• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2006 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 package android.os;
18 
19 import android.text.TextUtils;
20 import android.util.ArrayMap;
21 import android.util.Log;
22 import android.util.SparseArray;
23 import android.util.SparseBooleanArray;
24 
25 import java.io.ByteArrayInputStream;
26 import java.io.ByteArrayOutputStream;
27 import java.io.FileDescriptor;
28 import java.io.FileNotFoundException;
29 import java.io.IOException;
30 import java.io.ObjectInputStream;
31 import java.io.ObjectOutputStream;
32 import java.io.Serializable;
33 import java.lang.reflect.Field;
34 import java.util.ArrayList;
35 import java.util.Arrays;
36 import java.util.HashMap;
37 import java.util.List;
38 import java.util.Map;
39 import java.util.Set;
40 
41 /**
42  * Container for a message (data and object references) that can
43  * be sent through an IBinder.  A Parcel can contain both flattened data
44  * that will be unflattened on the other side of the IPC (using the various
45  * methods here for writing specific types, or the general
46  * {@link Parcelable} interface), and references to live {@link IBinder}
47  * objects that will result in the other side receiving a proxy IBinder
48  * connected with the original IBinder in the Parcel.
49  *
50  * <p class="note">Parcel is <strong>not</strong> a general-purpose
51  * serialization mechanism.  This class (and the corresponding
52  * {@link Parcelable} API for placing arbitrary objects into a Parcel) is
53  * designed as a high-performance IPC transport.  As such, it is not
54  * appropriate to place any Parcel data in to persistent storage: changes
55  * in the underlying implementation of any of the data in the Parcel can
56  * render older data unreadable.</p>
57  *
58  * <p>The bulk of the Parcel API revolves around reading and writing data
59  * of various types.  There are six major classes of such functions available.</p>
60  *
61  * <h3>Primitives</h3>
62  *
63  * <p>The most basic data functions are for writing and reading primitive
64  * data types: {@link #writeByte}, {@link #readByte}, {@link #writeDouble},
65  * {@link #readDouble}, {@link #writeFloat}, {@link #readFloat}, {@link #writeInt},
66  * {@link #readInt}, {@link #writeLong}, {@link #readLong},
67  * {@link #writeString}, {@link #readString}.  Most other
68  * data operations are built on top of these.  The given data is written and
69  * read using the endianess of the host CPU.</p>
70  *
71  * <h3>Primitive Arrays</h3>
72  *
73  * <p>There are a variety of methods for reading and writing raw arrays
74  * of primitive objects, which generally result in writing a 4-byte length
75  * followed by the primitive data items.  The methods for reading can either
76  * read the data into an existing array, or create and return a new array.
77  * These available types are:</p>
78  *
79  * <ul>
80  * <li> {@link #writeBooleanArray(boolean[])},
81  * {@link #readBooleanArray(boolean[])}, {@link #createBooleanArray()}
82  * <li> {@link #writeByteArray(byte[])},
83  * {@link #writeByteArray(byte[], int, int)}, {@link #readByteArray(byte[])},
84  * {@link #createByteArray()}
85  * <li> {@link #writeCharArray(char[])}, {@link #readCharArray(char[])},
86  * {@link #createCharArray()}
87  * <li> {@link #writeDoubleArray(double[])}, {@link #readDoubleArray(double[])},
88  * {@link #createDoubleArray()}
89  * <li> {@link #writeFloatArray(float[])}, {@link #readFloatArray(float[])},
90  * {@link #createFloatArray()}
91  * <li> {@link #writeIntArray(int[])}, {@link #readIntArray(int[])},
92  * {@link #createIntArray()}
93  * <li> {@link #writeLongArray(long[])}, {@link #readLongArray(long[])},
94  * {@link #createLongArray()}
95  * <li> {@link #writeStringArray(String[])}, {@link #readStringArray(String[])},
96  * {@link #createStringArray()}.
97  * <li> {@link #writeSparseBooleanArray(SparseBooleanArray)},
98  * {@link #readSparseBooleanArray()}.
99  * </ul>
100  *
101  * <h3>Parcelables</h3>
102  *
103  * <p>The {@link Parcelable} protocol provides an extremely efficient (but
104  * low-level) protocol for objects to write and read themselves from Parcels.
105  * You can use the direct methods {@link #writeParcelable(Parcelable, int)}
106  * and {@link #readParcelable(ClassLoader)} or
107  * {@link #writeParcelableArray} and
108  * {@link #readParcelableArray(ClassLoader)} to write or read.  These
109  * methods write both the class type and its data to the Parcel, allowing
110  * that class to be reconstructed from the appropriate class loader when
111  * later reading.</p>
112  *
113  * <p>There are also some methods that provide a more efficient way to work
114  * with Parcelables: {@link #writeTypedArray},
115  * {@link #writeTypedList(List)},
116  * {@link #readTypedArray} and {@link #readTypedList}.  These methods
117  * do not write the class information of the original object: instead, the
118  * caller of the read function must know what type to expect and pass in the
119  * appropriate {@link Parcelable.Creator Parcelable.Creator} instead to
120  * properly construct the new object and read its data.  (To more efficient
121  * write and read a single Parceable object, you can directly call
122  * {@link Parcelable#writeToParcel Parcelable.writeToParcel} and
123  * {@link Parcelable.Creator#createFromParcel Parcelable.Creator.createFromParcel}
124  * yourself.)</p>
125  *
126  * <h3>Bundles</h3>
127  *
128  * <p>A special type-safe container, called {@link Bundle}, is available
129  * for key/value maps of heterogeneous values.  This has many optimizations
130  * for improved performance when reading and writing data, and its type-safe
131  * API avoids difficult to debug type errors when finally marshalling the
132  * data contents into a Parcel.  The methods to use are
133  * {@link #writeBundle(Bundle)}, {@link #readBundle()}, and
134  * {@link #readBundle(ClassLoader)}.
135  *
136  * <h3>Active Objects</h3>
137  *
138  * <p>An unusual feature of Parcel is the ability to read and write active
139  * objects.  For these objects the actual contents of the object is not
140  * written, rather a special token referencing the object is written.  When
141  * reading the object back from the Parcel, you do not get a new instance of
142  * the object, but rather a handle that operates on the exact same object that
143  * was originally written.  There are two forms of active objects available.</p>
144  *
145  * <p>{@link Binder} objects are a core facility of Android's general cross-process
146  * communication system.  The {@link IBinder} interface describes an abstract
147  * protocol with a Binder object.  Any such interface can be written in to
148  * a Parcel, and upon reading you will receive either the original object
149  * implementing that interface or a special proxy implementation
150  * that communicates calls back to the original object.  The methods to use are
151  * {@link #writeStrongBinder(IBinder)},
152  * {@link #writeStrongInterface(IInterface)}, {@link #readStrongBinder()},
153  * {@link #writeBinderArray(IBinder[])}, {@link #readBinderArray(IBinder[])},
154  * {@link #createBinderArray()},
155  * {@link #writeBinderList(List)}, {@link #readBinderList(List)},
156  * {@link #createBinderArrayList()}.</p>
157  *
158  * <p>FileDescriptor objects, representing raw Linux file descriptor identifiers,
159  * can be written and {@link ParcelFileDescriptor} objects returned to operate
160  * on the original file descriptor.  The returned file descriptor is a dup
161  * of the original file descriptor: the object and fd is different, but
162  * operating on the same underlying file stream, with the same position, etc.
163  * The methods to use are {@link #writeFileDescriptor(FileDescriptor)},
164  * {@link #readFileDescriptor()}.
