1 /*
2 * Copyright (C) 2010, Google Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
16 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
17 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
22 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25 #include "config.h"
26
27 #if ENABLE(WEB_AUDIO)
28
29 #include "platform/audio/VectorMath.h"
30 #include "wtf/Assertions.h"
31 #include "wtf/CPU.h"
32 #include <stdint.h>
33
34 #if OS(MACOSX)
35 #include <Accelerate/Accelerate.h>
36 #endif
37
38 #ifdef __SSE2__
39 #include <emmintrin.h>
40 #endif
41
42 #if HAVE(ARM_NEON_INTRINSICS)
43 #include <arm_neon.h>
44 #endif
45
46 #include <math.h>
47 #include <algorithm>
48
49 namespace WebCore {
50
51 namespace VectorMath {
52
53 #if OS(MACOSX)
54 // On the Mac we use the highly optimized versions in Accelerate.framework
55 // In 32-bit mode (__ppc__ or __i386__) <Accelerate/Accelerate.h> includes <vecLib/vDSP_translate.h> which defines macros of the same name as
56 // our namespaced function names, so we must handle this case differently. Other architectures (64bit, ARM, etc.) do not include this header file.
57
vsmul(const float * sourceP,int sourceStride,const float * scale,float * destP,int destStride,size_t framesToProcess)58 void vsmul(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess)
59 {
60 #if CPU(X86)
61 ::vsmul(sourceP, sourceStride, scale, destP, destStride, framesToProcess);
62 #else
63 vDSP_vsmul(sourceP, sourceStride, scale, destP, destStride, framesToProcess);
64 #endif
65 }
66
vadd(const float * source1P,int sourceStride1,const float * source2P,int sourceStride2,float * destP,int destStride,size_t framesToProcess)67 void vadd(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess)
68 {
69 #if CPU(X86)
70 ::vadd(source1P, sourceStride1, source2P, sourceStride2, destP, destStride, framesToProcess);
71 #else
72 vDSP_vadd(source1P, sourceStride1, source2P, sourceStride2, destP, destStride, framesToProcess);
73 #endif
74 }
75
vmul(const float * source1P,int sourceStride1,const float * source2P,int sourceStride2,float * destP,int destStride,size_t framesToProcess)76 void vmul(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess)
77 {
78 #if CPU(X86)
79 ::vmul(source1P, sourceStride1, source2P, sourceStride2, destP, destStride, framesToProcess);
80 #else
81 vDSP_vmul(source1P, sourceStride1, source2P, sourceStride2, destP, destStride, framesToProcess);
82 #endif
83 }
84
zvmul(const float * real1P,const float * imag1P,const float * real2P,const float * imag2P,float * realDestP,float * imagDestP,size_t framesToProcess)85 void zvmul(const float* real1P, const float* imag1P, const float* real2P, const float* imag2P, float* realDestP, float* imagDestP, size_t framesToProcess)
86 {
87 DSPSplitComplex sc1;
88 DSPSplitComplex sc2;
89 DSPSplitComplex dest;
90 sc1.realp = const_cast<float*>(real1P);
91 sc1.imagp = const_cast<float*>(imag1P);
92 sc2.realp = const_cast<float*>(real2P);
93 sc2.imagp = const_cast<float*>(imag2P);
94 dest.realp = realDestP;
95 dest.imagp = imagDestP;
96 #if CPU(X86)
97 ::zvmul(&sc1, 1, &sc2, 1, &dest, 1, framesToProcess, 1);
98 #else
99 vDSP_zvmul(&sc1, 1, &sc2, 1, &dest, 1, framesToProcess, 1);
100 #endif
101 }
102
vsma(const float * sourceP,int sourceStride,const float * scale,float * destP,int destStride,size_t framesToProcess)103 void vsma(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess)
104 {
105 vDSP_vsma(sourceP, sourceStride, scale, destP, destStride, destP, destStride, framesToProcess);
106 }
107
vmaxmgv(const float * sourceP,int sourceStride,float * maxP,size_t framesToProcess)108 void vmaxmgv(const float* sourceP, int sourceStride, float* maxP, size_t framesToProcess)
109 {
110 vDSP_maxmgv(sourceP, sourceStride, maxP, framesToProcess);
111 }
112
vsvesq(const float * sourceP,int sourceStride,float * sumP,size_t framesToProcess)113 void vsvesq(const float* sourceP, int sourceStride, float* sumP, size_t framesToProcess)
114 {
115 vDSP_svesq(const_cast<float*>(sourceP), sourceStride, sumP, framesToProcess);
116 }
117
vclip(const float * sourceP,int sourceStride,const float * lowThresholdP,const float * highThresholdP,float * destP,int destStride,size_t framesToProcess)118 void vclip(const float* sourceP, int sourceStride, const float* lowThresholdP, const float* highThresholdP, float* destP, int destStride, size_t framesToProcess)
119 {
120 vDSP_vclip(const_cast<float*>(sourceP), sourceStride, const_cast<float*>(lowThresholdP), const_cast<float*>(highThresholdP), destP, destStride, framesToProcess);
121 }
122 #else
123
124 void vsma(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess)
125 {
126 int n = framesToProcess;
127
128 #ifdef __SSE2__
129 if ((sourceStride == 1) && (destStride == 1)) {
130 float k = *scale;
131
132 // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately.
