should each implement this to say what a function
318   /// pointer should look like.  When F is destroyed, the ExecutionEngine will
319   /// remove its global mapping and free any machine code.  Be sure no threads
320   /// are running inside F when that happens.
321   virtual void *getPointerToFunction(Function *F) = 0;
322 
323   /// getPointerToBasicBlock - The different EE's represent basic blocks in
324   /// different ways.  Return the representation for a blockaddress of the
325   /// specified block.
326   virtual void *getPointerToBasicBlock(BasicBlock *BB) = 0;
327 
328   /// getPointerToFunctionOrStub - If the specified function has been
329   /// code-gen'd, return a pointer to the function.  If not, compile it, or use
330   /// a stub to implement lazy compilation if available.  See
331   /// getPointerToFunction for the requirements on destroying F.
getPointerToFunctionOrStub(Function * F)332   virtual void *getPointerToFunctionOrStub(Function *F) {
333     // Default implementation, just codegen the function.
334     return getPointerToFunction(F);
335   }
336 
337   // The JIT overrides a version that actually does this.
338   virtual void runJITOnFunction(Function *, MachineCodeInfo * = 0) { }
339 
340   /// getGlobalValueAtAddress - Return the LLVM global value object that starts
341   /// at the specified address.
342   ///
343   const GlobalValue *getGlobalValueAtAddress(void *Addr);
344 
345   /// StoreValueToMemory - Stores the data in Val of type Ty at address Ptr.
346   /// Ptr is the address of the memory at which to store Val, cast to
347   /// GenericValue *.  It is not a pointer to a GenericValue containing the
348   /// address at which to store Val.
349   void StoreValueToMemory(const GenericValue &Val, GenericValue *Ptr,
350                           Type *Ty);
351 
352   void InitializeMemory(const Constant *Init, void *Addr);
353 
354   /// recompileAndRelinkFunction - This method is used to force a function which
355   /// has already been compiled to be compiled again, possibly after it has been
356   /// modified.  Then the entry to the old copy is overwritten with a branch to
357   /// the new copy.  If there was no old copy, this acts just like
358   /// VM::getPointerToFunction().
359   virtual void *recompileAndRelinkFunction(Function *F) = 0;
360 
361   /// freeMachineCodeForFunction - Release memory in the ExecutionEngine
362   /// corresponding to the machine code emitted to execute this function, useful
363   /// for garbage-collecting generated code.
364   virtual void freeMachineCodeForFunction(Function *F) = 0;
365 
366   /// getOrEmitGlobalVariable - Return the address of the specified global
367   /// variable, possibly emitting it to memory if needed.  This is used by the
368   /// Emitter.
getOrEmitGlobalVariable(const GlobalVariable * GV)369   virtual void *getOrEmitGlobalVariable(const GlobalVariable *GV) {
370     return getPointerToGlobal((const GlobalValue *)GV);
371   }
372 
373   /// Registers a listener to be called back on various events within
374   /// the JIT.  See JITEventListener.h for more details.  Does not
375   /// take ownership of the argument.  The argument may be NULL, in
376   /// which case these functions do nothing.
RegisterJITEventListener(JITEventListener *)377   virtual void RegisterJITEventListener(JITEventListener *) {}
UnregisterJITEventListener(JITEventListener *)378   virtual void UnregisterJITEventListener(JITEventListener *) {}
379 
380   /// Sets the pre-compiled object cache.  The ownership of the ObjectCache is
381   /// not changed.  Supported by MCJIT but not JIT.
setObjectCache(ObjectCache *)382   virtual void setObjectCache(ObjectCache *) {
383     llvm_unreachable("No support for an object cache");
384   }
385 
386   /// DisableLazyCompilation - When lazy compilation is off (the default), the
387   /// JIT will eagerly compile every function reachable from the argument to
388   /// getPointerToFunction.  If lazy compilation is turned on, the JIT will only
389   /// compile the one function and emit stubs to compile the rest when they're
390   /// first called.  If lazy compilation is turned off again while some lazy
391   /// stubs are still around, and one of those stubs is called, the program will
392   /// abort.