165  *
166  * <h3>Untyped Containers</h3>
167  *
168  * <p>A final class of methods are for writing and reading standard Java
169  * containers of arbitrary types.  These all revolve around the
170  * {@link #writeValue(Object)} and {@link #readValue(ClassLoader)} methods
171  * which define the types of objects allowed.  The container methods are
172  * {@link #writeArray(Object[])}, {@link #readArray(ClassLoader)},
173  * {@link #writeList(List)}, {@link #readList(List, ClassLoader)},
174  * {@link #readArrayList(ClassLoader)},
175  * {@link #writeMap(Map)}, {@link #readMap(Map, ClassLoader)},
176  * {@link #writeSparseArray(SparseArray)},
177  * {@link #readSparseArray(ClassLoader)}.
178  */
179 public final class Parcel {
180     private static final boolean DEBUG_RECYCLE = false;
181     private static final boolean DEBUG_ARRAY_MAP = false;
182     private static final String TAG = "Parcel";
183 
184     @SuppressWarnings({"UnusedDeclaration"})
185     private int mNativePtr; // used by native code
186 
187     /**
188      * Flag indicating if {@link #mNativePtr} was allocated by this object,
189      * indicating that we're responsible for its lifecycle.
190      */
191     private boolean mOwnsNativeParcelObject;
192 
193     private RuntimeException mStack;
194 
195     private static final int POOL_SIZE = 6;
196     private static final Parcel[] sOwnedPool = new Parcel[POOL_SIZE];
197     private static final Parcel[] sHolderPool = new Parcel[POOL_SIZE];
198 
199     private static final int VAL_NULL = -1;
200     private static final int VAL_STRING = 0;
201     private static final int VAL_INTEGER = 1;
202     private static final int VAL_MAP = 2;
203     private static final int VAL_BUNDLE = 3;
204     private static final int VAL_PARCELABLE = 4;
205     private static final int VAL_SHORT = 5;
206     private static final int VAL_LONG = 6;
207     private static final int VAL_FLOAT = 7;
208     private static final int VAL_DOUBLE = 8;
209     private static final int VAL_BOOLEAN = 9;
210     private static final int VAL_CHARSEQUENCE = 10;
211     private static final int VAL_LIST  = 11;
212     private static final int VAL_SPARSEARRAY = 12;
213     private static final int VAL_BYTEARRAY = 13;
214     private static final int VAL_STRINGARRAY = 14;
215     private static final int VAL_IBINDER = 15;
216     private static final int VAL_PARCELABLEARRAY = 16;
217     private static final int VAL_OBJECTARRAY = 17;
218     private static final int VAL_INTARRAY = 18;
219     private static final int VAL_LONGARRAY = 19;
220     private static final int VAL_BYTE = 20;
221     private static final int VAL_SERIALIZABLE = 21;
222     private static final int VAL_SPARSEBOOLEANARRAY = 22;
223     private static final int VAL_BOOLEANARRAY = 23;
224     private static final int VAL_CHARSEQUENCEARRAY = 24;
225 
226     // The initial int32 in a Binder call's reply Parcel header:
227     private static final int EX_SECURITY = -1;
228     private static final int EX_BAD_PARCELABLE = -2;
229     private static final int EX_ILLEGAL_ARGUMENT = -3;
230     private static final int EX_NULL_POINTER = -4;
231     private static final int EX_ILLEGAL_STATE = -5;
232     private static final int EX_NETWORK_MAIN_THREAD = -6;
233     private static final int EX_HAS_REPLY_HEADER = -128;  // special; see below
234 
nativeDataSize(int nativePtr)235     private static native int nativeDataSize(int nativePtr);
nativeDataAvail(int nativePtr)236     private static native int nativeDataAvail(int nativePtr);
nativeDataPosition(int nativePtr)237     private static native int nativeDataPosition(int nativePtr);
nativeDataCapacity(int nativePtr)238     private static native int nativeDataCapacity(int nativePtr);
nativeSetDataSize(int nativePtr, int size)239     private static native void nativeSetDataSize(int nativePtr, int size);
nativeSetDataPosition(int nativePtr, int pos)240     private static native void nativeSetDataPosition(int nativePtr, int pos);
nativeSetDataCapacity(int nativePtr, int size)241     private static native void nativeSetDataCapacity(int nativePtr, int size);
242 
nativePushAllowFds(int nativePtr, boolean allowFds)243     private static native boolean nativePushAllowFds(int nativePtr, boolean allowFds);
nativeRestoreAllowFds(int nativePtr, boolean lastValue)244     private static native void nativeRestoreAllowFds(int nativePtr, boolean lastValue);
245 
nativeWriteByteArray(int nativePtr, byte[] b, int offset, int len)246     private static native void nativeWriteByteArray(int nativePtr, byte[] b, int offset, int len);
nativeWriteInt(int nativePtr, int val)247     private static native void nativeWriteInt(int nativePtr, int val);
nativeWriteLong(int nativePtr, long val)248     private static native void nativeWriteLong(int nativePtr, long val);
nativeWriteFloat(int nativePtr, float val)249     private static native void nativeWriteFloat(int nativePtr, float val);
nativeWriteDouble(int nativePtr, double val)250     private static native void nativeWriteDouble(int nativePtr, double val);
nativeWriteString(int nativePtr, String val)251     private static native void nativeWriteString(int nativePtr, String val);
nativeWriteStrongBinder(int nativePtr, IBinder val)252     private static native void nativeWriteStrongBinder(int nativePtr, IBinder val);
nativeWriteFileDescriptor(int nativePtr, FileDescriptor val)253     private static native void nativeWriteFileDescriptor(int nativePtr, FileDescriptor val);
254 
nativeCreateByteArray(int nativePtr)255     private static native byte[] nativeCreateByteArray(int nativePtr);
nativeReadInt(int nativePtr)256     private static native int nativeReadInt(int nativePtr);
nativeReadLong(int nativePtr)257     private static native long nativeReadLong(int nativePtr);
nativeReadFloat(int nativePtr)258     private static native float nativeReadFloat(int nativePtr);
nativeReadDouble(int nativePtr)259     private static native double nativeReadDouble(int nativePtr);
nativeReadString(int nativePtr)260     private static native String nativeReadString(int nativePtr);
nativeReadStrongBinder(int nativePtr)261     private static native IBinder nativeReadStrongBinder(int nativePtr);
nativeReadFileDescriptor(int nativePtr)262     private static native FileDescriptor nativeReadFileDescriptor(int nativePtr);
263 
nativeCreate()264     private static native int nativeCreate();
nativeFreeBuffer(int nativePtr)265     private static native void nativeFreeBuffer(int nativePtr);
nativeDestroy(int nativePtr)266     private static native void nativeDestroy(int nativePtr);
267 
nativeMarshall(int nativePtr)268     private static native byte[] nativeMarshall(int nativePtr);
nativeUnmarshall( int nativePtr, byte[] data, int offest, int length)269     private static native void nativeUnmarshall(
270             int nativePtr, byte[] data, int offest, int length);
nativeAppendFrom( int thisNativePtr, int otherNativePtr, int offset, int length)271     private static native void nativeAppendFrom(
272             int thisNativePtr, int otherNativePtr, int offset, int length);
nativeHasFileDescriptors(int nativePtr)273     private static native boolean nativeHasFileDescriptors(int nativePtr);
nativeWriteInterfaceToken(int nativePtr, String interfaceName)274     private static native void nativeWriteInterfaceToken(int nativePtr, String interfaceName);
nativeEnforceInterface(int nativePtr, String interfaceName)275     private static native void nativeEnforceInterface(int nativePtr, String interfaceName);
276 
277     public final static Parcelable.Creator<String> STRING_CREATOR
278              = new Parcelable.Creator<String>() {
279         public String createFromParcel(Parcel source) {
280             return source.readString();
281         }
282         public String[] newArray(int size) {
283             return new String[size];
284         }
285     };
286 
287     /**
288      * Retrieve a new Parcel object from the pool.