133 while ((reinterpret_cast<uintptr_t>(sourceP) & 0x0F) && n) {
134 *destP += k * *sourceP;
135 sourceP++;
136 destP++;
137 n--;
138 }
139
140 // Now the sourceP is aligned, use SSE.
141 int tailFrames = n % 4;
142 const float* endP = destP + n - tailFrames;
143
144 __m128 pSource;
145 __m128 dest;
146 __m128 temp;
147 __m128 mScale = _mm_set_ps1(k);
148
149 bool destAligned = !(reinterpret_cast<uintptr_t>(destP) & 0x0F);
150
151 #define SSE2_MULT_ADD(loadInstr, storeInstr) \
152 while (destP < endP) \
153 { \
154 pSource = _mm_load_ps(sourceP); \
155 temp = _mm_mul_ps(pSource, mScale); \
156 dest = _mm_##loadInstr##_ps(destP); \
157 dest = _mm_add_ps(dest, temp); \
158 _mm_##storeInstr##_ps(destP, dest); \
159 sourceP += 4; \
160 destP += 4; \
161 }
162
163 if (destAligned)
164 SSE2_MULT_ADD(load, store)
165 else
166 SSE2_MULT_ADD(loadu, storeu)
167
168 n = tailFrames;
169 }
170 #elif HAVE(ARM_NEON_INTRINSICS)
171 if ((sourceStride == 1) && (destStride == 1)) {
172 int tailFrames = n % 4;
173 const float* endP = destP + n - tailFrames;
174
175 float32x4_t k = vdupq_n_f32(*scale);
176 while (destP < endP) {
177 float32x4_t source = vld1q_f32(sourceP);
178 float32x4_t dest = vld1q_f32(destP);
179
180 dest = vmlaq_f32(dest, source, k);
181 vst1q_f32(destP, dest);
182
183 sourceP += 4;
184 destP += 4;
185 }
186 n = tailFrames;
187 }
188 #endif
189 while (n) {
190 *destP += *sourceP * *scale;
191 sourceP += sourceStride;
192 destP += destStride;
193 n--;
194 }
195 }
196
197 void vsmul(const float* sourceP, int sourceStride, const float* scale, float* destP, int destStride, size_t framesToProcess)
198 {
199 int n = framesToProcess;
200
201 #ifdef __SSE2__
202 if ((sourceStride == 1) && (destStride == 1)) {
203 float k = *scale;
204
205 // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately.
206 while ((reinterpret_cast<size_t>(sourceP) & 0x0F) && n) {
207 *destP = k * *sourceP;
208 sourceP++;
209 destP++;
210 n--;
211 }
212
213 // Now the sourceP address is aligned and start to apply SSE.
214 int group = n / 4;
215 __m128 mScale = _mm_set_ps1(k);
216 __m128* pSource;
217 __m128* pDest;
218 __m128 dest;
219
220
221 if (reinterpret_cast<size_t>(destP) & 0x0F) {
222 while (group--) {
223 pSource = reinterpret_cast<__m128*>(const_cast<float*>(sourceP));
224 dest = _mm_mul_ps(*pSource, mScale);
225 _mm_storeu_ps(destP, dest);
226
227 sourceP += 4;
228 destP += 4;
229 }
230 } else {
231 while (group--) {
232 pSource = reinterpret_cast<__m128*>(const_cast<float*>(sourceP));
233 pDest = reinterpret_cast<__m128*>(destP);
234 *pDest = _mm_mul_ps(*pSource, mScale);
235
236 sourceP += 4;
237 destP += 4;
238 }
239 }
240
241 // Non-SSE handling for remaining frames which is less than 4.
