• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/CodeGen/MachineInstr.cpp --------------------------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Methods common to all machine instructions.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/MachineInstr.h"
15 #include "llvm/ADT/FoldingSet.h"
16 #include "llvm/ADT/Hashing.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/Assembly/Writer.h"
19 #include "llvm/CodeGen/MachineConstantPool.h"
20 #include "llvm/CodeGen/MachineFunction.h"
21 #include "llvm/CodeGen/MachineMemOperand.h"
22 #include "llvm/CodeGen/MachineModuleInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/PseudoSourceValue.h"
25 #include "llvm/DebugInfo.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/InlineAsm.h"
29 #include "llvm/IR/LLVMContext.h"
30 #include "llvm/IR/Metadata.h"
31 #include "llvm/IR/Module.h"
32 #include "llvm/IR/Type.h"
33 #include "llvm/IR/Value.h"
34 #include "llvm/MC/MCInstrDesc.h"
35 #include "llvm/MC/MCSymbol.h"
36 #include "llvm/Support/Debug.h"
37 #include "llvm/Support/ErrorHandling.h"
38 #include "llvm/Support/MathExtras.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetInstrInfo.h"
41 #include "llvm/Target/TargetMachine.h"
42 #include "llvm/Target/TargetRegisterInfo.h"
43 using namespace llvm;
44 
45 //===----------------------------------------------------------------------===//
46 // MachineOperand Implementation
47 //===----------------------------------------------------------------------===//
48 
setReg(unsigned Reg)49 void MachineOperand::setReg(unsigned Reg) {
50   if (getReg() == Reg) return; // No change.
51 
52   // Otherwise, we have to change the register.  If this operand is embedded
53   // into a machine function, we need to update the old and new register's
54   // use/def lists.
55   if (MachineInstr *MI = getParent())
56     if (MachineBasicBlock *MBB = MI->getParent())
57       if (MachineFunction *MF = MBB->getParent()) {
58         MachineRegisterInfo &MRI = MF->getRegInfo();
59         MRI.removeRegOperandFromUseList(this);
60         SmallContents.RegNo = Reg;
61         MRI.addRegOperandToUseList(this);
62         return;
63       }
64 
65   // Otherwise, just change the register, no problem.  :)
66   SmallContents.RegNo = Reg;
67 }
68 
substVirtReg(unsigned Reg,unsigned SubIdx,const TargetRegisterInfo & TRI)69 void MachineOperand::substVirtReg(unsigned Reg, unsigned SubIdx,
70                                   const TargetRegisterInfo &TRI) {
71   assert(TargetRegisterInfo::isVirtualRegister(Reg));
72   if (SubIdx && getSubReg())
73     SubIdx = TRI.composeSubRegIndices(SubIdx, getSubReg());
74   setReg(Reg);
75   if (SubIdx)
76     setSubReg(SubIdx);
77 }
78 
substPhysReg(unsigned Reg,const TargetRegisterInfo & TRI)79 void MachineOperand::substPhysReg(unsigned Reg, const TargetRegisterInfo &TRI) {
80   assert(TargetRegisterInfo::isPhysicalRegister(Reg));
81   if (getSubReg()) {
82     Reg = TRI.getSubReg(Reg, getSubReg());
83     // Note that getSubReg() may return 0 if the sub-register doesn't exist.
84     // That won't happen in legal code.
85     setSubReg(0);
86   }
87   setReg(Reg);
88 }
89 
90 /// Change a def to a use, or a use to a def.
setIsDef(bool Val)91 void MachineOperand::setIsDef(bool Val) {
92   assert(isReg() && "Wrong MachineOperand accessor");
93   assert((!Val || !isDebug()) && "Marking a debug operation as def");
94   if (IsDef == Val)
95     return;
96   // MRI may keep uses and defs in different list positions.
97   if (MachineInstr *MI = getParent())
98     if (MachineBasicBlock *MBB = MI->getParent())
99       if (MachineFunction *MF = MBB->getParent()) {
100         MachineRegisterInfo &MRI = MF->getRegInfo();
101         MRI.removeRegOperandFromUseList(this);
102         IsDef = Val;
103         MRI.addRegOperandToUseList(this);
104         return;
105       }
106   IsDef = Val;
107 }
108 
109 /// ChangeToImmediate - Replace this operand with a new immediate operand of
110 /// the specified value.  If an operand is known to be an immediate already,
111 /// the setImm method should be used.
ChangeToImmediate(int64_t ImmVal)112 void MachineOperand::ChangeToImmediate(int64_t ImmVal) {
113   assert((!isReg() || !isTied()) && "Cannot change a tied operand into an imm");
114   // If this operand is currently a register operand, and if this is in a
115   // function, deregister the operand from the register's use/def list.
116   if (isReg() && isOnRegUseList())
117     if (MachineInstr *MI = getParent())
118       if (MachineBasicBlock *MBB = MI->getParent())
119         if (MachineFunction *MF = MBB->getParent())
120           MF->getRegInfo().removeRegOperandFromUseList(this);
121 
122   OpKind = MO_Immediate;
123   Contents.ImmVal = ImmVal;
124 }
125 
126 /// ChangeToRegister - Replace this operand with a new register operand of
127 /// the specified value.  If an operand is known to be an register already,
128 /// the setReg method should be used.
ChangeToRegister(unsigned Reg,bool isDef,bool isImp,bool isKill,bool isDead,bool isUndef,bool isDebug)129 void MachineOperand::ChangeToRegister(unsigned Reg, bool isDef, bool isImp,
130                                       bool isKill, bool isDead, bool isUndef,
131                                       bool isDebug) {
132   MachineRegisterInfo *RegInfo = 0;
133   if (MachineInstr *MI = getParent())
134     if (MachineBasicBlock *MBB = MI->getParent())
135       if (MachineFunction *MF = MBB->getParent())
136         RegInfo = &MF->getRegInfo();
137   // If this operand is already a register operand, remove it from the
138   // register's use/def lists.
139   bool WasReg = isReg();
140   if (RegInfo && WasReg)
141     RegInfo->removeRegOperandFromUseList(this);
142 
143   // Change this to a register and set the reg#.
144   OpKind = MO_Register;
145   SmallContents.RegNo = Reg;
146   SubReg_TargetFlags = 0;
147   IsDef = isDef;
148   IsImp = isImp;
149   IsKill = isKill;
150   IsDead = isDead;
151   IsUndef = isUndef;
152   IsInternalRead = false;
153   IsEarlyClobber = false;
154   IsDebug = isDebug;
155   // Ensure isOnRegUseList() returns false.
156   Contents.Reg.Prev = 0;
157   // Preserve the tie when the operand was already a register.
158   if (!WasReg)
159     TiedTo = 0;
160 
161   // If this operand is embedded in a function, add the operand to the
162   // register's use/def list.
163   if (RegInfo)
164     RegInfo->addRegOperandToUseList(this);
165 }
166 
167 /// isIdenticalTo - Return true if this operand is identical to the specified
168 /// operand. Note that this should stay in sync with the hash_value overload
169 /// below.
isIdenticalTo(const MachineOperand & Other) const170 bool MachineOperand::isIdenticalTo(const MachineOperand &Other) const {
171   if (getType() != Other.getType() ||
172       getTargetFlags() != Other.getTargetFlags())
173     return false;
174 
175   switch (getType()) {
176   case MachineOperand::MO_Register:
177     return getReg() == Other.getReg() && isDef() == Other.isDef() &&
178            getSubReg() == Other.getSubReg();
179   case MachineOperand::MO_Immediate:
180     return getImm() == Other.getImm();
181   case MachineOperand::MO_CImmediate:
182     return getCImm() == Other.getCImm();
183   case MachineOperand::MO_FPImmediate:
184     return getFPImm() == Other.getFPImm();
185   case MachineOperand::MO_MachineBasicBlock:
186     return getMBB() == Other.getMBB();
187   case MachineOperand::MO_FrameIndex:
188     return getIndex() == Other.getIndex();
189   case MachineOperand::MO_ConstantPoolIndex:
190   case MachineOperand::MO_TargetIndex:
191     return getIndex() == Other.getIndex() && getOffset() == Other.getOffset();
192   case MachineOperand::MO_JumpTableIndex:
193     return getIndex() == Other.getIndex();
194   case MachineOperand::MO_GlobalAddress:
195     return getGlobal() == Other.getGlobal() && getOffset() == Other.getOffset();
196   case MachineOperand::MO_ExternalSymbol:
197     return !strcmp(getSymbolName(), Other.getSymbolName()) &&
198            getOffset() == Other.getOffset();
199   case MachineOperand::MO_BlockAddress:
200     return getBlockAddress() == Other.getBlockAddress() &&
201            getOffset() == Other.getOffset();
202   case MO_RegisterMask:
203     return getRegMask() == Other.getRegMask();
204   case MachineOperand::MO_MCSymbol:
205     return getMCSymbol() == Other.getMCSymbol();
206   case MachineOperand::MO_Metadata:
207     return getMetadata() == Other.getMetadata();
208   }
209   llvm_unreachable("Invalid machine operand type");
210 }
211 
212 // Note: this must stay exactly in sync with isIdenticalTo above.
hash_value(const MachineOperand & MO)213 hash_code llvm::hash_value(const MachineOperand &MO) {
214   switch (MO.getType()) {
215   case MachineOperand::MO_Register:
216     // Register operands don't have target flags.
217     return hash_combine(MO.getType(), MO.getReg(), MO.getSubReg(), MO.isDef());
218   case MachineOperand::MO_Immediate:
219     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getImm());
220   case MachineOperand::MO_CImmediate:
221     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getCImm());
222   case MachineOperand::MO_FPImmediate:
223     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getFPImm());
224   case MachineOperand::MO_MachineBasicBlock:
225     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMBB());
226   case MachineOperand::MO_FrameIndex:
227     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
228   case MachineOperand::MO_ConstantPoolIndex:
229   case MachineOperand::MO_TargetIndex:
230     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex(),
231                         MO.getOffset());
232   case MachineOperand::MO_JumpTableIndex:
233     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getIndex());
234   case MachineOperand::MO_ExternalSymbol:
235     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getOffset(),
236                         MO.getSymbolName());
237   case MachineOperand::MO_GlobalAddress:
238     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getGlobal(),
239                         MO.getOffset());
240   case MachineOperand::MO_BlockAddress:
241     return hash_combine(MO.getType(), MO.getTargetFlags(),
242                         MO.getBlockAddress(), MO.getOffset());
243   case MachineOperand::MO_RegisterMask:
244     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getRegMask());
245   case MachineOperand::MO_Metadata:
246     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMetadata());
247   case MachineOperand::MO_MCSymbol:
248     return hash_combine(MO.getType(), MO.getTargetFlags(), MO.getMCSymbol());
249   }
250   llvm_unreachable("Invalid machine operand type");
251 }
252 
253 /// print - Print the specified machine operand.