289      */
obtain()290     public static Parcel obtain() {
291         final Parcel[] pool = sOwnedPool;
292         synchronized (pool) {
293             Parcel p;
294             for (int i=0; i<POOL_SIZE; i++) {
295                 p = pool[i];
296                 if (p != null) {
297                     pool[i] = null;
298                     if (DEBUG_RECYCLE) {
299                         p.mStack = new RuntimeException();
300                     }
301                     return p;
302                 }
303             }
304         }
305         return new Parcel(0);
306     }
307 
308     /**
309      * Put a Parcel object back into the pool.  You must not touch
310      * the object after this call.
311      */
recycle()312     public final void recycle() {
313         if (DEBUG_RECYCLE) mStack = null;
314         freeBuffer();
315 
316         final Parcel[] pool;
317         if (mOwnsNativeParcelObject) {
318             pool = sOwnedPool;
319         } else {
320             mNativePtr = 0;
321             pool = sHolderPool;
322         }
323 
324         synchronized (pool) {
325             for (int i=0; i<POOL_SIZE; i++) {
326                 if (pool[i] == null) {
327                     pool[i] = this;
328                     return;
329                 }
330             }
331         }
332     }
333 
334     /**
335      * Returns the total amount of data contained in the parcel.
336      */
dataSize()337     public final int dataSize() {
338         return nativeDataSize(mNativePtr);
339     }
340 
341     /**
342      * Returns the amount of data remaining to be read from the
343      * parcel.  That is, {@link #dataSize}-{@link #dataPosition}.
344      */
dataAvail()345     public final int dataAvail() {
346         return nativeDataAvail(mNativePtr);
347     }
348 
349     /**
350      * Returns the current position in the parcel data.  Never
351      * more than {@link #dataSize}.
352      */
dataPosition()353     public final int dataPosition() {
354         return nativeDataPosition(mNativePtr);
355     }
356 
357     /**
358      * Returns the total amount of space in the parcel.  This is always
359      * >= {@link #dataSize}.  The difference between it and dataSize() is the
360      * amount of room left until the parcel needs to re-allocate its
361      * data buffer.
362      */
dataCapacity()363     public final int dataCapacity() {
364         return nativeDataCapacity(mNativePtr);
365     }
366 
367     /**
368      * Change the amount of data in the parcel.  Can be either smaller or
369      * larger than the current size.  If larger than the current capacity,
370      * more memory will be allocated.
371      *
372      * @param size The new number of bytes in the Parcel.
373      */
setDataSize(int size)374     public final void setDataSize(int size) {
375         nativeSetDataSize(mNativePtr, size);
376     }
377 
378     /**
379      * Move the current read/write position in the parcel.
380      * @param pos New offset in the parcel; must be between 0 and
381      * {@link #dataSize}.
382      */
setDataPosition(int pos)383     public final void setDataPosition(int pos) {
384         nativeSetDataPosition(mNativePtr, pos);
385     }
386 
387     /**
388      * Change the capacity (current available space) of the parcel.
389      *
390      * @param size The new capacity of the parcel, in bytes.  Can not be
391      * less than {@link #dataSize} -- that is, you can not drop existing data
392      * with this method.
393      */
setDataCapacity(int size)394     public final void setDataCapacity(int size) {
395         nativeSetDataCapacity(mNativePtr, size);
396     }
397 
398     /** @hide */
pushAllowFds(boolean allowFds)399     public final boolean pushAllowFds(boolean allowFds) {
400         return nativePushAllowFds(mNativePtr, allowFds);
401     }
402 
403     /** @hide */
restoreAllowFds(boolean lastValue)404     public final void restoreAllowFds(boolean lastValue) {
405         nativeRestoreAllowFds(mNativePtr, lastValue);
406     }
407 
408     /**
409      * Returns the raw bytes of the parcel.
410      *
411      * <p class="note">The data you retrieve here <strong>must not</strong>
412      * be placed in any kind of persistent storage (on local disk, across
413      * a network, etc).  For that, you should use standard serialization
414      * or another kind of general serialization mechanism.  The Parcel
415      * marshalled representation is highly optimized for local IPC, and as
416      * such does not attempt to maintain compatibility with data created
417      * in different versions of the platform.
418      */
marshall()419     public final byte[] marshall() {
420         return nativeMarshall(mNativePtr);
421     }
422 
423     /**
424      * Set the bytes in data to be the raw bytes of this Parcel.
425      */
unmarshall(byte[] data, int offest, int length)426     public final void unmarshall(byte[] data, int offest, int length) {
427         nativeUnmarshall(mNativePtr, data, offest, length);
428     }
429 
appendFrom(Parcel parcel, int offset, int length)430     public final void appendFrom(Parcel parcel, int offset, int length) {
431         nativeAppendFrom(mNativePtr, parcel.mNativePtr, offset, length);
432     }
433 
434     /**
435      * Report whether the parcel contains any marshalled file descriptors.
436      */
hasFileDescriptors()437     public final boolean hasFileDescriptors() {
438         return nativeHasFileDescriptors(mNativePtr);
439     }
440 
441     /**
442      * Store or read an IBinder interface token in the parcel at the current
443      * {@link #dataPosition}.  This is used to validate that the marshalled
444      * transaction is intended for the target interface.
445      */
writeInterfaceToken(String interfaceName)446     public final void writeInterfaceToken(String interfaceName) {
447         nativeWriteInterfaceToken(mNativePtr, interfaceName);
448     }
449 
enforceInterface(String interfaceName)450     public final void enforceInterface(String interfaceName) {
451         nativeEnforceInterface(mNativePtr, interfaceName);
452     }
453 
454     /**
455      * Write a byte array into the parcel at the current {@link #dataPosition},
456      * growing {@link #dataCapacity} if needed.
457      * @param b Bytes to place into the parcel.
458      */
writeByteArray(byte[] b)459     public final void writeByteArray(byte[] b) {
460         writeByteArray(b, 0, (b != null) ? b.length : 0);
461     }
462 
463     /**
464      * Write a byte array into the parcel at the current {@link #dataPosition},
465      * growing {@link #dataCapacity} if needed.
466      * @param b Bytes to place into the parcel.
467      * @param offset Index of first byte to be written.
468      * @param len Number of bytes to write.
469      */
writeByteArray(byte[] b, int offset, int len)470     public final void writeByteArray(byte[] b, int offset, int len) {
471         if (b == null) {
472             writeInt(-1);
473             return;
474         }
475         Arrays.checkOffsetAndCount(b.length, offset, len);
476         nativeWriteByteArray(mNativePtr, b, offset, len);
477     }
478 
479     /**
480      * Write an integer value into the parcel at the current dataPosition(),
481      * growing dataCapacity() if needed.
482      */
writeInt(int val)483     public final void writeInt(int val) {
484         nativeWriteInt(mNativePtr, val);
485     }
486 
487     /**
488      * Write a long integer value into the parcel at the current dataPosition(),
489      * growing dataCapacity() if needed.