242 n %= 4;
243 while (n) {
244 *destP = k * *sourceP;
245 sourceP++;
246 destP++;
247 n--;
248 }
249 } else { // If strides are not 1, rollback to normal algorithm.
250 #elif HAVE(ARM_NEON_INTRINSICS)
251 if ((sourceStride == 1) && (destStride == 1)) {
252 float k = *scale;
253 int tailFrames = n % 4;
254 const float* endP = destP + n - tailFrames;
255
256 while (destP < endP) {
257 float32x4_t source = vld1q_f32(sourceP);
258 vst1q_f32(destP, vmulq_n_f32(source, k));
259
260 sourceP += 4;
261 destP += 4;
262 }
263 n = tailFrames;
264 }
265 #endif
266 float k = *scale;
267 while (n--) {
268 *destP = k * *sourceP;
269 sourceP += sourceStride;
270 destP += destStride;
271 }
272 #ifdef __SSE2__
273 }
274 #endif
275 }
276
277 void vadd(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess)
278 {
279 int n = framesToProcess;
280
281 #ifdef __SSE2__
282 if ((sourceStride1 ==1) && (sourceStride2 == 1) && (destStride == 1)) {
283 // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately.
284 while ((reinterpret_cast<size_t>(source1P) & 0x0F) && n) {
285 *destP = *source1P + *source2P;
286 source1P++;
287 source2P++;
288 destP++;
289 n--;
290 }
291
292 // Now the source1P address is aligned and start to apply SSE.
293 int group = n / 4;
294 __m128* pSource1;
295 __m128* pSource2;
296 __m128* pDest;
297 __m128 source2;
298 __m128 dest;
299
300 bool source2Aligned = !(reinterpret_cast<size_t>(source2P) & 0x0F);
301 bool destAligned = !(reinterpret_cast<size_t>(destP) & 0x0F);
302
303 if (source2Aligned && destAligned) { // all aligned
304 while (group--) {
305 pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P));
306 pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(source2P));
307 pDest = reinterpret_cast<__m128*>(destP);
308 *pDest = _mm_add_ps(*pSource1, *pSource2);
309
310 source1P += 4;
311 source2P += 4;
312 destP += 4;
313 }
314
315 } else if (source2Aligned && !destAligned) { // source2 aligned but dest not aligned
316 while (group--) {
317 pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P));
318 pSource2 = reinterpret_cast<__m128*>(const_cast<float*>(source2P));
319 dest = _mm_add_ps(*pSource1, *pSource2);
320 _mm_storeu_ps(destP, dest);
321
322 source1P += 4;
323 source2P += 4;
324 destP += 4;
325 }
326
327 } else if (!source2Aligned && destAligned) { // source2 not aligned but dest aligned
328 while (group--) {
329 pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P));
330 source2 = _mm_loadu_ps(source2P);
331 pDest = reinterpret_cast<__m128*>(destP);
332 *pDest = _mm_add_ps(*pSource1, source2);
333
334 source1P += 4;
335 source2P += 4;
336 destP += 4;
337 }
338 } else if (!source2Aligned && !destAligned) { // both source2 and dest not aligned
339 while (group--) {
340 pSource1 = reinterpret_cast<__m128*>(const_cast<float*>(source1P));
341 source2 = _mm_loadu_ps(source2P);
342 dest = _mm_add_ps(*pSource1, source2);
343 _mm_storeu_ps(destP, dest);
344
345 source1P += 4;
346 source2P += 4;
347 destP += 4;
348 }
349 }
350
351 // Non-SSE handling for remaining frames which is less than 4.