393   ///
394   /// In order to safely compile lazily in a threaded program, the user must
395   /// ensure that 1) only one thread at a time can call any particular lazy
396   /// stub, and 2) any thread modifying LLVM IR must hold the JIT's lock
397   /// (ExecutionEngine::lock) or otherwise ensure that no other thread calls a
398   /// lazy stub.  See http://llvm.org/PR5184 for details.
399   void DisableLazyCompilation(bool Disabled = true) {
400     CompilingLazily = !Disabled;
401   }
isCompilingLazily()402   bool isCompilingLazily() const {
403     return CompilingLazily;
404   }
405   // Deprecated in favor of isCompilingLazily (to reduce double-negatives).
406   // Remove this in LLVM 2.8.
isLazyCompilationDisabled()407   bool isLazyCompilationDisabled() const {
408     return !CompilingLazily;
409   }
410 
411   /// DisableGVCompilation - If called, the JIT will abort if it's asked to
412   /// allocate space and populate a GlobalVariable that is not internal to
413   /// the module.
414   void DisableGVCompilation(bool Disabled = true) {
415     GVCompilationDisabled = Disabled;
416   }
isGVCompilationDisabled()417   bool isGVCompilationDisabled() const {
418     return GVCompilationDisabled;
419   }
420 
421   /// DisableSymbolSearching - If called, the JIT will not try to lookup unknown
422   /// symbols with dlsym.  A client can still use InstallLazyFunctionCreator to
423   /// resolve symbols in a custom way.
424   void DisableSymbolSearching(bool Disabled = true) {
425     SymbolSearchingDisabled = Disabled;
426   }
isSymbolSearchingDisabled()427   bool isSymbolSearchingDisabled() const {
428     return SymbolSearchingDisabled;
429   }
430 
431   /// InstallLazyFunctionCreator - If an unknown function is needed, the
432   /// specified function pointer is invoked to create it.  If it returns null,
433   /// the JIT will abort.
InstallLazyFunctionCreator(void * (* P)(const std::string &))434   void InstallLazyFunctionCreator(void* (*P)(const std::string &)) {
435     LazyFunctionCreator = P;
436   }
437 
438   /// InstallExceptionTableRegister - The JIT will use the given function
439   /// to register the exception tables it generates.
InstallExceptionTableRegister(EERegisterFn F)440   void InstallExceptionTableRegister(EERegisterFn F) {
441     ExceptionTableRegister = F;
442   }
InstallExceptionTableDeregister(EERegisterFn F)443   void InstallExceptionTableDeregister(EERegisterFn F) {
444     ExceptionTableDeregister = F;
445   }
446 
447   /// RegisterTable - Registers the given pointer as an exception table.  It
448   /// uses the ExceptionTableRegister function.
RegisterTable(const Function * fn,void * res)449   void RegisterTable(const Function *fn, void* res) {
450     if (ExceptionTableRegister) {
451       ExceptionTableRegister(res);
452       AllExceptionTables[fn] = res;
453     }
454   }
455 
456   /// DeregisterTable - Deregisters the exception frame previously registered
457   /// for the given function.
DeregisterTable(const Function * Fn)458   void DeregisterTable(const Function *Fn) {
459     if (ExceptionTableDeregister) {
460       DenseMap<const Function*, void*>::iterator frame =
461         AllExceptionTables.find(Fn);
462       if(frame != AllExceptionTables.end()) {
463         ExceptionTableDeregister(frame->second);
464         AllExceptionTables.erase(frame);
465       }
466     }
467   }
468 
469   /// DeregisterAllTables - Deregisters all previously registered pointers to an
470   /// exception tables.  It uses the ExceptionTableoDeregister function.
