1 /*
2 * Copyright (C) 2010, Google Inc. All rights reserved.
3 *
4 * Redistribution and use in source and binary forms, with or without
5 * modification, are permitted provided that the following conditions
6 * are met:
7 * 1. Redistributions of source code must retain the above copyright
8 * notice, this list of conditions and the following disclaimer.
9 * 2. Redistributions in binary form must reproduce the above copyright
10 * notice, this list of conditions and the following disclaimer in the
11 * documentation and/or other materials provided with the distribution.
12 *
13 * THIS SOFTWARE IS PROVIDED BY APPLE INC. AND ITS CONTRIBUTORS ``AS IS'' AND ANY
14 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
15 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
16 * DISCLAIMED. IN NO EVENT SHALL APPLE INC. OR ITS CONTRIBUTORS BE LIABLE FOR ANY
17 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
18 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
19 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON
20 * ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
21 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
22 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
23 */
24
25 #include "config.h"
26
27 #if ENABLE(WEB_AUDIO)
28
29 #include "modules/webaudio/RealtimeAnalyser.h"
30
31 #include "platform/audio/AudioBus.h"
32 #include "platform/audio/AudioUtilities.h"
33 #include "platform/audio/FFTFrame.h"
34 #include "platform/audio/VectorMath.h"
35
36 #include <algorithm>
37 #include <limits.h>
38 #include "wtf/Complex.h"
39 #include "wtf/Float32Array.h"
40 #include "wtf/MainThread.h"
41 #include "wtf/MathExtras.h"
42 #include "wtf/Uint8Array.h"
43
44 using namespace std;
45
46 namespace WebCore {
47
48 const double RealtimeAnalyser::DefaultSmoothingTimeConstant = 0.8;
49 const double RealtimeAnalyser::DefaultMinDecibels = -100;
50 const double RealtimeAnalyser::DefaultMaxDecibels = -30;
51
52 const unsigned RealtimeAnalyser::DefaultFFTSize = 2048;
53 // All FFT implementations are expected to handle power-of-two sizes MinFFTSize <= size <= MaxFFTSize.
54 const unsigned RealtimeAnalyser::MinFFTSize = 32;
55 const unsigned RealtimeAnalyser::MaxFFTSize = 2048;
56 const unsigned RealtimeAnalyser::InputBufferSize = RealtimeAnalyser::MaxFFTSize * 2;
57
RealtimeAnalyser()58 RealtimeAnalyser::RealtimeAnalyser()
59 : m_inputBuffer(InputBufferSize)
60 , m_writeIndex(0)
61 , m_fftSize(DefaultFFTSize)
62 , m_magnitudeBuffer(DefaultFFTSize / 2)
63 , m_smoothingTimeConstant(DefaultSmoothingTimeConstant)
64 , m_minDecibels(DefaultMinDecibels)
65 , m_maxDecibels(DefaultMaxDecibels)
66 {
67 m_analysisFrame = adoptPtr(new FFTFrame(DefaultFFTSize));
68 }
69
reset()70 void RealtimeAnalyser::reset()
71 {
72 m_writeIndex = 0;
73 m_inputBuffer.zero();
74 m_magnitudeBuffer.zero();
75 }
76
setFftSize(size_t size)77 bool RealtimeAnalyser::setFftSize(size_t size)
78 {
79 ASSERT(isMainThread());
80
81 // Only allow powers of two.
82 unsigned log2size = static_cast<unsigned>(log2(size));
83 bool isPOT(1UL << log2size == size);
84
85 if (!isPOT || size > MaxFFTSize || size < MinFFTSize)
86 return false;
87
88 if (m_fftSize != size) {
89 m_analysisFrame = adoptPtr(new FFTFrame(size));
90 // m_magnitudeBuffer has size = fftSize / 2 because it contains floats reduced from complex values in m_analysisFrame.