254 ///
print(raw_ostream & OS,const TargetMachine * TM) const255 void MachineOperand::print(raw_ostream &OS, const TargetMachine *TM) const {
256   // If the instruction is embedded into a basic block, we can find the
257   // target info for the instruction.
258   if (!TM)
259     if (const MachineInstr *MI = getParent())
260       if (const MachineBasicBlock *MBB = MI->getParent())
261         if (const MachineFunction *MF = MBB->getParent())
262           TM = &MF->getTarget();
263   const TargetRegisterInfo *TRI = TM ? TM->getRegisterInfo() : 0;
264 
265   switch (getType()) {
266   case MachineOperand::MO_Register:
267     OS << PrintReg(getReg(), TRI, getSubReg());
268 
269     if (isDef() || isKill() || isDead() || isImplicit() || isUndef() ||
270         isInternalRead() || isEarlyClobber() || isTied()) {
271       OS << '<';
272       bool NeedComma = false;
273       if (isDef()) {
274         if (NeedComma) OS << ',';
275         if (isEarlyClobber())
276           OS << "earlyclobber,";
277         if (isImplicit())
278           OS << "imp-";
279         OS << "def";
280         NeedComma = true;
281         // <def,read-undef> only makes sense when getSubReg() is set.
282         // Don't clutter the output otherwise.
283         if (isUndef() && getSubReg())
284           OS << ",read-undef";
285       } else if (isImplicit()) {
286           OS << "imp-use";
287           NeedComma = true;
288       }
289 
290       if (isKill()) {
291         if (NeedComma) OS << ',';
292         OS << "kill";
293         NeedComma = true;
294       }
295       if (isDead()) {
296         if (NeedComma) OS << ',';
297         OS << "dead";
298         NeedComma = true;
299       }
300       if (isUndef() && isUse()) {
301         if (NeedComma) OS << ',';
302         OS << "undef";
303         NeedComma = true;
304       }
305       if (isInternalRead()) {
306         if (NeedComma) OS << ',';
307         OS << "internal";
308         NeedComma = true;
309       }
310       if (isTied()) {
311         if (NeedComma) OS << ',';
312         OS << "tied";
313         if (TiedTo != 15)
314           OS << unsigned(TiedTo - 1);
315         NeedComma = true;
316       }
317       OS << '>';
318     }
319     break;
320   case MachineOperand::MO_Immediate:
321     OS << getImm();
322     break;
323   case MachineOperand::MO_CImmediate:
324     getCImm()->getValue().print(OS, false);
325     break;
326   case MachineOperand::MO_FPImmediate:
327     if (getFPImm()->getType()->isFloatTy())
328       OS << getFPImm()->getValueAPF().convertToFloat();
329     else
330       OS << getFPImm()->getValueAPF().convertToDouble();
331     break;
332   case MachineOperand::MO_MachineBasicBlock:
333     OS << "<BB#" << getMBB()->getNumber() << ">";
334     break;
335   case MachineOperand::MO_FrameIndex:
336     OS << "<fi#" << getIndex() << '>';
337     break;
338   case MachineOperand::MO_ConstantPoolIndex:
339     OS << "<cp#" << getIndex();
340     if (getOffset()) OS << "+" << getOffset();
341     OS << '>';
342     break;
343   case MachineOperand::MO_TargetIndex:
344     OS << "<ti#" << getIndex();
345     if (getOffset()) OS << "+" << getOffset();
346     OS << '>';
347     break;
348   case MachineOperand::MO_JumpTableIndex:
349     OS << "<jt#" << getIndex() << '>';
350     break;
351   case MachineOperand::MO_GlobalAddress:
352     OS << "<ga:";
353     WriteAsOperand(OS, getGlobal(), /*PrintType=*/false);
354     if (getOffset()) OS << "+" << getOffset();
355     OS << '>';
356     break;
357   case MachineOperand::MO_ExternalSymbol:
358     OS << "<es:" << getSymbolName();
359     if (getOffset()) OS << "+" << getOffset();
360     OS << '>';
361     break;
362   case MachineOperand::MO_BlockAddress:
363     OS << '<';
364     WriteAsOperand(OS, getBlockAddress(), /*PrintType=*/false);
365     if (getOffset()) OS << "+" << getOffset();
366     OS << '>';
367     break;
368   case MachineOperand::MO_RegisterMask:
369     OS << "<regmask>";
370     break;
371   case MachineOperand::MO_Metadata:
372     OS << '<';
373     WriteAsOperand(OS, getMetadata(), /*PrintType=*/false);
374     OS << '>';
375     break;
376   case MachineOperand::MO_MCSymbol:
377     OS << "<MCSym=" << *getMCSymbol() << '>';
378     break;
379   }
380 
381   if (unsigned TF = getTargetFlags())
382     OS << "[TF=" << TF << ']';
383 }
384 
385 //===----------------------------------------------------------------------===//
386 // MachineMemOperand Implementation
387 //===----------------------------------------------------------------------===//
388 
389 /// getAddrSpace - Return the LLVM IR address space number that this pointer
390 /// points into.
getAddrSpace() const391 unsigned MachinePointerInfo::getAddrSpace() const {
392   if (V == 0) return 0;
393   return cast<PointerType>(V->getType())->getAddressSpace();
394 }
395 
396 /// getConstantPool - Return a MachinePointerInfo record that refers to the
397 /// constant pool.
getConstantPool()398 MachinePointerInfo MachinePointerInfo::getConstantPool() {
399   return MachinePointerInfo(PseudoSourceValue::getConstantPool());
400 }
401 
402 /// getFixedStack - Return a MachinePointerInfo record that refers to the
403 /// the specified FrameIndex.
getFixedStack(int FI,int64_t offset)404 MachinePointerInfo MachinePointerInfo::getFixedStack(int FI, int64_t offset) {
405   return MachinePointerInfo(PseudoSourceValue::getFixedStack(FI), offset);
406 }
407 
getJumpTable()408 MachinePointerInfo MachinePointerInfo::getJumpTable() {
409   return MachinePointerInfo(PseudoSourceValue::getJumpTable());
410 }
411 
getGOT()412 MachinePointerInfo MachinePointerInfo::getGOT() {
413   return MachinePointerInfo(PseudoSourceValue::getGOT());
414 }
415 
getStack(int64_t Offset)416 MachinePointerInfo MachinePointerInfo::getStack(int64_t Offset) {
417   return MachinePointerInfo(PseudoSourceValue::getStack(), Offset);
418 }
419 
MachineMemOperand(MachinePointerInfo ptrinfo,unsigned f,uint64_t s,unsigned int a,const MDNode * TBAAInfo,const MDNode * Ranges)420 MachineMemOperand::MachineMemOperand(MachinePointerInfo ptrinfo, unsigned f,
421                                      uint64_t s, unsigned int a,
422                                      const MDNode *TBAAInfo,
423                                      const MDNode *Ranges)
424   : PtrInfo(ptrinfo), Size(s),
425     Flags((f & ((1 << MOMaxBits) - 1)) | ((Log2_32(a) + 1) << MOMaxBits)),
426     TBAAInfo(TBAAInfo), Ranges(Ranges) {
427   assert((PtrInfo.V == 0 || isa<PointerType>(PtrInfo.V->getType())) &&
428          "invalid pointer value");
429   assert(getBaseAlignment() == a && "Alignment is not a power of 2!");
430   assert((isLoad() || isStore()) && "Not a load/store!");
431 }
432 
433 /// Profile - Gather unique data for the object.
434 ///
Profile(FoldingSetNodeID & ID) const435 void MachineMemOperand::Profile(FoldingSetNodeID &ID) const {
436   ID.AddInteger(getOffset());
437   ID.AddInteger(Size);
438   ID.AddPointer(getValue());
439   ID.AddInteger(Flags);
440 }
441 
refineAlignment(const MachineMemOperand * MMO)442 void MachineMemOperand::refineAlignment(const MachineMemOperand *MMO) {
443   // The Value and Offset may differ due to CSE. But the flags and size
444   // should be the same.
445   assert(MMO->getFlags() == getFlags() && "Flags mismatch!");
446   assert(MMO->getSize() == getSize() && "Size mismatch!");
447 
448   if (MMO->getBaseAlignment() >= getBaseAlignment()) {
449     // Update the alignment value.
450     Flags = (Flags & ((1 << MOMaxBits) - 1)) |
451       ((Log2_32(MMO->getBaseAlignment()) + 1) << MOMaxBits);
452     // Also update the base and offset, because the new alignment may
453     // not be applicable with the old ones.
454     PtrInfo = MMO->PtrInfo;
455   }
456 }
457 
458 /// getAlignment - Return the minimum known alignment in bytes of the
459 /// actual memory reference.
getAlignment() const460 uint64_t MachineMemOperand::getAlignment() const {
461   return MinAlign(getBaseAlignment(), getOffset());
462 }
463 
operator <<(raw_ostream & OS,const MachineMemOperand & MMO)464 raw_ostream &llvm::operator<<(raw_ostream &OS, const MachineMemOperand &MMO) {
465   assert((MMO.isLoad() || MMO.isStore()) &&
466          "SV has to be a load, store or both.");
467 
468   if (MMO.isVolatile())
469     OS << "Volatile ";
470 
471   if (MMO.isLoad())
472     OS << "LD";
473   if (MMO.isStore())
474     OS << "ST";
475   OS << MMO.getSize();
476 
477   // Print the address information.
