1 /*
2 ** 2001 September 15
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 ** This file contains C code routines that are called by the SQLite parser
13 ** when syntax rules are reduced. The routines in this file handle the
14 ** following kinds of SQL syntax:
15 **
16 ** CREATE TABLE
17 ** DROP TABLE
18 ** CREATE INDEX
19 ** DROP INDEX
20 ** creating ID lists
21 ** BEGIN TRANSACTION
22 ** COMMIT
23 ** ROLLBACK
24 */
25 #include "sqliteInt.h"
26
27 #include "pager.h"
28 #include "btree.h"
29
30 /*
31 ** This routine is called when a new SQL statement is beginning to
32 ** be parsed. Initialize the pParse structure as needed.
33 */
sqlite3BeginParse(Parse * pParse,int explainFlag)34 void sqlite3BeginParse(Parse *pParse, int explainFlag){
35 pParse->explain = (u8)explainFlag;
36 pParse->nVar = 0;
37 }
38
39 #ifndef SQLITE_OMIT_SHARED_CACHE
40 /*
41 ** The TableLock structure is only used by the sqlite3TableLock() and
42 ** codeTableLocks() functions.
43 */
44 struct TableLock {
45 int iDb; /* The database containing the table to be locked */
46 int iTab; /* The root page of the table to be locked */
47 u8 isWriteLock; /* True for write lock. False for a read lock */
48 const char *zName; /* Name of the table */
49 };
50
51 /*
52 ** Record the fact that we want to lock a table at run-time.
53 **
54 ** The table to be locked has root page iTab and is found in database iDb.
55 ** A read or a write lock can be taken depending on isWritelock.
56 **
57 ** This routine just records the fact that the lock is desired. The
58 ** code to make the lock occur is generated by a later call to
59 ** codeTableLocks() which occurs during sqlite3FinishCoding().
60 */
sqlite3TableLock(Parse * pParse,int iDb,int iTab,u8 isWriteLock,const char * zName)61 void sqlite3TableLock(
62 Parse *pParse, /* Parsing context */
63 int iDb, /* Index of the database containing the table to lock */
64 int iTab, /* Root page number of the table to be locked */
65 u8 isWriteLock, /* True for a write lock */
66 const char *zName /* Name of the table to be locked */
67 ){
68 Parse *pToplevel = sqlite3ParseToplevel(pParse);
69 int i;
70 int nBytes;
71 TableLock *p;
72 assert( iDb>=0 );
73
74 for(i=0; i<pToplevel->nTableLock; i++){
75 p = &pToplevel->aTableLock[i];
76 if( p->iDb==iDb && p->iTab==iTab ){
77 p->isWriteLock = (p->isWriteLock || isWriteLock);
78 return;
79 }
80 }
81
82 nBytes = sizeof(TableLock) * (pToplevel->nTableLock+1);
83 pToplevel->aTableLock =
84 sqlite3DbReallocOrFree(pToplevel->db, pToplevel->aTableLock, nBytes);
85 if( pToplevel->aTableLock ){
86 p = &pToplevel->aTableLock[pToplevel->nTableLock++];
87 p->iDb = iDb;
88 p->iTab = iTab;
89 p->isWriteLock = isWriteLock;
90 p->zName = zName;
91 }else{
92 pToplevel->nTableLock = 0;
93 pToplevel->db->mallocFailed = 1;
94 }
95 }
96
97 /*
98 ** Code an OP_TableLock instruction for each table locked by the
99 ** statement (configured by calls to sqlite3TableLock()).
100 */
codeTableLocks(Parse * pParse)101 static void codeTableLocks(Parse *pParse){
102 int i;
103 Vdbe *pVdbe;
104
105 pVdbe = sqlite3GetVdbe(pParse);
106 assert( pVdbe!=0 ); /* sqlite3GetVdbe cannot fail: VDBE already allocated */
107
108 for(i=0; i<pParse->nTableLock; i++){
109 TableLock *p = &pParse->aTableLock[i];
110 int p1 = p->iDb;
111 sqlite3VdbeAddOp4(pVdbe, OP_TableLock, p1, p->iTab, p->isWriteLock,
112 p->zName, P4_STATIC);
113 }
114 }
115 #else
116 #define codeTableLocks(x)
117 #endif
118
119 /*
120 ** This routine is called after a single SQL statement has been
121 ** parsed and a VDBE program to execute that statement has been
122 ** prepared. This routine puts the finishing touches on the
123 ** VDBE program and resets the pParse structure for the next
124 ** parse.
125 **
126 ** Note that if an error occurred, it might be the case that
127 ** no VDBE code was generated.
128 */
sqlite3FinishCoding(Parse * pParse)129 void sqlite3FinishCoding(Parse *pParse){
130 sqlite3 *db;
131 Vdbe *v;
132
133 db = pParse->db;
134 if( db->mallocFailed ) return;
135 if( pParse->nested ) return;
136 if( pParse->nErr ) return;
137
138 /* Begin by generating some termination code at the end of the
139 ** vdbe program
140 */
141 v = sqlite3GetVdbe(pParse);
142 assert( !pParse->isMultiWrite
143 || sqlite3VdbeAssertMayAbort(v, pParse->mayAbort));
144 if( v ){
145 sqlite3VdbeAddOp0(v, OP_Halt);
146
147 /* The cookie mask contains one bit for each database file open.
148 ** (Bit 0 is for main, bit 1 is for temp, and so forth.) Bits are
149 ** set for each database that is used. Generate code to start a
150 ** transaction on each used database and to verify the schema cookie
151 ** on each used database.
152 */
153 if( pParse->cookieGoto>0 ){
154 yDbMask mask;
155 int iDb;
156 sqlite3VdbeJumpHere(v, pParse->cookieGoto-1);
157 for(iDb=0, mask=1; iDb<db->nDb; mask<<=1, iDb++){
158 if( (mask & pParse->cookieMask)==0 ) continue;
159 sqlite3VdbeUsesBtree(v, iDb);
160 sqlite3VdbeAddOp2(v,OP_Transaction, iDb, (mask & pParse->writeMask)!=0);
161 if( db->init.busy==0 ){
162 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
163 sqlite3VdbeAddOp3(v, OP_VerifyCookie,
164 iDb, pParse->cookieValue[iDb],
165 db->aDb[iDb].pSchema->iGeneration);
166 }
167 }
168 #ifndef SQLITE_OMIT_VIRTUALTABLE
169 {
170 int i;
171 for(i=0; i<pParse->nVtabLock; i++){
172 char *vtab = (char *)sqlite3GetVTable(db, pParse->apVtabLock[i]);
173 sqlite3VdbeAddOp4(v, OP_VBegin, 0, 0, 0, vtab, P4_VTAB);
174 }
175 pParse->nVtabLock = 0;
176 }
177 #endif
178
179 /* Once all the cookies have been verified and transactions opened,
180 ** obtain the required table-locks. This is a no-op unless the
181 ** shared-cache feature is enabled.
182 */
183 codeTableLocks(pParse);
184
185 /* Initialize any AUTOINCREMENT data structures required.
186 */
187 sqlite3AutoincrementBegin(pParse);
188
189 /* Finally, jump back to the beginning of the executable code. */
190 sqlite3VdbeAddOp2(v, OP_Goto, 0, pParse->cookieGoto);
191 }
192 }
193
194
195 /* Get the VDBE program ready for execution
196 */
197 if( v && ALWAYS(pParse->nErr==0) && !db->mallocFailed ){
198 #ifdef SQLITE_DEBUG
199 FILE *trace = (db->flags & SQLITE_VdbeTrace)!=0 ? stdout : 0;
200 sqlite3VdbeTrace(v, trace);
201 #endif
202 assert( pParse->iCacheLevel==0 ); /* Disables and re-enables match */
203 /* A minimum of one cursor is required if autoincrement is used
204 * See ticket [a696379c1f08866] */
205 if( pParse->pAinc!=0 && pParse->nTab==0 ) pParse->nTab = 1;
206 sqlite3VdbeMakeReady(v, pParse->nVar, pParse->nMem,
207 pParse->nTab, pParse->nMaxArg, pParse->explain,
208 pParse->isMultiWrite && pParse->mayAbort);
209 pParse->rc = SQLITE_DONE;
210 pParse->colNamesSet = 0;
211 }else{
212 pParse->rc = SQLITE_ERROR;
213 }
214 pParse->nTab = 0;
215 pParse->nMem = 0;
216 pParse->nSet = 0;
217 pParse->nVar = 0;
218 pParse->cookieMask = 0;
219 pParse->cookieGoto = 0;
220 }
221
222 /*
223 ** Run the parser and code generator recursively in order to generate
224 ** code for the SQL statement given onto the end of the pParse context
225 ** currently under construction. When the parser is run recursively
226 ** this way, the final OP_Halt is not appended and other initialization
227 ** and finalization steps are omitted because those are handling by the
228 ** outermost parser.
229 **
230 ** Not everything is nestable. This facility is designed to permit
231 ** INSERT, UPDATE, and DELETE operations against SQLITE_MASTER. Use
232 ** care if you decide to try to use this routine for some other purposes.
233 */
sqlite3NestedParse(Parse * pParse,const char * zFormat,...)234 void sqlite3NestedParse(Parse *pParse, const char *zFormat, ...){
235 va_list ap;
236 char *zSql;
237 char *zErrMsg = 0;
238 sqlite3 *db = pParse->db;
239 # define SAVE_SZ (sizeof(Parse) - offsetof(Parse,nVar))
240 char saveBuf[SAVE_SZ];
241
242 if( pParse->nErr ) return;
243 assert( pParse->nested<10 ); /* Nesting should only be of limited depth */
244 va_start(ap, zFormat);
245 zSql = sqlite3VMPrintf(db, zFormat, ap);
246 va_end(ap);
247 if( zSql==0 ){
248 return; /* A malloc must have failed */
249 }
250 pParse->nested++;
251 memcpy(saveBuf, &pParse->nVar, SAVE_SZ);
252 memset(&pParse->nVar, 0, SAVE_SZ);
253 sqlite3RunParser(pParse, zSql, &zErrMsg);
254 sqlite3DbFree(db, zErrMsg);
255 sqlite3DbFree(db, zSql);
256 memcpy(&pParse->nVar, saveBuf, SAVE_SZ);
257 pParse->nested--;
258 }
259
260 /*
261 ** Locate the in-memory structure that describes a particular database
262 ** table given the name of that table and (optionally) the name of the
263 ** database containing the table. Return NULL if not found.
264 **
265 ** If zDatabase is 0, all databases are searched for the table and the
266 ** first matching table is returned. (No checking for duplicate table
267 ** names is done.) The search order is TEMP first, then MAIN, then any
268 ** auxiliary databases added using the ATTACH command.
269 **
270 ** See also sqlite3LocateTable().
271 */
sqlite3FindTable(sqlite3 * db,const char * zName,const char * zDatabase)272 Table *sqlite3FindTable(sqlite3 *db, const char *zName, const char *zDatabase){
273 Table *p = 0;
274 int i;
275 int nName;
276 assert( zName!=0 );
277 nName = sqlite3Strlen30(zName);
278 /* All mutexes are required for schema access. Make sure we hold them. */
279 assert( zDatabase!=0 || sqlite3BtreeHoldsAllMutexes(db) );
280 for(i=OMIT_TEMPDB; i<db->nDb; i++){
281 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
282 if( zDatabase!=0 && sqlite3StrICmp(zDatabase, db->aDb[j].zName) ) continue;
283 assert( sqlite3SchemaMutexHeld(db, j, 0) );
284 p = sqlite3HashFind(&db->aDb[j].pSchema->tblHash, zName, nName);
285 if( p ) break;
286 }
287 return p;
288 }
289
290 /*
291 ** Locate the in-memory structure that describes a particular database
292 ** table given the name of that table and (optionally) the name of the
293 ** database containing the table. Return NULL if not found. Also leave an
294 ** error message in pParse->zErrMsg.
295 **
296 ** The difference between this routine and sqlite3FindTable() is that this
297 ** routine leaves an error message in pParse->zErrMsg where
298 ** sqlite3FindTable() does not.
299 */
sqlite3LocateTable(Parse * pParse,int isView,const char * zName,const char * zDbase)300 Table *sqlite3LocateTable(
301 Parse *pParse, /* context in which to report errors */
302 int isView, /* True if looking for a VIEW rather than a TABLE */
303 const char *zName, /* Name of the table we are looking for */
304 const char *zDbase /* Name of the database. Might be NULL */
305 ){
306 Table *p;
307
308 /* Read the database schema. If an error occurs, leave an error message
309 ** and code in pParse and return NULL. */
310 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
311 return 0;
312 }
313
314 p = sqlite3FindTable(pParse->db, zName, zDbase);
315 if( p==0 ){
316 const char *zMsg = isView ? "no such view" : "no such table";
317 if( zDbase ){
318 sqlite3ErrorMsg(pParse, "%s: %s.%s", zMsg, zDbase, zName);
319 }else{
320 sqlite3ErrorMsg(pParse, "%s: %s", zMsg, zName);
321 }
322 pParse->checkSchema = 1;
323 }
324 return p;
325 }
326
327 /*
328 ** Locate the in-memory structure that describes
329 ** a particular index given the name of that index
330 ** and the name of the database that contains the index.
331 ** Return NULL if not found.
332 **
333 ** If zDatabase is 0, all databases are searched for the
334 ** table and the first matching index is returned. (No checking
335 ** for duplicate index names is done.) The search order is
336 ** TEMP first, then MAIN, then any auxiliary databases added
337 ** using the ATTACH command.
338 */
sqlite3FindIndex(sqlite3 * db,const char * zName,const char * zDb)339 Index *sqlite3FindIndex(sqlite3 *db, const char *zName, const char *zDb){
340 Index *p = 0;
341 int i;
342 int nName = sqlite3Strlen30(zName);
343 /* All mutexes are required for schema access. Make sure we hold them. */
344 assert( zDb!=0 || sqlite3BtreeHoldsAllMutexes(db) );
345 for(i=OMIT_TEMPDB; i<db->nDb; i++){
346 int j = (i<2) ? i^1 : i; /* Search TEMP before MAIN */
347 Schema *pSchema = db->aDb[j].pSchema;
348 assert( pSchema );
349 if( zDb && sqlite3StrICmp(zDb, db->aDb[j].zName) ) continue;
350 assert( sqlite3SchemaMutexHeld(db, j, 0) );
351 p = sqlite3HashFind(&pSchema->idxHash, zName, nName);
352 if( p ) break;
353 }
354 return p;
355 }
356
357 /*
358 ** Reclaim the memory used by an index
359 */
freeIndex(sqlite3 * db,Index * p)360 static void freeIndex(sqlite3 *db, Index *p){
361 #ifndef SQLITE_OMIT_ANALYZE
362 sqlite3DeleteIndexSamples(db, p);
363 #endif
364 sqlite3DbFree(db, p->zColAff);
365 sqlite3DbFree(db, p);
366 }
367
368 /*
369 ** For the index called zIdxName which is found in the database iDb,
370 ** unlike that index from its Table then remove the index from
371 ** the index hash table and free all memory structures associated
372 ** with the index.
373 */
sqlite3UnlinkAndDeleteIndex(sqlite3 * db,int iDb,const char * zIdxName)374 void sqlite3UnlinkAndDeleteIndex(sqlite3 *db, int iDb, const char *zIdxName){
375 Index *pIndex;
376 int len;
377 Hash *pHash;
378
379 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
380 pHash = &db->aDb[iDb].pSchema->idxHash;
381 len = sqlite3Strlen30(zIdxName);
382 pIndex = sqlite3HashInsert(pHash, zIdxName, len, 0);
383 if( ALWAYS(pIndex) ){
384 if( pIndex->pTable->pIndex==pIndex ){
385 pIndex->pTable->pIndex = pIndex->pNext;
386 }else{
387 Index *p;
388 /* Justification of ALWAYS(); The index must be on the list of
389 ** indices. */
390 p = pIndex->pTable->pIndex;
391 while( ALWAYS(p) && p->pNext!=pIndex ){ p = p->pNext; }
392 if( ALWAYS(p && p->pNext==pIndex) ){
393 p->pNext = pIndex->pNext;
394 }
395 }
396 freeIndex(db, pIndex);
397 }
398 db->flags |= SQLITE_InternChanges;
399 }
400
401 /*
402 ** Erase all schema information from the in-memory hash tables of
403 ** a single database. This routine is called to reclaim memory
404 ** before the database closes. It is also called during a rollback
405 ** if there were schema changes during the transaction or if a
406 ** schema-cookie mismatch occurs.
407 **
408 ** If iDb<0 then reset the internal schema tables for all database
409 ** files. If iDb>=0 then reset the internal schema for only the
410 ** single file indicated.
411 */
sqlite3ResetInternalSchema(sqlite3 * db,int iDb)412 void sqlite3ResetInternalSchema(sqlite3 *db, int iDb){
413 int i, j;
414 assert( iDb<db->nDb );
415
416 if( iDb>=0 ){
417 /* Case 1: Reset the single schema identified by iDb */
418 Db *pDb = &db->aDb[iDb];
419 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
420 assert( pDb->pSchema!=0 );
421 sqlite3SchemaClear(pDb->pSchema);
422
423 /* If any database other than TEMP is reset, then also reset TEMP
424 ** since TEMP might be holding triggers that reference tables in the
425 ** other database.
426 */
427 if( iDb!=1 ){
428 pDb = &db->aDb[1];
429 assert( pDb->pSchema!=0 );
430 sqlite3SchemaClear(pDb->pSchema);
431 }
432 return;
433 }
434 /* Case 2 (from here to the end): Reset all schemas for all attached
435 ** databases. */
436 assert( iDb<0 );
437 sqlite3BtreeEnterAll(db);
438 for(i=0; i<db->nDb; i++){
439 Db *pDb = &db->aDb[i];
440 if( pDb->pSchema ){
441 sqlite3SchemaClear(pDb->pSchema);
442 }
443 }
444 db->flags &= ~SQLITE_InternChanges;
445 sqlite3VtabUnlockList(db);
446 sqlite3BtreeLeaveAll(db);
447
448 /* If one or more of the auxiliary database files has been closed,
449 ** then remove them from the auxiliary database list. We take the
450 ** opportunity to do this here since we have just deleted all of the
451 ** schema hash tables and therefore do not have to make any changes
452 ** to any of those tables.
453 */
454 for(i=j=2; i<db->nDb; i++){
455 struct Db *pDb = &db->aDb[i];
456 if( pDb->pBt==0 ){
457 sqlite3DbFree(db, pDb->zName);
458 pDb->zName = 0;
459 continue;
460 }
461 if( j<i ){
462 db->aDb[j] = db->aDb[i];
463 }
464 j++;
465 }
466 memset(&db->aDb[j], 0, (db->nDb-j)*sizeof(db->aDb[j]));
467 db->nDb = j;
468 if( db->nDb<=2 && db->aDb!=db->aDbStatic ){
469 memcpy(db->aDbStatic, db->aDb, 2*sizeof(db->aDb[0]));
470 sqlite3DbFree(db, db->aDb);
471 db->aDb = db->aDbStatic;
472 }
473 }
474
475 /*
476 ** This routine is called when a commit occurs.
477 */
sqlite3CommitInternalChanges(sqlite3 * db)478 void sqlite3CommitInternalChanges(sqlite3 *db){
479 db->flags &= ~SQLITE_InternChanges;
480 }
481
482 /*
483 ** Delete memory allocated for the column names of a table or view (the
484 ** Table.aCol[] array).
485 */
sqliteDeleteColumnNames(sqlite3 * db,Table * pTable)486 static void sqliteDeleteColumnNames(sqlite3 *db, Table *pTable){
487 int i;
488 Column *pCol;
489 assert( pTable!=0 );
490 if( (pCol = pTable->aCol)!=0 ){
491 for(i=0; i<pTable->nCol; i++, pCol++){
492 sqlite3DbFree(db, pCol->zName);
493 sqlite3ExprDelete(db, pCol->pDflt);
494 sqlite3DbFree(db, pCol->zDflt);
495 sqlite3DbFree(db, pCol->zType);
496 sqlite3DbFree(db, pCol->zColl);
497 }
498 sqlite3DbFree(db, pTable->aCol);
499 }
500 }
501
502 /*
503 ** Remove the memory data structures associated with the given
504 ** Table. No changes are made to disk by this routine.
505 **
506 ** This routine just deletes the data structure. It does not unlink
507 ** the table data structure from the hash table. But it does destroy
508 ** memory structures of the indices and foreign keys associated with
509 ** the table.