352 n %= 4;
353 while (n) {
354 *destP = *source1P + *source2P;
355 source1P++;
356 source2P++;
357 destP++;
358 n--;
359 }
360 } else { // if strides are not 1, rollback to normal algorithm
361 #elif HAVE(ARM_NEON_INTRINSICS)
362 if ((sourceStride1 ==1) && (sourceStride2 == 1) && (destStride == 1)) {
363 int tailFrames = n % 4;
364 const float* endP = destP + n - tailFrames;
365
366 while (destP < endP) {
367 float32x4_t source1 = vld1q_f32(source1P);
368 float32x4_t source2 = vld1q_f32(source2P);
369 vst1q_f32(destP, vaddq_f32(source1, source2));
370
371 source1P += 4;
372 source2P += 4;
373 destP += 4;
374 }
375 n = tailFrames;
376 }
377 #endif
378 while (n--) {
379 *destP = *source1P + *source2P;
380 source1P += sourceStride1;
381 source2P += sourceStride2;
382 destP += destStride;
383 }
384 #ifdef __SSE2__
385 }
386 #endif
387 }
388
389 void vmul(const float* source1P, int sourceStride1, const float* source2P, int sourceStride2, float* destP, int destStride, size_t framesToProcess)
390 {
391
392 int n = framesToProcess;
393
394 #ifdef __SSE2__
395 if ((sourceStride1 == 1) && (sourceStride2 == 1) && (destStride == 1)) {
396 // If the source1P address is not 16-byte aligned, the first several frames (at most three) should be processed separately.
397 while ((reinterpret_cast<uintptr_t>(source1P) & 0x0F) && n) {
398 *destP = *source1P * *source2P;
399 source1P++;
400 source2P++;
401 destP++;
402 n--;
403 }
404
405 // Now the source1P address aligned and start to apply SSE.
406 int tailFrames = n % 4;
407 const float* endP = destP + n - tailFrames;
408 __m128 pSource1;
409 __m128 pSource2;
410 __m128 dest;
411
412 bool source2Aligned = !(reinterpret_cast<uintptr_t>(source2P) & 0x0F);
413 bool destAligned = !(reinterpret_cast<uintptr_t>(destP) & 0x0F);
414
415 #define SSE2_MULT(loadInstr, storeInstr) \
416 while (destP < endP) \
417 { \
418 pSource1 = _mm_load_ps(source1P); \
419 pSource2 = _mm_##loadInstr##_ps(source2P); \
420 dest = _mm_mul_ps(pSource1, pSource2); \
421 _mm_##storeInstr##_ps(destP, dest); \
422 source1P += 4; \
423 source2P += 4; \
424 destP += 4; \
425 }
426
427 if (source2Aligned && destAligned) // Both aligned.
428 SSE2_MULT(load, store)
429 else if (source2Aligned && !destAligned) // Source2 is aligned but dest not.
430 SSE2_MULT(load, storeu)
431 else if (!source2Aligned && destAligned) // Dest is aligned but source2 not.
432 SSE2_MULT(loadu, store)
433 else // Neither aligned.
434 SSE2_MULT(loadu, storeu)
435
436 n = tailFrames;
437 }
438 #elif HAVE(ARM_NEON_INTRINSICS)
439 if ((sourceStride1 ==1) && (sourceStride2 == 1) && (destStride == 1)) {
440 int tailFrames = n % 4;
441 const float* endP = destP + n - tailFrames;
442
443 while (destP < endP) {
444 float32x4_t source1 = vld1q_f32(source1P);
445 float32x4_t source2 = vld1q_f32(source2P);
446 vst1q_f32(destP, vmulq_f32(source1, source2));
447
448 source1P += 4;
449 source2P += 4;
450 destP += 4;
451 }
452 n = tailFrames;
453 }
454 #endif
455 while (n) {
456 *destP = *source1P * *source2P;
457 source1P += sourceStride1;
458 source2P += sourceStride2;
459 destP += destStride;
460 n--;
461 }
462 }
463
464 void zvmul(const float* real1P, const float* imag1P, const float* real2P, const float* imag2P, float* realDestP, float* imagDestP, size_t framesToProcess)
465 {
466 unsigned i = 0;
467 #ifdef __SSE2__
468 // Only use the SSE optimization in the very common case that all addresses are 16-byte aligned.
469 // Otherwise, fall through to the scalar code below.