478   OS << "[";
479   if (!MMO.getValue())
480     OS << "<unknown>";
481   else
482     WriteAsOperand(OS, MMO.getValue(), /*PrintType=*/false);
483 
484   // If the alignment of the memory reference itself differs from the alignment
485   // of the base pointer, print the base alignment explicitly, next to the base
486   // pointer.
487   if (MMO.getBaseAlignment() != MMO.getAlignment())
488     OS << "(align=" << MMO.getBaseAlignment() << ")";
489 
490   if (MMO.getOffset() != 0)
491     OS << "+" << MMO.getOffset();
492   OS << "]";
493 
494   // Print the alignment of the reference.
495   if (MMO.getBaseAlignment() != MMO.getAlignment() ||
496       MMO.getBaseAlignment() != MMO.getSize())
497     OS << "(align=" << MMO.getAlignment() << ")";
498 
499   // Print TBAA info.
500   if (const MDNode *TBAAInfo = MMO.getTBAAInfo()) {
501     OS << "(tbaa=";
502     if (TBAAInfo->getNumOperands() > 0)
503       WriteAsOperand(OS, TBAAInfo->getOperand(0), /*PrintType=*/false);
504     else
505       OS << "<unknown>";
506     OS << ")";
507   }
508 
509   // Print nontemporal info.
510   if (MMO.isNonTemporal())
511     OS << "(nontemporal)";
512 
513   return OS;
514 }
515 
516 //===----------------------------------------------------------------------===//
517 // MachineInstr Implementation
518 //===----------------------------------------------------------------------===//
519 
addImplicitDefUseOperands(MachineFunction & MF)520 void MachineInstr::addImplicitDefUseOperands(MachineFunction &MF) {
521   if (MCID->ImplicitDefs)
522     for (const uint16_t *ImpDefs = MCID->getImplicitDefs(); *ImpDefs; ++ImpDefs)
523       addOperand(MF, MachineOperand::CreateReg(*ImpDefs, true, true));
524   if (MCID->ImplicitUses)
525     for (const uint16_t *ImpUses = MCID->getImplicitUses(); *ImpUses; ++ImpUses)
526       addOperand(MF, MachineOperand::CreateReg(*ImpUses, false, true));
527 }
528 
529 /// MachineInstr ctor - This constructor creates a MachineInstr and adds the
530 /// implicit operands. It reserves space for the number of operands specified by
531 /// the MCInstrDesc.
MachineInstr(MachineFunction & MF,const MCInstrDesc & tid,const DebugLoc dl,bool NoImp)532 MachineInstr::MachineInstr(MachineFunction &MF, const MCInstrDesc &tid,
533                            const DebugLoc dl, bool NoImp)
534   : MCID(&tid), Parent(0), Operands(0), NumOperands(0),
535     Flags(0), AsmPrinterFlags(0),
536     NumMemRefs(0), MemRefs(0), debugLoc(dl) {
537   // Reserve space for the expected number of operands.
538   if (unsigned NumOps = MCID->getNumOperands() +
539     MCID->getNumImplicitDefs() + MCID->getNumImplicitUses()) {
540     CapOperands = OperandCapacity::get(NumOps);
541     Operands = MF.allocateOperandArray(CapOperands);
542   }
543 
544   if (!NoImp)
545     addImplicitDefUseOperands(MF);
546 }
547 
548 /// MachineInstr ctor - Copies MachineInstr arg exactly
549 ///
MachineInstr(MachineFunction & MF,const MachineInstr & MI)550 MachineInstr::MachineInstr(MachineFunction &MF, const MachineInstr &MI)
551   : MCID(&MI.getDesc()), Parent(0), Operands(0), NumOperands(0),
552     Flags(0), AsmPrinterFlags(0),
553     NumMemRefs(MI.NumMemRefs), MemRefs(MI.MemRefs),
554     debugLoc(MI.getDebugLoc()) {
555   CapOperands = OperandCapacity::get(MI.getNumOperands());
556   Operands = MF.allocateOperandArray(CapOperands);
557 
558   // Copy operands.
559   for (unsigned i = 0; i != MI.getNumOperands(); ++i)
560     addOperand(MF, MI.getOperand(i));
561 
562   // Copy all the sensible flags.
563   setFlags(MI.Flags);
564 }
565 
566 /// getRegInfo - If this instruction is embedded into a MachineFunction,
567 /// return the MachineRegisterInfo object for the current function, otherwise
568 /// return null.
getRegInfo()569 MachineRegisterInfo *MachineInstr::getRegInfo() {
570   if (MachineBasicBlock *MBB = getParent())
571     return &MBB->getParent()->getRegInfo();
572   return 0;
573 }
574 
575 /// RemoveRegOperandsFromUseLists - Unlink all of the register operands in
576 /// this instruction from their respective use lists.  This requires that the
577 /// operands already be on their use lists.
RemoveRegOperandsFromUseLists(MachineRegisterInfo & MRI)578 void MachineInstr::RemoveRegOperandsFromUseLists(MachineRegisterInfo &MRI) {
579   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
580     if (Operands[i].isReg())
581       MRI.removeRegOperandFromUseList(&Operands[i]);
582 }
583 
584 /// AddRegOperandsToUseLists - Add all of the register operands in
585 /// this instruction from their respective use lists.  This requires that the
586 /// operands not be on their use lists yet.
AddRegOperandsToUseLists(MachineRegisterInfo & MRI)587 void MachineInstr::AddRegOperandsToUseLists(MachineRegisterInfo &MRI) {
588   for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
589     if (Operands[i].isReg())
590       MRI.addRegOperandToUseList(&Operands[i]);
591 }
592 
addOperand(const MachineOperand & Op)593 void MachineInstr::addOperand(const MachineOperand &Op) {
594   MachineBasicBlock *MBB = getParent();
595   assert(MBB && "Use MachineInstrBuilder to add operands to dangling instrs");
596   MachineFunction *MF = MBB->getParent();
597   assert(MF && "Use MachineInstrBuilder to add operands to dangling instrs");
598   addOperand(*MF, Op);
599 }
600 
601 /// Move NumOps MachineOperands from Src to Dst, with support for overlapping
602 /// ranges. If MRI is non-null also update use-def chains.
moveOperands(MachineOperand * Dst,MachineOperand * Src,unsigned NumOps,MachineRegisterInfo * MRI)603 static void moveOperands(MachineOperand *Dst, MachineOperand *Src,
604                          unsigned NumOps, MachineRegisterInfo *MRI) {
605   if (MRI)
606     return MRI->moveOperands(Dst, Src, NumOps);
607 
608   // Here it would be convenient to call memmove, so that isn't allowed because
609   // MachineOperand has a constructor and so isn't a POD type.
610   if (Dst < Src)
611     for (unsigned i = 0; i != NumOps; ++i)
612       new (Dst + i) MachineOperand(Src[i]);
613   else
614     for (unsigned i = NumOps; i ; --i)
615       new (Dst + i - 1) MachineOperand(Src[i - 1]);
616 }
617 
618 /// addOperand - Add the specified operand to the instruction.  If it is an
619 /// implicit operand, it is added to the end of the operand list.  If it is
620 /// an explicit operand it is added at the end of the explicit operand list
621 /// (before the first implicit operand).
addOperand(MachineFunction & MF,const MachineOperand & Op)622 void MachineInstr::addOperand(MachineFunction &MF, const MachineOperand &Op) {
623   assert(MCID && "Cannot add operands before providing an instr descriptor");
624 
625   // Check if we're adding one of our existing operands.
626   if (&Op >= Operands && &Op < Operands + NumOperands) {
627     // This is unusual: MI->addOperand(MI->getOperand(i)).
628     // If adding Op requires reallocating or moving existing operands around,
629     // the Op reference could go stale. Support it by copying Op.
630     MachineOperand CopyOp(Op);
631     return addOperand(MF, CopyOp);
632   }
633 
634   // Find the insert location for the new operand.  Implicit registers go at
635   // the end, everything else goes before the implicit regs.
636   //
637   // FIXME: Allow mixed explicit and implicit operands on inline asm.
638   // InstrEmitter::EmitSpecialNode() is marking inline asm clobbers as
639   // implicit-defs, but they must not be moved around.  See the FIXME in
640   // InstrEmitter.cpp.
641   unsigned OpNo = getNumOperands();
642   bool isImpReg = Op.isReg() && Op.isImplicit();
643   if (!isImpReg && !isInlineAsm()) {
644     while (OpNo && Operands[OpNo-1].isReg() && Operands[OpNo-1].isImplicit()) {
645       --OpNo;
646       assert(!Operands[OpNo].isTied() && "Cannot move tied operands");
647     }
648   }
649 
650   // OpNo now points as the desired insertion point.  Unless this is a variadic
651   // instruction, only implicit regs are allowed beyond MCID->getNumOperands().
652   // RegMask operands go between the explicit and implicit operands.
653   assert((isImpReg || Op.isRegMask() || MCID->isVariadic() ||
654           OpNo < MCID->getNumOperands()) &&
655          "Trying to add an operand to a machine instr that is already done!");
656 
657   MachineRegisterInfo *MRI = getRegInfo();
658 
659   // Determine if the Operands array needs to be reallocated.
660   // Save the old capacity and operand array.
661   OperandCapacity OldCap = CapOperands;
662   MachineOperand *OldOperands = Operands;
663   if (!OldOperands || OldCap.getSize() == getNumOperands()) {
664     CapOperands = OldOperands ? OldCap.getNext() : OldCap.get(1);
665     Operands = MF.allocateOperandArray(CapOperands);
666     // Move the operands before the insertion point.
667     if (OpNo)
668       moveOperands(Operands, OldOperands, OpNo, MRI);
669   }
670 
671   // Move the operands following the insertion point.
672   if (OpNo != NumOperands)
673     moveOperands(Operands + OpNo + 1, OldOperands + OpNo, NumOperands - OpNo,
674                  MRI);
675   ++NumOperands;
676 
677   // Deallocate the old operand array.
678   if (OldOperands != Operands && OldOperands)
679     MF.deallocateOperandArray(OldCap, OldOperands);
680 
681   // Copy Op into place. It still needs to be inserted into the MRI use lists.
682   MachineOperand *NewMO = new (Operands + OpNo) MachineOperand(Op);
683   NewMO->ParentMI = this;
684 
685   // When adding a register operand, tell MRI about it.