510 */
sqlite3DeleteTable(sqlite3 * db,Table * pTable)511 void sqlite3DeleteTable(sqlite3 *db, Table *pTable){
512 Index *pIndex, *pNext;
513
514 assert( !pTable || pTable->nRef>0 );
515
516 /* Do not delete the table until the reference count reaches zero. */
517 if( !pTable ) return;
518 if( ((!db || db->pnBytesFreed==0) && (--pTable->nRef)>0) ) return;
519
520 /* Delete all indices associated with this table. */
521 for(pIndex = pTable->pIndex; pIndex; pIndex=pNext){
522 pNext = pIndex->pNext;
523 assert( pIndex->pSchema==pTable->pSchema );
524 if( !db || db->pnBytesFreed==0 ){
525 char *zName = pIndex->zName;
526 TESTONLY ( Index *pOld = ) sqlite3HashInsert(
527 &pIndex->pSchema->idxHash, zName, sqlite3Strlen30(zName), 0
528 );
529 assert( db==0 || sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
530 assert( pOld==pIndex || pOld==0 );
531 }
532 freeIndex(db, pIndex);
533 }
534
535 /* Delete any foreign keys attached to this table. */
536 sqlite3FkDelete(db, pTable);
537
538 /* Delete the Table structure itself.
539 */
540 sqliteDeleteColumnNames(db, pTable);
541 sqlite3DbFree(db, pTable->zName);
542 sqlite3DbFree(db, pTable->zColAff);
543 sqlite3SelectDelete(db, pTable->pSelect);
544 #ifndef SQLITE_OMIT_CHECK
545 sqlite3ExprDelete(db, pTable->pCheck);
546 #endif
547 #ifndef SQLITE_OMIT_VIRTUALTABLE
548 sqlite3VtabClear(db, pTable);
549 #endif
550 sqlite3DbFree(db, pTable);
551 }
552
553 /*
554 ** Unlink the given table from the hash tables and the delete the
555 ** table structure with all its indices and foreign keys.
556 */
sqlite3UnlinkAndDeleteTable(sqlite3 * db,int iDb,const char * zTabName)557 void sqlite3UnlinkAndDeleteTable(sqlite3 *db, int iDb, const char *zTabName){
558 Table *p;
559 Db *pDb;
560
561 assert( db!=0 );
562 assert( iDb>=0 && iDb<db->nDb );
563 assert( zTabName );
564 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
565 testcase( zTabName[0]==0 ); /* Zero-length table names are allowed */
566 pDb = &db->aDb[iDb];
567 p = sqlite3HashInsert(&pDb->pSchema->tblHash, zTabName,
568 sqlite3Strlen30(zTabName),0);
569 sqlite3DeleteTable(db, p);
570 db->flags |= SQLITE_InternChanges;
571 }
572
573 /*
574 ** Given a token, return a string that consists of the text of that
575 ** token. Space to hold the returned string
576 ** is obtained from sqliteMalloc() and must be freed by the calling
577 ** function.
578 **
579 ** Any quotation marks (ex: "name", 'name', [name], or `name`) that
580 ** surround the body of the token are removed.
581 **
582 ** Tokens are often just pointers into the original SQL text and so
583 ** are not \000 terminated and are not persistent. The returned string
584 ** is \000 terminated and is persistent.
585 */
sqlite3NameFromToken(sqlite3 * db,Token * pName)586 char *sqlite3NameFromToken(sqlite3 *db, Token *pName){
587 char *zName;
588 if( pName ){
589 zName = sqlite3DbStrNDup(db, (char*)pName->z, pName->n);
590 sqlite3Dequote(zName);
591 }else{
592 zName = 0;
593 }
594 return zName;
595 }
596
597 /*
598 ** Open the sqlite_master table stored in database number iDb for
599 ** writing. The table is opened using cursor 0.
600 */
sqlite3OpenMasterTable(Parse * p,int iDb)601 void sqlite3OpenMasterTable(Parse *p, int iDb){
602 Vdbe *v = sqlite3GetVdbe(p);
603 sqlite3TableLock(p, iDb, MASTER_ROOT, 1, SCHEMA_TABLE(iDb));
604 sqlite3VdbeAddOp3(v, OP_OpenWrite, 0, MASTER_ROOT, iDb);
605 sqlite3VdbeChangeP4(v, -1, (char *)5, P4_INT32); /* 5 column table */
606 if( p->nTab==0 ){
607 p->nTab = 1;
608 }
609 }
610
611 /*
612 ** Parameter zName points to a nul-terminated buffer containing the name
613 ** of a database ("main", "temp" or the name of an attached db). This
614 ** function returns the index of the named database in db->aDb[], or
615 ** -1 if the named db cannot be found.
616 */
sqlite3FindDbName(sqlite3 * db,const char * zName)617 int sqlite3FindDbName(sqlite3 *db, const char *zName){
618 int i = -1; /* Database number */
619 if( zName ){
620 Db *pDb;
621 int n = sqlite3Strlen30(zName);
622 for(i=(db->nDb-1), pDb=&db->aDb[i]; i>=0; i--, pDb--){
623 if( (!OMIT_TEMPDB || i!=1 ) && n==sqlite3Strlen30(pDb->zName) &&
624 0==sqlite3StrICmp(pDb->zName, zName) ){
625 break;
626 }
627 }
628 }
629 return i;
630 }
631
632 /*
633 ** The token *pName contains the name of a database (either "main" or
634 ** "temp" or the name of an attached db). This routine returns the
635 ** index of the named database in db->aDb[], or -1 if the named db
636 ** does not exist.
637 */
sqlite3FindDb(sqlite3 * db,Token * pName)638 int sqlite3FindDb(sqlite3 *db, Token *pName){
639 int i; /* Database number */
640 char *zName; /* Name we are searching for */
641 zName = sqlite3NameFromToken(db, pName);
642 i = sqlite3FindDbName(db, zName);
643 sqlite3DbFree(db, zName);
644 return i;
645 }
646
647 /* The table or view or trigger name is passed to this routine via tokens
648 ** pName1 and pName2. If the table name was fully qualified, for example:
649 **
650 ** CREATE TABLE xxx.yyy (...);
651 **
652 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
653 ** the table name is not fully qualified, i.e.:
654 **
655 ** CREATE TABLE yyy(...);
656 **
657 ** Then pName1 is set to "yyy" and pName2 is "".
658 **
659 ** This routine sets the *ppUnqual pointer to point at the token (pName1 or
660 ** pName2) that stores the unqualified table name. The index of the
661 ** database "xxx" is returned.
662 */
sqlite3TwoPartName(Parse * pParse,Token * pName1,Token * pName2,Token ** pUnqual)663 int sqlite3TwoPartName(
664 Parse *pParse, /* Parsing and code generating context */
665 Token *pName1, /* The "xxx" in the name "xxx.yyy" or "xxx" */
666 Token *pName2, /* The "yyy" in the name "xxx.yyy" */
667 Token **pUnqual /* Write the unqualified object name here */
668 ){
669 int iDb; /* Database holding the object */
670 sqlite3 *db = pParse->db;
671
672 if( ALWAYS(pName2!=0) && pName2->n>0 ){
673 if( db->init.busy ) {
674 sqlite3ErrorMsg(pParse, "corrupt database");
675 pParse->nErr++;
676 return -1;
677 }
678 *pUnqual = pName2;
679 iDb = sqlite3FindDb(db, pName1);
680 if( iDb<0 ){
681 sqlite3ErrorMsg(pParse, "unknown database %T", pName1);
682 pParse->nErr++;
683 return -1;
684 }
685 }else{
686 assert( db->init.iDb==0 || db->init.busy );
687 iDb = db->init.iDb;
688 *pUnqual = pName1;
689 }
690 return iDb;
691 }
692
693 /*
694 ** This routine is used to check if the UTF-8 string zName is a legal
695 ** unqualified name for a new schema object (table, index, view or
696 ** trigger). All names are legal except those that begin with the string
697 ** "sqlite_" (in upper, lower or mixed case). This portion of the namespace
698 ** is reserved for internal use.
699 */
sqlite3CheckObjectName(Parse * pParse,const char * zName)700 int sqlite3CheckObjectName(Parse *pParse, const char *zName){
701 if( !pParse->db->init.busy && pParse->nested==0
702 && (pParse->db->flags & SQLITE_WriteSchema)==0
703 && 0==sqlite3StrNICmp(zName, "sqlite_", 7) ){
704 sqlite3ErrorMsg(pParse, "object name reserved for internal use: %s", zName);
705 return SQLITE_ERROR;
706 }
707 return SQLITE_OK;
708 }
709
710 /*
711 ** Begin constructing a new table representation in memory. This is
712 ** the first of several action routines that get called in response
713 ** to a CREATE TABLE statement. In particular, this routine is called
714 ** after seeing tokens "CREATE" and "TABLE" and the table name. The isTemp
715 ** flag is true if the table should be stored in the auxiliary database
716 ** file instead of in the main database file. This is normally the case
717 ** when the "TEMP" or "TEMPORARY" keyword occurs in between
718 ** CREATE and TABLE.
719 **
720 ** The new table record is initialized and put in pParse->pNewTable.
721 ** As more of the CREATE TABLE statement is parsed, additional action
722 ** routines will be called to add more information to this record.
723 ** At the end of the CREATE TABLE statement, the sqlite3EndTable() routine
724 ** is called to complete the construction of the new table record.
725 */
sqlite3StartTable(Parse * pParse,Token * pName1,Token * pName2,int isTemp,int isView,int isVirtual,int noErr)726 void sqlite3StartTable(
727 Parse *pParse, /* Parser context */
728 Token *pName1, /* First part of the name of the table or view */
729 Token *pName2, /* Second part of the name of the table or view */
730 int isTemp, /* True if this is a TEMP table */
731 int isView, /* True if this is a VIEW */
732 int isVirtual, /* True if this is a VIRTUAL table */
733 int noErr /* Do nothing if table already exists */
734 ){
735 Table *pTable;
736 char *zName = 0; /* The name of the new table */
737 sqlite3 *db = pParse->db;
738 Vdbe *v;
739 int iDb; /* Database number to create the table in */
740 Token *pName; /* Unqualified name of the table to create */
741
742 /* The table or view name to create is passed to this routine via tokens
743 ** pName1 and pName2. If the table name was fully qualified, for example:
744 **
745 ** CREATE TABLE xxx.yyy (...);
746 **
747 ** Then pName1 is set to "xxx" and pName2 "yyy". On the other hand if
748 ** the table name is not fully qualified, i.e.:
749 **
750 ** CREATE TABLE yyy(...);
751 **
752 ** Then pName1 is set to "yyy" and pName2 is "".
753 **
754 ** The call below sets the pName pointer to point at the token (pName1 or
755 ** pName2) that stores the unqualified table name. The variable iDb is
756 ** set to the index of the database that the table or view is to be
757 ** created in.
758 */
759 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
760 if( iDb<0 ) return;
761 if( !OMIT_TEMPDB && isTemp && pName2->n>0 && iDb!=1 ){
762 /* If creating a temp table, the name may not be qualified. Unless
763 ** the database name is "temp" anyway. */
764 sqlite3ErrorMsg(pParse, "temporary table name must be unqualified");
765 return;
766 }
767 if( !OMIT_TEMPDB && isTemp ) iDb = 1;
768
769 pParse->sNameToken = *pName;
770 zName = sqlite3NameFromToken(db, pName);
771 if( zName==0 ) return;
772 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
773 goto begin_table_error;
774 }
775 if( db->init.iDb==1 ) isTemp = 1;
776 #ifndef SQLITE_OMIT_AUTHORIZATION
777 assert( (isTemp & 1)==isTemp );
778 {
779 int code;
780 char *zDb = db->aDb[iDb].zName;
781 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(isTemp), 0, zDb) ){
782 goto begin_table_error;
783 }
784 if( isView ){
785 if( !OMIT_TEMPDB && isTemp ){
786 code = SQLITE_CREATE_TEMP_VIEW;
787 }else{
788 code = SQLITE_CREATE_VIEW;
789 }
790 }else{
791 if( !OMIT_TEMPDB && isTemp ){
792 code = SQLITE_CREATE_TEMP_TABLE;
793 }else{
794 code = SQLITE_CREATE_TABLE;
795 }
796 }
797 if( !isVirtual && sqlite3AuthCheck(pParse, code, zName, 0, zDb) ){
798 goto begin_table_error;
799 }
800 }
801 #endif
802
803 /* Make sure the new table name does not collide with an existing
804 ** index or table name in the same database. Issue an error message if
805 ** it does. The exception is if the statement being parsed was passed
806 ** to an sqlite3_declare_vtab() call. In that case only the column names
807 ** and types will be used, so there is no need to test for namespace
808 ** collisions.
809 */
810 if( !IN_DECLARE_VTAB ){
811 char *zDb = db->aDb[iDb].zName;
812 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
813 goto begin_table_error;
814 }
815 pTable = sqlite3FindTable(db, zName, zDb);
816 if( pTable ){
817 if( !noErr ){
818 sqlite3ErrorMsg(pParse, "table %T already exists", pName);
819 }else{
820 assert( !db->init.busy );
821 sqlite3CodeVerifySchema(pParse, iDb);
822 }
823 goto begin_table_error;
824 }
825 if( sqlite3FindIndex(db, zName, zDb)!=0 ){
826 sqlite3ErrorMsg(pParse, "there is already an index named %s", zName);
827 goto begin_table_error;
828 }
829 }
830
831 pTable = sqlite3DbMallocZero(db, sizeof(Table));
832 if( pTable==0 ){
833 db->mallocFailed = 1;
834 pParse->rc = SQLITE_NOMEM;
835 pParse->nErr++;
836 goto begin_table_error;
837 }
838 pTable->zName = zName;
839 pTable->iPKey = -1;
840 pTable->pSchema = db->aDb[iDb].pSchema;
841 pTable->nRef = 1;
842 pTable->nRowEst = 1000000;
843 assert( pParse->pNewTable==0 );
844 pParse->pNewTable = pTable;
845
846 /* If this is the magic sqlite_sequence table used by autoincrement,
847 ** then record a pointer to this table in the main database structure
848 ** so that INSERT can find the table easily.
849 */
850 #ifndef SQLITE_OMIT_AUTOINCREMENT
851 if( !pParse->nested && strcmp(zName, "sqlite_sequence")==0 ){
852 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
853 pTable->pSchema->pSeqTab = pTable;
854 }
855 #endif
856
857 /* Begin generating the code that will insert the table record into
858 ** the SQLITE_MASTER table. Note in particular that we must go ahead
859 ** and allocate the record number for the table entry now. Before any
860 ** PRIMARY KEY or UNIQUE keywords are parsed. Those keywords will cause
861 ** indices to be created and the table record must come before the
862 ** indices. Hence, the record number for the table must be allocated
863 ** now.
864 */
865 if( !db->init.busy && (v = sqlite3GetVdbe(pParse))!=0 ){
866 int j1;
867 int fileFormat;
868 int reg1, reg2, reg3;
869 sqlite3BeginWriteOperation(pParse, 0, iDb);
870
871 #ifndef SQLITE_OMIT_VIRTUALTABLE
872 if( isVirtual ){
873 sqlite3VdbeAddOp0(v, OP_VBegin);
874 }
875 #endif
876
877 /* If the file format and encoding in the database have not been set,
878 ** set them now.
879 */
880 reg1 = pParse->regRowid = ++pParse->nMem;
881 reg2 = pParse->regRoot = ++pParse->nMem;
882 reg3 = ++pParse->nMem;
883 sqlite3VdbeAddOp3(v, OP_ReadCookie, iDb, reg3, BTREE_FILE_FORMAT);
884 sqlite3VdbeUsesBtree(v, iDb);
885 j1 = sqlite3VdbeAddOp1(v, OP_If, reg3);
886 fileFormat = (db->flags & SQLITE_LegacyFileFmt)!=0 ?
887 1 : SQLITE_MAX_FILE_FORMAT;
888 sqlite3VdbeAddOp2(v, OP_Integer, fileFormat, reg3);
889 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_FILE_FORMAT, reg3);
890 sqlite3VdbeAddOp2(v, OP_Integer, ENC(db), reg3);
891 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_TEXT_ENCODING, reg3);
892 sqlite3VdbeJumpHere(v, j1);
893
894 /* This just creates a place-holder record in the sqlite_master table.
895 ** The record created does not contain anything yet. It will be replaced
896 ** by the real entry in code generated at sqlite3EndTable().
897 **
898 ** The rowid for the new entry is left in register pParse->regRowid.
899 ** The root page number of the new table is left in reg pParse->regRoot.
900 ** The rowid and root page number values are needed by the code that
901 ** sqlite3EndTable will generate.
902 */
903 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
904 if( isView || isVirtual ){
905 sqlite3VdbeAddOp2(v, OP_Integer, 0, reg2);
906 }else
907 #endif
908 {
909 sqlite3VdbeAddOp2(v, OP_CreateTable, iDb, reg2);
910 }
911 sqlite3OpenMasterTable(pParse, iDb);
912 sqlite3VdbeAddOp2(v, OP_NewRowid, 0, reg1);
913 sqlite3VdbeAddOp2(v, OP_Null, 0, reg3);
914 sqlite3VdbeAddOp3(v, OP_Insert, 0, reg3, reg1);
915 sqlite3VdbeChangeP5(v, OPFLAG_APPEND);
916 sqlite3VdbeAddOp0(v, OP_Close);
917 }
918
919 /* Normal (non-error) return. */
920 return;
921
922 /* If an error occurs, we jump here */
923 begin_table_error:
924 sqlite3DbFree(db, zName);
925 return;
926 }
927
928 /*
929 ** This macro is used to compare two strings in a case-insensitive manner.
930 ** It is slightly faster than calling sqlite3StrICmp() directly, but
931 ** produces larger code.
932 **
933 ** WARNING: This macro is not compatible with the strcmp() family. It
934 ** returns true if the two strings are equal, otherwise false.
935 */
936 #define STRICMP(x, y) (\
937 sqlite3UpperToLower[*(unsigned char *)(x)]== \
938 sqlite3UpperToLower[*(unsigned char *)(y)] \
939 && sqlite3StrICmp((x)+1,(y)+1)==0 )
940
941 /*
942 ** Add a new column to the table currently being constructed.
943 **
944 ** The parser calls this routine once for each column declaration
945 ** in a CREATE TABLE statement. sqlite3StartTable() gets called
946 ** first to get things going. Then this routine is called for each
947 ** column.
948 */
sqlite3AddColumn(Parse * pParse,Token * pName)949 void sqlite3AddColumn(Parse *pParse, Token *pName){
950 Table *p;
951 int i;
952 char *z;
953 Column *pCol;
954 sqlite3 *db = pParse->db;
955 if( (p = pParse->pNewTable)==0 ) return;
956 #if SQLITE_MAX_COLUMN
957 if( p->nCol+1>db->aLimit[SQLITE_LIMIT_COLUMN] ){
958 sqlite3ErrorMsg(pParse, "too many columns on %s", p->zName);
959 return;
960 }
961 #endif
962 z = sqlite3NameFromToken(db, pName);
963 if( z==0 ) return;
964 for(i=0; i<p->nCol; i++){
965 if( STRICMP(z, p->aCol[i].zName) ){
966 sqlite3ErrorMsg(pParse, "duplicate column name: %s", z);
967 sqlite3DbFree(db, z);
968 return;
969 }
970 }
971 if( (p->nCol & 0x7)==0 ){
972 Column *aNew;
973 aNew = sqlite3DbRealloc(db,p->aCol,(p->nCol+8)*sizeof(p->aCol[0]));
974 if( aNew==0 ){
975 sqlite3DbFree(db, z);
976 return;
977 }
978 p->aCol = aNew;
979 }
980 pCol = &p->aCol[p->nCol];
981 memset(pCol, 0, sizeof(p->aCol[0]));
982 pCol->zName = z;
983
984 /* If there is no type specified, columns have the default affinity
985 ** 'NONE'. If there is a type specified, then sqlite3AddColumnType() will
986 ** be called next to set pCol->affinity correctly.
987 */
988 pCol->affinity = SQLITE_AFF_NONE;
989 p->nCol++;
990 }
991
992 /*
993 ** This routine is called by the parser while in the middle of
994 ** parsing a CREATE TABLE statement. A "NOT NULL" constraint has
995 ** been seen on a column. This routine sets the notNull flag on
996 ** the column currently under construction.
997 */
sqlite3AddNotNull(Parse * pParse,int onError)998 void sqlite3AddNotNull(Parse *pParse, int onError){
999 Table *p;
1000 p = pParse->pNewTable;
1001 if( p==0 || NEVER(p->nCol<1) ) return;
1002 p->aCol[p->nCol-1].notNull = (u8)onError;
1003 }
1004
1005 /*
1006 ** Scan the column type name zType (length nType) and return the
1007 ** associated affinity type.
1008 **
1009 ** This routine does a case-independent search of zType for the
1010 ** substrings in the following table. If one of the substrings is
1011 ** found, the corresponding affinity is returned. If zType contains
1012 ** more than one of the substrings, entries toward the top of
1013 ** the table take priority. For example, if zType is 'BLOBINT',
1014 ** SQLITE_AFF_INTEGER is returned.