490      */
writeLong(long val)491     public final void writeLong(long val) {
492         nativeWriteLong(mNativePtr, val);
493     }
494 
495     /**
496      * Write a floating point value into the parcel at the current
497      * dataPosition(), growing dataCapacity() if needed.
498      */
writeFloat(float val)499     public final void writeFloat(float val) {
500         nativeWriteFloat(mNativePtr, val);
501     }
502 
503     /**
504      * Write a double precision floating point value into the parcel at the
505      * current dataPosition(), growing dataCapacity() if needed.
506      */
writeDouble(double val)507     public final void writeDouble(double val) {
508         nativeWriteDouble(mNativePtr, val);
509     }
510 
511     /**
512      * Write a string value into the parcel at the current dataPosition(),
513      * growing dataCapacity() if needed.
514      */
writeString(String val)515     public final void writeString(String val) {
516         nativeWriteString(mNativePtr, val);
517     }
518 
519     /**
520      * Write a CharSequence value into the parcel at the current dataPosition(),
521      * growing dataCapacity() if needed.
522      * @hide
523      */
writeCharSequence(CharSequence val)524     public final void writeCharSequence(CharSequence val) {
525         TextUtils.writeToParcel(val, this, 0);
526     }
527 
528     /**
529      * Write an object into the parcel at the current dataPosition(),
530      * growing dataCapacity() if needed.
531      */
writeStrongBinder(IBinder val)532     public final void writeStrongBinder(IBinder val) {
533         nativeWriteStrongBinder(mNativePtr, val);
534     }
535 
536     /**
537      * Write an object into the parcel at the current dataPosition(),
538      * growing dataCapacity() if needed.
539      */
writeStrongInterface(IInterface val)540     public final void writeStrongInterface(IInterface val) {
541         writeStrongBinder(val == null ? null : val.asBinder());
542     }
543 
544     /**
545      * Write a FileDescriptor into the parcel at the current dataPosition(),
546      * growing dataCapacity() if needed.
547      *
548      * <p class="caution">The file descriptor will not be closed, which may
549      * result in file descriptor leaks when objects are returned from Binder
550      * calls.  Use {@link ParcelFileDescriptor#writeToParcel} instead, which
551      * accepts contextual flags and will close the original file descriptor
552      * if {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE} is set.</p>
553      */
writeFileDescriptor(FileDescriptor val)554     public final void writeFileDescriptor(FileDescriptor val) {
555         nativeWriteFileDescriptor(mNativePtr, val);
556     }
557 
558     /**
559      * Write a byte value into the parcel at the current dataPosition(),
560      * growing dataCapacity() if needed.
561      */
writeByte(byte val)562     public final void writeByte(byte val) {
563         writeInt(val);
564     }
565 
566     /**
567      * Please use {@link #writeBundle} instead.  Flattens a Map into the parcel
568      * at the current dataPosition(),
569      * growing dataCapacity() if needed.  The Map keys must be String objects.
570      * The Map values are written using {@link #writeValue} and must follow
571      * the specification there.
572      *
573      * <p>It is strongly recommended to use {@link #writeBundle} instead of
574      * this method, since the Bundle class provides a type-safe API that
575      * allows you to avoid mysterious type errors at the point of marshalling.
576      */
writeMap(Map val)577     public final void writeMap(Map val) {
578         writeMapInternal((Map<String, Object>) val);
579     }
580 
581     /**
582      * Flatten a Map into the parcel at the current dataPosition(),
583      * growing dataCapacity() if needed.  The Map keys must be String objects.
584      */
writeMapInternal(Map<String,Object> val)585     /* package */ void writeMapInternal(Map<String,Object> val) {
586         if (val == null) {
587             writeInt(-1);
588             return;
589         }
590         Set<Map.Entry<String,Object>> entries = val.entrySet();
591         writeInt(entries.size());
592         for (Map.Entry<String,Object> e : entries) {
593             writeValue(e.getKey());
594             writeValue(e.getValue());
595         }
596     }
597 
598     /**
599      * Flatten an ArrayMap into the parcel at the current dataPosition(),
600      * growing dataCapacity() if needed.  The Map keys must be String objects.
601      */
writeArrayMapInternal(ArrayMap<String,Object> val)602     /* package */ void writeArrayMapInternal(ArrayMap<String,Object> val) {
603         if (val == null) {
604             writeInt(-1);
605             return;
606         }
607         final int N = val.size();
608         writeInt(N);
609         if (DEBUG_ARRAY_MAP) {
610             RuntimeException here =  new RuntimeException("here");
611             here.fillInStackTrace();
612             Log.d(TAG, "Writing " + N + " ArrayMap entries", here);
613         }
614         int startPos;
615         for (int i=0; i<N; i++) {
616             if (DEBUG_ARRAY_MAP) startPos = dataPosition();
617             writeValue(val.keyAt(i));
618             writeValue(val.valueAt(i));
619             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Write #" + i + " "
620                     + (dataPosition()-startPos) + " bytes: key=0x"
621                     + Integer.toHexString(val.keyAt(i) != null ? val.keyAt(i).hashCode() : 0)
622                     + " " + val.keyAt(i));
623         }
624     }
625 
626     /**
627      * Flatten a Bundle into the parcel at the current dataPosition(),
628      * growing dataCapacity() if needed.
629      */
writeBundle(Bundle val)630     public final void writeBundle(Bundle val) {
631         if (val == null) {
632             writeInt(-1);
633             return;
634         }
635 
636         val.writeToParcel(this, 0);
637     }
638 
639     /**
640      * Flatten a List into the parcel at the current dataPosition(), growing
641      * dataCapacity() if needed.  The List values are written using
642      * {@link #writeValue} and must follow the specification there.
643      */
writeList(List val)644     public final void writeList(List val) {
645         if (val == null) {
646             writeInt(-1);
647             return;
648         }
649         int N = val.size();
650         int i=0;
651         writeInt(N);
652         while (i < N) {
653             writeValue(val.get(i));
654             i++;
655         }
656     }
657 
658     /**
659      * Flatten an Object array into the parcel at the current dataPosition(),
660      * growing dataCapacity() if needed.  The array values are written using
661      * {@link #writeValue} and must follow the specification there.
662      */
writeArray(Object[] val)663     public final void writeArray(Object[] val) {
664         if (val == null) {
665             writeInt(-1);
666             return;
667         }
668         int N = val.length;
669         int i=0;
670         writeInt(N);
671         while (i < N) {
672             writeValue(val[i]);
673             i++;
674         }
675     }
676 
677     /**
678      * Flatten a generic SparseArray into the parcel at the current
679      * dataPosition(), growing dataCapacity() if needed.  The SparseArray
680      * values are written using {@link #writeValue} and must follow the
681      * specification there.
682      */
writeSparseArray(SparseArray<Object> val)683     public final void writeSparseArray(SparseArray<Object> val) {
684         if (val == null) {
685             writeInt(-1);
686             return;
687         }
688         int N = val.size();
689         writeInt(N);
690         int i=0;
691         while (i < N) {
692             writeInt(val.keyAt(i));
693             writeValue(val.valueAt(i));
694             i++;
695         }
696     }
697 
writeSparseBooleanArray(SparseBooleanArray val)698     public final void writeSparseBooleanArray(SparseBooleanArray val) {
699         if (val == null) {
700             writeInt(-1);
701             return;
702         }
703         int N = val.size();
704         writeInt(N);
705         int i=0;
706         while (i < N) {
707             writeInt(val.keyAt(i));
708             writeByte((byte)(val.valueAt(i) ? 1 : 0));
709             i++;
710         }
711     }
712 
writeBooleanArray(boolean[] val)713     public final void writeBooleanArray(boolean[] val) {
714         if (val != null) {
715             int N = val.length;
716             writeInt(N);
717             for (int i=0; i<N; i++) {
718                 writeInt(val[i] ? 1 : 0);
719             }
720         } else {
721             writeInt(-1);
722         }
723     }
724 
createBooleanArray()725     public final boolean[] createBooleanArray() {
726         int N = readInt();
727         // >>2 as a fast divide-by-4 works in the create*Array() functions
728         // because dataAvail() will never return a negative number.  4 is
729         // the size of a stored boolean in the stream.