686   if (NewMO->isReg()) {
687     // Ensure isOnRegUseList() returns false, regardless of Op's status.
688     NewMO->Contents.Reg.Prev = 0;
689     // Ignore existing ties. This is not a property that can be copied.
690     NewMO->TiedTo = 0;
691     // Add the new operand to MRI, but only for instructions in an MBB.
692     if (MRI)
693       MRI->addRegOperandToUseList(NewMO);
694     // The MCID operand information isn't accurate until we start adding
695     // explicit operands. The implicit operands are added first, then the
696     // explicits are inserted before them.
697     if (!isImpReg) {
698       // Tie uses to defs as indicated in MCInstrDesc.
699       if (NewMO->isUse()) {
700         int DefIdx = MCID->getOperandConstraint(OpNo, MCOI::TIED_TO);
701         if (DefIdx != -1)
702           tieOperands(DefIdx, OpNo);
703       }
704       // If the register operand is flagged as early, mark the operand as such.
705       if (MCID->getOperandConstraint(OpNo, MCOI::EARLY_CLOBBER) != -1)
706         NewMO->setIsEarlyClobber(true);
707     }
708   }
709 }
710 
711 /// RemoveOperand - Erase an operand  from an instruction, leaving it with one
712 /// fewer operand than it started with.
713 ///
RemoveOperand(unsigned OpNo)714 void MachineInstr::RemoveOperand(unsigned OpNo) {
715   assert(OpNo < getNumOperands() && "Invalid operand number");
716   untieRegOperand(OpNo);
717 
718 #ifndef NDEBUG
719   // Moving tied operands would break the ties.
720   for (unsigned i = OpNo + 1, e = getNumOperands(); i != e; ++i)
721     if (Operands[i].isReg())
722       assert(!Operands[i].isTied() && "Cannot move tied operands");
723 #endif
724 
725   MachineRegisterInfo *MRI = getRegInfo();
726   if (MRI && Operands[OpNo].isReg())
727     MRI->removeRegOperandFromUseList(Operands + OpNo);
728 
729   // Don't call the MachineOperand destructor. A lot of this code depends on
730   // MachineOperand having a trivial destructor anyway, and adding a call here
731   // wouldn't make it 'destructor-correct'.
732 
733   if (unsigned N = NumOperands - 1 - OpNo)
734     moveOperands(Operands + OpNo, Operands + OpNo + 1, N, MRI);
735   --NumOperands;
736 }
737 
738 /// addMemOperand - Add a MachineMemOperand to the machine instruction.
739 /// This function should be used only occasionally. The setMemRefs function
740 /// is the primary method for setting up a MachineInstr's MemRefs list.
addMemOperand(MachineFunction & MF,MachineMemOperand * MO)741 void MachineInstr::addMemOperand(MachineFunction &MF,
742                                  MachineMemOperand *MO) {
743   mmo_iterator OldMemRefs = MemRefs;
744   unsigned OldNumMemRefs = NumMemRefs;
745 
746   unsigned NewNum = NumMemRefs + 1;
747   mmo_iterator NewMemRefs = MF.allocateMemRefsArray(NewNum);
748 
749   std::copy(OldMemRefs, OldMemRefs + OldNumMemRefs, NewMemRefs);
750   NewMemRefs[NewNum - 1] = MO;
751   setMemRefs(NewMemRefs, NewMemRefs + NewNum);
752 }
753 
hasPropertyInBundle(unsigned Mask,QueryType Type) const754 bool MachineInstr::hasPropertyInBundle(unsigned Mask, QueryType Type) const {
755   assert(!isBundledWithPred() && "Must be called on bundle header");
756   for (MachineBasicBlock::const_instr_iterator MII = this;; ++MII) {
757     if (MII->getDesc().getFlags() & Mask) {
758       if (Type == AnyInBundle)
759         return true;
760     } else {
761       if (Type == AllInBundle && !MII->isBundle())
762         return false;
763     }
764     // This was the last instruction in the bundle.
765     if (!MII->isBundledWithSucc())
766       return Type == AllInBundle;
767   }
768 }
769 
isIdenticalTo(const MachineInstr * Other,MICheckType Check) const770 bool MachineInstr::isIdenticalTo(const MachineInstr *Other,
771                                  MICheckType Check) const {
772   // If opcodes or number of operands are not the same then the two
773   // instructions are obviously not identical.
774   if (Other->getOpcode() != getOpcode() ||
775       Other->getNumOperands() != getNumOperands())
776     return false;
777 
778   if (isBundle()) {
779     // Both instructions are bundles, compare MIs inside the bundle.
780     MachineBasicBlock::const_instr_iterator I1 = *this;
781     MachineBasicBlock::const_instr_iterator E1 = getParent()->instr_end();
782     MachineBasicBlock::const_instr_iterator I2 = *Other;
783     MachineBasicBlock::const_instr_iterator E2= Other->getParent()->instr_end();
784     while (++I1 != E1 && I1->isInsideBundle()) {
785       ++I2;
786       if (I2 == E2 || !I2->isInsideBundle() || !I1->isIdenticalTo(I2, Check))
787         return false;
788     }
789   }
790 
791   // Check operands to make sure they match.
792   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
793     const MachineOperand &MO = getOperand(i);
794     const MachineOperand &OMO = Other->getOperand(i);
795     if (!MO.isReg()) {
796       if (!MO.isIdenticalTo(OMO))
797         return false;
798       continue;
799     }
800 
801     // Clients may or may not want to ignore defs when testing for equality.
802     // For example, machine CSE pass only cares about finding common
803     // subexpressions, so it's safe to ignore virtual register defs.
804     if (MO.isDef()) {
805       if (Check == IgnoreDefs)
806         continue;
807       else if (Check == IgnoreVRegDefs) {
808         if (TargetRegisterInfo::isPhysicalRegister(MO.getReg()) ||
809             TargetRegisterInfo::isPhysicalRegister(OMO.getReg()))
810           if (MO.getReg() != OMO.getReg())
811             return false;
812       } else {
813         if (!MO.isIdenticalTo(OMO))
814           return false;
815         if (Check == CheckKillDead && MO.isDead() != OMO.isDead())
816           return false;
817       }
818     } else {
819       if (!MO.isIdenticalTo(OMO))
820         return false;
821       if (Check == CheckKillDead && MO.isKill() != OMO.isKill())
822         return false;
823     }
824   }
825   // If DebugLoc does not match then two dbg.values are not identical.
826   if (isDebugValue())
827     if (!getDebugLoc().isUnknown() && !Other->getDebugLoc().isUnknown()
828         && getDebugLoc() != Other->getDebugLoc())
829       return false;
830   return true;
831 }
832 
removeFromParent()833 MachineInstr *MachineInstr::removeFromParent() {
834   assert(getParent() && "Not embedded in a basic block!");
835   return getParent()->remove(this);
836 }
837 
removeFromBundle()838 MachineInstr *MachineInstr::removeFromBundle() {
839   assert(getParent() && "Not embedded in a basic block!");
840   return getParent()->remove_instr(this);
841 }
842 
eraseFromParent()843 void MachineInstr::eraseFromParent() {
844   assert(getParent() && "Not embedded in a basic block!");
845   getParent()->erase(this);
846 }
847 
eraseFromBundle()848 void MachineInstr::eraseFromBundle() {
849   assert(getParent() && "Not embedded in a basic block!");
850   getParent()->erase_instr(this);
851 }
852 
853 /// getNumExplicitOperands - Returns the number of non-implicit operands.
854 ///
getNumExplicitOperands() const855 unsigned MachineInstr::getNumExplicitOperands() const {
856   unsigned NumOperands = MCID->getNumOperands();
857   if (!MCID->isVariadic())
858     return NumOperands;
859 
860   for (unsigned i = NumOperands, e = getNumOperands(); i != e; ++i) {
861     const MachineOperand &MO = getOperand(i);
862     if (!MO.isReg() || !MO.isImplicit())
863       NumOperands++;
864   }
865   return NumOperands;
866 }
867 
bundleWithPred()868 void MachineInstr::bundleWithPred() {
869   assert(!isBundledWithPred() && "MI is already bundled with its predecessor");
870   setFlag(BundledPred);
871   MachineBasicBlock::instr_iterator Pred = this;
872   --Pred;
873   assert(!Pred->isBundledWithSucc() && "Inconsistent bundle flags");
874   Pred->setFlag(BundledSucc);
875 }
876 
bundleWithSucc()877 void MachineInstr::bundleWithSucc() {
878   assert(!isBundledWithSucc() && "MI is already bundled with its successor");
879   setFlag(BundledSucc);
880   MachineBasicBlock::instr_iterator Succ = this;
881   ++Succ;
882   assert(!Succ->isBundledWithPred() && "Inconsistent bundle flags");
883   Succ->setFlag(BundledPred);
884 }
885 
unbundleFromPred()886 void MachineInstr::unbundleFromPred() {
887   assert(isBundledWithPred() && "MI isn't bundled with its predecessor");
888   clearFlag(BundledPred);
889   MachineBasicBlock::instr_iterator Pred = this;
890   --Pred;
891   assert(Pred->isBundledWithSucc() && "Inconsistent bundle flags");
892   Pred->clearFlag(BundledSucc);
893 }
894 
unbundleFromSucc()895 void MachineInstr::unbundleFromSucc() {
896   assert(isBundledWithSucc() && "MI isn't bundled with its successor");
897   clearFlag(BundledSucc);
898   MachineBasicBlock::instr_iterator Succ = this;
899   ++Succ;
900   assert(Succ->isBundledWithPred() && "Inconsistent bundle flags");
901   Succ->clearFlag(BundledPred);
902 }
903 
isStackAligningInlineAsm() const904 bool MachineInstr::isStackAligningInlineAsm() const {
905   if (isInlineAsm()) {
906     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
907     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
908       return true;
909   }
910   return false;
911 }
912 
getInlineAsmDialect() const913 InlineAsm::AsmDialect MachineInstr::getInlineAsmDialect() const {
914   assert(isInlineAsm() && "getInlineAsmDialect() only works for inline asms!");
915   unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
916   return InlineAsm::AsmDialect((ExtraInfo & InlineAsm::Extra_AsmDialect) != 0);
917 }
918 
findInlineAsmFlagIdx(unsigned OpIdx,unsigned * GroupNo) const919 int MachineInstr::findInlineAsmFlagIdx(unsigned OpIdx,
920                                        unsigned *GroupNo) const {
921   assert(isInlineAsm() && "Expected an inline asm instruction");
922   assert(OpIdx < getNumOperands() && "OpIdx out of range");
923 
924   // Ignore queries about the initial operands.