1015 **
1016 ** Substring | Affinity
1017 ** --------------------------------
1018 ** 'INT' | SQLITE_AFF_INTEGER
1019 ** 'CHAR' | SQLITE_AFF_TEXT
1020 ** 'CLOB' | SQLITE_AFF_TEXT
1021 ** 'TEXT' | SQLITE_AFF_TEXT
1022 ** 'BLOB' | SQLITE_AFF_NONE
1023 ** 'REAL' | SQLITE_AFF_REAL
1024 ** 'FLOA' | SQLITE_AFF_REAL
1025 ** 'DOUB' | SQLITE_AFF_REAL
1026 **
1027 ** If none of the substrings in the above table are found,
1028 ** SQLITE_AFF_NUMERIC is returned.
1029 */
sqlite3AffinityType(const char * zIn)1030 char sqlite3AffinityType(const char *zIn){
1031 u32 h = 0;
1032 char aff = SQLITE_AFF_NUMERIC;
1033
1034 if( zIn ) while( zIn[0] ){
1035 h = (h<<8) + sqlite3UpperToLower[(*zIn)&0xff];
1036 zIn++;
1037 if( h==(('c'<<24)+('h'<<16)+('a'<<8)+'r') ){ /* CHAR */
1038 aff = SQLITE_AFF_TEXT;
1039 }else if( h==(('c'<<24)+('l'<<16)+('o'<<8)+'b') ){ /* CLOB */
1040 aff = SQLITE_AFF_TEXT;
1041 }else if( h==(('t'<<24)+('e'<<16)+('x'<<8)+'t') ){ /* TEXT */
1042 aff = SQLITE_AFF_TEXT;
1043 }else if( h==(('b'<<24)+('l'<<16)+('o'<<8)+'b') /* BLOB */
1044 && (aff==SQLITE_AFF_NUMERIC || aff==SQLITE_AFF_REAL) ){
1045 aff = SQLITE_AFF_NONE;
1046 #ifndef SQLITE_OMIT_FLOATING_POINT
1047 }else if( h==(('r'<<24)+('e'<<16)+('a'<<8)+'l') /* REAL */
1048 && aff==SQLITE_AFF_NUMERIC ){
1049 aff = SQLITE_AFF_REAL;
1050 }else if( h==(('f'<<24)+('l'<<16)+('o'<<8)+'a') /* FLOA */
1051 && aff==SQLITE_AFF_NUMERIC ){
1052 aff = SQLITE_AFF_REAL;
1053 }else if( h==(('d'<<24)+('o'<<16)+('u'<<8)+'b') /* DOUB */
1054 && aff==SQLITE_AFF_NUMERIC ){
1055 aff = SQLITE_AFF_REAL;
1056 #endif
1057 }else if( (h&0x00FFFFFF)==(('i'<<16)+('n'<<8)+'t') ){ /* INT */
1058 aff = SQLITE_AFF_INTEGER;
1059 break;
1060 }
1061 }
1062
1063 return aff;
1064 }
1065
1066 /*
1067 ** This routine is called by the parser while in the middle of
1068 ** parsing a CREATE TABLE statement. The pFirst token is the first
1069 ** token in the sequence of tokens that describe the type of the
1070 ** column currently under construction. pLast is the last token
1071 ** in the sequence. Use this information to construct a string
1072 ** that contains the typename of the column and store that string
1073 ** in zType.
1074 */
sqlite3AddColumnType(Parse * pParse,Token * pType)1075 void sqlite3AddColumnType(Parse *pParse, Token *pType){
1076 Table *p;
1077 Column *pCol;
1078
1079 p = pParse->pNewTable;
1080 if( p==0 || NEVER(p->nCol<1) ) return;
1081 pCol = &p->aCol[p->nCol-1];
1082 assert( pCol->zType==0 );
1083 pCol->zType = sqlite3NameFromToken(pParse->db, pType);
1084 pCol->affinity = sqlite3AffinityType(pCol->zType);
1085 }
1086
1087 /*
1088 ** The expression is the default value for the most recently added column
1089 ** of the table currently under construction.
1090 **
1091 ** Default value expressions must be constant. Raise an exception if this
1092 ** is not the case.
1093 **
1094 ** This routine is called by the parser while in the middle of
1095 ** parsing a CREATE TABLE statement.
1096 */
sqlite3AddDefaultValue(Parse * pParse,ExprSpan * pSpan)1097 void sqlite3AddDefaultValue(Parse *pParse, ExprSpan *pSpan){
1098 Table *p;
1099 Column *pCol;
1100 sqlite3 *db = pParse->db;
1101 p = pParse->pNewTable;
1102 if( p!=0 ){
1103 pCol = &(p->aCol[p->nCol-1]);
1104 if( !sqlite3ExprIsConstantOrFunction(pSpan->pExpr) ){
1105 sqlite3ErrorMsg(pParse, "default value of column [%s] is not constant",
1106 pCol->zName);
1107 }else{
1108 /* A copy of pExpr is used instead of the original, as pExpr contains
1109 ** tokens that point to volatile memory. The 'span' of the expression
1110 ** is required by pragma table_info.
1111 */
1112 sqlite3ExprDelete(db, pCol->pDflt);
1113 pCol->pDflt = sqlite3ExprDup(db, pSpan->pExpr, EXPRDUP_REDUCE);
1114 sqlite3DbFree(db, pCol->zDflt);
1115 pCol->zDflt = sqlite3DbStrNDup(db, (char*)pSpan->zStart,
1116 (int)(pSpan->zEnd - pSpan->zStart));
1117 }
1118 }
1119 sqlite3ExprDelete(db, pSpan->pExpr);
1120 }
1121
1122 /*
1123 ** Designate the PRIMARY KEY for the table. pList is a list of names
1124 ** of columns that form the primary key. If pList is NULL, then the
1125 ** most recently added column of the table is the primary key.
1126 **
1127 ** A table can have at most one primary key. If the table already has
1128 ** a primary key (and this is the second primary key) then create an
1129 ** error.
1130 **
1131 ** If the PRIMARY KEY is on a single column whose datatype is INTEGER,
1132 ** then we will try to use that column as the rowid. Set the Table.iPKey
1133 ** field of the table under construction to be the index of the
1134 ** INTEGER PRIMARY KEY column. Table.iPKey is set to -1 if there is
1135 ** no INTEGER PRIMARY KEY.
1136 **
1137 ** If the key is not an INTEGER PRIMARY KEY, then create a unique
1138 ** index for the key. No index is created for INTEGER PRIMARY KEYs.
1139 */
sqlite3AddPrimaryKey(Parse * pParse,ExprList * pList,int onError,int autoInc,int sortOrder)1140 void sqlite3AddPrimaryKey(
1141 Parse *pParse, /* Parsing context */
1142 ExprList *pList, /* List of field names to be indexed */
1143 int onError, /* What to do with a uniqueness conflict */
1144 int autoInc, /* True if the AUTOINCREMENT keyword is present */
1145 int sortOrder /* SQLITE_SO_ASC or SQLITE_SO_DESC */
1146 ){
1147 Table *pTab = pParse->pNewTable;
1148 char *zType = 0;
1149 int iCol = -1, i;
1150 if( pTab==0 || IN_DECLARE_VTAB ) goto primary_key_exit;
1151 if( pTab->tabFlags & TF_HasPrimaryKey ){
1152 sqlite3ErrorMsg(pParse,
1153 "table \"%s\" has more than one primary key", pTab->zName);
1154 goto primary_key_exit;
1155 }
1156 pTab->tabFlags |= TF_HasPrimaryKey;
1157 if( pList==0 ){
1158 iCol = pTab->nCol - 1;
1159 pTab->aCol[iCol].isPrimKey = 1;
1160 }else{
1161 for(i=0; i<pList->nExpr; i++){
1162 for(iCol=0; iCol<pTab->nCol; iCol++){
1163 if( sqlite3StrICmp(pList->a[i].zName, pTab->aCol[iCol].zName)==0 ){
1164 break;
1165 }
1166 }
1167 if( iCol<pTab->nCol ){
1168 pTab->aCol[iCol].isPrimKey = 1;
1169 }
1170 }
1171 if( pList->nExpr>1 ) iCol = -1;
1172 }
1173 if( iCol>=0 && iCol<pTab->nCol ){
1174 zType = pTab->aCol[iCol].zType;
1175 }
1176 if( zType && sqlite3StrICmp(zType, "INTEGER")==0
1177 && sortOrder==SQLITE_SO_ASC ){
1178 pTab->iPKey = iCol;
1179 pTab->keyConf = (u8)onError;
1180 assert( autoInc==0 || autoInc==1 );
1181 pTab->tabFlags |= autoInc*TF_Autoincrement;
1182 }else if( autoInc ){
1183 #ifndef SQLITE_OMIT_AUTOINCREMENT
1184 sqlite3ErrorMsg(pParse, "AUTOINCREMENT is only allowed on an "
1185 "INTEGER PRIMARY KEY");
1186 #endif
1187 }else{
1188 Index *p;
1189 p = sqlite3CreateIndex(pParse, 0, 0, 0, pList, onError, 0, 0, sortOrder, 0);
1190 if( p ){
1191 p->autoIndex = 2;
1192 }
1193 pList = 0;
1194 }
1195
1196 primary_key_exit:
1197 sqlite3ExprListDelete(pParse->db, pList);
1198 return;
1199 }
1200
1201 /*
1202 ** Add a new CHECK constraint to the table currently under construction.
1203 */
sqlite3AddCheckConstraint(Parse * pParse,Expr * pCheckExpr)1204 void sqlite3AddCheckConstraint(
1205 Parse *pParse, /* Parsing context */
1206 Expr *pCheckExpr /* The check expression */
1207 ){
1208 sqlite3 *db = pParse->db;
1209 #ifndef SQLITE_OMIT_CHECK
1210 Table *pTab = pParse->pNewTable;
1211 if( pTab && !IN_DECLARE_VTAB ){
1212 pTab->pCheck = sqlite3ExprAnd(db, pTab->pCheck, pCheckExpr);
1213 }else
1214 #endif
1215 {
1216 sqlite3ExprDelete(db, pCheckExpr);
1217 }
1218 }
1219
1220 /*
1221 ** Set the collation function of the most recently parsed table column
1222 ** to the CollSeq given.
1223 */
sqlite3AddCollateType(Parse * pParse,Token * pToken)1224 void sqlite3AddCollateType(Parse *pParse, Token *pToken){
1225 Table *p;
1226 int i;
1227 char *zColl; /* Dequoted name of collation sequence */
1228 sqlite3 *db;
1229
1230 if( (p = pParse->pNewTable)==0 ) return;
1231 i = p->nCol-1;
1232 db = pParse->db;
1233 zColl = sqlite3NameFromToken(db, pToken);
1234 if( !zColl ) return;
1235
1236 if( sqlite3LocateCollSeq(pParse, zColl) ){
1237 Index *pIdx;
1238 p->aCol[i].zColl = zColl;
1239
1240 /* If the column is declared as "<name> PRIMARY KEY COLLATE <type>",
1241 ** then an index may have been created on this column before the
1242 ** collation type was added. Correct this if it is the case.
1243 */
1244 for(pIdx=p->pIndex; pIdx; pIdx=pIdx->pNext){
1245 assert( pIdx->nColumn==1 );
1246 if( pIdx->aiColumn[0]==i ){
1247 pIdx->azColl[0] = p->aCol[i].zColl;
1248 }
1249 }
1250 }else{
1251 sqlite3DbFree(db, zColl);
1252 }
1253 }
1254
1255 /*
1256 ** This function returns the collation sequence for database native text
1257 ** encoding identified by the string zName, length nName.
1258 **
1259 ** If the requested collation sequence is not available, or not available
1260 ** in the database native encoding, the collation factory is invoked to
1261 ** request it. If the collation factory does not supply such a sequence,
1262 ** and the sequence is available in another text encoding, then that is
1263 ** returned instead.
1264 **
1265 ** If no versions of the requested collations sequence are available, or
1266 ** another error occurs, NULL is returned and an error message written into
1267 ** pParse.
1268 **
1269 ** This routine is a wrapper around sqlite3FindCollSeq(). This routine
1270 ** invokes the collation factory if the named collation cannot be found
1271 ** and generates an error message.
1272 **
1273 ** See also: sqlite3FindCollSeq(), sqlite3GetCollSeq()
1274 */
sqlite3LocateCollSeq(Parse * pParse,const char * zName)1275 CollSeq *sqlite3LocateCollSeq(Parse *pParse, const char *zName){
1276 sqlite3 *db = pParse->db;
1277 u8 enc = ENC(db);
1278 u8 initbusy = db->init.busy;
1279 CollSeq *pColl;
1280
1281 pColl = sqlite3FindCollSeq(db, enc, zName, initbusy);
1282 if( !initbusy && (!pColl || !pColl->xCmp) ){
1283 pColl = sqlite3GetCollSeq(db, enc, pColl, zName);
1284 if( !pColl ){
1285 sqlite3ErrorMsg(pParse, "no such collation sequence: %s", zName);
1286 }
1287 }
1288
1289 return pColl;
1290 }
1291
1292
1293 /*
1294 ** Generate code that will increment the schema cookie.
1295 **
1296 ** The schema cookie is used to determine when the schema for the
1297 ** database changes. After each schema change, the cookie value
1298 ** changes. When a process first reads the schema it records the
1299 ** cookie. Thereafter, whenever it goes to access the database,
1300 ** it checks the cookie to make sure the schema has not changed
1301 ** since it was last read.
1302 **
1303 ** This plan is not completely bullet-proof. It is possible for
1304 ** the schema to change multiple times and for the cookie to be
1305 ** set back to prior value. But schema changes are infrequent
1306 ** and the probability of hitting the same cookie value is only
1307 ** 1 chance in 2^32. So we're safe enough.
1308 */
sqlite3ChangeCookie(Parse * pParse,int iDb)1309 void sqlite3ChangeCookie(Parse *pParse, int iDb){
1310 int r1 = sqlite3GetTempReg(pParse);
1311 sqlite3 *db = pParse->db;
1312 Vdbe *v = pParse->pVdbe;
1313 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1314 sqlite3VdbeAddOp2(v, OP_Integer, db->aDb[iDb].pSchema->schema_cookie+1, r1);
1315 sqlite3VdbeAddOp3(v, OP_SetCookie, iDb, BTREE_SCHEMA_VERSION, r1);
1316 sqlite3ReleaseTempReg(pParse, r1);
1317 }
1318
1319 /*
1320 ** Measure the number of characters needed to output the given
1321 ** identifier. The number returned includes any quotes used
1322 ** but does not include the null terminator.
1323 **
1324 ** The estimate is conservative. It might be larger that what is
1325 ** really needed.
1326 */
identLength(const char * z)1327 static int identLength(const char *z){
1328 int n;
1329 for(n=0; *z; n++, z++){
1330 if( *z=='"' ){ n++; }
1331 }
1332 return n + 2;
1333 }
1334
1335 /*
1336 ** The first parameter is a pointer to an output buffer. The second
1337 ** parameter is a pointer to an integer that contains the offset at
1338 ** which to write into the output buffer. This function copies the
1339 ** nul-terminated string pointed to by the third parameter, zSignedIdent,
1340 ** to the specified offset in the buffer and updates *pIdx to refer
1341 ** to the first byte after the last byte written before returning.
1342 **
1343 ** If the string zSignedIdent consists entirely of alpha-numeric
1344 ** characters, does not begin with a digit and is not an SQL keyword,
1345 ** then it is copied to the output buffer exactly as it is. Otherwise,
1346 ** it is quoted using double-quotes.
1347 */
identPut(char * z,int * pIdx,char * zSignedIdent)1348 static void identPut(char *z, int *pIdx, char *zSignedIdent){
1349 unsigned char *zIdent = (unsigned char*)zSignedIdent;
1350 int i, j, needQuote;
1351 i = *pIdx;
1352
1353 for(j=0; zIdent[j]; j++){
1354 if( !sqlite3Isalnum(zIdent[j]) && zIdent[j]!='_' ) break;
1355 }
1356 needQuote = sqlite3Isdigit(zIdent[0]) || sqlite3KeywordCode(zIdent, j)!=TK_ID;
1357 if( !needQuote ){
1358 needQuote = zIdent[j];
1359 }
1360
1361 if( needQuote ) z[i++] = '"';
1362 for(j=0; zIdent[j]; j++){
1363 z[i++] = zIdent[j];
1364 if( zIdent[j]=='"' ) z[i++] = '"';
1365 }
1366 if( needQuote ) z[i++] = '"';
1367 z[i] = 0;
1368 *pIdx = i;
1369 }
1370
1371 /*
1372 ** Generate a CREATE TABLE statement appropriate for the given
1373 ** table. Memory to hold the text of the statement is obtained
1374 ** from sqliteMalloc() and must be freed by the calling function.
1375 */
createTableStmt(sqlite3 * db,Table * p)1376 static char *createTableStmt(sqlite3 *db, Table *p){
1377 int i, k, n;
1378 char *zStmt;
1379 char *zSep, *zSep2, *zEnd;
1380 Column *pCol;
1381 n = 0;
1382 for(pCol = p->aCol, i=0; i<p->nCol; i++, pCol++){
1383 n += identLength(pCol->zName) + 5;
1384 }
1385 n += identLength(p->zName);
1386 if( n<50 ){
1387 zSep = "";
1388 zSep2 = ",";
1389 zEnd = ")";
1390 }else{
1391 zSep = "\n ";
1392 zSep2 = ",\n ";
1393 zEnd = "\n)";
1394 }
1395 n += 35 + 6*p->nCol;
1396 zStmt = sqlite3DbMallocRaw(0, n);
1397 if( zStmt==0 ){
1398 db->mallocFailed = 1;
1399 return 0;
1400 }
1401 sqlite3_snprintf(n, zStmt, "CREATE TABLE ");
1402 k = sqlite3Strlen30(zStmt);
1403 identPut(zStmt, &k, p->zName);
1404 zStmt[k++] = '(';
1405 for(pCol=p->aCol, i=0; i<p->nCol; i++, pCol++){
1406 static const char * const azType[] = {
1407 /* SQLITE_AFF_TEXT */ " TEXT",
1408 /* SQLITE_AFF_NONE */ "",
1409 /* SQLITE_AFF_NUMERIC */ " NUM",
1410 /* SQLITE_AFF_INTEGER */ " INT",
1411 /* SQLITE_AFF_REAL */ " REAL"
1412 };
1413 int len;
1414 const char *zType;
1415
1416 sqlite3_snprintf(n-k, &zStmt[k], zSep);
1417 k += sqlite3Strlen30(&zStmt[k]);
1418 zSep = zSep2;
1419 identPut(zStmt, &k, pCol->zName);
1420 assert( pCol->affinity-SQLITE_AFF_TEXT >= 0 );
1421 assert( pCol->affinity-SQLITE_AFF_TEXT < ArraySize(azType) );
1422 testcase( pCol->affinity==SQLITE_AFF_TEXT );
1423 testcase( pCol->affinity==SQLITE_AFF_NONE );
1424 testcase( pCol->affinity==SQLITE_AFF_NUMERIC );
1425 testcase( pCol->affinity==SQLITE_AFF_INTEGER );
1426 testcase( pCol->affinity==SQLITE_AFF_REAL );
1427
1428 zType = azType[pCol->affinity - SQLITE_AFF_TEXT];
1429 len = sqlite3Strlen30(zType);
1430 assert( pCol->affinity==SQLITE_AFF_NONE
1431 || pCol->affinity==sqlite3AffinityType(zType) );
1432 memcpy(&zStmt[k], zType, len);
1433 k += len;
1434 assert( k<=n );
1435 }
1436 sqlite3_snprintf(n-k, &zStmt[k], "%s", zEnd);
1437 return zStmt;
1438 }
1439
1440 /*
1441 ** This routine is called to report the final ")" that terminates
1442 ** a CREATE TABLE statement.
1443 **
1444 ** The table structure that other action routines have been building
1445 ** is added to the internal hash tables, assuming no errors have
1446 ** occurred.
1447 **
1448 ** An entry for the table is made in the master table on disk, unless
1449 ** this is a temporary table or db->init.busy==1. When db->init.busy==1
1450 ** it means we are reading the sqlite_master table because we just
1451 ** connected to the database or because the sqlite_master table has
1452 ** recently changed, so the entry for this table already exists in
1453 ** the sqlite_master table. We do not want to create it again.
1454 **
1455 ** If the pSelect argument is not NULL, it means that this routine
1456 ** was called to create a table generated from a
1457 ** "CREATE TABLE ... AS SELECT ..." statement. The column names of
1458 ** the new table will match the result set of the SELECT.