91 m_magnitudeBuffer.allocate(size / 2);
92 m_fftSize = size;
93 }
94
95 return true;
96 }
97
writeInput(AudioBus * bus,size_t framesToProcess)98 void RealtimeAnalyser::writeInput(AudioBus* bus, size_t framesToProcess)
99 {
100 bool isBusGood = bus && bus->numberOfChannels() > 0 && bus->channel(0)->length() >= framesToProcess;
101 ASSERT(isBusGood);
102 if (!isBusGood)
103 return;
104
105 // FIXME : allow to work with non-FFTSize divisible chunking
106 bool isDestinationGood = m_writeIndex < m_inputBuffer.size() && m_writeIndex + framesToProcess <= m_inputBuffer.size();
107 ASSERT(isDestinationGood);
108 if (!isDestinationGood)
109 return;
110
111 // Perform real-time analysis
112 const float* source = bus->channel(0)->data();
113 float* dest = m_inputBuffer.data() + m_writeIndex;
114
115 // The source has already been sanity checked with isBusGood above.
116 memcpy(dest, source, sizeof(float) * framesToProcess);
117
118 // Sum all channels in one if numberOfChannels > 1.
119 unsigned numberOfChannels = bus->numberOfChannels();
120 if (numberOfChannels > 1) {
121 for (unsigned i = 1; i < numberOfChannels; i++) {
122 source = bus->channel(i)->data();
123 VectorMath::vadd(dest, 1, source, 1, dest, 1, framesToProcess);
124 }
125 const float scale = 1.0 / numberOfChannels;
126 VectorMath::vsmul(dest, 1, &scale, dest, 1, framesToProcess);
127 }
128
129 m_writeIndex += framesToProcess;
130 if (m_writeIndex >= InputBufferSize)
131 m_writeIndex = 0;
132 }
133
134 namespace {
135
applyWindow(float * p,size_t n)136 void applyWindow(float* p, size_t n)
137 {
138 ASSERT(isMainThread());
139
140 // Blackman window
141 double alpha = 0.16;
142 double a0 = 0.5 * (1 - alpha);
143 double a1 = 0.5;
144 double a2 = 0.5 * alpha;
145
146 for (unsigned i = 0; i < n; ++i) {
147 double x = static_cast<double>(i) / static_cast<double>(n);
148 double window = a0 - a1 * cos(2 * piDouble * x) + a2 * cos(4 * piDouble * x);
149 p[i] *= float(window);
150 }
151 }
152
153 } // namespace
154
doFFTAnalysis()155 void RealtimeAnalyser::doFFTAnalysis()
156 {
157 ASSERT(isMainThread());
158
159 // Unroll the input buffer into a temporary buffer, where we'll apply an analysis window followed by an FFT.
160 size_t fftSize = this->fftSize();
161
162 AudioFloatArray temporaryBuffer(fftSize);
163 float* inputBuffer = m_inputBuffer.data();
164 float* tempP = temporaryBuffer.data();
165
166 // Take the previous fftSize values from the input buffer and copy into the temporary buffer.
167 unsigned writeIndex = m_writeIndex;
168 if (writeIndex < fftSize) {
169 memcpy(tempP, inputBuffer + writeIndex - fftSize + InputBufferSize, sizeof(*tempP) * (fftSize - writeIndex));
170 memcpy(tempP + fftSize - writeIndex, inputBuffer, sizeof(*tempP) * writeIndex);
171 } else
172 memcpy(tempP, inputBuffer + writeIndex - fftSize, sizeof(*tempP) * fftSize);
173
174
175 // Window the input samples.
176 applyWindow(tempP, fftSize);
177
178 // Do the analysis.
179 m_analysisFrame->doFFT(tempP);
180
181 float* realP = m_analysisFrame->realData();
182 float* imagP = m_analysisFrame->imagData();
183
184 // Blow away the packed nyquist component.
185 imagP[0] = 0;
186
187 // Normalize so than an input sine wave at 0dBfs registers as 0dBfs (undo FFT scaling factor).
188 const double magnitudeScale = 1.0 / DefaultFFTSize;
189
190 // A value of 0 does no averaging with the previous result. Larger values produce slower, but smoother changes.
191 double k = m_smoothingTimeConstant;
192 k = max(0.0, k);
193 k = min(1.0, k);
194
195 // Convert the analysis data from complex to magnitude and average with the previous result.