925   if (OpIdx < InlineAsm::MIOp_FirstOperand)
926     return -1;
927 
928   unsigned Group = 0;
929   unsigned NumOps;
930   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
931        i += NumOps) {
932     const MachineOperand &FlagMO = getOperand(i);
933     // If we reach the implicit register operands, stop looking.
934     if (!FlagMO.isImm())
935       return -1;
936     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
937     if (i + NumOps > OpIdx) {
938       if (GroupNo)
939         *GroupNo = Group;
940       return i;
941     }
942     ++Group;
943   }
944   return -1;
945 }
946 
947 const TargetRegisterClass*
getRegClassConstraint(unsigned OpIdx,const TargetInstrInfo * TII,const TargetRegisterInfo * TRI) const948 MachineInstr::getRegClassConstraint(unsigned OpIdx,
949                                     const TargetInstrInfo *TII,
950                                     const TargetRegisterInfo *TRI) const {
951   assert(getParent() && "Can't have an MBB reference here!");
952   assert(getParent()->getParent() && "Can't have an MF reference here!");
953   const MachineFunction &MF = *getParent()->getParent();
954 
955   // Most opcodes have fixed constraints in their MCInstrDesc.
956   if (!isInlineAsm())
957     return TII->getRegClass(getDesc(), OpIdx, TRI, MF);
958 
959   if (!getOperand(OpIdx).isReg())
960     return NULL;
961 
962   // For tied uses on inline asm, get the constraint from the def.
963   unsigned DefIdx;
964   if (getOperand(OpIdx).isUse() && isRegTiedToDefOperand(OpIdx, &DefIdx))
965     OpIdx = DefIdx;
966 
967   // Inline asm stores register class constraints in the flag word.
968   int FlagIdx = findInlineAsmFlagIdx(OpIdx);
969   if (FlagIdx < 0)
970     return NULL;
971 
972   unsigned Flag = getOperand(FlagIdx).getImm();
973   unsigned RCID;
974   if (InlineAsm::hasRegClassConstraint(Flag, RCID))
975     return TRI->getRegClass(RCID);
976 
977   // Assume that all registers in a memory operand are pointers.
978   if (InlineAsm::getKind(Flag) == InlineAsm::Kind_Mem)
979     return TRI->getPointerRegClass(MF);
980 
981   return NULL;
982 }
983 
984 /// Return the number of instructions inside the MI bundle, not counting the
985 /// header instruction.
getBundleSize() const986 unsigned MachineInstr::getBundleSize() const {
987   MachineBasicBlock::const_instr_iterator I = this;
988   unsigned Size = 0;
989   while (I->isBundledWithSucc())
990     ++Size, ++I;
991   return Size;
992 }
993 
994 /// findRegisterUseOperandIdx() - Returns the MachineOperand that is a use of
995 /// the specific register or -1 if it is not found. It further tightens
996 /// the search criteria to a use that kills the register if isKill is true.
findRegisterUseOperandIdx(unsigned Reg,bool isKill,const TargetRegisterInfo * TRI) const997 int MachineInstr::findRegisterUseOperandIdx(unsigned Reg, bool isKill,
998                                           const TargetRegisterInfo *TRI) const {
999   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1000     const MachineOperand &MO = getOperand(i);
1001     if (!MO.isReg() || !MO.isUse())
1002       continue;
1003     unsigned MOReg = MO.getReg();
1004     if (!MOReg)
1005       continue;
1006     if (MOReg == Reg ||
1007         (TRI &&
1008          TargetRegisterInfo::isPhysicalRegister(MOReg) &&
1009          TargetRegisterInfo::isPhysicalRegister(Reg) &&
1010          TRI->isSubRegister(MOReg, Reg)))
1011       if (!isKill || MO.isKill())
1012         return i;
1013   }
1014   return -1;
1015 }
1016 
1017 /// readsWritesVirtualRegister - Return a pair of bools (reads, writes)
1018 /// indicating if this instruction reads or writes Reg. This also considers
1019 /// partial defines.
1020 std::pair<bool,bool>
readsWritesVirtualRegister(unsigned Reg,SmallVectorImpl<unsigned> * Ops) const1021 MachineInstr::readsWritesVirtualRegister(unsigned Reg,
1022                                          SmallVectorImpl<unsigned> *Ops) const {
1023   bool PartDef = false; // Partial redefine.
1024   bool FullDef = false; // Full define.
1025   bool Use = false;
1026 
1027   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1028     const MachineOperand &MO = getOperand(i);
1029     if (!MO.isReg() || MO.getReg() != Reg)
1030       continue;
1031     if (Ops)
1032       Ops->push_back(i);
1033     if (MO.isUse())
1034       Use |= !MO.isUndef();
1035     else if (MO.getSubReg() && !MO.isUndef())
1036       // A partial <def,undef> doesn't count as reading the register.
1037       PartDef = true;
1038     else
1039       FullDef = true;
1040   }
1041   // A partial redefine uses Reg unless there is also a full define.
1042   return std::make_pair(Use || (PartDef && !FullDef), PartDef || FullDef);
1043 }
1044 
1045 /// findRegisterDefOperandIdx() - Returns the operand index that is a def of
1046 /// the specified register or -1 if it is not found. If isDead is true, defs
1047 /// that are not dead are skipped. If TargetRegisterInfo is non-null, then it
1048 /// also checks if there is a def of a super-register.
1049 int
findRegisterDefOperandIdx(unsigned Reg,bool isDead,bool Overlap,const TargetRegisterInfo * TRI) const1050 MachineInstr::findRegisterDefOperandIdx(unsigned Reg, bool isDead, bool Overlap,
1051                                         const TargetRegisterInfo *TRI) const {
1052   bool isPhys = TargetRegisterInfo::isPhysicalRegister(Reg);
1053   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1054     const MachineOperand &MO = getOperand(i);
1055     // Accept regmask operands when Overlap is set.
1056     // Ignore them when looking for a specific def operand (Overlap == false).
1057     if (isPhys && Overlap && MO.isRegMask() && MO.clobbersPhysReg(Reg))
1058       return i;
1059     if (!MO.isReg() || !MO.isDef())
1060       continue;
1061     unsigned MOReg = MO.getReg();
1062     bool Found = (MOReg == Reg);
1063     if (!Found && TRI && isPhys &&
1064         TargetRegisterInfo::isPhysicalRegister(MOReg)) {
1065       if (Overlap)
1066         Found = TRI->regsOverlap(MOReg, Reg);
1067       else
1068         Found = TRI->isSubRegister(MOReg, Reg);
1069     }
1070     if (Found && (!isDead || MO.isDead()))
1071       return i;
1072   }
1073   return -1;
1074 }
1075 
1076 /// findFirstPredOperandIdx() - Find the index of the first operand in the
1077 /// operand list that is used to represent the predicate. It returns -1 if
1078 /// none is found.
findFirstPredOperandIdx() const1079 int MachineInstr::findFirstPredOperandIdx() const {
1080   // Don't call MCID.findFirstPredOperandIdx() because this variant
1081   // is sometimes called on an instruction that's not yet complete, and
1082   // so the number of operands is less than the MCID indicates. In
1083   // particular, the PTX target does this.
1084   const MCInstrDesc &MCID = getDesc();
1085   if (MCID.isPredicable()) {
1086     for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
1087       if (MCID.OpInfo[i].isPredicate())
1088         return i;
1089   }
1090 
1091   return -1;
1092 }
1093 
1094 // MachineOperand::TiedTo is 4 bits wide.
1095 const unsigned TiedMax = 15;
1096 
1097 /// tieOperands - Mark operands at DefIdx and UseIdx as tied to each other.
1098 ///
1099 /// Use and def operands can be tied together, indicated by a non-zero TiedTo
1100 /// field. TiedTo can have these values:
1101 ///
1102 /// 0:              Operand is not tied to anything.
1103 /// 1 to TiedMax-1: Tied to getOperand(TiedTo-1).
1104 /// TiedMax:        Tied to an operand >= TiedMax-1.
1105 ///
1106 /// The tied def must be one of the first TiedMax operands on a normal
1107 /// instruction. INLINEASM instructions allow more tied defs.
1108 ///
tieOperands(unsigned DefIdx,unsigned UseIdx)1109 void MachineInstr::tieOperands(unsigned DefIdx, unsigned UseIdx) {
1110   MachineOperand &DefMO = getOperand(DefIdx);
1111   MachineOperand &UseMO = getOperand(UseIdx);
1112   assert(DefMO.isDef() && "DefIdx must be a def operand");
1113   assert(UseMO.isUse() && "UseIdx must be a use operand");
1114   assert(!DefMO.isTied() && "Def is already tied to another use");
1115   assert(!UseMO.isTied() && "Use is already tied to another def");
1116 
1117   if (DefIdx < TiedMax)
1118     UseMO.TiedTo = DefIdx + 1;
1119   else {
1120     // Inline asm can use the group descriptors to find tied operands, but on
1121     // normal instruction, the tied def must be within the first TiedMax
1122     // operands.
1123     assert(isInlineAsm() && "DefIdx out of range");
1124     UseMO.TiedTo = TiedMax;
1125   }
1126 
1127   // UseIdx can be out of range, we'll search for it in findTiedOperandIdx().
1128   DefMO.TiedTo = std::min(UseIdx + 1, TiedMax);
1129 }
1130 
1131 /// Given the index of a tied register operand, find the operand it is tied to.
1132 /// Defs are tied to uses and vice versa. Returns the index of the tied operand
1133 /// which must exist.
findTiedOperandIdx(unsigned OpIdx) const1134 unsigned MachineInstr::findTiedOperandIdx(unsigned OpIdx) const {
1135   const MachineOperand &MO = getOperand(OpIdx);
1136   assert(MO.isTied() && "Operand isn't tied");
1137 
1138   // Normally TiedTo is in range.