1459 */
sqlite3EndTable(Parse * pParse,Token * pCons,Token * pEnd,Select * pSelect)1460 void sqlite3EndTable(
1461 Parse *pParse, /* Parse context */
1462 Token *pCons, /* The ',' token after the last column defn. */
1463 Token *pEnd, /* The final ')' token in the CREATE TABLE */
1464 Select *pSelect /* Select from a "CREATE ... AS SELECT" */
1465 ){
1466 Table *p;
1467 sqlite3 *db = pParse->db;
1468 int iDb;
1469
1470 if( (pEnd==0 && pSelect==0) || db->mallocFailed ){
1471 return;
1472 }
1473 p = pParse->pNewTable;
1474 if( p==0 ) return;
1475
1476 assert( !db->init.busy || !pSelect );
1477
1478 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1479
1480 #ifndef SQLITE_OMIT_CHECK
1481 /* Resolve names in all CHECK constraint expressions.
1482 */
1483 if( p->pCheck ){
1484 SrcList sSrc; /* Fake SrcList for pParse->pNewTable */
1485 NameContext sNC; /* Name context for pParse->pNewTable */
1486
1487 memset(&sNC, 0, sizeof(sNC));
1488 memset(&sSrc, 0, sizeof(sSrc));
1489 sSrc.nSrc = 1;
1490 sSrc.a[0].zName = p->zName;
1491 sSrc.a[0].pTab = p;
1492 sSrc.a[0].iCursor = -1;
1493 sNC.pParse = pParse;
1494 sNC.pSrcList = &sSrc;
1495 sNC.isCheck = 1;
1496 if( sqlite3ResolveExprNames(&sNC, p->pCheck) ){
1497 return;
1498 }
1499 }
1500 #endif /* !defined(SQLITE_OMIT_CHECK) */
1501
1502 /* If the db->init.busy is 1 it means we are reading the SQL off the
1503 ** "sqlite_master" or "sqlite_temp_master" table on the disk.
1504 ** So do not write to the disk again. Extract the root page number
1505 ** for the table from the db->init.newTnum field. (The page number
1506 ** should have been put there by the sqliteOpenCb routine.)
1507 */
1508 if( db->init.busy ){
1509 p->tnum = db->init.newTnum;
1510 }
1511
1512 /* If not initializing, then create a record for the new table
1513 ** in the SQLITE_MASTER table of the database.
1514 **
1515 ** If this is a TEMPORARY table, write the entry into the auxiliary
1516 ** file instead of into the main database file.
1517 */
1518 if( !db->init.busy ){
1519 int n;
1520 Vdbe *v;
1521 char *zType; /* "view" or "table" */
1522 char *zType2; /* "VIEW" or "TABLE" */
1523 char *zStmt; /* Text of the CREATE TABLE or CREATE VIEW statement */
1524
1525 v = sqlite3GetVdbe(pParse);
1526 if( NEVER(v==0) ) return;
1527
1528 sqlite3VdbeAddOp1(v, OP_Close, 0);
1529
1530 /*
1531 ** Initialize zType for the new view or table.
1532 */
1533 if( p->pSelect==0 ){
1534 /* A regular table */
1535 zType = "table";
1536 zType2 = "TABLE";
1537 #ifndef SQLITE_OMIT_VIEW
1538 }else{
1539 /* A view */
1540 zType = "view";
1541 zType2 = "VIEW";
1542 #endif
1543 }
1544
1545 /* If this is a CREATE TABLE xx AS SELECT ..., execute the SELECT
1546 ** statement to populate the new table. The root-page number for the
1547 ** new table is in register pParse->regRoot.
1548 **
1549 ** Once the SELECT has been coded by sqlite3Select(), it is in a
1550 ** suitable state to query for the column names and types to be used
1551 ** by the new table.
1552 **
1553 ** A shared-cache write-lock is not required to write to the new table,
1554 ** as a schema-lock must have already been obtained to create it. Since
1555 ** a schema-lock excludes all other database users, the write-lock would
1556 ** be redundant.
1557 */
1558 if( pSelect ){
1559 SelectDest dest;
1560 Table *pSelTab;
1561
1562 assert(pParse->nTab==1);
1563 sqlite3VdbeAddOp3(v, OP_OpenWrite, 1, pParse->regRoot, iDb);
1564 sqlite3VdbeChangeP5(v, 1);
1565 pParse->nTab = 2;
1566 sqlite3SelectDestInit(&dest, SRT_Table, 1);
1567 sqlite3Select(pParse, pSelect, &dest);
1568 sqlite3VdbeAddOp1(v, OP_Close, 1);
1569 if( pParse->nErr==0 ){
1570 pSelTab = sqlite3ResultSetOfSelect(pParse, pSelect);
1571 if( pSelTab==0 ) return;
1572 assert( p->aCol==0 );
1573 p->nCol = pSelTab->nCol;
1574 p->aCol = pSelTab->aCol;
1575 pSelTab->nCol = 0;
1576 pSelTab->aCol = 0;
1577 sqlite3DeleteTable(db, pSelTab);
1578 }
1579 }
1580
1581 /* Compute the complete text of the CREATE statement */
1582 if( pSelect ){
1583 zStmt = createTableStmt(db, p);
1584 }else{
1585 n = (int)(pEnd->z - pParse->sNameToken.z) + 1;
1586 zStmt = sqlite3MPrintf(db,
1587 "CREATE %s %.*s", zType2, n, pParse->sNameToken.z
1588 );
1589 }
1590
1591 /* A slot for the record has already been allocated in the
1592 ** SQLITE_MASTER table. We just need to update that slot with all
1593 ** the information we've collected.
1594 */
1595 sqlite3NestedParse(pParse,
1596 "UPDATE %Q.%s "
1597 "SET type='%s', name=%Q, tbl_name=%Q, rootpage=#%d, sql=%Q "
1598 "WHERE rowid=#%d",
1599 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
1600 zType,
1601 p->zName,
1602 p->zName,
1603 pParse->regRoot,
1604 zStmt,
1605 pParse->regRowid
1606 );
1607 sqlite3DbFree(db, zStmt);
1608 sqlite3ChangeCookie(pParse, iDb);
1609
1610 #ifndef SQLITE_OMIT_AUTOINCREMENT
1611 /* Check to see if we need to create an sqlite_sequence table for
1612 ** keeping track of autoincrement keys.
1613 */
1614 if( p->tabFlags & TF_Autoincrement ){
1615 Db *pDb = &db->aDb[iDb];
1616 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1617 if( pDb->pSchema->pSeqTab==0 ){
1618 sqlite3NestedParse(pParse,
1619 "CREATE TABLE %Q.sqlite_sequence(name,seq)",
1620 pDb->zName
1621 );
1622 }
1623 }
1624 #endif
1625
1626 /* Reparse everything to update our internal data structures */
1627 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
1628 sqlite3MPrintf(db, "tbl_name='%q'",p->zName), P4_DYNAMIC);
1629 }
1630
1631
1632 /* Add the table to the in-memory representation of the database.
1633 */
1634 if( db->init.busy ){
1635 Table *pOld;
1636 Schema *pSchema = p->pSchema;
1637 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1638 pOld = sqlite3HashInsert(&pSchema->tblHash, p->zName,
1639 sqlite3Strlen30(p->zName),p);
1640 if( pOld ){
1641 assert( p==pOld ); /* Malloc must have failed inside HashInsert() */
1642 db->mallocFailed = 1;
1643 return;
1644 }
1645 pParse->pNewTable = 0;
1646 db->nTable++;
1647 db->flags |= SQLITE_InternChanges;
1648
1649 #ifndef SQLITE_OMIT_ALTERTABLE
1650 if( !p->pSelect ){
1651 const char *zName = (const char *)pParse->sNameToken.z;
1652 int nName;
1653 assert( !pSelect && pCons && pEnd );
1654 if( pCons->z==0 ){
1655 pCons = pEnd;
1656 }
1657 nName = (int)((const char *)pCons->z - zName);
1658 p->addColOffset = 13 + sqlite3Utf8CharLen(zName, nName);
1659 }
1660 #endif
1661 }
1662 }
1663
1664 #ifndef SQLITE_OMIT_VIEW
1665 /*
1666 ** The parser calls this routine in order to create a new VIEW
1667 */
sqlite3CreateView(Parse * pParse,Token * pBegin,Token * pName1,Token * pName2,Select * pSelect,int isTemp,int noErr)1668 void sqlite3CreateView(
1669 Parse *pParse, /* The parsing context */
1670 Token *pBegin, /* The CREATE token that begins the statement */
1671 Token *pName1, /* The token that holds the name of the view */
1672 Token *pName2, /* The token that holds the name of the view */
1673 Select *pSelect, /* A SELECT statement that will become the new view */
1674 int isTemp, /* TRUE for a TEMPORARY view */
1675 int noErr /* Suppress error messages if VIEW already exists */
1676 ){
1677 Table *p;
1678 int n;
1679 const char *z;
1680 Token sEnd;
1681 DbFixer sFix;
1682 Token *pName;
1683 int iDb;
1684 sqlite3 *db = pParse->db;
1685
1686 if( pParse->nVar>0 ){
1687 sqlite3ErrorMsg(pParse, "parameters are not allowed in views");
1688 sqlite3SelectDelete(db, pSelect);
1689 return;
1690 }
1691 sqlite3StartTable(pParse, pName1, pName2, isTemp, 1, 0, noErr);
1692 p = pParse->pNewTable;
1693 if( p==0 || pParse->nErr ){
1694 sqlite3SelectDelete(db, pSelect);
1695 return;
1696 }
1697 sqlite3TwoPartName(pParse, pName1, pName2, &pName);
1698 iDb = sqlite3SchemaToIndex(db, p->pSchema);
1699 if( sqlite3FixInit(&sFix, pParse, iDb, "view", pName)
1700 && sqlite3FixSelect(&sFix, pSelect)
1701 ){
1702 sqlite3SelectDelete(db, pSelect);
1703 return;
1704 }
1705
1706 /* Make a copy of the entire SELECT statement that defines the view.
1707 ** This will force all the Expr.token.z values to be dynamically
1708 ** allocated rather than point to the input string - which means that
1709 ** they will persist after the current sqlite3_exec() call returns.
1710 */
1711 p->pSelect = sqlite3SelectDup(db, pSelect, EXPRDUP_REDUCE);
1712 sqlite3SelectDelete(db, pSelect);
1713 if( db->mallocFailed ){
1714 return;
1715 }
1716 if( !db->init.busy ){
1717 sqlite3ViewGetColumnNames(pParse, p);
1718 }
1719
1720 /* Locate the end of the CREATE VIEW statement. Make sEnd point to
1721 ** the end.
1722 */
1723 sEnd = pParse->sLastToken;
1724 if( ALWAYS(sEnd.z[0]!=0) && sEnd.z[0]!=';' ){
1725 sEnd.z += sEnd.n;
1726 }
1727 sEnd.n = 0;
1728 n = (int)(sEnd.z - pBegin->z);
1729 z = pBegin->z;
1730 while( ALWAYS(n>0) && sqlite3Isspace(z[n-1]) ){ n--; }
1731 sEnd.z = &z[n-1];
1732 sEnd.n = 1;
1733
1734 /* Use sqlite3EndTable() to add the view to the SQLITE_MASTER table */
1735 sqlite3EndTable(pParse, 0, &sEnd, 0);
1736 return;
1737 }
1738 #endif /* SQLITE_OMIT_VIEW */
1739
1740 #if !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE)
1741 /*
1742 ** The Table structure pTable is really a VIEW. Fill in the names of
1743 ** the columns of the view in the pTable structure. Return the number
1744 ** of errors. If an error is seen leave an error message in pParse->zErrMsg.
1745 */
sqlite3ViewGetColumnNames(Parse * pParse,Table * pTable)1746 int sqlite3ViewGetColumnNames(Parse *pParse, Table *pTable){
1747 Table *pSelTab; /* A fake table from which we get the result set */
1748 Select *pSel; /* Copy of the SELECT that implements the view */
1749 int nErr = 0; /* Number of errors encountered */
1750 int n; /* Temporarily holds the number of cursors assigned */
1751 sqlite3 *db = pParse->db; /* Database connection for malloc errors */
1752 int (*xAuth)(void*,int,const char*,const char*,const char*,const char*);
1753
1754 assert( pTable );
1755
1756 #ifndef SQLITE_OMIT_VIRTUALTABLE
1757 if( sqlite3VtabCallConnect(pParse, pTable) ){
1758 return SQLITE_ERROR;
1759 }
1760 if( IsVirtual(pTable) ) return 0;
1761 #endif
1762
1763 #ifndef SQLITE_OMIT_VIEW
1764 /* A positive nCol means the columns names for this view are
1765 ** already known.
1766 */
1767 if( pTable->nCol>0 ) return 0;
1768
1769 /* A negative nCol is a special marker meaning that we are currently
1770 ** trying to compute the column names. If we enter this routine with
1771 ** a negative nCol, it means two or more views form a loop, like this:
1772 **
1773 ** CREATE VIEW one AS SELECT * FROM two;
1774 ** CREATE VIEW two AS SELECT * FROM one;
1775 **
1776 ** Actually, the error above is now caught prior to reaching this point.
1777 ** But the following test is still important as it does come up
1778 ** in the following:
1779 **
1780 ** CREATE TABLE main.ex1(a);
1781 ** CREATE TEMP VIEW ex1 AS SELECT a FROM ex1;
1782 ** SELECT * FROM temp.ex1;
1783 */
1784 if( pTable->nCol<0 ){
1785 sqlite3ErrorMsg(pParse, "view %s is circularly defined", pTable->zName);
1786 return 1;
1787 }
1788 assert( pTable->nCol>=0 );
1789
1790 /* If we get this far, it means we need to compute the table names.
1791 ** Note that the call to sqlite3ResultSetOfSelect() will expand any
1792 ** "*" elements in the results set of the view and will assign cursors
1793 ** to the elements of the FROM clause. But we do not want these changes
1794 ** to be permanent. So the computation is done on a copy of the SELECT
1795 ** statement that defines the view.
1796 */
1797 assert( pTable->pSelect );
1798 pSel = sqlite3SelectDup(db, pTable->pSelect, 0);
1799 if( pSel ){
1800 u8 enableLookaside = db->lookaside.bEnabled;
1801 n = pParse->nTab;
1802 sqlite3SrcListAssignCursors(pParse, pSel->pSrc);
1803 pTable->nCol = -1;
1804 db->lookaside.bEnabled = 0;
1805 #ifndef SQLITE_OMIT_AUTHORIZATION
1806 xAuth = db->xAuth;
1807 db->xAuth = 0;
1808 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1809 db->xAuth = xAuth;
1810 #else
1811 pSelTab = sqlite3ResultSetOfSelect(pParse, pSel);
1812 #endif
1813 db->lookaside.bEnabled = enableLookaside;
1814 pParse->nTab = n;
1815 if( pSelTab ){
1816 assert( pTable->aCol==0 );
1817 pTable->nCol = pSelTab->nCol;
1818 pTable->aCol = pSelTab->aCol;
1819 pSelTab->nCol = 0;
1820 pSelTab->aCol = 0;
1821 sqlite3DeleteTable(db, pSelTab);
1822 assert( sqlite3SchemaMutexHeld(db, 0, pTable->pSchema) );
1823 pTable->pSchema->flags |= DB_UnresetViews;
1824 }else{
1825 pTable->nCol = 0;
1826 nErr++;
1827 }
1828 sqlite3SelectDelete(db, pSel);
1829 } else {
1830 nErr++;
1831 }
1832 #endif /* SQLITE_OMIT_VIEW */
1833 return nErr;
1834 }
1835 #endif /* !defined(SQLITE_OMIT_VIEW) || !defined(SQLITE_OMIT_VIRTUALTABLE) */
1836
1837 #ifndef SQLITE_OMIT_VIEW
1838 /*
1839 ** Clear the column names from every VIEW in database idx.
1840 */
sqliteViewResetAll(sqlite3 * db,int idx)1841 static void sqliteViewResetAll(sqlite3 *db, int idx){
1842 HashElem *i;
1843 assert( sqlite3SchemaMutexHeld(db, idx, 0) );
1844 if( !DbHasProperty(db, idx, DB_UnresetViews) ) return;
1845 for(i=sqliteHashFirst(&db->aDb[idx].pSchema->tblHash); i;i=sqliteHashNext(i)){
1846 Table *pTab = sqliteHashData(i);
1847 if( pTab->pSelect ){
1848 sqliteDeleteColumnNames(db, pTab);
1849 pTab->aCol = 0;
1850 pTab->nCol = 0;
1851 }
1852 }
1853 DbClearProperty(db, idx, DB_UnresetViews);
1854 }
1855 #else
1856 # define sqliteViewResetAll(A,B)
1857 #endif /* SQLITE_OMIT_VIEW */
1858
1859 /*
1860 ** This function is called by the VDBE to adjust the internal schema
1861 ** used by SQLite when the btree layer moves a table root page. The
1862 ** root-page of a table or index in database iDb has changed from iFrom
1863 ** to iTo.
1864 **
1865 ** Ticket #1728: The symbol table might still contain information
1866 ** on tables and/or indices that are the process of being deleted.
1867 ** If you are unlucky, one of those deleted indices or tables might
1868 ** have the same rootpage number as the real table or index that is
1869 ** being moved. So we cannot stop searching after the first match
1870 ** because the first match might be for one of the deleted indices
1871 ** or tables and not the table/index that is actually being moved.
1872 ** We must continue looping until all tables and indices with
1873 ** rootpage==iFrom have been converted to have a rootpage of iTo
1874 ** in order to be certain that we got the right one.
1875 */
1876 #ifndef SQLITE_OMIT_AUTOVACUUM
sqlite3RootPageMoved(sqlite3 * db,int iDb,int iFrom,int iTo)1877 void sqlite3RootPageMoved(sqlite3 *db, int iDb, int iFrom, int iTo){
1878 HashElem *pElem;
1879 Hash *pHash;
1880 Db *pDb;
1881
1882 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
1883 pDb = &db->aDb[iDb];
1884 pHash = &pDb->pSchema->tblHash;
1885 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1886 Table *pTab = sqliteHashData(pElem);
1887 if( pTab->tnum==iFrom ){
1888 pTab->tnum = iTo;
1889 }
1890 }
1891 pHash = &pDb->pSchema->idxHash;
1892 for(pElem=sqliteHashFirst(pHash); pElem; pElem=sqliteHashNext(pElem)){
1893 Index *pIdx = sqliteHashData(pElem);
1894 if( pIdx->tnum==iFrom ){
1895 pIdx->tnum = iTo;
1896 }
1897 }
1898 }
1899 #endif
1900
1901 /*
1902 ** Write code to erase the table with root-page iTable from database iDb.
1903 ** Also write code to modify the sqlite_master table and internal schema
1904 ** if a root-page of another table is moved by the btree-layer whilst
1905 ** erasing iTable (this can happen with an auto-vacuum database).
1906 */
destroyRootPage(Parse * pParse,int iTable,int iDb)1907 static void destroyRootPage(Parse *pParse, int iTable, int iDb){
1908 Vdbe *v = sqlite3GetVdbe(pParse);
1909 int r1 = sqlite3GetTempReg(pParse);
1910 sqlite3VdbeAddOp3(v, OP_Destroy, iTable, r1, iDb);
1911 sqlite3MayAbort(pParse);
1912 #ifndef SQLITE_OMIT_AUTOVACUUM
1913 /* OP_Destroy stores an in integer r1. If this integer
1914 ** is non-zero, then it is the root page number of a table moved to
1915 ** location iTable. The following code modifies the sqlite_master table to
1916 ** reflect this.
1917 **
1918 ** The "#NNN" in the SQL is a special constant that means whatever value
1919 ** is in register NNN. See grammar rules associated with the TK_REGISTER
1920 ** token for additional information.
1921 */
1922 sqlite3NestedParse(pParse,
1923 "UPDATE %Q.%s SET rootpage=%d WHERE #%d AND rootpage=#%d",
1924 pParse->db->aDb[iDb].zName, SCHEMA_TABLE(iDb), iTable, r1, r1);
1925 #endif
1926 sqlite3ReleaseTempReg(pParse, r1);
1927 }
1928
1929 /*
1930 ** Write VDBE code to erase table pTab and all associated indices on disk.
1931 ** Code to update the sqlite_master tables and internal schema definitions
1932 ** in case a root-page belonging to another table is moved by the btree layer
1933 ** is also added (this can happen with an auto-vacuum database).