196 float* destination = magnitudeBuffer().data();
197 size_t n = magnitudeBuffer().size();
198 for (size_t i = 0; i < n; ++i) {
199 Complex c(realP[i], imagP[i]);
200 double scalarMagnitude = abs(c) * magnitudeScale;
201 destination[i] = float(k * destination[i] + (1 - k) * scalarMagnitude);
202 }
203 }
204
getFloatFrequencyData(Float32Array * destinationArray)205 void RealtimeAnalyser::getFloatFrequencyData(Float32Array* destinationArray)
206 {
207 ASSERT(isMainThread());
208
209 if (!destinationArray)
210 return;
211
212 doFFTAnalysis();
213
214 // Convert from linear magnitude to floating-point decibels.
215 const double minDecibels = m_minDecibels;
216 unsigned sourceLength = magnitudeBuffer().size();
217 size_t len = min(sourceLength, destinationArray->length());
218 if (len > 0) {
219 const float* source = magnitudeBuffer().data();
220 float* destination = destinationArray->data();
221
222 for (unsigned i = 0; i < len; ++i) {
223 float linearValue = source[i];
224 double dbMag = !linearValue ? minDecibels : AudioUtilities::linearToDecibels(linearValue);
225 destination[i] = float(dbMag);
226 }
227 }
228 }
229
getByteFrequencyData(Uint8Array * destinationArray)230 void RealtimeAnalyser::getByteFrequencyData(Uint8Array* destinationArray)
231 {
232 ASSERT(isMainThread());
233
234 if (!destinationArray)
235 return;
236
237 doFFTAnalysis();
238
239 // Convert from linear magnitude to unsigned-byte decibels.
240 unsigned sourceLength = magnitudeBuffer().size();
241 size_t len = min(sourceLength, destinationArray->length());
242 if (len > 0) {
243 const double rangeScaleFactor = m_maxDecibels == m_minDecibels ? 1 : 1 / (m_maxDecibels - m_minDecibels);
244 const double minDecibels = m_minDecibels;
245
246 const float* source = magnitudeBuffer().data();
247 unsigned char* destination = destinationArray->data();
248
249 for (unsigned i = 0; i < len; ++i) {
250 float linearValue = source[i];
251 double dbMag = !linearValue ? minDecibels : AudioUtilities::linearToDecibels(linearValue);
252
253 // The range m_minDecibels to m_maxDecibels will be scaled to byte values from 0 to UCHAR_MAX.
254 double scaledValue = UCHAR_MAX * (dbMag - minDecibels) * rangeScaleFactor;
255
256 // Clip to valid range.
257 if (scaledValue < 0)
258 scaledValue = 0;
259 if (scaledValue > UCHAR_MAX)
260 scaledValue = UCHAR_MAX;
261
262 destination[i] = static_cast<unsigned char>(scaledValue);
263 }
264 }
265 }
266
getByteTimeDomainData(Uint8Array * destinationArray)267 void RealtimeAnalyser::getByteTimeDomainData(Uint8Array* destinationArray)
268 {
269 ASSERT(isMainThread());
270
271 if (!destinationArray)
272 return;
273
274 unsigned fftSize = this->fftSize();
275 size_t len = min(fftSize, destinationArray->length());
276 if (len > 0) {
277 bool isInputBufferGood = m_inputBuffer.size() == InputBufferSize && m_inputBuffer.size() > fftSize;
278 ASSERT(isInputBufferGood);
279 if (!isInputBufferGood)
280 return;
281
282 float* inputBuffer = m_inputBuffer.data();
283 unsigned char* destination = destinationArray->data();
284
285 unsigned writeIndex = m_writeIndex;
286
287 for (unsigned i = 0; i < len; ++i) {
288 // Buffer access is protected due to modulo operation.
289 float value = inputBuffer[(i + writeIndex - fftSize + InputBufferSize) % InputBufferSize];
290
291 // Scale from nominal -1 -> +1 to unsigned byte.
292 double scaledValue = 128 * (value + 1);
293
294 // Clip to valid range.
295 if (scaledValue < 0)
296 scaledValue = 0;
297 if (scaledValue > UCHAR_MAX)
298 scaledValue = UCHAR_MAX;
299
300 destination[i] = static_cast<unsigned char>(scaledValue);
301 }
302 }
303 }
304
305 } // namespace WebCore
306
307 #endif // ENABLE(WEB_AUDIO)
308