471   void DeregisterAllTables();
472 
473 protected:
474   explicit ExecutionEngine(Module *M);
475 
476   void emitGlobals();
477 
478   void EmitGlobalVariable(const GlobalVariable *GV);
479 
480   GenericValue getConstantValue(const Constant *C);
481   void LoadValueFromMemory(GenericValue &Result, GenericValue *Ptr,
482                            Type *Ty);
483 };
484 
485 namespace EngineKind {
486   // These are actually bitmasks that get or-ed together.
487   enum Kind {
488     JIT         = 0x1,
489     Interpreter = 0x2
490   };
491   const static Kind Either = (Kind)(JIT | Interpreter);
492 }
493 
494 /// EngineBuilder - Builder class for ExecutionEngines.  Use this by
495 /// stack-allocating a builder, chaining the various set* methods, and
496 /// terminating it with a .create() call.
497 class EngineBuilder {
498 private:
499   Module *M;
500   EngineKind::Kind WhichEngine;
501   std::string *ErrorStr;
502   CodeGenOpt::Level OptLevel;
503   RTDyldMemoryManager *MCJMM;
504   JITMemoryManager *JMM;
505   bool AllocateGVsWithCode;
506   TargetOptions Options;
507   Reloc::Model RelocModel;
508   CodeModel::Model CMModel;
509   std::string MArch;
510   std::string MCPU;
511   SmallVector<std::string, 4> MAttrs;
512   bool UseMCJIT;
513 
514   /// InitEngine - Does the common initialization of default options.
InitEngine()515   void InitEngine() {
516     WhichEngine = EngineKind::Either;
517     ErrorStr = NULL;
518     OptLevel = CodeGenOpt::Default;
519     MCJMM = NULL;
520     JMM = NULL;
521     Options = TargetOptions();
522     AllocateGVsWithCode = false;
523     RelocModel = Reloc::Default;
524     CMModel = CodeModel::JITDefault;
525     UseMCJIT = false;
526   }
527 
528 public:
529   /// EngineBuilder - Constructor for EngineBuilder.  If create() is called and
530   /// is successful, the created engine takes ownership of the module.
EngineBuilder(Module * m)531   EngineBuilder(Module *m) : M(m) {
532     InitEngine();
533   }
534 
535   /// setEngineKind - Controls whether the user wants the interpreter, the JIT,
536   /// or whichever engine works.  This option defaults to EngineKind::Either.
setEngineKind(EngineKind::Kind w)537   EngineBuilder &setEngineKind(EngineKind::Kind w) {
538     WhichEngine = w;
539     return *this;
540   }
541 
542   /// setMCJITMemoryManager - Sets the MCJIT memory manager to use. This allows
543   /// clients to customize their memory allocation policies for the MCJIT. This
544   /// is only appropriate for the MCJIT; setting this and configuring the builder
545   /// to create anything other than MCJIT will cause a runtime error. If create()
546   /// is called and is successful, the created engine takes ownership of the
547   /// memory manager. This option defaults to NULL. Using this option nullifies
548   /// the setJITMemoryManager() option.
setMCJITMemoryManager(RTDyldMemoryManager * mcjmm)549   EngineBuilder &setMCJITMemoryManager(RTDyldMemoryManager *mcjmm) {
550     MCJMM = mcjmm;
551     JMM = NULL;
552     return *this;
553   }
554 
555   /// setJITMemoryManager - Sets the JIT memory manager to use.  This allows
556   /// clients to customize their memory allocation policies.  This is only
557   /// appropriate for either JIT or MCJIT; setting this and configuring the
558   /// builder to create an interpreter will cause a runtime error. If create()
559   /// is called and is successful, the created engine takes ownership of the
560   /// memory manager.  This option defaults to NULL. This option overrides
561   /// setMCJITMemoryManager() as well.
setJITMemoryManager(JITMemoryManager * jmm)562   EngineBuilder &setJITMemoryManager(JITMemoryManager *jmm) {
563     MCJMM = NULL;
564     JMM = jmm;
565     return *this;
566   }
567 
568   /// setErrorStr - Set the error string to write to on error.  This option
569   /// defaults to NULL.