1139   if (MO.TiedTo < TiedMax)
1140     return MO.TiedTo - 1;
1141 
1142   // Uses on normal instructions can be out of range.
1143   if (!isInlineAsm()) {
1144     // Normal tied defs must be in the 0..TiedMax-1 range.
1145     if (MO.isUse())
1146       return TiedMax - 1;
1147     // MO is a def. Search for the tied use.
1148     for (unsigned i = TiedMax - 1, e = getNumOperands(); i != e; ++i) {
1149       const MachineOperand &UseMO = getOperand(i);
1150       if (UseMO.isReg() && UseMO.isUse() && UseMO.TiedTo == OpIdx + 1)
1151         return i;
1152     }
1153     llvm_unreachable("Can't find tied use");
1154   }
1155 
1156   // Now deal with inline asm by parsing the operand group descriptor flags.
1157   // Find the beginning of each operand group.
1158   SmallVector<unsigned, 8> GroupIdx;
1159   unsigned OpIdxGroup = ~0u;
1160   unsigned NumOps;
1161   for (unsigned i = InlineAsm::MIOp_FirstOperand, e = getNumOperands(); i < e;
1162        i += NumOps) {
1163     const MachineOperand &FlagMO = getOperand(i);
1164     assert(FlagMO.isImm() && "Invalid tied operand on inline asm");
1165     unsigned CurGroup = GroupIdx.size();
1166     GroupIdx.push_back(i);
1167     NumOps = 1 + InlineAsm::getNumOperandRegisters(FlagMO.getImm());
1168     // OpIdx belongs to this operand group.
1169     if (OpIdx > i && OpIdx < i + NumOps)
1170       OpIdxGroup = CurGroup;
1171     unsigned TiedGroup;
1172     if (!InlineAsm::isUseOperandTiedToDef(FlagMO.getImm(), TiedGroup))
1173       continue;
1174     // Operands in this group are tied to operands in TiedGroup which must be
1175     // earlier. Find the number of operands between the two groups.
1176     unsigned Delta = i - GroupIdx[TiedGroup];
1177 
1178     // OpIdx is a use tied to TiedGroup.
1179     if (OpIdxGroup == CurGroup)
1180       return OpIdx - Delta;
1181 
1182     // OpIdx is a def tied to this use group.
1183     if (OpIdxGroup == TiedGroup)
1184       return OpIdx + Delta;
1185   }
1186   llvm_unreachable("Invalid tied operand on inline asm");
1187 }
1188 
1189 /// clearKillInfo - Clears kill flags on all operands.
1190 ///
clearKillInfo()1191 void MachineInstr::clearKillInfo() {
1192   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1193     MachineOperand &MO = getOperand(i);
1194     if (MO.isReg() && MO.isUse())
1195       MO.setIsKill(false);
1196   }
1197 }
1198 
substituteRegister(unsigned FromReg,unsigned ToReg,unsigned SubIdx,const TargetRegisterInfo & RegInfo)1199 void MachineInstr::substituteRegister(unsigned FromReg,
1200                                       unsigned ToReg,
1201                                       unsigned SubIdx,
1202                                       const TargetRegisterInfo &RegInfo) {
1203   if (TargetRegisterInfo::isPhysicalRegister(ToReg)) {
1204     if (SubIdx)
1205       ToReg = RegInfo.getSubReg(ToReg, SubIdx);
1206     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1207       MachineOperand &MO = getOperand(i);
1208       if (!MO.isReg() || MO.getReg() != FromReg)
1209         continue;
1210       MO.substPhysReg(ToReg, RegInfo);
1211     }
1212   } else {
1213     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1214       MachineOperand &MO = getOperand(i);
1215       if (!MO.isReg() || MO.getReg() != FromReg)
1216         continue;
1217       MO.substVirtReg(ToReg, SubIdx, RegInfo);
1218     }
1219   }
1220 }
1221 
1222 /// isSafeToMove - Return true if it is safe to move this instruction. If
1223 /// SawStore is set to true, it means that there is a store (or call) between
1224 /// the instruction's location and its intended destination.
isSafeToMove(const TargetInstrInfo * TII,AliasAnalysis * AA,bool & SawStore) const1225 bool MachineInstr::isSafeToMove(const TargetInstrInfo *TII,
1226                                 AliasAnalysis *AA,
1227                                 bool &SawStore) const {
1228   // Ignore stuff that we obviously can't move.
1229   //
1230   // Treat volatile loads as stores. This is not strictly necessary for
1231   // volatiles, but it is required for atomic loads. It is not allowed to move
1232   // a load across an atomic load with Ordering > Monotonic.
1233   if (mayStore() || isCall() ||
1234       (mayLoad() && hasOrderedMemoryRef())) {
1235     SawStore = true;
1236     return false;
1237   }
1238 
1239   if (isLabel() || isDebugValue() ||
1240       isTerminator() || hasUnmodeledSideEffects())
1241     return false;
1242 
1243   // See if this instruction does a load.  If so, we have to guarantee that the
1244   // loaded value doesn't change between the load and the its intended
1245   // destination. The check for isInvariantLoad gives the targe the chance to
1246   // classify the load as always returning a constant, e.g. a constant pool
1247   // load.
1248   if (mayLoad() && !isInvariantLoad(AA))
1249     // Otherwise, this is a real load.  If there is a store between the load and
1250     // end of block, we can't move it.
1251     return !SawStore;
1252 
1253   return true;
1254 }
1255 
1256 /// hasOrderedMemoryRef - Return true if this instruction may have an ordered
1257 /// or volatile memory reference, or if the information describing the memory
1258 /// reference is not available. Return false if it is known to have no ordered
1259 /// memory references.
hasOrderedMemoryRef() const1260 bool MachineInstr::hasOrderedMemoryRef() const {
1261   // An instruction known never to access memory won't have a volatile access.
1262   if (!mayStore() &&
1263       !mayLoad() &&
1264       !isCall() &&
1265       !hasUnmodeledSideEffects())
1266     return false;
1267 
1268   // Otherwise, if the instruction has no memory reference information,
1269   // conservatively assume it wasn't preserved.
1270   if (memoperands_empty())
1271     return true;
1272 
1273   // Check the memory reference information for ordered references.
1274   for (mmo_iterator I = memoperands_begin(), E = memoperands_end(); I != E; ++I)
1275     if (!(*I)->isUnordered())
1276       return true;
1277 
1278   return false;
1279 }
1280 
1281 /// isInvariantLoad - Return true if this instruction is loading from a
1282 /// location whose value is invariant across the function.  For example,
1283 /// loading a value from the constant pool or from the argument area
1284 /// of a function if it does not change.  This should only return true of
1285 /// *all* loads the instruction does are invariant (if it does multiple loads).
isInvariantLoad(AliasAnalysis * AA) const1286 bool MachineInstr::isInvariantLoad(AliasAnalysis *AA) const {
1287   // If the instruction doesn't load at all, it isn't an invariant load.
1288   if (!mayLoad())
1289     return false;
1290 
1291   // If the instruction has lost its memoperands, conservatively assume that
1292   // it may not be an invariant load.
1293   if (memoperands_empty())
1294     return false;
1295 
1296   const MachineFrameInfo *MFI = getParent()->getParent()->getFrameInfo();
1297 
1298   for (mmo_iterator I = memoperands_begin(),
1299        E = memoperands_end(); I != E; ++I) {
1300     if ((*I)->isVolatile()) return false;
1301     if ((*I)->isStore()) return false;
1302     if ((*I)->isInvariant()) return true;
1303 
1304     if (const Value *V = (*I)->getValue()) {
1305       // A load from a constant PseudoSourceValue is invariant.
1306       if (const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(V))
1307         if (PSV->isConstant(MFI))
1308           continue;
1309       // If we have an AliasAnalysis, ask it whether the memory is constant.
1310       if (AA && AA->pointsToConstantMemory(
1311                       AliasAnalysis::Location(V, (*I)->getSize(),
1312                                               (*I)->getTBAAInfo())))
1313         continue;
1314     }
1315 
1316     // Otherwise assume conservatively.
1317     return false;
1318   }
1319 
1320   // Everything checks out.
1321   return true;
1322 }
1323 
1324 /// isConstantValuePHI - If the specified instruction is a PHI that always
1325 /// merges together the same virtual register, return the register, otherwise
1326 /// return 0.
isConstantValuePHI() const1327 unsigned MachineInstr::isConstantValuePHI() const {
1328   if (!isPHI())
1329     return 0;
1330   assert(getNumOperands() >= 3 &&
1331          "It's illegal to have a PHI without source operands");
1332 
1333   unsigned Reg = getOperand(1).getReg();
1334   for (unsigned i = 3, e = getNumOperands(); i < e; i += 2)
1335     if (getOperand(i).getReg() != Reg)
1336       return 0;
1337   return Reg;
1338 }
1339 
hasUnmodeledSideEffects() const1340 bool MachineInstr::hasUnmodeledSideEffects() const {
1341   if (hasProperty(MCID::UnmodeledSideEffects))
1342     return true;
1343   if (isInlineAsm()) {
1344     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1345     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1346       return true;
1347   }
1348 
1349   return false;
1350 }
1351 
1352 /// allDefsAreDead - Return true if all the defs of this instruction are dead.
1353 ///
allDefsAreDead() const1354 bool MachineInstr::allDefsAreDead() const {
1355   for (unsigned i = 0, e = getNumOperands(); i < e; ++i) {
1356     const MachineOperand &MO = getOperand(i);
1357     if (!MO.isReg() || MO.isUse())
1358       continue;
1359     if (!MO.isDead())
1360       return false;
1361   }
1362   return true;
1363 }
1364 
1365 /// copyImplicitOps - Copy implicit register operands from specified
1366 /// instruction to this instruction.
copyImplicitOps(MachineFunction & MF,const MachineInstr * MI)1367 void MachineInstr::copyImplicitOps(MachineFunction &MF,
1368                                    const MachineInstr *MI) {
1369   for (unsigned i = MI->getDesc().getNumOperands(), e = MI->getNumOperands();
1370        i != e; ++i) {
1371     const MachineOperand &MO = MI->getOperand(i);
1372     if (MO.isReg() && MO.isImplicit())
1373       addOperand(MF, MO);
1374   }
1375 }
1376 
dump() const1377 void MachineInstr::dump() const {
1378 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
1379   dbgs() << "  " << *this;
1380 #endif
1381 }
1382 
printDebugLoc(DebugLoc DL,const MachineFunction * MF,raw_ostream & CommentOS)1383 static void printDebugLoc(DebugLoc DL, const MachineFunction *MF,
1384                          raw_ostream &CommentOS) {
1385   const LLVMContext &Ctx = MF->getFunction()->getContext();
1386   if (!DL.isUnknown()) {          // Print source line info.