730         if (N >= 0 && N <= (dataAvail() >> 2)) {
731             boolean[] val = new boolean[N];
732             for (int i=0; i<N; i++) {
733                 val[i] = readInt() != 0;
734             }
735             return val;
736         } else {
737             return null;
738         }
739     }
740 
readBooleanArray(boolean[] val)741     public final void readBooleanArray(boolean[] val) {
742         int N = readInt();
743         if (N == val.length) {
744             for (int i=0; i<N; i++) {
745                 val[i] = readInt() != 0;
746             }
747         } else {
748             throw new RuntimeException("bad array lengths");
749         }
750     }
751 
writeCharArray(char[] val)752     public final void writeCharArray(char[] val) {
753         if (val != null) {
754             int N = val.length;
755             writeInt(N);
756             for (int i=0; i<N; i++) {
757                 writeInt((int)val[i]);
758             }
759         } else {
760             writeInt(-1);
761         }
762     }
763 
createCharArray()764     public final char[] createCharArray() {
765         int N = readInt();
766         if (N >= 0 && N <= (dataAvail() >> 2)) {
767             char[] val = new char[N];
768             for (int i=0; i<N; i++) {
769                 val[i] = (char)readInt();
770             }
771             return val;
772         } else {
773             return null;
774         }
775     }
776 
readCharArray(char[] val)777     public final void readCharArray(char[] val) {
778         int N = readInt();
779         if (N == val.length) {
780             for (int i=0; i<N; i++) {
781                 val[i] = (char)readInt();
782             }
783         } else {
784             throw new RuntimeException("bad array lengths");
785         }
786     }
787 
writeIntArray(int[] val)788     public final void writeIntArray(int[] val) {
789         if (val != null) {
790             int N = val.length;
791             writeInt(N);
792             for (int i=0; i<N; i++) {
793                 writeInt(val[i]);
794             }
795         } else {
796             writeInt(-1);
797         }
798     }
799 
createIntArray()800     public final int[] createIntArray() {
801         int N = readInt();
802         if (N >= 0 && N <= (dataAvail() >> 2)) {
803             int[] val = new int[N];
804             for (int i=0; i<N; i++) {
805                 val[i] = readInt();
806             }
807             return val;
808         } else {
809             return null;
810         }
811     }
812 
readIntArray(int[] val)813     public final void readIntArray(int[] val) {
814         int N = readInt();
815         if (N == val.length) {
816             for (int i=0; i<N; i++) {
817                 val[i] = readInt();
818             }
819         } else {
820             throw new RuntimeException("bad array lengths");
821         }
822     }
823 
writeLongArray(long[] val)824     public final void writeLongArray(long[] val) {
825         if (val != null) {
826             int N = val.length;
827             writeInt(N);
828             for (int i=0; i<N; i++) {
829                 writeLong(val[i]);
830             }
831         } else {
832             writeInt(-1);
833         }
834     }
835 
createLongArray()836     public final long[] createLongArray() {
837         int N = readInt();
838         // >>3 because stored longs are 64 bits
839         if (N >= 0 && N <= (dataAvail() >> 3)) {
840             long[] val = new long[N];
841             for (int i=0; i<N; i++) {
842                 val[i] = readLong();
843             }
844             return val;
845         } else {
846             return null;
847         }
848     }
849 
readLongArray(long[] val)850     public final void readLongArray(long[] val) {
851         int N = readInt();
852         if (N == val.length) {
853             for (int i=0; i<N; i++) {
854                 val[i] = readLong();
855             }
856         } else {
857             throw new RuntimeException("bad array lengths");
858         }
859     }
860 
writeFloatArray(float[] val)861     public final void writeFloatArray(float[] val) {
862         if (val != null) {
863             int N = val.length;
864             writeInt(N);
865             for (int i=0; i<N; i++) {
866                 writeFloat(val[i]);
867             }
868         } else {
869             writeInt(-1);
870         }
871     }
872 
createFloatArray()873     public final float[] createFloatArray() {
874         int N = readInt();
875         // >>2 because stored floats are 4 bytes
876         if (N >= 0 && N <= (dataAvail() >> 2)) {
877             float[] val = new float[N];
878             for (int i=0; i<N; i++) {
879                 val[i] = readFloat();
880             }
881             return val;
882         } else {
883             return null;
884         }
885     }
886 
readFloatArray(float[] val)887     public final void readFloatArray(float[] val) {
888         int N = readInt();
889         if (N == val.length) {
890             for (int i=0; i<N; i++) {
891                 val[i] = readFloat();
892             }
893         } else {
894             throw new RuntimeException("bad array lengths");
895         }
896     }
897 
writeDoubleArray(double[] val)898     public final void writeDoubleArray(double[] val) {
899         if (val != null) {
900             int N = val.length;
901             writeInt(N);
902             for (int i=0; i<N; i++) {
903                 writeDouble(val[i]);
904             }
905         } else {
906             writeInt(-1);
907         }
908     }
909 
createDoubleArray()910     public final double[] createDoubleArray() {
911         int N = readInt();
912         // >>3 because stored doubles are 8 bytes
913         if (N >= 0 && N <= (dataAvail() >> 3)) {
914             double[] val = new double[N];
915             for (int i=0; i<N; i++) {
916                 val[i] = readDouble();
917             }
918             return val;
919         } else {
920             return null;
921         }
922     }
923 
readDoubleArray(double[] val)924     public final void readDoubleArray(double[] val) {
925         int N = readInt();
926         if (N == val.length) {
927             for (int i=0; i<N; i++) {
928                 val[i] = readDouble();
929             }
930         } else {
931             throw new RuntimeException("bad array lengths");
932         }
933     }
934 
writeStringArray(String[] val)935     public final void writeStringArray(String[] val) {
936         if (val != null) {
937             int N = val.length;
938             writeInt(N);
939             for (int i=0; i<N; i++) {
940                 writeString(val[i]);
941             }
942         } else {
943             writeInt(-1);
944         }
945     }
946 
createStringArray()947     public final String[] createStringArray() {
948         int N = readInt();
949         if (N >= 0) {
950             String[] val = new String[N];
951             for (int i=0; i<N; i++) {
952                 val[i] = readString();
953             }
954             return val;
955         } else {
956             return null;
957         }
958     }
959 
readStringArray(String[] val)960     public final void readStringArray(String[] val) {
961         int N = readInt();
962         if (N == val.length) {
963             for (int i=0; i<N; i++) {
964                 val[i] = readString();
965             }
966         } else {
967             throw new RuntimeException("bad array lengths");
968         }
969     }
970 
writeBinderArray(IBinder[] val)971     public final void writeBinderArray(IBinder[] val) {
972         if (val != null) {
973             int N = val.length;
974             writeInt(N);
975             for (int i=0; i<N; i++) {
976                 writeStrongBinder(val[i]);
977             }
978         } else {
979             writeInt(-1);
980         }
981     }
982 
983     /**
984      * @hide
985      */
writeCharSequenceArray(CharSequence[] val)986     public final void writeCharSequenceArray(CharSequence[] val) {
987         if (val != null) {
988             int N = val.length;
989             writeInt(N);
990             for (int i=0; i<N; i++) {
991                 writeCharSequence(val[i]);
992             }
993         } else {
994             writeInt(-1);
995         }
996     }
997 
createBinderArray()998     public final IBinder[] createBinderArray() {
999         int N = readInt();
1000         if (N >= 0) {
1001             IBinder[] val = new IBinder[N];
1002             for (int i=0; i<N; i++) {
1003                 val[i] = readStrongBinder();
1004             }
1005             return val;
1006         } else {
1007             return null;
1008         }
1009     }
1010 
readBinderArray(IBinder[] val)1011     public final void readBinderArray(IBinder[] val) {
1012         int N = readInt();
1013         if (N == val.length) {
1014             for (int i=0; i<N; i++) {
1015                 val[i] = readStrongBinder();
1016             }
1017         } else {
1018             throw new RuntimeException("bad array lengths");
1019         }
1020     }
1021 
1022     /**
1023      * Flatten a List containing a particular object type into the parcel, at
1024      * the current dataPosition() and growing dataCapacity() if needed.  The
1025      * type of the objects in the list must be one that implements Parcelable.