1934 */
destroyTable(Parse * pParse,Table * pTab)1935 static void destroyTable(Parse *pParse, Table *pTab){
1936 #ifdef SQLITE_OMIT_AUTOVACUUM
1937 Index *pIdx;
1938 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1939 destroyRootPage(pParse, pTab->tnum, iDb);
1940 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1941 destroyRootPage(pParse, pIdx->tnum, iDb);
1942 }
1943 #else
1944 /* If the database may be auto-vacuum capable (if SQLITE_OMIT_AUTOVACUUM
1945 ** is not defined), then it is important to call OP_Destroy on the
1946 ** table and index root-pages in order, starting with the numerically
1947 ** largest root-page number. This guarantees that none of the root-pages
1948 ** to be destroyed is relocated by an earlier OP_Destroy. i.e. if the
1949 ** following were coded:
1950 **
1951 ** OP_Destroy 4 0
1952 ** ...
1953 ** OP_Destroy 5 0
1954 **
1955 ** and root page 5 happened to be the largest root-page number in the
1956 ** database, then root page 5 would be moved to page 4 by the
1957 ** "OP_Destroy 4 0" opcode. The subsequent "OP_Destroy 5 0" would hit
1958 ** a free-list page.
1959 */
1960 int iTab = pTab->tnum;
1961 int iDestroyed = 0;
1962
1963 while( 1 ){
1964 Index *pIdx;
1965 int iLargest = 0;
1966
1967 if( iDestroyed==0 || iTab<iDestroyed ){
1968 iLargest = iTab;
1969 }
1970 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
1971 int iIdx = pIdx->tnum;
1972 assert( pIdx->pSchema==pTab->pSchema );
1973 if( (iDestroyed==0 || (iIdx<iDestroyed)) && iIdx>iLargest ){
1974 iLargest = iIdx;
1975 }
1976 }
1977 if( iLargest==0 ){
1978 return;
1979 }else{
1980 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
1981 destroyRootPage(pParse, iLargest, iDb);
1982 iDestroyed = iLargest;
1983 }
1984 }
1985 #endif
1986 }
1987
1988 /*
1989 ** This routine is called to do the work of a DROP TABLE statement.
1990 ** pName is the name of the table to be dropped.
1991 */
sqlite3DropTable(Parse * pParse,SrcList * pName,int isView,int noErr)1992 void sqlite3DropTable(Parse *pParse, SrcList *pName, int isView, int noErr){
1993 Table *pTab;
1994 Vdbe *v;
1995 sqlite3 *db = pParse->db;
1996 int iDb;
1997
1998 if( db->mallocFailed ){
1999 goto exit_drop_table;
2000 }
2001 assert( pParse->nErr==0 );
2002 assert( pName->nSrc==1 );
2003 if( noErr ) db->suppressErr++;
2004 pTab = sqlite3LocateTable(pParse, isView,
2005 pName->a[0].zName, pName->a[0].zDatabase);
2006 if( noErr ) db->suppressErr--;
2007
2008 if( pTab==0 ){
2009 if( noErr ) sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2010 goto exit_drop_table;
2011 }
2012 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2013 assert( iDb>=0 && iDb<db->nDb );
2014
2015 /* If pTab is a virtual table, call ViewGetColumnNames() to ensure
2016 ** it is initialized.
2017 */
2018 if( IsVirtual(pTab) && sqlite3ViewGetColumnNames(pParse, pTab) ){
2019 goto exit_drop_table;
2020 }
2021 #ifndef SQLITE_OMIT_AUTHORIZATION
2022 {
2023 int code;
2024 const char *zTab = SCHEMA_TABLE(iDb);
2025 const char *zDb = db->aDb[iDb].zName;
2026 const char *zArg2 = 0;
2027 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb)){
2028 goto exit_drop_table;
2029 }
2030 if( isView ){
2031 if( !OMIT_TEMPDB && iDb==1 ){
2032 code = SQLITE_DROP_TEMP_VIEW;
2033 }else{
2034 code = SQLITE_DROP_VIEW;
2035 }
2036 #ifndef SQLITE_OMIT_VIRTUALTABLE
2037 }else if( IsVirtual(pTab) ){
2038 code = SQLITE_DROP_VTABLE;
2039 zArg2 = sqlite3GetVTable(db, pTab)->pMod->zName;
2040 #endif
2041 }else{
2042 if( !OMIT_TEMPDB && iDb==1 ){
2043 code = SQLITE_DROP_TEMP_TABLE;
2044 }else{
2045 code = SQLITE_DROP_TABLE;
2046 }
2047 }
2048 if( sqlite3AuthCheck(pParse, code, pTab->zName, zArg2, zDb) ){
2049 goto exit_drop_table;
2050 }
2051 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, pTab->zName, 0, zDb) ){
2052 goto exit_drop_table;
2053 }
2054 }
2055 #endif
2056 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0 ){
2057 sqlite3ErrorMsg(pParse, "table %s may not be dropped", pTab->zName);
2058 goto exit_drop_table;
2059 }
2060
2061 #ifndef SQLITE_OMIT_VIEW
2062 /* Ensure DROP TABLE is not used on a view, and DROP VIEW is not used
2063 ** on a table.
2064 */
2065 if( isView && pTab->pSelect==0 ){
2066 sqlite3ErrorMsg(pParse, "use DROP TABLE to delete table %s", pTab->zName);
2067 goto exit_drop_table;
2068 }
2069 if( !isView && pTab->pSelect ){
2070 sqlite3ErrorMsg(pParse, "use DROP VIEW to delete view %s", pTab->zName);
2071 goto exit_drop_table;
2072 }
2073 #endif
2074
2075 /* Generate code to remove the table from the master table
2076 ** on disk.
2077 */
2078 v = sqlite3GetVdbe(pParse);
2079 if( v ){
2080 Trigger *pTrigger;
2081 Db *pDb = &db->aDb[iDb];
2082 sqlite3BeginWriteOperation(pParse, 1, iDb);
2083
2084 #ifndef SQLITE_OMIT_VIRTUALTABLE
2085 if( IsVirtual(pTab) ){
2086 sqlite3VdbeAddOp0(v, OP_VBegin);
2087 }
2088 #endif
2089 sqlite3FkDropTable(pParse, pName, pTab);
2090
2091 /* Drop all triggers associated with the table being dropped. Code
2092 ** is generated to remove entries from sqlite_master and/or
2093 ** sqlite_temp_master if required.
2094 */
2095 pTrigger = sqlite3TriggerList(pParse, pTab);
2096 while( pTrigger ){
2097 assert( pTrigger->pSchema==pTab->pSchema ||
2098 pTrigger->pSchema==db->aDb[1].pSchema );
2099 sqlite3DropTriggerPtr(pParse, pTrigger);
2100 pTrigger = pTrigger->pNext;
2101 }
2102
2103 #ifndef SQLITE_OMIT_AUTOINCREMENT
2104 /* Remove any entries of the sqlite_sequence table associated with
2105 ** the table being dropped. This is done before the table is dropped
2106 ** at the btree level, in case the sqlite_sequence table needs to
2107 ** move as a result of the drop (can happen in auto-vacuum mode).
2108 */
2109 if( pTab->tabFlags & TF_Autoincrement ){
2110 sqlite3NestedParse(pParse,
2111 "DELETE FROM %s.sqlite_sequence WHERE name=%Q",
2112 pDb->zName, pTab->zName
2113 );
2114 }
2115 #endif
2116
2117 /* Drop all SQLITE_MASTER table and index entries that refer to the
2118 ** table. The program name loops through the master table and deletes
2119 ** every row that refers to a table of the same name as the one being
2120 ** dropped. Triggers are handled seperately because a trigger can be
2121 ** created in the temp database that refers to a table in another
2122 ** database.
2123 */
2124 sqlite3NestedParse(pParse,
2125 "DELETE FROM %Q.%s WHERE tbl_name=%Q and type!='trigger'",
2126 pDb->zName, SCHEMA_TABLE(iDb), pTab->zName);
2127
2128 /* Drop any statistics from the sqlite_stat1 table, if it exists */
2129 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2130 sqlite3NestedParse(pParse,
2131 "DELETE FROM %Q.sqlite_stat1 WHERE tbl=%Q", pDb->zName, pTab->zName
2132 );
2133 }
2134
2135 if( !isView && !IsVirtual(pTab) ){
2136 destroyTable(pParse, pTab);
2137 }
2138
2139 /* Remove the table entry from SQLite's internal schema and modify
2140 ** the schema cookie.
2141 */
2142 if( IsVirtual(pTab) ){
2143 sqlite3VdbeAddOp4(v, OP_VDestroy, iDb, 0, 0, pTab->zName, 0);
2144 }
2145 sqlite3VdbeAddOp4(v, OP_DropTable, iDb, 0, 0, pTab->zName, 0);
2146 sqlite3ChangeCookie(pParse, iDb);
2147 }
2148 sqliteViewResetAll(db, iDb);
2149
2150 exit_drop_table:
2151 sqlite3SrcListDelete(db, pName);
2152 }
2153
2154 /*
2155 ** This routine is called to create a new foreign key on the table
2156 ** currently under construction. pFromCol determines which columns
2157 ** in the current table point to the foreign key. If pFromCol==0 then
2158 ** connect the key to the last column inserted. pTo is the name of
2159 ** the table referred to. pToCol is a list of tables in the other
2160 ** pTo table that the foreign key points to. flags contains all
2161 ** information about the conflict resolution algorithms specified
2162 ** in the ON DELETE, ON UPDATE and ON INSERT clauses.
2163 **
2164 ** An FKey structure is created and added to the table currently
2165 ** under construction in the pParse->pNewTable field.
2166 **
2167 ** The foreign key is set for IMMEDIATE processing. A subsequent call
2168 ** to sqlite3DeferForeignKey() might change this to DEFERRED.
2169 */
sqlite3CreateForeignKey(Parse * pParse,ExprList * pFromCol,Token * pTo,ExprList * pToCol,int flags)2170 void sqlite3CreateForeignKey(
2171 Parse *pParse, /* Parsing context */
2172 ExprList *pFromCol, /* Columns in this table that point to other table */
2173 Token *pTo, /* Name of the other table */
2174 ExprList *pToCol, /* Columns in the other table */
2175 int flags /* Conflict resolution algorithms. */
2176 ){
2177 sqlite3 *db = pParse->db;
2178 #ifndef SQLITE_OMIT_FOREIGN_KEY
2179 FKey *pFKey = 0;
2180 FKey *pNextTo;
2181 Table *p = pParse->pNewTable;
2182 int nByte;
2183 int i;
2184 int nCol;
2185 char *z;
2186
2187 assert( pTo!=0 );
2188 if( p==0 || IN_DECLARE_VTAB ) goto fk_end;
2189 if( pFromCol==0 ){
2190 int iCol = p->nCol-1;
2191 if( NEVER(iCol<0) ) goto fk_end;
2192 if( pToCol && pToCol->nExpr!=1 ){
2193 sqlite3ErrorMsg(pParse, "foreign key on %s"
2194 " should reference only one column of table %T",
2195 p->aCol[iCol].zName, pTo);
2196 goto fk_end;
2197 }
2198 nCol = 1;
2199 }else if( pToCol && pToCol->nExpr!=pFromCol->nExpr ){
2200 sqlite3ErrorMsg(pParse,
2201 "number of columns in foreign key does not match the number of "
2202 "columns in the referenced table");
2203 goto fk_end;
2204 }else{
2205 nCol = pFromCol->nExpr;
2206 }
2207 nByte = sizeof(*pFKey) + (nCol-1)*sizeof(pFKey->aCol[0]) + pTo->n + 1;
2208 if( pToCol ){
2209 for(i=0; i<pToCol->nExpr; i++){
2210 nByte += sqlite3Strlen30(pToCol->a[i].zName) + 1;
2211 }
2212 }
2213 pFKey = sqlite3DbMallocZero(db, nByte );
2214 if( pFKey==0 ){
2215 goto fk_end;
2216 }
2217 pFKey->pFrom = p;
2218 pFKey->pNextFrom = p->pFKey;
2219 z = (char*)&pFKey->aCol[nCol];
2220 pFKey->zTo = z;
2221 memcpy(z, pTo->z, pTo->n);
2222 z[pTo->n] = 0;
2223 sqlite3Dequote(z);
2224 z += pTo->n+1;
2225 pFKey->nCol = nCol;
2226 if( pFromCol==0 ){
2227 pFKey->aCol[0].iFrom = p->nCol-1;
2228 }else{
2229 for(i=0; i<nCol; i++){
2230 int j;
2231 for(j=0; j<p->nCol; j++){
2232 if( sqlite3StrICmp(p->aCol[j].zName, pFromCol->a[i].zName)==0 ){
2233 pFKey->aCol[i].iFrom = j;
2234 break;
2235 }
2236 }
2237 if( j>=p->nCol ){
2238 sqlite3ErrorMsg(pParse,
2239 "unknown column \"%s\" in foreign key definition",
2240 pFromCol->a[i].zName);
2241 goto fk_end;
2242 }
2243 }
2244 }
2245 if( pToCol ){
2246 for(i=0; i<nCol; i++){
2247 int n = sqlite3Strlen30(pToCol->a[i].zName);
2248 pFKey->aCol[i].zCol = z;
2249 memcpy(z, pToCol->a[i].zName, n);
2250 z[n] = 0;
2251 z += n+1;
2252 }
2253 }
2254 pFKey->isDeferred = 0;
2255 pFKey->aAction[0] = (u8)(flags & 0xff); /* ON DELETE action */
2256 pFKey->aAction[1] = (u8)((flags >> 8 ) & 0xff); /* ON UPDATE action */
2257
2258 assert( sqlite3SchemaMutexHeld(db, 0, p->pSchema) );
2259 pNextTo = (FKey *)sqlite3HashInsert(&p->pSchema->fkeyHash,
2260 pFKey->zTo, sqlite3Strlen30(pFKey->zTo), (void *)pFKey
2261 );
2262 if( pNextTo==pFKey ){
2263 db->mallocFailed = 1;
2264 goto fk_end;
2265 }
2266 if( pNextTo ){
2267 assert( pNextTo->pPrevTo==0 );
2268 pFKey->pNextTo = pNextTo;
2269 pNextTo->pPrevTo = pFKey;
2270 }
2271
2272 /* Link the foreign key to the table as the last step.
2273 */
2274 p->pFKey = pFKey;
2275 pFKey = 0;
2276
2277 fk_end:
2278 sqlite3DbFree(db, pFKey);
2279 #endif /* !defined(SQLITE_OMIT_FOREIGN_KEY) */
2280 sqlite3ExprListDelete(db, pFromCol);
2281 sqlite3ExprListDelete(db, pToCol);
2282 }
2283
2284 /*
2285 ** This routine is called when an INITIALLY IMMEDIATE or INITIALLY DEFERRED
2286 ** clause is seen as part of a foreign key definition. The isDeferred
2287 ** parameter is 1 for INITIALLY DEFERRED and 0 for INITIALLY IMMEDIATE.
2288 ** The behavior of the most recently created foreign key is adjusted
2289 ** accordingly.
2290 */
sqlite3DeferForeignKey(Parse * pParse,int isDeferred)2291 void sqlite3DeferForeignKey(Parse *pParse, int isDeferred){
2292 #ifndef SQLITE_OMIT_FOREIGN_KEY
2293 Table *pTab;
2294 FKey *pFKey;
2295 if( (pTab = pParse->pNewTable)==0 || (pFKey = pTab->pFKey)==0 ) return;
2296 assert( isDeferred==0 || isDeferred==1 ); /* EV: R-30323-21917 */
2297 pFKey->isDeferred = (u8)isDeferred;
2298 #endif
2299 }
2300
2301 /*
2302 ** Generate code that will erase and refill index *pIdx. This is
2303 ** used to initialize a newly created index or to recompute the
2304 ** content of an index in response to a REINDEX command.
2305 **
2306 ** if memRootPage is not negative, it means that the index is newly
2307 ** created. The register specified by memRootPage contains the
2308 ** root page number of the index. If memRootPage is negative, then
2309 ** the index already exists and must be cleared before being refilled and
2310 ** the root page number of the index is taken from pIndex->tnum.
2311 */
sqlite3RefillIndex(Parse * pParse,Index * pIndex,int memRootPage)2312 static void sqlite3RefillIndex(Parse *pParse, Index *pIndex, int memRootPage){
2313 Table *pTab = pIndex->pTable; /* The table that is indexed */
2314 int iTab = pParse->nTab++; /* Btree cursor used for pTab */
2315 int iIdx = pParse->nTab++; /* Btree cursor used for pIndex */
2316 int addr1; /* Address of top of loop */
2317 int tnum; /* Root page of index */
2318 Vdbe *v; /* Generate code into this virtual machine */
2319 KeyInfo *pKey; /* KeyInfo for index */
2320 int regIdxKey; /* Registers containing the index key */
2321 int regRecord; /* Register holding assemblied index record */
2322 sqlite3 *db = pParse->db; /* The database connection */
2323 int iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2324
2325 #ifndef SQLITE_OMIT_AUTHORIZATION
2326 if( sqlite3AuthCheck(pParse, SQLITE_REINDEX, pIndex->zName, 0,
2327 db->aDb[iDb].zName ) ){
2328 return;
2329 }
2330 #endif
2331
2332 /* Require a write-lock on the table to perform this operation */
2333 sqlite3TableLock(pParse, iDb, pTab->tnum, 1, pTab->zName);
2334
2335 v = sqlite3GetVdbe(pParse);
2336 if( v==0 ) return;
2337 if( memRootPage>=0 ){
2338 tnum = memRootPage;
2339 }else{
2340 tnum = pIndex->tnum;
2341 sqlite3VdbeAddOp2(v, OP_Clear, tnum, iDb);
2342 }
2343 pKey = sqlite3IndexKeyinfo(pParse, pIndex);
2344 sqlite3VdbeAddOp4(v, OP_OpenWrite, iIdx, tnum, iDb,
2345 (char *)pKey, P4_KEYINFO_HANDOFF);
2346 if( memRootPage>=0 ){
2347 sqlite3VdbeChangeP5(v, 1);
2348 }
2349 sqlite3OpenTable(pParse, iTab, iDb, pTab, OP_OpenRead);
2350 addr1 = sqlite3VdbeAddOp2(v, OP_Rewind, iTab, 0);
2351 regRecord = sqlite3GetTempReg(pParse);
2352 regIdxKey = sqlite3GenerateIndexKey(pParse, pIndex, iTab, regRecord, 1);
2353 if( pIndex->onError!=OE_None ){
2354 const int regRowid = regIdxKey + pIndex->nColumn;
2355 const int j2 = sqlite3VdbeCurrentAddr(v) + 2;
2356 void * const pRegKey = SQLITE_INT_TO_PTR(regIdxKey);
2357
2358 /* The registers accessed by the OP_IsUnique opcode were allocated
2359 ** using sqlite3GetTempRange() inside of the sqlite3GenerateIndexKey()
2360 ** call above. Just before that function was freed they were released
2361 ** (made available to the compiler for reuse) using
2362 ** sqlite3ReleaseTempRange(). So in some ways having the OP_IsUnique
2363 ** opcode use the values stored within seems dangerous. However, since
2364 ** we can be sure that no other temp registers have been allocated
2365 ** since sqlite3ReleaseTempRange() was called, it is safe to do so.
2366 */
2367 sqlite3VdbeAddOp4(v, OP_IsUnique, iIdx, j2, regRowid, pRegKey, P4_INT32);
2368 sqlite3HaltConstraint(
2369 pParse, OE_Abort, "indexed columns are not unique", P4_STATIC);
2370 }
2371 sqlite3VdbeAddOp2(v, OP_IdxInsert, iIdx, regRecord);
2372 sqlite3VdbeChangeP5(v, OPFLAG_USESEEKRESULT);
2373 sqlite3ReleaseTempReg(pParse, regRecord);
2374 sqlite3VdbeAddOp2(v, OP_Next, iTab, addr1+1);
2375 sqlite3VdbeJumpHere(v, addr1);
2376 sqlite3VdbeAddOp1(v, OP_Close, iTab);
2377 sqlite3VdbeAddOp1(v, OP_Close, iIdx);
2378 }
2379
2380 /*
2381 ** Create a new index for an SQL table. pName1.pName2 is the name of the index
2382 ** and pTblList is the name of the table that is to be indexed. Both will
2383 ** be NULL for a primary key or an index that is created to satisfy a
2384 ** UNIQUE constraint. If pTable and pIndex are NULL, use pParse->pNewTable
2385 ** as the table to be indexed. pParse->pNewTable is a table that is
2386 ** currently being constructed by a CREATE TABLE statement.
2387 **
2388 ** pList is a list of columns to be indexed. pList will be NULL if this
2389 ** is a primary key or unique-constraint on the most recent column added
2390 ** to the table currently under construction.
2391 **
2392 ** If the index is created successfully, return a pointer to the new Index
2393 ** structure. This is used by sqlite3AddPrimaryKey() to mark the index
2394 ** as the tables primary key (Index.autoIndex==2).