1387     DIScope Scope(DL.getScope(Ctx));
1388     assert((!Scope || Scope.isScope()) &&
1389       "Scope of a DebugLoc should be null or a DIScope.");
1390     // Omit the directory, because it's likely to be long and uninteresting.
1391     if (Scope)
1392       CommentOS << Scope.getFilename();
1393     else
1394       CommentOS << "<unknown>";
1395     CommentOS << ':' << DL.getLine();
1396     if (DL.getCol() != 0)
1397       CommentOS << ':' << DL.getCol();
1398     DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(DL.getInlinedAt(Ctx));
1399     if (!InlinedAtDL.isUnknown()) {
1400       CommentOS << " @[ ";
1401       printDebugLoc(InlinedAtDL, MF, CommentOS);
1402       CommentOS << " ]";
1403     }
1404   }
1405 }
1406 
print(raw_ostream & OS,const TargetMachine * TM,bool SkipOpers) const1407 void MachineInstr::print(raw_ostream &OS, const TargetMachine *TM,
1408                          bool SkipOpers) const {
1409   // We can be a bit tidier if we know the TargetMachine and/or MachineFunction.
1410   const MachineFunction *MF = 0;
1411   const MachineRegisterInfo *MRI = 0;
1412   if (const MachineBasicBlock *MBB = getParent()) {
1413     MF = MBB->getParent();
1414     if (!TM && MF)
1415       TM = &MF->getTarget();
1416     if (MF)
1417       MRI = &MF->getRegInfo();
1418   }
1419 
1420   // Save a list of virtual registers.
1421   SmallVector<unsigned, 8> VirtRegs;
1422 
1423   // Print explicitly defined operands on the left of an assignment syntax.
1424   unsigned StartOp = 0, e = getNumOperands();
1425   for (; StartOp < e && getOperand(StartOp).isReg() &&
1426          getOperand(StartOp).isDef() &&
1427          !getOperand(StartOp).isImplicit();
1428        ++StartOp) {
1429     if (StartOp != 0) OS << ", ";
1430     getOperand(StartOp).print(OS, TM);
1431     unsigned Reg = getOperand(StartOp).getReg();
1432     if (TargetRegisterInfo::isVirtualRegister(Reg))
1433       VirtRegs.push_back(Reg);
1434   }
1435 
1436   if (StartOp != 0)
1437     OS << " = ";
1438 
1439   // Print the opcode name.
1440   if (TM && TM->getInstrInfo())
1441     OS << TM->getInstrInfo()->getName(getOpcode());
1442   else
1443     OS << "UNKNOWN";
1444 
1445   if (SkipOpers)
1446     return;
1447 
1448   // Print the rest of the operands.
1449   bool OmittedAnyCallClobbers = false;
1450   bool FirstOp = true;
1451   unsigned AsmDescOp = ~0u;
1452   unsigned AsmOpCount = 0;
1453 
1454   if (isInlineAsm() && e >= InlineAsm::MIOp_FirstOperand) {
1455     // Print asm string.
1456     OS << " ";
1457     getOperand(InlineAsm::MIOp_AsmString).print(OS, TM);
1458 
1459     // Print HasSideEffects, MayLoad, MayStore, IsAlignStack
1460     unsigned ExtraInfo = getOperand(InlineAsm::MIOp_ExtraInfo).getImm();
1461     if (ExtraInfo & InlineAsm::Extra_HasSideEffects)
1462       OS << " [sideeffect]";
1463     if (ExtraInfo & InlineAsm::Extra_MayLoad)
1464       OS << " [mayload]";
1465     if (ExtraInfo & InlineAsm::Extra_MayStore)
1466       OS << " [maystore]";
1467     if (ExtraInfo & InlineAsm::Extra_IsAlignStack)
1468       OS << " [alignstack]";
1469     if (getInlineAsmDialect() == InlineAsm::AD_ATT)
1470       OS << " [attdialect]";
1471     if (getInlineAsmDialect() == InlineAsm::AD_Intel)
1472       OS << " [inteldialect]";
1473 
1474     StartOp = AsmDescOp = InlineAsm::MIOp_FirstOperand;
1475     FirstOp = false;
1476   }
1477 
1478 
1479   for (unsigned i = StartOp, e = getNumOperands(); i != e; ++i) {
1480     const MachineOperand &MO = getOperand(i);
1481 
1482     if (MO.isReg() && TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1483       VirtRegs.push_back(MO.getReg());
1484 
1485     // Omit call-clobbered registers which aren't used anywhere. This makes
1486     // call instructions much less noisy on targets where calls clobber lots
1487     // of registers. Don't rely on MO.isDead() because we may be called before
1488     // LiveVariables is run, or we may be looking at a non-allocatable reg.
1489     if (MF && isCall() &&
1490         MO.isReg() && MO.isImplicit() && MO.isDef()) {
1491       unsigned Reg = MO.getReg();
1492       if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1493         const MachineRegisterInfo &MRI = MF->getRegInfo();
1494         if (MRI.use_empty(Reg)) {
1495           bool HasAliasLive = false;
1496           for (MCRegAliasIterator AI(Reg, TM->getRegisterInfo(), true);
1497                AI.isValid(); ++AI) {
1498             unsigned AliasReg = *AI;
1499             if (!MRI.use_empty(AliasReg)) {
1500               HasAliasLive = true;
1501               break;
1502             }
1503           }
1504           if (!HasAliasLive) {
1505             OmittedAnyCallClobbers = true;
1506             continue;
1507           }
1508         }
1509       }
1510     }
1511 
1512     if (FirstOp) FirstOp = false; else OS << ",";
1513     OS << " ";
1514     if (i < getDesc().NumOperands) {
1515       const MCOperandInfo &MCOI = getDesc().OpInfo[i];
1516       if (MCOI.isPredicate())
1517         OS << "pred:";
1518       if (MCOI.isOptionalDef())
1519         OS << "opt:";
1520     }
1521     if (isDebugValue() && MO.isMetadata()) {
1522       // Pretty print DBG_VALUE instructions.
1523       const MDNode *MD = MO.getMetadata();
1524       if (const MDString *MDS = dyn_cast<MDString>(MD->getOperand(2)))
1525         OS << "!\"" << MDS->getString() << '\"';
1526       else
1527         MO.print(OS, TM);
1528     } else if (TM && (isInsertSubreg() || isRegSequence()) && MO.isImm()) {
1529       OS << TM->getRegisterInfo()->getSubRegIndexName(MO.getImm());
1530     } else if (i == AsmDescOp && MO.isImm()) {
1531       // Pretty print the inline asm operand descriptor.
1532       OS << '$' << AsmOpCount++;
1533       unsigned Flag = MO.getImm();
1534       switch (InlineAsm::getKind(Flag)) {
1535       case InlineAsm::Kind_RegUse:             OS << ":[reguse"; break;
1536       case InlineAsm::Kind_RegDef:             OS << ":[regdef"; break;
1537       case InlineAsm::Kind_RegDefEarlyClobber: OS << ":[regdef-ec"; break;
1538       case InlineAsm::Kind_Clobber:            OS << ":[clobber"; break;
1539       case InlineAsm::Kind_Imm:                OS << ":[imm"; break;
1540       case InlineAsm::Kind_Mem:                OS << ":[mem"; break;
1541       default: OS << ":[??" << InlineAsm::getKind(Flag); break;
1542       }
1543 
1544       unsigned RCID = 0;
1545       if (InlineAsm::hasRegClassConstraint(Flag, RCID)) {
1546         if (TM)
1547           OS << ':' << TM->getRegisterInfo()->getRegClass(RCID)->getName();
1548         else
1549           OS << ":RC" << RCID;
1550       }
1551 
1552       unsigned TiedTo = 0;
1553       if (InlineAsm::isUseOperandTiedToDef(Flag, TiedTo))
1554         OS << " tiedto:$" << TiedTo;
1555 
1556       OS << ']';
1557 
1558       // Compute the index of the next operand descriptor.
1559       AsmDescOp += 1 + InlineAsm::getNumOperandRegisters(Flag);
1560     } else
1561       MO.print(OS, TM);
1562   }
1563 
1564   // Briefly indicate whether any call clobbers were omitted.
1565   if (OmittedAnyCallClobbers) {
1566     if (!FirstOp) OS << ",";
1567     OS << " ...";
1568   }
1569 
1570   bool HaveSemi = false;
1571   const unsigned PrintableFlags = FrameSetup;
1572   if (Flags & PrintableFlags) {
1573     if (!HaveSemi) OS << ";"; HaveSemi = true;
1574     OS << " flags: ";
1575 
1576     if (Flags & FrameSetup)
1577       OS << "FrameSetup";
1578   }
1579 
1580   if (!memoperands_empty()) {
1581     if (!HaveSemi) OS << ";"; HaveSemi = true;
1582 
1583     OS << " mem:";
1584     for (mmo_iterator i = memoperands_begin(), e = memoperands_end();
1585          i != e; ++i) {
1586       OS << **i;
1587       if (llvm::next(i) != e)
1588         OS << " ";
1589     }
1590   }
1591 
1592   // Print the regclass of any virtual registers encountered.
1593   if (MRI && !VirtRegs.empty()) {
1594     if (!HaveSemi) OS << ";"; HaveSemi = true;
1595     for (unsigned i = 0; i != VirtRegs.size(); ++i) {
1596       const TargetRegisterClass *RC = MRI->getRegClass(VirtRegs[i]);
1597       OS << " " << RC->getName() << ':' << PrintReg(VirtRegs[i]);
1598       for (unsigned j = i+1; j != VirtRegs.size();) {
1599         if (MRI->getRegClass(VirtRegs[j]) != RC) {
1600           ++j;
1601           continue;
1602         }
1603         if (VirtRegs[i] != VirtRegs[j])
1604           OS << "," << PrintReg(VirtRegs[j]);
1605         VirtRegs.erase(VirtRegs.begin()+j);
1606       }
1607     }
1608   }
1609 
1610   // Print debug location information.