1026      * Unlike the generic writeList() method, however, only the raw data of the
1027      * objects is written and not their type, so you must use the corresponding
1028      * readTypedList() to unmarshall them.
1029      *
1030      * @param val The list of objects to be written.
1031      *
1032      * @see #createTypedArrayList
1033      * @see #readTypedList
1034      * @see Parcelable
1035      */
writeTypedList(List<T> val)1036     public final <T extends Parcelable> void writeTypedList(List<T> val) {
1037         if (val == null) {
1038             writeInt(-1);
1039             return;
1040         }
1041         int N = val.size();
1042         int i=0;
1043         writeInt(N);
1044         while (i < N) {
1045             T item = val.get(i);
1046             if (item != null) {
1047                 writeInt(1);
1048                 item.writeToParcel(this, 0);
1049             } else {
1050                 writeInt(0);
1051             }
1052             i++;
1053         }
1054     }
1055 
1056     /**
1057      * Flatten a List containing String objects into the parcel, at
1058      * the current dataPosition() and growing dataCapacity() if needed.  They
1059      * can later be retrieved with {@link #createStringArrayList} or
1060      * {@link #readStringList}.
1061      *
1062      * @param val The list of strings to be written.
1063      *
1064      * @see #createStringArrayList
1065      * @see #readStringList
1066      */
writeStringList(List<String> val)1067     public final void writeStringList(List<String> val) {
1068         if (val == null) {
1069             writeInt(-1);
1070             return;
1071         }
1072         int N = val.size();
1073         int i=0;
1074         writeInt(N);
1075         while (i < N) {
1076             writeString(val.get(i));
1077             i++;
1078         }
1079     }
1080 
1081     /**
1082      * Flatten a List containing IBinder objects into the parcel, at
1083      * the current dataPosition() and growing dataCapacity() if needed.  They
1084      * can later be retrieved with {@link #createBinderArrayList} or
1085      * {@link #readBinderList}.
1086      *
1087      * @param val The list of strings to be written.
1088      *
1089      * @see #createBinderArrayList
1090      * @see #readBinderList
1091      */
writeBinderList(List<IBinder> val)1092     public final void writeBinderList(List<IBinder> val) {
1093         if (val == null) {
1094             writeInt(-1);
1095             return;
1096         }
1097         int N = val.size();
1098         int i=0;
1099         writeInt(N);
1100         while (i < N) {
1101             writeStrongBinder(val.get(i));
1102             i++;
1103         }
1104     }
1105 
1106     /**
1107      * Flatten a heterogeneous array containing a particular object type into
1108      * the parcel, at
1109      * the current dataPosition() and growing dataCapacity() if needed.  The
1110      * type of the objects in the array must be one that implements Parcelable.
1111      * Unlike the {@link #writeParcelableArray} method, however, only the
1112      * raw data of the objects is written and not their type, so you must use
1113      * {@link #readTypedArray} with the correct corresponding
1114      * {@link Parcelable.Creator} implementation to unmarshall them.
1115      *
1116      * @param val The array of objects to be written.
1117      * @param parcelableFlags Contextual flags as per
1118      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1119      *
1120      * @see #readTypedArray
1121      * @see #writeParcelableArray
1122      * @see Parcelable.Creator
1123      */
writeTypedArray(T[] val, int parcelableFlags)1124     public final <T extends Parcelable> void writeTypedArray(T[] val,
1125             int parcelableFlags) {
1126         if (val != null) {
1127             int N = val.length;
1128             writeInt(N);
1129             for (int i=0; i<N; i++) {
1130                 T item = val[i];
1131                 if (item != null) {
1132                     writeInt(1);
1133                     item.writeToParcel(this, parcelableFlags);
1134                 } else {
1135                     writeInt(0);
1136                 }
1137             }
1138         } else {
1139             writeInt(-1);
1140         }
1141     }
1142 
1143     /**
1144      * Flatten a generic object in to a parcel.  The given Object value may
1145      * currently be one of the following types:
1146      *
1147      * <ul>
1148      * <li> null
1149      * <li> String
1150      * <li> Byte
1151      * <li> Short
1152      * <li> Integer
1153      * <li> Long
1154      * <li> Float
1155      * <li> Double
1156      * <li> Boolean
1157      * <li> String[]
1158      * <li> boolean[]
1159      * <li> byte[]
1160      * <li> int[]
1161      * <li> long[]
1162      * <li> Object[] (supporting objects of the same type defined here).
1163      * <li> {@link Bundle}
1164      * <li> Map (as supported by {@link #writeMap}).
1165      * <li> Any object that implements the {@link Parcelable} protocol.
1166      * <li> Parcelable[]
1167      * <li> CharSequence (as supported by {@link TextUtils#writeToParcel}).
1168      * <li> List (as supported by {@link #writeList}).
1169      * <li> {@link SparseArray} (as supported by {@link #writeSparseArray(SparseArray)}).
1170      * <li> {@link IBinder}
1171      * <li> Any object that implements Serializable (but see
1172      *      {@link #writeSerializable} for caveats).  Note that all of the
1173      *      previous types have relatively efficient implementations for
1174      *      writing to a Parcel; having to rely on the generic serialization
1175      *      approach is much less efficient and should be avoided whenever
1176      *      possible.