2395 */
sqlite3CreateIndex(Parse * pParse,Token * pName1,Token * pName2,SrcList * pTblName,ExprList * pList,int onError,Token * pStart,Token * pEnd,int sortOrder,int ifNotExist)2396 Index *sqlite3CreateIndex(
2397 Parse *pParse, /* All information about this parse */
2398 Token *pName1, /* First part of index name. May be NULL */
2399 Token *pName2, /* Second part of index name. May be NULL */
2400 SrcList *pTblName, /* Table to index. Use pParse->pNewTable if 0 */
2401 ExprList *pList, /* A list of columns to be indexed */
2402 int onError, /* OE_Abort, OE_Ignore, OE_Replace, or OE_None */
2403 Token *pStart, /* The CREATE token that begins this statement */
2404 Token *pEnd, /* The ")" that closes the CREATE INDEX statement */
2405 int sortOrder, /* Sort order of primary key when pList==NULL */
2406 int ifNotExist /* Omit error if index already exists */
2407 ){
2408 Index *pRet = 0; /* Pointer to return */
2409 Table *pTab = 0; /* Table to be indexed */
2410 Index *pIndex = 0; /* The index to be created */
2411 char *zName = 0; /* Name of the index */
2412 int nName; /* Number of characters in zName */
2413 int i, j;
2414 Token nullId; /* Fake token for an empty ID list */
2415 DbFixer sFix; /* For assigning database names to pTable */
2416 int sortOrderMask; /* 1 to honor DESC in index. 0 to ignore. */
2417 sqlite3 *db = pParse->db;
2418 Db *pDb; /* The specific table containing the indexed database */
2419 int iDb; /* Index of the database that is being written */
2420 Token *pName = 0; /* Unqualified name of the index to create */
2421 struct ExprList_item *pListItem; /* For looping over pList */
2422 int nCol;
2423 int nExtra = 0;
2424 char *zExtra;
2425
2426 assert( pStart==0 || pEnd!=0 ); /* pEnd must be non-NULL if pStart is */
2427 assert( pParse->nErr==0 ); /* Never called with prior errors */
2428 if( db->mallocFailed || IN_DECLARE_VTAB ){
2429 goto exit_create_index;
2430 }
2431 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2432 goto exit_create_index;
2433 }
2434
2435 /*
2436 ** Find the table that is to be indexed. Return early if not found.
2437 */
2438 if( pTblName!=0 ){
2439
2440 /* Use the two-part index name to determine the database
2441 ** to search for the table. 'Fix' the table name to this db
2442 ** before looking up the table.
2443 */
2444 assert( pName1 && pName2 );
2445 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pName);
2446 if( iDb<0 ) goto exit_create_index;
2447
2448 #ifndef SQLITE_OMIT_TEMPDB
2449 /* If the index name was unqualified, check if the the table
2450 ** is a temp table. If so, set the database to 1. Do not do this
2451 ** if initialising a database schema.
2452 */
2453 if( !db->init.busy ){
2454 pTab = sqlite3SrcListLookup(pParse, pTblName);
2455 if( pName2->n==0 && pTab && pTab->pSchema==db->aDb[1].pSchema ){
2456 iDb = 1;
2457 }
2458 }
2459 #endif
2460
2461 if( sqlite3FixInit(&sFix, pParse, iDb, "index", pName) &&
2462 sqlite3FixSrcList(&sFix, pTblName)
2463 ){
2464 /* Because the parser constructs pTblName from a single identifier,
2465 ** sqlite3FixSrcList can never fail. */
2466 assert(0);
2467 }
2468 pTab = sqlite3LocateTable(pParse, 0, pTblName->a[0].zName,
2469 pTblName->a[0].zDatabase);
2470 if( !pTab || db->mallocFailed ) goto exit_create_index;
2471 assert( db->aDb[iDb].pSchema==pTab->pSchema );
2472 }else{
2473 assert( pName==0 );
2474 pTab = pParse->pNewTable;
2475 if( !pTab ) goto exit_create_index;
2476 iDb = sqlite3SchemaToIndex(db, pTab->pSchema);
2477 }
2478 pDb = &db->aDb[iDb];
2479
2480 assert( pTab!=0 );
2481 assert( pParse->nErr==0 );
2482 if( sqlite3StrNICmp(pTab->zName, "sqlite_", 7)==0
2483 && sqlite3StrNICmp(&pTab->zName[7],"altertab_",9)!=0 ){
2484 sqlite3ErrorMsg(pParse, "table %s may not be indexed", pTab->zName);
2485 goto exit_create_index;
2486 }
2487 #ifndef SQLITE_OMIT_VIEW
2488 if( pTab->pSelect ){
2489 sqlite3ErrorMsg(pParse, "views may not be indexed");
2490 goto exit_create_index;
2491 }
2492 #endif
2493 #ifndef SQLITE_OMIT_VIRTUALTABLE
2494 if( IsVirtual(pTab) ){
2495 sqlite3ErrorMsg(pParse, "virtual tables may not be indexed");
2496 goto exit_create_index;
2497 }
2498 #endif
2499
2500 /*
2501 ** Find the name of the index. Make sure there is not already another
2502 ** index or table with the same name.
2503 **
2504 ** Exception: If we are reading the names of permanent indices from the
2505 ** sqlite_master table (because some other process changed the schema) and
2506 ** one of the index names collides with the name of a temporary table or
2507 ** index, then we will continue to process this index.
2508 **
2509 ** If pName==0 it means that we are
2510 ** dealing with a primary key or UNIQUE constraint. We have to invent our
2511 ** own name.
2512 */
2513 if( pName ){
2514 zName = sqlite3NameFromToken(db, pName);
2515 if( zName==0 ) goto exit_create_index;
2516 if( SQLITE_OK!=sqlite3CheckObjectName(pParse, zName) ){
2517 goto exit_create_index;
2518 }
2519 if( !db->init.busy ){
2520 if( sqlite3FindTable(db, zName, 0)!=0 ){
2521 sqlite3ErrorMsg(pParse, "there is already a table named %s", zName);
2522 goto exit_create_index;
2523 }
2524 }
2525 if( sqlite3FindIndex(db, zName, pDb->zName)!=0 ){
2526 if( !ifNotExist ){
2527 sqlite3ErrorMsg(pParse, "index %s already exists", zName);
2528 }else{
2529 assert( !db->init.busy );
2530 sqlite3CodeVerifySchema(pParse, iDb);
2531 }
2532 goto exit_create_index;
2533 }
2534 }else{
2535 int n;
2536 Index *pLoop;
2537 for(pLoop=pTab->pIndex, n=1; pLoop; pLoop=pLoop->pNext, n++){}
2538 zName = sqlite3MPrintf(db, "sqlite_autoindex_%s_%d", pTab->zName, n);
2539 if( zName==0 ){
2540 goto exit_create_index;
2541 }
2542 }
2543
2544 /* Check for authorization to create an index.
2545 */
2546 #ifndef SQLITE_OMIT_AUTHORIZATION
2547 {
2548 const char *zDb = pDb->zName;
2549 if( sqlite3AuthCheck(pParse, SQLITE_INSERT, SCHEMA_TABLE(iDb), 0, zDb) ){
2550 goto exit_create_index;
2551 }
2552 i = SQLITE_CREATE_INDEX;
2553 if( !OMIT_TEMPDB && iDb==1 ) i = SQLITE_CREATE_TEMP_INDEX;
2554 if( sqlite3AuthCheck(pParse, i, zName, pTab->zName, zDb) ){
2555 goto exit_create_index;
2556 }
2557 }
2558 #endif
2559
2560 /* If pList==0, it means this routine was called to make a primary
2561 ** key out of the last column added to the table under construction.
2562 ** So create a fake list to simulate this.
2563 */
2564 if( pList==0 ){
2565 nullId.z = pTab->aCol[pTab->nCol-1].zName;
2566 nullId.n = sqlite3Strlen30((char*)nullId.z);
2567 pList = sqlite3ExprListAppend(pParse, 0, 0);
2568 if( pList==0 ) goto exit_create_index;
2569 sqlite3ExprListSetName(pParse, pList, &nullId, 0);
2570 pList->a[0].sortOrder = (u8)sortOrder;
2571 }
2572
2573 /* Figure out how many bytes of space are required to store explicitly
2574 ** specified collation sequence names.
2575 */
2576 for(i=0; i<pList->nExpr; i++){
2577 Expr *pExpr = pList->a[i].pExpr;
2578 if( pExpr ){
2579 CollSeq *pColl = pExpr->pColl;
2580 /* Either pColl!=0 or there was an OOM failure. But if an OOM
2581 ** failure we have quit before reaching this point. */
2582 if( ALWAYS(pColl) ){
2583 nExtra += (1 + sqlite3Strlen30(pColl->zName));
2584 }
2585 }
2586 }
2587
2588 /*
2589 ** Allocate the index structure.
2590 */
2591 nName = sqlite3Strlen30(zName);
2592 nCol = pList->nExpr;
2593 pIndex = sqlite3DbMallocZero(db,
2594 sizeof(Index) + /* Index structure */
2595 sizeof(int)*nCol + /* Index.aiColumn */
2596 sizeof(int)*(nCol+1) + /* Index.aiRowEst */
2597 sizeof(char *)*nCol + /* Index.azColl */
2598 sizeof(u8)*nCol + /* Index.aSortOrder */
2599 nName + 1 + /* Index.zName */
2600 nExtra /* Collation sequence names */
2601 );
2602 if( db->mallocFailed ){
2603 goto exit_create_index;
2604 }
2605 pIndex->azColl = (char**)(&pIndex[1]);
2606 pIndex->aiColumn = (int *)(&pIndex->azColl[nCol]);
2607 pIndex->aiRowEst = (unsigned *)(&pIndex->aiColumn[nCol]);
2608 pIndex->aSortOrder = (u8 *)(&pIndex->aiRowEst[nCol+1]);
2609 pIndex->zName = (char *)(&pIndex->aSortOrder[nCol]);
2610 zExtra = (char *)(&pIndex->zName[nName+1]);
2611 memcpy(pIndex->zName, zName, nName+1);
2612 pIndex->pTable = pTab;
2613 pIndex->nColumn = pList->nExpr;
2614 pIndex->onError = (u8)onError;
2615 pIndex->autoIndex = (u8)(pName==0);
2616 pIndex->pSchema = db->aDb[iDb].pSchema;
2617 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
2618
2619 /* Check to see if we should honor DESC requests on index columns
2620 */
2621 if( pDb->pSchema->file_format>=4 ){
2622 sortOrderMask = -1; /* Honor DESC */
2623 }else{
2624 sortOrderMask = 0; /* Ignore DESC */
2625 }
2626
2627 /* Scan the names of the columns of the table to be indexed and
2628 ** load the column indices into the Index structure. Report an error
2629 ** if any column is not found.
2630 **
2631 ** TODO: Add a test to make sure that the same column is not named
2632 ** more than once within the same index. Only the first instance of
2633 ** the column will ever be used by the optimizer. Note that using the
2634 ** same column more than once cannot be an error because that would
2635 ** break backwards compatibility - it needs to be a warning.
2636 */
2637 for(i=0, pListItem=pList->a; i<pList->nExpr; i++, pListItem++){
2638 const char *zColName = pListItem->zName;
2639 Column *pTabCol;
2640 int requestedSortOrder;
2641 char *zColl; /* Collation sequence name */
2642
2643 for(j=0, pTabCol=pTab->aCol; j<pTab->nCol; j++, pTabCol++){
2644 if( sqlite3StrICmp(zColName, pTabCol->zName)==0 ) break;
2645 }
2646 if( j>=pTab->nCol ){
2647 sqlite3ErrorMsg(pParse, "table %s has no column named %s",
2648 pTab->zName, zColName);
2649 pParse->checkSchema = 1;
2650 goto exit_create_index;
2651 }
2652 pIndex->aiColumn[i] = j;
2653 /* Justification of the ALWAYS(pListItem->pExpr->pColl): Because of
2654 ** the way the "idxlist" non-terminal is constructed by the parser,
2655 ** if pListItem->pExpr is not null then either pListItem->pExpr->pColl
2656 ** must exist or else there must have been an OOM error. But if there
2657 ** was an OOM error, we would never reach this point. */
2658 if( pListItem->pExpr && ALWAYS(pListItem->pExpr->pColl) ){
2659 int nColl;
2660 zColl = pListItem->pExpr->pColl->zName;
2661 nColl = sqlite3Strlen30(zColl) + 1;
2662 assert( nExtra>=nColl );
2663 memcpy(zExtra, zColl, nColl);
2664 zColl = zExtra;
2665 zExtra += nColl;
2666 nExtra -= nColl;
2667 }else{
2668 zColl = pTab->aCol[j].zColl;
2669 if( !zColl ){
2670 zColl = db->pDfltColl->zName;
2671 }
2672 }
2673 if( !db->init.busy && !sqlite3LocateCollSeq(pParse, zColl) ){
2674 goto exit_create_index;
2675 }
2676 pIndex->azColl[i] = zColl;
2677 requestedSortOrder = pListItem->sortOrder & sortOrderMask;
2678 pIndex->aSortOrder[i] = (u8)requestedSortOrder;
2679 }
2680 sqlite3DefaultRowEst(pIndex);
2681
2682 if( pTab==pParse->pNewTable ){
2683 /* This routine has been called to create an automatic index as a
2684 ** result of a PRIMARY KEY or UNIQUE clause on a column definition, or
2685 ** a PRIMARY KEY or UNIQUE clause following the column definitions.
2686 ** i.e. one of:
2687 **
2688 ** CREATE TABLE t(x PRIMARY KEY, y);
2689 ** CREATE TABLE t(x, y, UNIQUE(x, y));
2690 **
2691 ** Either way, check to see if the table already has such an index. If
2692 ** so, don't bother creating this one. This only applies to
2693 ** automatically created indices. Users can do as they wish with
2694 ** explicit indices.
2695 **
2696 ** Two UNIQUE or PRIMARY KEY constraints are considered equivalent
2697 ** (and thus suppressing the second one) even if they have different
2698 ** sort orders.
2699 **
2700 ** If there are different collating sequences or if the columns of
2701 ** the constraint occur in different orders, then the constraints are
2702 ** considered distinct and both result in separate indices.
2703 */
2704 Index *pIdx;
2705 for(pIdx=pTab->pIndex; pIdx; pIdx=pIdx->pNext){
2706 int k;
2707 assert( pIdx->onError!=OE_None );
2708 assert( pIdx->autoIndex );
2709 assert( pIndex->onError!=OE_None );
2710
2711 if( pIdx->nColumn!=pIndex->nColumn ) continue;
2712 for(k=0; k<pIdx->nColumn; k++){
2713 const char *z1;
2714 const char *z2;
2715 if( pIdx->aiColumn[k]!=pIndex->aiColumn[k] ) break;
2716 z1 = pIdx->azColl[k];
2717 z2 = pIndex->azColl[k];
2718 if( z1!=z2 && sqlite3StrICmp(z1, z2) ) break;
2719 }
2720 if( k==pIdx->nColumn ){
2721 if( pIdx->onError!=pIndex->onError ){
2722 /* This constraint creates the same index as a previous
2723 ** constraint specified somewhere in the CREATE TABLE statement.
2724 ** However the ON CONFLICT clauses are different. If both this
2725 ** constraint and the previous equivalent constraint have explicit
2726 ** ON CONFLICT clauses this is an error. Otherwise, use the
2727 ** explicitly specified behaviour for the index.
2728 */
2729 if( !(pIdx->onError==OE_Default || pIndex->onError==OE_Default) ){
2730 sqlite3ErrorMsg(pParse,
2731 "conflicting ON CONFLICT clauses specified", 0);
2732 }
2733 if( pIdx->onError==OE_Default ){
2734 pIdx->onError = pIndex->onError;
2735 }
2736 }
2737 goto exit_create_index;
2738 }
2739 }
2740 }
2741
2742 /* Link the new Index structure to its table and to the other
2743 ** in-memory database structures.
2744 */
2745 if( db->init.busy ){
2746 Index *p;
2747 assert( sqlite3SchemaMutexHeld(db, 0, pIndex->pSchema) );
2748 p = sqlite3HashInsert(&pIndex->pSchema->idxHash,
2749 pIndex->zName, sqlite3Strlen30(pIndex->zName),
2750 pIndex);
2751 if( p ){
2752 assert( p==pIndex ); /* Malloc must have failed */
2753 db->mallocFailed = 1;
2754 goto exit_create_index;
2755 }
2756 db->flags |= SQLITE_InternChanges;
2757 if( pTblName!=0 ){
2758 pIndex->tnum = db->init.newTnum;
2759 }
2760 }
2761
2762 /* If the db->init.busy is 0 then create the index on disk. This
2763 ** involves writing the index into the master table and filling in the
2764 ** index with the current table contents.
2765 **
2766 ** The db->init.busy is 0 when the user first enters a CREATE INDEX
2767 ** command. db->init.busy is 1 when a database is opened and
2768 ** CREATE INDEX statements are read out of the master table. In
2769 ** the latter case the index already exists on disk, which is why
2770 ** we don't want to recreate it.
2771 **
2772 ** If pTblName==0 it means this index is generated as a primary key
2773 ** or UNIQUE constraint of a CREATE TABLE statement. Since the table
2774 ** has just been created, it contains no data and the index initialization
2775 ** step can be skipped.
2776 */
2777 else{ /* if( db->init.busy==0 ) */
2778 Vdbe *v;
2779 char *zStmt;
2780 int iMem = ++pParse->nMem;
2781
2782 v = sqlite3GetVdbe(pParse);
2783 if( v==0 ) goto exit_create_index;
2784
2785
2786 /* Create the rootpage for the index
2787 */
2788 sqlite3BeginWriteOperation(pParse, 1, iDb);
2789 sqlite3VdbeAddOp2(v, OP_CreateIndex, iDb, iMem);
2790
2791 /* Gather the complete text of the CREATE INDEX statement into
2792 ** the zStmt variable
2793 */
2794 if( pStart ){
2795 assert( pEnd!=0 );
2796 /* A named index with an explicit CREATE INDEX statement */
2797 zStmt = sqlite3MPrintf(db, "CREATE%s INDEX %.*s",
2798 onError==OE_None ? "" : " UNIQUE",
2799 pEnd->z - pName->z + 1,
2800 pName->z);
2801 }else{
2802 /* An automatic index created by a PRIMARY KEY or UNIQUE constraint */
2803 /* zStmt = sqlite3MPrintf(""); */
2804 zStmt = 0;
2805 }
2806
2807 /* Add an entry in sqlite_master for this index
2808 */
2809 sqlite3NestedParse(pParse,
2810 "INSERT INTO %Q.%s VALUES('index',%Q,%Q,#%d,%Q);",
2811 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2812 pIndex->zName,
2813 pTab->zName,
2814 iMem,
2815 zStmt
2816 );
2817 sqlite3DbFree(db, zStmt);
2818
2819 /* Fill the index with data and reparse the schema. Code an OP_Expire
2820 ** to invalidate all pre-compiled statements.
2821 */
2822 if( pTblName ){
2823 sqlite3RefillIndex(pParse, pIndex, iMem);
2824 sqlite3ChangeCookie(pParse, iDb);
2825 sqlite3VdbeAddOp4(v, OP_ParseSchema, iDb, 0, 0,
2826 sqlite3MPrintf(db, "name='%q' AND type='index'", pIndex->zName),
2827 P4_DYNAMIC);
2828 sqlite3VdbeAddOp1(v, OP_Expire, 0);
2829 }
2830 }
2831
2832 /* When adding an index to the list of indices for a table, make
2833 ** sure all indices labeled OE_Replace come after all those labeled
2834 ** OE_Ignore. This is necessary for the correct constraint check
2835 ** processing (in sqlite3GenerateConstraintChecks()) as part of
2836 ** UPDATE and INSERT statements.
2837 */
2838 if( db->init.busy || pTblName==0 ){
2839 if( onError!=OE_Replace || pTab->pIndex==0
2840 || pTab->pIndex->onError==OE_Replace){
2841 pIndex->pNext = pTab->pIndex;
2842 pTab->pIndex = pIndex;
2843 }else{
2844 Index *pOther = pTab->pIndex;
2845 while( pOther->pNext && pOther->pNext->onError!=OE_Replace ){
2846 pOther = pOther->pNext;
2847 }
2848 pIndex->pNext = pOther->pNext;
2849 pOther->pNext = pIndex;
2850 }
2851 pRet = pIndex;
2852 pIndex = 0;
2853 }
2854
2855 /* Clean up before exiting */
2856 exit_create_index:
2857 if( pIndex ){
2858 sqlite3DbFree(db, pIndex->zColAff);
2859 sqlite3DbFree(db, pIndex);
2860 }
2861 sqlite3ExprListDelete(db, pList);
2862 sqlite3SrcListDelete(db, pTblName);
2863 sqlite3DbFree(db, zName);
2864 return pRet;
2865 }
2866
2867 /*
2868 ** Fill the Index.aiRowEst[] array with default information - information
2869 ** to be used when we have not run the ANALYZE command.