1611   if (isDebugValue() && getOperand(e - 1).isMetadata()) {
1612     if (!HaveSemi) OS << ";"; HaveSemi = true;
1613     DIVariable DV(getOperand(e - 1).getMetadata());
1614     OS << " line no:" <<  DV.getLineNumber();
1615     if (MDNode *InlinedAt = DV.getInlinedAt()) {
1616       DebugLoc InlinedAtDL = DebugLoc::getFromDILocation(InlinedAt);
1617       if (!InlinedAtDL.isUnknown()) {
1618         OS << " inlined @[ ";
1619         printDebugLoc(InlinedAtDL, MF, OS);
1620         OS << " ]";
1621       }
1622     }
1623   } else if (!debugLoc.isUnknown() && MF) {
1624     if (!HaveSemi) OS << ";"; HaveSemi = true;
1625     OS << " dbg:";
1626     printDebugLoc(debugLoc, MF, OS);
1627   }
1628 
1629   OS << '\n';
1630 }
1631 
addRegisterKilled(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1632 bool MachineInstr::addRegisterKilled(unsigned IncomingReg,
1633                                      const TargetRegisterInfo *RegInfo,
1634                                      bool AddIfNotFound) {
1635   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1636   bool hasAliases = isPhysReg &&
1637     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1638   bool Found = false;
1639   SmallVector<unsigned,4> DeadOps;
1640   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1641     MachineOperand &MO = getOperand(i);
1642     if (!MO.isReg() || !MO.isUse() || MO.isUndef())
1643       continue;
1644     unsigned Reg = MO.getReg();
1645     if (!Reg)
1646       continue;
1647 
1648     if (Reg == IncomingReg) {
1649       if (!Found) {
1650         if (MO.isKill())
1651           // The register is already marked kill.
1652           return true;
1653         if (isPhysReg && isRegTiedToDefOperand(i))
1654           // Two-address uses of physregs must not be marked kill.
1655           return true;
1656         MO.setIsKill();
1657         Found = true;
1658       }
1659     } else if (hasAliases && MO.isKill() &&
1660                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1661       // A super-register kill already exists.
1662       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1663         return true;
1664       if (RegInfo->isSubRegister(IncomingReg, Reg))
1665         DeadOps.push_back(i);
1666     }
1667   }
1668 
1669   // Trim unneeded kill operands.
1670   while (!DeadOps.empty()) {
1671     unsigned OpIdx = DeadOps.back();
1672     if (getOperand(OpIdx).isImplicit())
1673       RemoveOperand(OpIdx);
1674     else
1675       getOperand(OpIdx).setIsKill(false);
1676     DeadOps.pop_back();
1677   }
1678 
1679   // If not found, this means an alias of one of the operands is killed. Add a
1680   // new implicit operand if required.
1681   if (!Found && AddIfNotFound) {
1682     addOperand(MachineOperand::CreateReg(IncomingReg,
1683                                          false /*IsDef*/,
1684                                          true  /*IsImp*/,
1685                                          true  /*IsKill*/));
1686     return true;
1687   }
1688   return Found;
1689 }
1690 
clearRegisterKills(unsigned Reg,const TargetRegisterInfo * RegInfo)1691 void MachineInstr::clearRegisterKills(unsigned Reg,
1692                                       const TargetRegisterInfo *RegInfo) {
1693   if (!TargetRegisterInfo::isPhysicalRegister(Reg))
1694     RegInfo = 0;
1695   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1696     MachineOperand &MO = getOperand(i);
1697     if (!MO.isReg() || !MO.isUse() || !MO.isKill())
1698       continue;
1699     unsigned OpReg = MO.getReg();
1700     if (OpReg == Reg || (RegInfo && RegInfo->isSuperRegister(Reg, OpReg)))
1701       MO.setIsKill(false);
1702   }
1703 }
1704 
addRegisterDead(unsigned IncomingReg,const TargetRegisterInfo * RegInfo,bool AddIfNotFound)1705 bool MachineInstr::addRegisterDead(unsigned IncomingReg,
1706                                    const TargetRegisterInfo *RegInfo,
1707                                    bool AddIfNotFound) {
1708   bool isPhysReg = TargetRegisterInfo::isPhysicalRegister(IncomingReg);
1709   bool hasAliases = isPhysReg &&
1710     MCRegAliasIterator(IncomingReg, RegInfo, false).isValid();
1711   bool Found = false;
1712   SmallVector<unsigned,4> DeadOps;
1713   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1714     MachineOperand &MO = getOperand(i);
1715     if (!MO.isReg() || !MO.isDef())
1716       continue;
1717     unsigned Reg = MO.getReg();
1718     if (!Reg)
1719       continue;
1720 
1721     if (Reg == IncomingReg) {
1722       MO.setIsDead();
1723       Found = true;
1724     } else if (hasAliases && MO.isDead() &&
1725                TargetRegisterInfo::isPhysicalRegister(Reg)) {
1726       // There exists a super-register that's marked dead.
1727       if (RegInfo->isSuperRegister(IncomingReg, Reg))
1728         return true;
1729       if (RegInfo->isSubRegister(IncomingReg, Reg))
1730         DeadOps.push_back(i);
1731     }
1732   }
1733 
1734   // Trim unneeded dead operands.
1735   while (!DeadOps.empty()) {
1736     unsigned OpIdx = DeadOps.back();
1737     if (getOperand(OpIdx).isImplicit())
1738       RemoveOperand(OpIdx);
1739     else
1740       getOperand(OpIdx).setIsDead(false);
1741     DeadOps.pop_back();
1742   }
1743 
1744   // If not found, this means an alias of one of the operands is dead. Add a
1745   // new implicit operand if required.
1746   if (Found || !AddIfNotFound)
1747     return Found;
1748 
1749   addOperand(MachineOperand::CreateReg(IncomingReg,
1750                                        true  /*IsDef*/,
1751                                        true  /*IsImp*/,
1752                                        false /*IsKill*/,
1753                                        true  /*IsDead*/));
1754   return true;
1755 }
1756 
addRegisterDefined(unsigned IncomingReg,const TargetRegisterInfo * RegInfo)1757 void MachineInstr::addRegisterDefined(unsigned IncomingReg,
1758                                       const TargetRegisterInfo *RegInfo) {
1759   if (TargetRegisterInfo::isPhysicalRegister(IncomingReg)) {
1760     MachineOperand *MO = findRegisterDefOperand(IncomingReg, false, RegInfo);
1761     if (MO)
1762       return;
1763   } else {
1764     for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1765       const MachineOperand &MO = getOperand(i);
1766       if (MO.isReg() && MO.getReg() == IncomingReg && MO.isDef() &&
1767           MO.getSubReg() == 0)
1768         return;
1769     }
1770   }
1771   addOperand(MachineOperand::CreateReg(IncomingReg,
1772                                        true  /*IsDef*/,
1773                                        true  /*IsImp*/));
1774 }
1775 
setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,const TargetRegisterInfo & TRI)1776 void MachineInstr::setPhysRegsDeadExcept(ArrayRef<unsigned> UsedRegs,
1777                                          const TargetRegisterInfo &TRI) {
1778   bool HasRegMask = false;
1779   for (unsigned i = 0, e = getNumOperands(); i != e; ++i) {
1780     MachineOperand &MO = getOperand(i);
1781     if (MO.isRegMask()) {
1782       HasRegMask = true;
1783       continue;
1784     }
1785     if (!MO.isReg() || !MO.isDef()) continue;
1786     unsigned Reg = MO.getReg();
1787     if (!TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
1788     bool Dead = true;
1789     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1790          I != E; ++I)
1791       if (TRI.regsOverlap(*I, Reg)) {
1792         Dead = false;
1793         break;
1794       }
1795     // If there are no uses, including partial uses, the def is dead.
1796     if (Dead) MO.setIsDead();
1797   }
1798 
1799   // This is a call with a register mask operand.
1800   // Mask clobbers are always dead, so add defs for the non-dead defines.
1801   if (HasRegMask)
1802     for (ArrayRef<unsigned>::iterator I = UsedRegs.begin(), E = UsedRegs.end();
1803          I != E; ++I)
1804       addRegisterDefined(*I, &TRI);
1805 }
1806 
1807 unsigned
getHashValue(const MachineInstr * const & MI)1808 MachineInstrExpressionTrait::getHashValue(const MachineInstr* const &MI) {
1809   // Build up a buffer of hash code components.
1810   SmallVector<size_t, 8> HashComponents;
1811   HashComponents.reserve(MI->getNumOperands() + 1);
1812   HashComponents.push_back(MI->getOpcode());
1813   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1814     const MachineOperand &MO = MI->getOperand(i);
1815     if (MO.isReg() && MO.isDef() &&
1816         TargetRegisterInfo::isVirtualRegister(MO.getReg()))
1817       continue;  // Skip virtual register defs.
1818 
1819     HashComponents.push_back(hash_value(MO));
1820   }
1821   return hash_combine_range(HashComponents.begin(), HashComponents.end());
1822 }
1823 
emitError(StringRef Msg) const1824 void MachineInstr::emitError(StringRef Msg) const {
1825   // Find the source location cookie.
1826   unsigned LocCookie = 0;
1827   const MDNode *LocMD = 0;
1828   for (unsigned i = getNumOperands(); i != 0; --i) {
1829     if (getOperand(i-1).isMetadata() &&
1830         (LocMD = getOperand(i-1).getMetadata()) &&
1831         LocMD->getNumOperands() != 0) {
1832       if (const ConstantInt *CI = dyn_cast<ConstantInt>(LocMD->getOperand(0))) {
1833         LocCookie = CI->getZExtValue();
1834         break;
1835       }
1836     }
1837   }
1838 
1839   if (const MachineBasicBlock *MBB = getParent())
1840     if (const MachineFunction *MF = MBB->getParent())
1841       return MF->getMMI().getModule()->getContext().emitError(LocCookie, Msg);
1842   report_fatal_error(Msg);
1843 }
1844