1177      * </ul>
1178      *
1179      * <p class="caution">{@link Parcelable} objects are written with
1180      * {@link Parcelable#writeToParcel} using contextual flags of 0.  When
1181      * serializing objects containing {@link ParcelFileDescriptor}s,
1182      * this may result in file descriptor leaks when they are returned from
1183      * Binder calls (where {@link Parcelable#PARCELABLE_WRITE_RETURN_VALUE}
1184      * should be used).</p>
1185      */
writeValue(Object v)1186     public final void writeValue(Object v) {
1187         if (v == null) {
1188             writeInt(VAL_NULL);
1189         } else if (v instanceof String) {
1190             writeInt(VAL_STRING);
1191             writeString((String) v);
1192         } else if (v instanceof Integer) {
1193             writeInt(VAL_INTEGER);
1194             writeInt((Integer) v);
1195         } else if (v instanceof Map) {
1196             writeInt(VAL_MAP);
1197             writeMap((Map) v);
1198         } else if (v instanceof Bundle) {
1199             // Must be before Parcelable
1200             writeInt(VAL_BUNDLE);
1201             writeBundle((Bundle) v);
1202         } else if (v instanceof Parcelable) {
1203             writeInt(VAL_PARCELABLE);
1204             writeParcelable((Parcelable) v, 0);
1205         } else if (v instanceof Short) {
1206             writeInt(VAL_SHORT);
1207             writeInt(((Short) v).intValue());
1208         } else if (v instanceof Long) {
1209             writeInt(VAL_LONG);
1210             writeLong((Long) v);
1211         } else if (v instanceof Float) {
1212             writeInt(VAL_FLOAT);
1213             writeFloat((Float) v);
1214         } else if (v instanceof Double) {
1215             writeInt(VAL_DOUBLE);
1216             writeDouble((Double) v);
1217         } else if (v instanceof Boolean) {
1218             writeInt(VAL_BOOLEAN);
1219             writeInt((Boolean) v ? 1 : 0);
1220         } else if (v instanceof CharSequence) {
1221             // Must be after String
1222             writeInt(VAL_CHARSEQUENCE);
1223             writeCharSequence((CharSequence) v);
1224         } else if (v instanceof List) {
1225             writeInt(VAL_LIST);
1226             writeList((List) v);
1227         } else if (v instanceof SparseArray) {
1228             writeInt(VAL_SPARSEARRAY);
1229             writeSparseArray((SparseArray) v);
1230         } else if (v instanceof boolean[]) {
1231             writeInt(VAL_BOOLEANARRAY);
1232             writeBooleanArray((boolean[]) v);
1233         } else if (v instanceof byte[]) {
1234             writeInt(VAL_BYTEARRAY);
1235             writeByteArray((byte[]) v);
1236         } else if (v instanceof String[]) {
1237             writeInt(VAL_STRINGARRAY);
1238             writeStringArray((String[]) v);
1239         } else if (v instanceof CharSequence[]) {
1240             // Must be after String[] and before Object[]
1241             writeInt(VAL_CHARSEQUENCEARRAY);
1242             writeCharSequenceArray((CharSequence[]) v);
1243         } else if (v instanceof IBinder) {
1244             writeInt(VAL_IBINDER);
1245             writeStrongBinder((IBinder) v);
1246         } else if (v instanceof Parcelable[]) {
1247             writeInt(VAL_PARCELABLEARRAY);
1248             writeParcelableArray((Parcelable[]) v, 0);
1249         } else if (v instanceof Object[]) {
1250             writeInt(VAL_OBJECTARRAY);
1251             writeArray((Object[]) v);
1252         } else if (v instanceof int[]) {
1253             writeInt(VAL_INTARRAY);
1254             writeIntArray((int[]) v);
1255         } else if (v instanceof long[]) {
1256             writeInt(VAL_LONGARRAY);
1257             writeLongArray((long[]) v);
1258         } else if (v instanceof Byte) {
1259             writeInt(VAL_BYTE);
1260             writeInt((Byte) v);
1261         } else if (v instanceof Serializable) {
1262             // Must be last
1263             writeInt(VAL_SERIALIZABLE);
1264             writeSerializable((Serializable) v);
1265         } else {
1266             throw new RuntimeException("Parcel: unable to marshal value " + v);
1267         }
1268     }
1269 
1270     /**
1271      * Flatten the name of the class of the Parcelable and its contents
1272      * into the parcel.
1273      *
1274      * @param p The Parcelable object to be written.
1275      * @param parcelableFlags Contextual flags as per
1276      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1277      */
writeParcelable(Parcelable p, int parcelableFlags)1278     public final void writeParcelable(Parcelable p, int parcelableFlags) {
1279         if (p == null) {
1280             writeString(null);
1281             return;
1282         }
1283         String name = p.getClass().getName();
1284         writeString(name);
1285         p.writeToParcel(this, parcelableFlags);
1286     }
1287 
1288     /** @hide */
writeParcelableCreator(Parcelable p)1289     public final void writeParcelableCreator(Parcelable p) {
1290         String name = p.getClass().getName();
1291         writeString(name);
1292     }
1293 
1294     /**
1295      * Write a generic serializable object in to a Parcel.  It is strongly
1296      * recommended that this method be avoided, since the serialization
1297      * overhead is extremely large, and this approach will be much slower than
1298      * using the other approaches to writing data in to a Parcel.
1299      */
writeSerializable(Serializable s)1300     public final void writeSerializable(Serializable s) {
1301         if (s == null) {
1302             writeString(null);
1303             return;
1304         }
1305         String name = s.getClass().getName();
1306         writeString(name);
1307 
1308         ByteArrayOutputStream baos = new ByteArrayOutputStream();
1309         try {
1310             ObjectOutputStream oos = new ObjectOutputStream(baos);
1311             oos.writeObject(s);
1312             oos.close();
1313 
1314             writeByteArray(baos.toByteArray());
1315         } catch (IOException ioe) {
1316             throw new RuntimeException("Parcelable encountered " +
1317                 "IOException writing serializable object (name = " + name +
1318                 ")", ioe);
1319         }
1320     }
1321 
1322     /**
1323      * Special function for writing an exception result at the header of
1324      * a parcel, to be used when returning an exception from a transaction.
1325      * Note that this currently only supports a few exception types; any other
1326      * exception will be re-thrown by this function as a RuntimeException
1327      * (to be caught by the system's last-resort exception handling when
1328      * dispatching a transaction).
1329      *
1330      * <p>The supported exception types are:
1331      * <ul>
1332      * <li>{@link BadParcelableException}
1333      * <li>{@link IllegalArgumentException}
1334      * <li>{@link IllegalStateException}
1335      * <li>{@link NullPointerException}
1336      * <li>{@link SecurityException}
1337      * <li>{@link NetworkOnMainThreadException}
1338      * </ul>
1339      *
1340      * @param e The Exception to be written.
1341      *
1342      * @see #writeNoException
1343      * @see #readException
1344      */
writeException(Exception e)1345     public final void writeException(Exception e) {
1346         int code = 0;
1347         if (e instanceof SecurityException) {
1348             code = EX_SECURITY;
1349         } else if (e instanceof BadParcelableException) {
1350             code = EX_BAD_PARCELABLE;
1351         } else if (e instanceof IllegalArgumentException) {
1352             code = EX_ILLEGAL_ARGUMENT;
1353         } else if (e instanceof NullPointerException) {
1354             code = EX_NULL_POINTER;
1355         } else if (e instanceof IllegalStateException) {
1356             code = EX_ILLEGAL_STATE;
1357         } else if (e instanceof NetworkOnMainThreadException) {
1358             code = EX_NETWORK_MAIN_THREAD;
1359         }
1360         writeInt(code);
1361         StrictMode.clearGatheredViolations();
1362         if (code == 0) {
1363             if (e instanceof RuntimeException) {
1364                 throw (RuntimeException) e;
1365             }
1366             throw new RuntimeException(e);
1367         }
1368         writeString(e.getMessage());
1369     }
1370 
1371     /**
1372      * Special function for writing information at the front of the Parcel
1373      * indicating that no exception occurred.
1374      *
1375      * @see #writeException
1376      * @see #readException
1377      */
writeNoException()1378     public final void writeNoException() {
1379         // Despite the name of this function ("write no exception"),
1380         // it should instead be thought of as "write the RPC response
1381         // header", but because this function name is written out by
1382         // the AIDL compiler, we're not going to rename it.