2870 **
2871 ** aiRowEst[0] is suppose to contain the number of elements in the index.
2872 ** Since we do not know, guess 1 million. aiRowEst[1] is an estimate of the
2873 ** number of rows in the table that match any particular value of the
2874 ** first column of the index. aiRowEst[2] is an estimate of the number
2875 ** of rows that match any particular combiniation of the first 2 columns
2876 ** of the index. And so forth. It must always be the case that
2877 *
2878 ** aiRowEst[N]<=aiRowEst[N-1]
2879 ** aiRowEst[N]>=1
2880 **
2881 ** Apart from that, we have little to go on besides intuition as to
2882 ** how aiRowEst[] should be initialized. The numbers generated here
2883 ** are based on typical values found in actual indices.
2884 */
sqlite3DefaultRowEst(Index * pIdx)2885 void sqlite3DefaultRowEst(Index *pIdx){
2886 unsigned *a = pIdx->aiRowEst;
2887 int i;
2888 unsigned n;
2889 assert( a!=0 );
2890 a[0] = pIdx->pTable->nRowEst;
2891 if( a[0]<10 ) a[0] = 10;
2892 n = 10;
2893 for(i=1; i<=pIdx->nColumn; i++){
2894 a[i] = n;
2895 if( n>5 ) n--;
2896 }
2897 if( pIdx->onError!=OE_None ){
2898 a[pIdx->nColumn] = 1;
2899 }
2900 }
2901
2902 /*
2903 ** This routine will drop an existing named index. This routine
2904 ** implements the DROP INDEX statement.
2905 */
sqlite3DropIndex(Parse * pParse,SrcList * pName,int ifExists)2906 void sqlite3DropIndex(Parse *pParse, SrcList *pName, int ifExists){
2907 Index *pIndex;
2908 Vdbe *v;
2909 sqlite3 *db = pParse->db;
2910 int iDb;
2911
2912 assert( pParse->nErr==0 ); /* Never called with prior errors */
2913 if( db->mallocFailed ){
2914 goto exit_drop_index;
2915 }
2916 assert( pName->nSrc==1 );
2917 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
2918 goto exit_drop_index;
2919 }
2920 pIndex = sqlite3FindIndex(db, pName->a[0].zName, pName->a[0].zDatabase);
2921 if( pIndex==0 ){
2922 if( !ifExists ){
2923 sqlite3ErrorMsg(pParse, "no such index: %S", pName, 0);
2924 }else{
2925 sqlite3CodeVerifyNamedSchema(pParse, pName->a[0].zDatabase);
2926 }
2927 pParse->checkSchema = 1;
2928 goto exit_drop_index;
2929 }
2930 if( pIndex->autoIndex ){
2931 sqlite3ErrorMsg(pParse, "index associated with UNIQUE "
2932 "or PRIMARY KEY constraint cannot be dropped", 0);
2933 goto exit_drop_index;
2934 }
2935 iDb = sqlite3SchemaToIndex(db, pIndex->pSchema);
2936 #ifndef SQLITE_OMIT_AUTHORIZATION
2937 {
2938 int code = SQLITE_DROP_INDEX;
2939 Table *pTab = pIndex->pTable;
2940 const char *zDb = db->aDb[iDb].zName;
2941 const char *zTab = SCHEMA_TABLE(iDb);
2942 if( sqlite3AuthCheck(pParse, SQLITE_DELETE, zTab, 0, zDb) ){
2943 goto exit_drop_index;
2944 }
2945 if( !OMIT_TEMPDB && iDb ) code = SQLITE_DROP_TEMP_INDEX;
2946 if( sqlite3AuthCheck(pParse, code, pIndex->zName, pTab->zName, zDb) ){
2947 goto exit_drop_index;
2948 }
2949 }
2950 #endif
2951
2952 /* Generate code to remove the index and from the master table */
2953 v = sqlite3GetVdbe(pParse);
2954 if( v ){
2955 sqlite3BeginWriteOperation(pParse, 1, iDb);
2956 sqlite3NestedParse(pParse,
2957 "DELETE FROM %Q.%s WHERE name=%Q AND type='index'",
2958 db->aDb[iDb].zName, SCHEMA_TABLE(iDb),
2959 pIndex->zName
2960 );
2961 if( sqlite3FindTable(db, "sqlite_stat1", db->aDb[iDb].zName) ){
2962 sqlite3NestedParse(pParse,
2963 "DELETE FROM %Q.sqlite_stat1 WHERE idx=%Q",
2964 db->aDb[iDb].zName, pIndex->zName
2965 );
2966 }
2967 sqlite3ChangeCookie(pParse, iDb);
2968 destroyRootPage(pParse, pIndex->tnum, iDb);
2969 sqlite3VdbeAddOp4(v, OP_DropIndex, iDb, 0, 0, pIndex->zName, 0);
2970 }
2971
2972 exit_drop_index:
2973 sqlite3SrcListDelete(db, pName);
2974 }
2975
2976 /*
2977 ** pArray is a pointer to an array of objects. Each object in the
2978 ** array is szEntry bytes in size. This routine allocates a new
2979 ** object on the end of the array.
2980 **
2981 ** *pnEntry is the number of entries already in use. *pnAlloc is
2982 ** the previously allocated size of the array. initSize is the
2983 ** suggested initial array size allocation.
2984 **
2985 ** The index of the new entry is returned in *pIdx.
2986 **
2987 ** This routine returns a pointer to the array of objects. This
2988 ** might be the same as the pArray parameter or it might be a different
2989 ** pointer if the array was resized.
2990 */
sqlite3ArrayAllocate(sqlite3 * db,void * pArray,int szEntry,int initSize,int * pnEntry,int * pnAlloc,int * pIdx)2991 void *sqlite3ArrayAllocate(
2992 sqlite3 *db, /* Connection to notify of malloc failures */
2993 void *pArray, /* Array of objects. Might be reallocated */
2994 int szEntry, /* Size of each object in the array */
2995 int initSize, /* Suggested initial allocation, in elements */
2996 int *pnEntry, /* Number of objects currently in use */
2997 int *pnAlloc, /* Current size of the allocation, in elements */
2998 int *pIdx /* Write the index of a new slot here */
2999 ){
3000 char *z;
3001 if( *pnEntry >= *pnAlloc ){
3002 void *pNew;
3003 int newSize;
3004 newSize = (*pnAlloc)*2 + initSize;
3005 pNew = sqlite3DbRealloc(db, pArray, newSize*szEntry);
3006 if( pNew==0 ){
3007 *pIdx = -1;
3008 return pArray;
3009 }
3010 *pnAlloc = sqlite3DbMallocSize(db, pNew)/szEntry;
3011 pArray = pNew;
3012 }
3013 z = (char*)pArray;
3014 memset(&z[*pnEntry * szEntry], 0, szEntry);
3015 *pIdx = *pnEntry;
3016 ++*pnEntry;
3017 return pArray;
3018 }
3019
3020 /*
3021 ** Append a new element to the given IdList. Create a new IdList if
3022 ** need be.
3023 **
3024 ** A new IdList is returned, or NULL if malloc() fails.
3025 */
sqlite3IdListAppend(sqlite3 * db,IdList * pList,Token * pToken)3026 IdList *sqlite3IdListAppend(sqlite3 *db, IdList *pList, Token *pToken){
3027 int i;
3028 if( pList==0 ){
3029 pList = sqlite3DbMallocZero(db, sizeof(IdList) );
3030 if( pList==0 ) return 0;
3031 pList->nAlloc = 0;
3032 }
3033 pList->a = sqlite3ArrayAllocate(
3034 db,
3035 pList->a,
3036 sizeof(pList->a[0]),
3037 5,
3038 &pList->nId,
3039 &pList->nAlloc,
3040 &i
3041 );
3042 if( i<0 ){
3043 sqlite3IdListDelete(db, pList);
3044 return 0;
3045 }
3046 pList->a[i].zName = sqlite3NameFromToken(db, pToken);
3047 return pList;
3048 }
3049
3050 /*
3051 ** Delete an IdList.
3052 */
sqlite3IdListDelete(sqlite3 * db,IdList * pList)3053 void sqlite3IdListDelete(sqlite3 *db, IdList *pList){
3054 int i;
3055 if( pList==0 ) return;
3056 for(i=0; i<pList->nId; i++){
3057 sqlite3DbFree(db, pList->a[i].zName);
3058 }
3059 sqlite3DbFree(db, pList->a);
3060 sqlite3DbFree(db, pList);
3061 }
3062
3063 /*
3064 ** Return the index in pList of the identifier named zId. Return -1
3065 ** if not found.
3066 */
sqlite3IdListIndex(IdList * pList,const char * zName)3067 int sqlite3IdListIndex(IdList *pList, const char *zName){
3068 int i;
3069 if( pList==0 ) return -1;
3070 for(i=0; i<pList->nId; i++){
3071 if( sqlite3StrICmp(pList->a[i].zName, zName)==0 ) return i;
3072 }
3073 return -1;
3074 }
3075
3076 /*
3077 ** Expand the space allocated for the given SrcList object by
3078 ** creating nExtra new slots beginning at iStart. iStart is zero based.
3079 ** New slots are zeroed.
3080 **
3081 ** For example, suppose a SrcList initially contains two entries: A,B.
3082 ** To append 3 new entries onto the end, do this:
3083 **
3084 ** sqlite3SrcListEnlarge(db, pSrclist, 3, 2);
3085 **
3086 ** After the call above it would contain: A, B, nil, nil, nil.
3087 ** If the iStart argument had been 1 instead of 2, then the result
3088 ** would have been: A, nil, nil, nil, B. To prepend the new slots,
3089 ** the iStart value would be 0. The result then would
3090 ** be: nil, nil, nil, A, B.
3091 **
3092 ** If a memory allocation fails the SrcList is unchanged. The
3093 ** db->mallocFailed flag will be set to true.
3094 */
sqlite3SrcListEnlarge(sqlite3 * db,SrcList * pSrc,int nExtra,int iStart)3095 SrcList *sqlite3SrcListEnlarge(
3096 sqlite3 *db, /* Database connection to notify of OOM errors */
3097 SrcList *pSrc, /* The SrcList to be enlarged */
3098 int nExtra, /* Number of new slots to add to pSrc->a[] */
3099 int iStart /* Index in pSrc->a[] of first new slot */
3100 ){
3101 int i;
3102
3103 /* Sanity checking on calling parameters */
3104 assert( iStart>=0 );
3105 assert( nExtra>=1 );
3106 assert( pSrc!=0 );
3107 assert( iStart<=pSrc->nSrc );
3108
3109 /* Allocate additional space if needed */
3110 if( pSrc->nSrc+nExtra>pSrc->nAlloc ){
3111 SrcList *pNew;
3112 int nAlloc = pSrc->nSrc+nExtra;
3113 int nGot;
3114 pNew = sqlite3DbRealloc(db, pSrc,
3115 sizeof(*pSrc) + (nAlloc-1)*sizeof(pSrc->a[0]) );
3116 if( pNew==0 ){
3117 assert( db->mallocFailed );
3118 return pSrc;
3119 }
3120 pSrc = pNew;
3121 nGot = (sqlite3DbMallocSize(db, pNew) - sizeof(*pSrc))/sizeof(pSrc->a[0])+1;
3122 pSrc->nAlloc = (u16)nGot;
3123 }
3124
3125 /* Move existing slots that come after the newly inserted slots
3126 ** out of the way */
3127 for(i=pSrc->nSrc-1; i>=iStart; i--){
3128 pSrc->a[i+nExtra] = pSrc->a[i];
3129 }
3130 pSrc->nSrc += (i16)nExtra;
3131
3132 /* Zero the newly allocated slots */
3133 memset(&pSrc->a[iStart], 0, sizeof(pSrc->a[0])*nExtra);
3134 for(i=iStart; i<iStart+nExtra; i++){
3135 pSrc->a[i].iCursor = -1;
3136 }
3137
3138 /* Return a pointer to the enlarged SrcList */
3139 return pSrc;
3140 }
3141
3142
3143 /*
3144 ** Append a new table name to the given SrcList. Create a new SrcList if
3145 ** need be. A new entry is created in the SrcList even if pTable is NULL.
3146 **
3147 ** A SrcList is returned, or NULL if there is an OOM error. The returned
3148 ** SrcList might be the same as the SrcList that was input or it might be
3149 ** a new one. If an OOM error does occurs, then the prior value of pList
3150 ** that is input to this routine is automatically freed.
3151 **
3152 ** If pDatabase is not null, it means that the table has an optional
3153 ** database name prefix. Like this: "database.table". The pDatabase
3154 ** points to the table name and the pTable points to the database name.
3155 ** The SrcList.a[].zName field is filled with the table name which might
3156 ** come from pTable (if pDatabase is NULL) or from pDatabase.
3157 ** SrcList.a[].zDatabase is filled with the database name from pTable,
3158 ** or with NULL if no database is specified.
3159 **
3160 ** In other words, if call like this:
3161 **
3162 ** sqlite3SrcListAppend(D,A,B,0);
3163 **
3164 ** Then B is a table name and the database name is unspecified. If called
3165 ** like this:
3166 **
3167 ** sqlite3SrcListAppend(D,A,B,C);
3168 **
3169 ** Then C is the table name and B is the database name. If C is defined
3170 ** then so is B. In other words, we never have a case where:
3171 **
3172 ** sqlite3SrcListAppend(D,A,0,C);
3173 **
3174 ** Both pTable and pDatabase are assumed to be quoted. They are dequoted
3175 ** before being added to the SrcList.
3176 */
sqlite3SrcListAppend(sqlite3 * db,SrcList * pList,Token * pTable,Token * pDatabase)3177 SrcList *sqlite3SrcListAppend(
3178 sqlite3 *db, /* Connection to notify of malloc failures */
3179 SrcList *pList, /* Append to this SrcList. NULL creates a new SrcList */
3180 Token *pTable, /* Table to append */
3181 Token *pDatabase /* Database of the table */
3182 ){
3183 struct SrcList_item *pItem;
3184 assert( pDatabase==0 || pTable!=0 ); /* Cannot have C without B */
3185 if( pList==0 ){
3186 pList = sqlite3DbMallocZero(db, sizeof(SrcList) );
3187 if( pList==0 ) return 0;
3188 pList->nAlloc = 1;
3189 }
3190 pList = sqlite3SrcListEnlarge(db, pList, 1, pList->nSrc);
3191 if( db->mallocFailed ){
3192 sqlite3SrcListDelete(db, pList);
3193 return 0;
3194 }
3195 pItem = &pList->a[pList->nSrc-1];
3196 if( pDatabase && pDatabase->z==0 ){
3197 pDatabase = 0;
3198 }
3199 if( pDatabase ){
3200 Token *pTemp = pDatabase;
3201 pDatabase = pTable;
3202 pTable = pTemp;
3203 }
3204 pItem->zName = sqlite3NameFromToken(db, pTable);
3205 pItem->zDatabase = sqlite3NameFromToken(db, pDatabase);
3206 return pList;
3207 }
3208
3209 /*
3210 ** Assign VdbeCursor index numbers to all tables in a SrcList
3211 */
sqlite3SrcListAssignCursors(Parse * pParse,SrcList * pList)3212 void sqlite3SrcListAssignCursors(Parse *pParse, SrcList *pList){
3213 int i;
3214 struct SrcList_item *pItem;
3215 assert(pList || pParse->db->mallocFailed );
3216 if( pList ){
3217 for(i=0, pItem=pList->a; i<pList->nSrc; i++, pItem++){
3218 if( pItem->iCursor>=0 ) break;
3219 pItem->iCursor = pParse->nTab++;
3220 if( pItem->pSelect ){
3221 sqlite3SrcListAssignCursors(pParse, pItem->pSelect->pSrc);
3222 }
3223 }
3224 }
3225 }
3226
3227 /*
3228 ** Delete an entire SrcList including all its substructure.
3229 */
sqlite3SrcListDelete(sqlite3 * db,SrcList * pList)3230 void sqlite3SrcListDelete(sqlite3 *db, SrcList *pList){
3231 int i;
3232 struct SrcList_item *pItem;
3233 if( pList==0 ) return;
3234 for(pItem=pList->a, i=0; i<pList->nSrc; i++, pItem++){
3235 sqlite3DbFree(db, pItem->zDatabase);
3236 sqlite3DbFree(db, pItem->zName);
3237 sqlite3DbFree(db, pItem->zAlias);
3238 sqlite3DbFree(db, pItem->zIndex);
3239 sqlite3DeleteTable(db, pItem->pTab);
3240 sqlite3SelectDelete(db, pItem->pSelect);
3241 sqlite3ExprDelete(db, pItem->pOn);
3242 sqlite3IdListDelete(db, pItem->pUsing);
3243 }
3244 sqlite3DbFree(db, pList);
3245 }
3246
3247 /*
3248 ** This routine is called by the parser to add a new term to the
3249 ** end of a growing FROM clause. The "p" parameter is the part of
3250 ** the FROM clause that has already been constructed. "p" is NULL
3251 ** if this is the first term of the FROM clause. pTable and pDatabase
3252 ** are the name of the table and database named in the FROM clause term.
3253 ** pDatabase is NULL if the database name qualifier is missing - the
3254 ** usual case. If the term has a alias, then pAlias points to the
3255 ** alias token. If the term is a subquery, then pSubquery is the
3256 ** SELECT statement that the subquery encodes. The pTable and
3257 ** pDatabase parameters are NULL for subqueries. The pOn and pUsing
3258 ** parameters are the content of the ON and USING clauses.
3259 **
3260 ** Return a new SrcList which encodes is the FROM with the new
3261 ** term added.
3262 */
sqlite3SrcListAppendFromTerm(Parse * pParse,SrcList * p,Token * pTable,Token * pDatabase,Token * pAlias,Select * pSubquery,Expr * pOn,IdList * pUsing)3263 SrcList *sqlite3SrcListAppendFromTerm(
3264 Parse *pParse, /* Parsing context */
3265 SrcList *p, /* The left part of the FROM clause already seen */
3266 Token *pTable, /* Name of the table to add to the FROM clause */
3267 Token *pDatabase, /* Name of the database containing pTable */
3268 Token *pAlias, /* The right-hand side of the AS subexpression */
3269 Select *pSubquery, /* A subquery used in place of a table name */
3270 Expr *pOn, /* The ON clause of a join */
3271 IdList *pUsing /* The USING clause of a join */
3272 ){
3273 struct SrcList_item *pItem;
3274 sqlite3 *db = pParse->db;
3275 if( !p && (pOn || pUsing) ){
3276 sqlite3ErrorMsg(pParse, "a JOIN clause is required before %s",
3277 (pOn ? "ON" : "USING")
3278 );
3279 goto append_from_error;
3280 }
3281 p = sqlite3SrcListAppend(db, p, pTable, pDatabase);
3282 if( p==0 || NEVER(p->nSrc==0) ){
3283 goto append_from_error;
3284 }
3285 pItem = &p->a[p->nSrc-1];
3286 assert( pAlias!=0 );
3287 if( pAlias->n ){
3288 pItem->zAlias = sqlite3NameFromToken(db, pAlias);
3289 }
3290 pItem->pSelect = pSubquery;
3291 pItem->pOn = pOn;
3292 pItem->pUsing = pUsing;
3293 return p;
3294
3295 append_from_error:
3296 assert( p==0 );
3297 sqlite3ExprDelete(db, pOn);
3298 sqlite3IdListDelete(db, pUsing);
3299 sqlite3SelectDelete(db, pSubquery);
3300 return 0;
3301 }
3302
3303 /*
3304 ** Add an INDEXED BY or NOT INDEXED clause to the most recently added
3305 ** element of the source-list passed as the second argument.
3306 */
sqlite3SrcListIndexedBy(Parse * pParse,SrcList * p,Token * pIndexedBy)3307 void sqlite3SrcListIndexedBy(Parse *pParse, SrcList *p, Token *pIndexedBy){
3308 assert( pIndexedBy!=0 );
3309 if( p && ALWAYS(p->nSrc>0) ){
3310 struct SrcList_item *pItem = &p->a[p->nSrc-1];
3311 assert( pItem->notIndexed==0 && pItem->zIndex==0 );
3312 if( pIndexedBy->n==1 && !pIndexedBy->z ){
3313 /* A "NOT INDEXED" clause was supplied. See parse.y
3314 ** construct "indexed_opt" for details. */
3315 pItem->notIndexed = 1;
3316 }else{
3317 pItem->zIndex = sqlite3NameFromToken(pParse->db, pIndexedBy);
3318 }
3319 }
3320 }
3321
3322 /*
3323 ** When building up a FROM clause in the parser, the join operator
3324 ** is initially attached to the left operand. But the code generator
3325 ** expects the join operator to be on the right operand. This routine
3326 ** Shifts all join operators from left to right for an entire FROM
3327 ** clause.