470 if (!(reinterpret_cast<uintptr_t>(real1P) & 0x0F)
471 && !(reinterpret_cast<uintptr_t>(imag1P) & 0x0F)
472 && !(reinterpret_cast<uintptr_t>(real2P) & 0x0F)
473 && !(reinterpret_cast<uintptr_t>(imag2P) & 0x0F)
474 && !(reinterpret_cast<uintptr_t>(realDestP) & 0x0F)
475 && !(reinterpret_cast<uintptr_t>(imagDestP) & 0x0F)) {
476
477 unsigned endSize = framesToProcess - framesToProcess % 4;
478 while (i < endSize) {
479 __m128 real1 = _mm_load_ps(real1P + i);
480 __m128 real2 = _mm_load_ps(real2P + i);
481 __m128 imag1 = _mm_load_ps(imag1P + i);
482 __m128 imag2 = _mm_load_ps(imag2P + i);
483 __m128 real = _mm_mul_ps(real1, real2);
484 real = _mm_sub_ps(real, _mm_mul_ps(imag1, imag2));
485 __m128 imag = _mm_mul_ps(real1, imag2);
486 imag = _mm_add_ps(imag, _mm_mul_ps(imag1, real2));
487 _mm_store_ps(realDestP + i, real);
488 _mm_store_ps(imagDestP + i, imag);
489 i += 4;
490 }
491 }
492 #elif HAVE(ARM_NEON_INTRINSICS)
493 unsigned endSize = framesToProcess - framesToProcess % 4;
494 while (i < endSize) {
495 float32x4_t real1 = vld1q_f32(real1P + i);
496 float32x4_t real2 = vld1q_f32(real2P + i);
497 float32x4_t imag1 = vld1q_f32(imag1P + i);
498 float32x4_t imag2 = vld1q_f32(imag2P + i);
499
500 float32x4_t realResult = vmlsq_f32(vmulq_f32(real1, real2), imag1, imag2);
501 float32x4_t imagResult = vmlaq_f32(vmulq_f32(real1, imag2), imag1, real2);
502
503 vst1q_f32(realDestP + i, realResult);
504 vst1q_f32(imagDestP + i, imagResult);
505
506 i += 4;
507 }
508 #endif
509 for (; i < framesToProcess; ++i) {
510 // Read and compute result before storing them, in case the
511 // destination is the same as one of the sources.
512 float realResult = real1P[i] * real2P[i] - imag1P[i] * imag2P[i];
513 float imagResult = real1P[i] * imag2P[i] + imag1P[i] * real2P[i];
514
515 realDestP[i] = realResult;
516 imagDestP[i] = imagResult;
517 }
518 }
519
520 void vsvesq(const float* sourceP, int sourceStride, float* sumP, size_t framesToProcess)
521 {
522 int n = framesToProcess;
523 float sum = 0;
524
525 #ifdef __SSE2__
526 if (sourceStride == 1) {
527 // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately.
528 while ((reinterpret_cast<uintptr_t>(sourceP) & 0x0F) && n) {
529 float sample = *sourceP;
530 sum += sample * sample;
531 sourceP++;
532 n--;
533 }
534
535 // Now the sourceP is aligned, use SSE.
536 int tailFrames = n % 4;
537 const float* endP = sourceP + n - tailFrames;
538 __m128 source;
539 __m128 mSum = _mm_setzero_ps();
540
541 while (sourceP < endP) {
542 source = _mm_load_ps(sourceP);
543 source = _mm_mul_ps(source, source);
544 mSum = _mm_add_ps(mSum, source);
545 sourceP += 4;
546 }
547
548 // Summarize the SSE results.
549 const float* groupSumP = reinterpret_cast<float*>(&mSum);
550 sum += groupSumP[0] + groupSumP[1] + groupSumP[2] + groupSumP[3];
551
552 n = tailFrames;
553 }
554 #elif HAVE(ARM_NEON_INTRINSICS)
555 if (sourceStride == 1) {
556 int tailFrames = n % 4;
557 const float* endP = sourceP + n - tailFrames;
558
559 float32x4_t fourSum = vdupq_n_f32(0);
560 while (sourceP < endP) {
561 float32x4_t source = vld1q_f32(sourceP);
562 fourSum = vmlaq_f32(fourSum, source, source);
563 sourceP += 4;
564 }
565 float32x2_t twoSum = vadd_f32(vget_low_f32(fourSum), vget_high_f32(fourSum));
566
567 float groupSum[2];
568 vst1_f32(groupSum, twoSum);
569 sum += groupSum[0] + groupSum[1];
570
571 n = tailFrames;
572 }
573 #endif
574
575 while (n--) {
576 float sample = *sourceP;
577 sum += sample * sample;
578 sourceP += sourceStride;
579 }
580
581 ASSERT(sumP);
582 *sumP = sum;
583 }
584
585 void vmaxmgv(const float* sourceP, int sourceStride, float* maxP, size_t framesToProcess)
586 {
587 int n = framesToProcess;
588 float max = 0;
589
590 #ifdef __SSE2__
591 if (sourceStride == 1) {
592 // If the sourceP address is not 16-byte aligned, the first several frames (at most three) should be processed separately.