setErrorStr(std::string * e)570   EngineBuilder &setErrorStr(std::string *e) {
571     ErrorStr = e;
572     return *this;
573   }
574 
575   /// setOptLevel - Set the optimization level for the JIT.  This option
576   /// defaults to CodeGenOpt::Default.
setOptLevel(CodeGenOpt::Level l)577   EngineBuilder &setOptLevel(CodeGenOpt::Level l) {
578     OptLevel = l;
579     return *this;
580   }
581 
582   /// setTargetOptions - Set the target options that the ExecutionEngine
583   /// target is using. Defaults to TargetOptions().
setTargetOptions(const TargetOptions & Opts)584   EngineBuilder &setTargetOptions(const TargetOptions &Opts) {
585     Options = Opts;
586     return *this;
587   }
588 
589   /// setRelocationModel - Set the relocation model that the ExecutionEngine
590   /// target is using. Defaults to target specific default "Reloc::Default".
setRelocationModel(Reloc::Model RM)591   EngineBuilder &setRelocationModel(Reloc::Model RM) {
592     RelocModel = RM;
593     return *this;
594   }
595 
596   /// setCodeModel - Set the CodeModel that the ExecutionEngine target
597   /// data is using. Defaults to target specific default
598   /// "CodeModel::JITDefault".
setCodeModel(CodeModel::Model M)599   EngineBuilder &setCodeModel(CodeModel::Model M) {
600     CMModel = M;
601     return *this;
602   }
603 
604   /// setAllocateGVsWithCode - Sets whether global values should be allocated
605   /// into the same buffer as code.  For most applications this should be set
606   /// to false.  Allocating globals with code breaks freeMachineCodeForFunction
607   /// and is probably unsafe and bad for performance.  However, we have clients
608   /// who depend on this behavior, so we must support it.  This option defaults
609   /// to false so that users of the new API can safely use the new memory
610   /// manager and free machine code.
setAllocateGVsWithCode(bool a)611   EngineBuilder &setAllocateGVsWithCode(bool a) {
612     AllocateGVsWithCode = a;
613     return *this;
614   }
615 
616   /// setMArch - Override the architecture set by the Module's triple.
setMArch(StringRef march)617   EngineBuilder &setMArch(StringRef march) {
618     MArch.assign(march.begin(), march.end());
619     return *this;
620   }
621 
622   /// setMCPU - Target a specific cpu type.
setMCPU(StringRef mcpu)623   EngineBuilder &setMCPU(StringRef mcpu) {
624     MCPU.assign(mcpu.begin(), mcpu.end());
625     return *this;
626   }
627 
628   /// setUseMCJIT - Set whether the MC-JIT implementation should be used
629   /// (experimental).
setUseMCJIT(bool Value)630   EngineBuilder &setUseMCJIT(bool Value) {
631     UseMCJIT = Value;
632     return *this;
633   }
634 
635   /// setMAttrs - Set cpu-specific attributes.
636   template<typename StringSequence>
setMAttrs(const StringSequence & mattrs)637   EngineBuilder &setMAttrs(const StringSequence &mattrs) {
638     MAttrs.clear();
639     MAttrs.append(mattrs.begin(), mattrs.end());
640     return *this;
641   }
642 
643   TargetMachine *selectTarget();
644 
645   /// selectTarget - Pick a target either via -march or by guessing the native
646   /// arch.  Add any CPU features specified via -mcpu or -mattr.
647   TargetMachine *selectTarget(const Triple &TargetTriple,
648                               StringRef MArch,
649                               StringRef MCPU,
650                               const SmallVectorImpl<std::string>& MAttrs);
651 
create()652   ExecutionEngine *create() {
653     return create(selectTarget());
654   }
655 
656   ExecutionEngine *create(TargetMachine *TM);
657 };
658 
659 // Create wrappers for C Binding types (see CBindingWrapping.h).
660 DEFINE_SIMPLE_CONVERSION_FUNCTIONS(ExecutionEngine, LLVMExecutionEngineRef)
661 
662 } // End llvm namespace
663 
664 #endif
665