3328 **
3329 ** Example: Suppose the join is like this:
3330 **
3331 ** A natural cross join B
3332 **
3333 ** The operator is "natural cross join". The A and B operands are stored
3334 ** in p->a[0] and p->a[1], respectively. The parser initially stores the
3335 ** operator with A. This routine shifts that operator over to B.
3336 */
sqlite3SrcListShiftJoinType(SrcList * p)3337 void sqlite3SrcListShiftJoinType(SrcList *p){
3338 if( p && p->a ){
3339 int i;
3340 for(i=p->nSrc-1; i>0; i--){
3341 p->a[i].jointype = p->a[i-1].jointype;
3342 }
3343 p->a[0].jointype = 0;
3344 }
3345 }
3346
3347 /*
3348 ** Begin a transaction
3349 */
sqlite3BeginTransaction(Parse * pParse,int type)3350 void sqlite3BeginTransaction(Parse *pParse, int type){
3351 sqlite3 *db;
3352 Vdbe *v;
3353 int i;
3354
3355 assert( pParse!=0 );
3356 db = pParse->db;
3357 assert( db!=0 );
3358 /* if( db->aDb[0].pBt==0 ) return; */
3359 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "BEGIN", 0, 0) ){
3360 return;
3361 }
3362 v = sqlite3GetVdbe(pParse);
3363 if( !v ) return;
3364 if( type!=TK_DEFERRED ){
3365 for(i=0; i<db->nDb; i++){
3366 sqlite3VdbeAddOp2(v, OP_Transaction, i, (type==TK_EXCLUSIVE)+1);
3367 sqlite3VdbeUsesBtree(v, i);
3368 }
3369 }
3370 sqlite3VdbeAddOp2(v, OP_AutoCommit, 0, 0);
3371 }
3372
3373 /*
3374 ** Commit a transaction
3375 */
sqlite3CommitTransaction(Parse * pParse)3376 void sqlite3CommitTransaction(Parse *pParse){
3377 sqlite3 *db;
3378 Vdbe *v;
3379
3380 assert( pParse!=0 );
3381 db = pParse->db;
3382 assert( db!=0 );
3383 /* if( db->aDb[0].pBt==0 ) return; */
3384 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "COMMIT", 0, 0) ){
3385 return;
3386 }
3387 v = sqlite3GetVdbe(pParse);
3388 if( v ){
3389 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 0);
3390 }
3391 }
3392
3393 /*
3394 ** Rollback a transaction
3395 */
sqlite3RollbackTransaction(Parse * pParse)3396 void sqlite3RollbackTransaction(Parse *pParse){
3397 sqlite3 *db;
3398 Vdbe *v;
3399
3400 assert( pParse!=0 );
3401 db = pParse->db;
3402 assert( db!=0 );
3403 /* if( db->aDb[0].pBt==0 ) return; */
3404 if( sqlite3AuthCheck(pParse, SQLITE_TRANSACTION, "ROLLBACK", 0, 0) ){
3405 return;
3406 }
3407 v = sqlite3GetVdbe(pParse);
3408 if( v ){
3409 sqlite3VdbeAddOp2(v, OP_AutoCommit, 1, 1);
3410 }
3411 }
3412
3413 /*
3414 ** This function is called by the parser when it parses a command to create,
3415 ** release or rollback an SQL savepoint.
3416 */
sqlite3Savepoint(Parse * pParse,int op,Token * pName)3417 void sqlite3Savepoint(Parse *pParse, int op, Token *pName){
3418 char *zName = sqlite3NameFromToken(pParse->db, pName);
3419 if( zName ){
3420 Vdbe *v = sqlite3GetVdbe(pParse);
3421 #ifndef SQLITE_OMIT_AUTHORIZATION
3422 static const char * const az[] = { "BEGIN", "RELEASE", "ROLLBACK" };
3423 assert( !SAVEPOINT_BEGIN && SAVEPOINT_RELEASE==1 && SAVEPOINT_ROLLBACK==2 );
3424 #endif
3425 if( !v || sqlite3AuthCheck(pParse, SQLITE_SAVEPOINT, az[op], zName, 0) ){
3426 sqlite3DbFree(pParse->db, zName);
3427 return;
3428 }
3429 sqlite3VdbeAddOp4(v, OP_Savepoint, op, 0, 0, zName, P4_DYNAMIC);
3430 }
3431 }
3432
3433 /*
3434 ** Make sure the TEMP database is open and available for use. Return
3435 ** the number of errors. Leave any error messages in the pParse structure.
3436 */
sqlite3OpenTempDatabase(Parse * pParse)3437 int sqlite3OpenTempDatabase(Parse *pParse){
3438 sqlite3 *db = pParse->db;
3439 if( db->aDb[1].pBt==0 && !pParse->explain ){
3440 int rc;
3441 Btree *pBt;
3442 static const int flags =
3443 SQLITE_OPEN_READWRITE |
3444 SQLITE_OPEN_CREATE |
3445 SQLITE_OPEN_EXCLUSIVE |
3446 SQLITE_OPEN_DELETEONCLOSE |
3447 SQLITE_OPEN_TEMP_DB;
3448
3449 rc = sqlite3BtreeOpen(0, db, &pBt, 0, flags);
3450 if( rc!=SQLITE_OK ){
3451 sqlite3ErrorMsg(pParse, "unable to open a temporary database "
3452 "file for storing temporary tables");
3453 pParse->rc = rc;
3454 return 1;
3455 }
3456 db->aDb[1].pBt = pBt;
3457 assert( db->aDb[1].pSchema );
3458 if( SQLITE_NOMEM==sqlite3BtreeSetPageSize(pBt, db->nextPagesize, -1, 0) ){
3459 db->mallocFailed = 1;
3460 return 1;
3461 }
3462 }
3463 return 0;
3464 }
3465
3466 /*
3467 ** Generate VDBE code that will verify the schema cookie and start
3468 ** a read-transaction for all named database files.
3469 **
3470 ** It is important that all schema cookies be verified and all
3471 ** read transactions be started before anything else happens in
3472 ** the VDBE program. But this routine can be called after much other
3473 ** code has been generated. So here is what we do:
3474 **
3475 ** The first time this routine is called, we code an OP_Goto that
3476 ** will jump to a subroutine at the end of the program. Then we
3477 ** record every database that needs its schema verified in the
3478 ** pParse->cookieMask field. Later, after all other code has been
3479 ** generated, the subroutine that does the cookie verifications and
3480 ** starts the transactions will be coded and the OP_Goto P2 value
3481 ** will be made to point to that subroutine. The generation of the
3482 ** cookie verification subroutine code happens in sqlite3FinishCoding().
3483 **
3484 ** If iDb<0 then code the OP_Goto only - don't set flag to verify the
3485 ** schema on any databases. This can be used to position the OP_Goto
3486 ** early in the code, before we know if any database tables will be used.
3487 */
sqlite3CodeVerifySchema(Parse * pParse,int iDb)3488 void sqlite3CodeVerifySchema(Parse *pParse, int iDb){
3489 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3490
3491 if( pToplevel->cookieGoto==0 ){
3492 Vdbe *v = sqlite3GetVdbe(pToplevel);
3493 if( v==0 ) return; /* This only happens if there was a prior error */
3494 pToplevel->cookieGoto = sqlite3VdbeAddOp2(v, OP_Goto, 0, 0)+1;
3495 }
3496 if( iDb>=0 ){
3497 sqlite3 *db = pToplevel->db;
3498 yDbMask mask;
3499
3500 assert( iDb<db->nDb );
3501 assert( db->aDb[iDb].pBt!=0 || iDb==1 );
3502 assert( iDb<SQLITE_MAX_ATTACHED+2 );
3503 assert( sqlite3SchemaMutexHeld(db, iDb, 0) );
3504 mask = ((yDbMask)1)<<iDb;
3505 if( (pToplevel->cookieMask & mask)==0 ){
3506 pToplevel->cookieMask |= mask;
3507 pToplevel->cookieValue[iDb] = db->aDb[iDb].pSchema->schema_cookie;
3508 if( !OMIT_TEMPDB && iDb==1 ){
3509 sqlite3OpenTempDatabase(pToplevel);
3510 }
3511 }
3512 }
3513 }
3514
3515 /*
3516 ** If argument zDb is NULL, then call sqlite3CodeVerifySchema() for each
3517 ** attached database. Otherwise, invoke it for the database named zDb only.
3518 */
sqlite3CodeVerifyNamedSchema(Parse * pParse,const char * zDb)3519 void sqlite3CodeVerifyNamedSchema(Parse *pParse, const char *zDb){
3520 sqlite3 *db = pParse->db;
3521 int i;
3522 for(i=0; i<db->nDb; i++){
3523 Db *pDb = &db->aDb[i];
3524 if( pDb->pBt && (!zDb || 0==sqlite3StrICmp(zDb, pDb->zName)) ){
3525 sqlite3CodeVerifySchema(pParse, i);
3526 }
3527 }
3528 }
3529
3530 /*
3531 ** Generate VDBE code that prepares for doing an operation that
3532 ** might change the database.
3533 **
3534 ** This routine starts a new transaction if we are not already within
3535 ** a transaction. If we are already within a transaction, then a checkpoint
3536 ** is set if the setStatement parameter is true. A checkpoint should
3537 ** be set for operations that might fail (due to a constraint) part of
3538 ** the way through and which will need to undo some writes without having to
3539 ** rollback the whole transaction. For operations where all constraints
3540 ** can be checked before any changes are made to the database, it is never
3541 ** necessary to undo a write and the checkpoint should not be set.
3542 */
sqlite3BeginWriteOperation(Parse * pParse,int setStatement,int iDb)3543 void sqlite3BeginWriteOperation(Parse *pParse, int setStatement, int iDb){
3544 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3545 sqlite3CodeVerifySchema(pParse, iDb);
3546 pToplevel->writeMask |= ((yDbMask)1)<<iDb;
3547 pToplevel->isMultiWrite |= setStatement;
3548 }
3549
3550 /*
3551 ** Indicate that the statement currently under construction might write
3552 ** more than one entry (example: deleting one row then inserting another,
3553 ** inserting multiple rows in a table, or inserting a row and index entries.)
3554 ** If an abort occurs after some of these writes have completed, then it will
3555 ** be necessary to undo the completed writes.
3556 */
sqlite3MultiWrite(Parse * pParse)3557 void sqlite3MultiWrite(Parse *pParse){
3558 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3559 pToplevel->isMultiWrite = 1;
3560 }
3561
3562 /*
3563 ** The code generator calls this routine if is discovers that it is
3564 ** possible to abort a statement prior to completion. In order to
3565 ** perform this abort without corrupting the database, we need to make
3566 ** sure that the statement is protected by a statement transaction.
3567 **
3568 ** Technically, we only need to set the mayAbort flag if the
3569 ** isMultiWrite flag was previously set. There is a time dependency
3570 ** such that the abort must occur after the multiwrite. This makes
3571 ** some statements involving the REPLACE conflict resolution algorithm
3572 ** go a little faster. But taking advantage of this time dependency
3573 ** makes it more difficult to prove that the code is correct (in
3574 ** particular, it prevents us from writing an effective
3575 ** implementation of sqlite3AssertMayAbort()) and so we have chosen
3576 ** to take the safe route and skip the optimization.
3577 */
sqlite3MayAbort(Parse * pParse)3578 void sqlite3MayAbort(Parse *pParse){
3579 Parse *pToplevel = sqlite3ParseToplevel(pParse);
3580 pToplevel->mayAbort = 1;
3581 }
3582
3583 /*
3584 ** Code an OP_Halt that causes the vdbe to return an SQLITE_CONSTRAINT
3585 ** error. The onError parameter determines which (if any) of the statement
3586 ** and/or current transaction is rolled back.
3587 */
sqlite3HaltConstraint(Parse * pParse,int onError,char * p4,int p4type)3588 void sqlite3HaltConstraint(Parse *pParse, int onError, char *p4, int p4type){
3589 Vdbe *v = sqlite3GetVdbe(pParse);
3590 if( onError==OE_Abort ){
3591 sqlite3MayAbort(pParse);
3592 }
3593 sqlite3VdbeAddOp4(v, OP_Halt, SQLITE_CONSTRAINT, onError, 0, p4, p4type);
3594 }
3595
3596 /*
3597 ** Check to see if pIndex uses the collating sequence pColl. Return
3598 ** true if it does and false if it does not.
3599 */
3600 #ifndef SQLITE_OMIT_REINDEX
collationMatch(const char * zColl,Index * pIndex)3601 static int collationMatch(const char *zColl, Index *pIndex){
3602 int i;
3603 assert( zColl!=0 );
3604 for(i=0; i<pIndex->nColumn; i++){
3605 const char *z = pIndex->azColl[i];
3606 assert( z!=0 );
3607 if( 0==sqlite3StrICmp(z, zColl) ){
3608 return 1;
3609 }
3610 }
3611 return 0;
3612 }
3613 #endif
3614
3615 /*
3616 ** Recompute all indices of pTab that use the collating sequence pColl.
3617 ** If pColl==0 then recompute all indices of pTab.
3618 */
3619 #ifndef SQLITE_OMIT_REINDEX
reindexTable(Parse * pParse,Table * pTab,char const * zColl)3620 static void reindexTable(Parse *pParse, Table *pTab, char const *zColl){
3621 Index *pIndex; /* An index associated with pTab */
3622
3623 for(pIndex=pTab->pIndex; pIndex; pIndex=pIndex->pNext){
3624 if( zColl==0 || collationMatch(zColl, pIndex) ){
3625 int iDb = sqlite3SchemaToIndex(pParse->db, pTab->pSchema);
3626 sqlite3BeginWriteOperation(pParse, 0, iDb);
3627 sqlite3RefillIndex(pParse, pIndex, -1);
3628 }
3629 }
3630 }
3631 #endif
3632
3633 /*
3634 ** Recompute all indices of all tables in all databases where the
3635 ** indices use the collating sequence pColl. If pColl==0 then recompute
3636 ** all indices everywhere.
3637 */
3638 #ifndef SQLITE_OMIT_REINDEX
reindexDatabases(Parse * pParse,char const * zColl)3639 static void reindexDatabases(Parse *pParse, char const *zColl){
3640 Db *pDb; /* A single database */
3641 int iDb; /* The database index number */
3642 sqlite3 *db = pParse->db; /* The database connection */
3643 HashElem *k; /* For looping over tables in pDb */
3644 Table *pTab; /* A table in the database */
3645
3646 assert( sqlite3BtreeHoldsAllMutexes(db) ); /* Needed for schema access */
3647 for(iDb=0, pDb=db->aDb; iDb<db->nDb; iDb++, pDb++){
3648 assert( pDb!=0 );
3649 for(k=sqliteHashFirst(&pDb->pSchema->tblHash); k; k=sqliteHashNext(k)){
3650 pTab = (Table*)sqliteHashData(k);
3651 reindexTable(pParse, pTab, zColl);
3652 }
3653 }
3654 }
3655 #endif
3656
3657 /*
3658 ** Generate code for the REINDEX command.
3659 **
3660 ** REINDEX -- 1
3661 ** REINDEX <collation> -- 2
3662 ** REINDEX ?<database>.?<tablename> -- 3
3663 ** REINDEX ?<database>.?<indexname> -- 4
3664 **
3665 ** Form 1 causes all indices in all attached databases to be rebuilt.
3666 ** Form 2 rebuilds all indices in all databases that use the named
3667 ** collating function. Forms 3 and 4 rebuild the named index or all
3668 ** indices associated with the named table.
3669 */
3670 #ifndef SQLITE_OMIT_REINDEX
sqlite3Reindex(Parse * pParse,Token * pName1,Token * pName2)3671 void sqlite3Reindex(Parse *pParse, Token *pName1, Token *pName2){
3672 CollSeq *pColl; /* Collating sequence to be reindexed, or NULL */
3673 char *z; /* Name of a table or index */
3674 const char *zDb; /* Name of the database */
3675 Table *pTab; /* A table in the database */
3676 Index *pIndex; /* An index associated with pTab */
3677 int iDb; /* The database index number */
3678 sqlite3 *db = pParse->db; /* The database connection */
3679 Token *pObjName; /* Name of the table or index to be reindexed */
3680
3681 /* Read the database schema. If an error occurs, leave an error message
3682 ** and code in pParse and return NULL. */
3683 if( SQLITE_OK!=sqlite3ReadSchema(pParse) ){
3684 return;
3685 }
3686
3687 if( pName1==0 ){
3688 reindexDatabases(pParse, 0);
3689 return;
3690 }else if( NEVER(pName2==0) || pName2->z==0 ){
3691 char *zColl;
3692 assert( pName1->z );
3693 zColl = sqlite3NameFromToken(pParse->db, pName1);
3694 if( !zColl ) return;
3695 pColl = sqlite3FindCollSeq(db, ENC(db), zColl, 0);
3696 if( pColl ){
3697 reindexDatabases(pParse, zColl);
3698 sqlite3DbFree(db, zColl);
3699 return;
3700 }
3701 sqlite3DbFree(db, zColl);
3702 }
3703 iDb = sqlite3TwoPartName(pParse, pName1, pName2, &pObjName);
3704 if( iDb<0 ) return;
3705 z = sqlite3NameFromToken(db, pObjName);
3706 if( z==0 ) return;
3707 zDb = db->aDb[iDb].zName;
3708 pTab = sqlite3FindTable(db, z, zDb);
3709 if( pTab ){
3710 reindexTable(pParse, pTab, 0);
3711 sqlite3DbFree(db, z);
3712 return;
3713 }
3714 pIndex = sqlite3FindIndex(db, z, zDb);
3715 sqlite3DbFree(db, z);
3716 if( pIndex ){
3717 sqlite3BeginWriteOperation(pParse, 0, iDb);
3718 sqlite3RefillIndex(pParse, pIndex, -1);
3719 return;
3720 }
3721 sqlite3ErrorMsg(pParse, "unable to identify the object to be reindexed");
3722 }
3723 #endif
3724
3725 /*
3726 ** Return a dynamicly allocated KeyInfo structure that can be used
3727 ** with OP_OpenRead or OP_OpenWrite to access database index pIdx.
3728 **
3729 ** If successful, a pointer to the new structure is returned. In this case
3730 ** the caller is responsible for calling sqlite3DbFree(db, ) on the returned
3731 ** pointer. If an error occurs (out of memory or missing collation
3732 ** sequence), NULL is returned and the state of pParse updated to reflect
3733 ** the error.
3734 */
sqlite3IndexKeyinfo(Parse * pParse,Index * pIdx)3735 KeyInfo *sqlite3IndexKeyinfo(Parse *pParse, Index *pIdx){
3736 int i;
3737 int nCol = pIdx->nColumn;
3738 int nBytes = sizeof(KeyInfo) + (nCol-1)*sizeof(CollSeq*) + nCol;
3739 sqlite3 *db = pParse->db;
3740 KeyInfo *pKey = (KeyInfo *)sqlite3DbMallocZero(db, nBytes);
3741
3742 if( pKey ){
3743 pKey->db = pParse->db;
3744 pKey->aSortOrder = (u8 *)&(pKey->aColl[nCol]);
3745 assert( &pKey->aSortOrder[nCol]==&(((u8 *)pKey)[nBytes]) );
3746 for(i=0; i<nCol; i++){
3747 char *zColl = pIdx->azColl[i];
3748 assert( zColl );
3749 pKey->aColl[i] = sqlite3LocateCollSeq(pParse, zColl);
3750 pKey->aSortOrder[i] = pIdx->aSortOrder[i];
3751 }
3752 pKey->nField = (u16)nCol;
3753 }
3754
3755 if( pParse->nErr ){
3756 sqlite3DbFree(db, pKey);
3757 pKey = 0;
3758 }
3759 return pKey;
3760 }
3761
3762 /* Begin preload-cache.patch for Chromium */
3763 /* See declaration in sqlite3.h for information */
sqlite3_preload(sqlite3 * db)3764 int sqlite3_preload(sqlite3 *db)
3765 {
3766 Pager *pPager;
3767 Btree *pBt;
3768 int rc;
3769 int i;
3770 int dbsLoaded = 0;
3771
3772 for(i=0; i<db->nDb; i++) {
3773 pBt = db->aDb[i].pBt;
3774 if( !pBt )
3775 continue;
3776 pPager = sqlite3BtreePager(pBt);
3777 if( pPager ) {
3778 rc = sqlite3PagerLoadall(pPager);
3779 if (rc == SQLITE_OK)
3780 dbsLoaded++;
3781 }
3782 }
3783 if (dbsLoaded == 0)
3784 return SQLITE_ERROR;
3785 return SQLITE_OK;
3786 }
3787 /* End preload-cache.patch for Chromium */
3788