593 while ((reinterpret_cast<uintptr_t>(sourceP) & 0x0F) && n) {
594 max = std::max(max, fabsf(*sourceP));
595 sourceP++;
596 n--;
597 }
598
599 // Now the sourceP is aligned, use SSE.
600 int tailFrames = n % 4;
601 const float* endP = sourceP + n - tailFrames;
602 __m128 source;
603 __m128 mMax = _mm_setzero_ps();
604 int mask = 0x7FFFFFFF;
605 __m128 mMask = _mm_set1_ps(*reinterpret_cast<float*>(&mask));
606
607 while (sourceP < endP) {
608 source = _mm_load_ps(sourceP);
609 // Calculate the absolute value by anding source with mask, the sign bit is set to 0.
610 source = _mm_and_ps(source, mMask);
611 mMax = _mm_max_ps(mMax, source);
612 sourceP += 4;
613 }
614
615 // Get max from the SSE results.
616 const float* groupMaxP = reinterpret_cast<float*>(&mMax);
617 max = std::max(max, groupMaxP[0]);
618 max = std::max(max, groupMaxP[1]);
619 max = std::max(max, groupMaxP[2]);
620 max = std::max(max, groupMaxP[3]);
621
622 n = tailFrames;
623 }
624 #elif HAVE(ARM_NEON_INTRINSICS)
625 if (sourceStride == 1) {
626 int tailFrames = n % 4;
627 const float* endP = sourceP + n - tailFrames;
628
629 float32x4_t fourMax = vdupq_n_f32(0);
630 while (sourceP < endP) {
631 float32x4_t source = vld1q_f32(sourceP);
632 fourMax = vmaxq_f32(fourMax, vabsq_f32(source));
633 sourceP += 4;
634 }
635 float32x2_t twoMax = vmax_f32(vget_low_f32(fourMax), vget_high_f32(fourMax));
636
637 float groupMax[2];
638 vst1_f32(groupMax, twoMax);
639 max = std::max(groupMax[0], groupMax[1]);
640
641 n = tailFrames;
642 }
643 #endif
644
645 while (n--) {
646 max = std::max(max, fabsf(*sourceP));
647 sourceP += sourceStride;
648 }
649
650 ASSERT(maxP);
651 *maxP = max;
652 }
653
654 void vclip(const float* sourceP, int sourceStride, const float* lowThresholdP, const float* highThresholdP, float* destP, int destStride, size_t framesToProcess)
655 {
656 int n = framesToProcess;
657 float lowThreshold = *lowThresholdP;
658 float highThreshold = *highThresholdP;
659
660 // FIXME: Optimize for SSE2.
661 #if HAVE(ARM_NEON_INTRINSICS)
662 if ((sourceStride == 1) && (destStride == 1)) {
663 int tailFrames = n % 4;
664 const float* endP = destP + n - tailFrames;
665
666 float32x4_t low = vdupq_n_f32(lowThreshold);
667 float32x4_t high = vdupq_n_f32(highThreshold);
668 while (destP < endP) {
669 float32x4_t source = vld1q_f32(sourceP);
670 vst1q_f32(destP, vmaxq_f32(vminq_f32(source, high), low));
671 sourceP += 4;
672 destP += 4;
673 }
674 n = tailFrames;
675 }
676 #endif
677 while (n--) {
678 *destP = std::max(std::min(*sourceP, highThreshold), lowThreshold);
679 sourceP += sourceStride;
680 destP += destStride;
681 }
682 }
683
684 #endif // OS(MACOSX)
685
686 } // namespace VectorMath
687
688 } // namespace WebCore
689
690 #endif // ENABLE(WEB_AUDIO)
691