1383         //
1384         // The response header, in the non-exception case (see also
1385         // writeException above, also called by the AIDL compiler), is
1386         // either a 0 (the default case), or EX_HAS_REPLY_HEADER if
1387         // StrictMode has gathered up violations that have occurred
1388         // during a Binder call, in which case we write out the number
1389         // of violations and their details, serialized, before the
1390         // actual RPC respons data.  The receiving end of this is
1391         // readException(), below.
1392         if (StrictMode.hasGatheredViolations()) {
1393             writeInt(EX_HAS_REPLY_HEADER);
1394             final int sizePosition = dataPosition();
1395             writeInt(0);  // total size of fat header, to be filled in later
1396             StrictMode.writeGatheredViolationsToParcel(this);
1397             final int payloadPosition = dataPosition();
1398             setDataPosition(sizePosition);
1399             writeInt(payloadPosition - sizePosition);  // header size
1400             setDataPosition(payloadPosition);
1401         } else {
1402             writeInt(0);
1403         }
1404     }
1405 
1406     /**
1407      * Special function for reading an exception result from the header of
1408      * a parcel, to be used after receiving the result of a transaction.  This
1409      * will throw the exception for you if it had been written to the Parcel,
1410      * otherwise return and let you read the normal result data from the Parcel.
1411      *
1412      * @see #writeException
1413      * @see #writeNoException
1414      */
readException()1415     public final void readException() {
1416         int code = readExceptionCode();
1417         if (code != 0) {
1418             String msg = readString();
1419             readException(code, msg);
1420         }
1421     }
1422 
1423     /**
1424      * Parses the header of a Binder call's response Parcel and
1425      * returns the exception code.  Deals with lite or fat headers.
1426      * In the common successful case, this header is generally zero.
1427      * In less common cases, it's a small negative number and will be
1428      * followed by an error string.
1429      *
1430      * This exists purely for android.database.DatabaseUtils and
1431      * insulating it from having to handle fat headers as returned by
1432      * e.g. StrictMode-induced RPC responses.
1433      *
1434      * @hide
1435      */
readExceptionCode()1436     public final int readExceptionCode() {
1437         int code = readInt();
1438         if (code == EX_HAS_REPLY_HEADER) {
1439             int headerSize = readInt();
1440             if (headerSize == 0) {
1441                 Log.e(TAG, "Unexpected zero-sized Parcel reply header.");
1442             } else {
1443                 // Currently the only thing in the header is StrictMode stacks,
1444                 // but discussions around event/RPC tracing suggest we might
1445                 // put that here too.  If so, switch on sub-header tags here.
1446                 // But for now, just parse out the StrictMode stuff.
1447                 StrictMode.readAndHandleBinderCallViolations(this);
1448             }
1449             // And fat response headers are currently only used when
1450             // there are no exceptions, so return no error:
1451             return 0;
1452         }
1453         return code;
1454     }
1455 
1456     /**
1457      * Use this function for customized exception handling.
1458      * customized method call this method for all unknown case
1459      * @param code exception code
1460      * @param msg exception message
1461      */
readException(int code, String msg)1462     public final void readException(int code, String msg) {
1463         switch (code) {
1464             case EX_SECURITY:
1465                 throw new SecurityException(msg);
1466             case EX_BAD_PARCELABLE:
1467                 throw new BadParcelableException(msg);
1468             case EX_ILLEGAL_ARGUMENT:
1469                 throw new IllegalArgumentException(msg);
1470             case EX_NULL_POINTER:
1471                 throw new NullPointerException(msg);
1472             case EX_ILLEGAL_STATE:
1473                 throw new IllegalStateException(msg);
1474             case EX_NETWORK_MAIN_THREAD:
1475                 throw new NetworkOnMainThreadException();
1476         }
1477         throw new RuntimeException("Unknown exception code: " + code
1478                 + " msg " + msg);
1479     }
1480 
1481     /**
1482      * Read an integer value from the parcel at the current dataPosition().
1483      */
readInt()1484     public final int readInt() {
1485         return nativeReadInt(mNativePtr);
1486     }
1487 
1488     /**
1489      * Read a long integer value from the parcel at the current dataPosition().
1490      */
readLong()1491     public final long readLong() {
1492         return nativeReadLong(mNativePtr);
1493     }
1494 
1495     /**
1496      * Read a floating point value from the parcel at the current
1497      * dataPosition().
1498      */
readFloat()1499     public final float readFloat() {
1500         return nativeReadFloat(mNativePtr);
1501     }
1502 
1503     /**
1504      * Read a double precision floating point value from the parcel at the
1505      * current dataPosition().
1506      */
readDouble()1507     public final double readDouble() {
1508         return nativeReadDouble(mNativePtr);
1509     }
1510 
1511     /**
1512      * Read a string value from the parcel at the current dataPosition().
1513      */
readString()1514     public final String readString() {
1515         return nativeReadString(mNativePtr);
1516     }
1517 
1518     /**
1519      * Read a CharSequence value from the parcel at the current dataPosition().
1520      * @hide
1521      */
readCharSequence()1522     public final CharSequence readCharSequence() {
1523         return TextUtils.CHAR_SEQUENCE_CREATOR.createFromParcel(this);
1524     }
1525 
1526     /**
1527      * Read an object from the parcel at the current dataPosition().
1528      */
readStrongBinder()1529     public final IBinder readStrongBinder() {
1530         return nativeReadStrongBinder(mNativePtr);
1531     }
1532 
1533     /**
1534      * Read a FileDescriptor from the parcel at the current dataPosition().
1535      */
readFileDescriptor()1536     public final ParcelFileDescriptor readFileDescriptor() {
1537         FileDescriptor fd = nativeReadFileDescriptor(mNativePtr);
1538         return fd != null ? new ParcelFileDescriptor(fd) : null;
1539     }
1540 
1541     /** {@hide} */
readRawFileDescriptor()1542     public final FileDescriptor readRawFileDescriptor() {
1543         return nativeReadFileDescriptor(mNativePtr);
1544     }
1545 
openFileDescriptor(String file, int mode)1546     /*package*/ static native FileDescriptor openFileDescriptor(String file,
1547             int mode) throws FileNotFoundException;
dupFileDescriptor(FileDescriptor orig)1548     /*package*/ static native FileDescriptor dupFileDescriptor(FileDescriptor orig)
1549             throws IOException;
closeFileDescriptor(FileDescriptor desc)1550     /*package*/ static native void closeFileDescriptor(FileDescriptor desc)
1551             throws IOException;
clearFileDescriptor(FileDescriptor desc)1552     /*package*/ static native void clearFileDescriptor(FileDescriptor desc);
1553 
1554     /**
1555      * Read a byte value from the parcel at the current dataPosition().
1556      */
readByte()1557     public final byte readByte() {
1558         return (byte)(readInt() & 0xff);
1559     }
1560 
1561     /**
1562      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1563      * been written with {@link #writeBundle}.  Read into an existing Map object
1564      * from the parcel at the current dataPosition().
1565      */
readMap(Map outVal, ClassLoader loader)1566     public final void readMap(Map outVal, ClassLoader loader) {
1567         int N = readInt();
1568         readMapInternal(outVal, N, loader);
1569     }
1570 
1571     /**
1572      * Read into an existing List object from the parcel at the current
1573      * dataPosition(), using the given class loader to load any enclosed
1574      * Parcelables.  If it is null, the default class loader is used.
1575      */
readList(List outVal, ClassLoader loader)1576     public final void readList(List outVal, ClassLoader loader) {
1577         int N = readInt();
1578         readListInternal(outVal, N, loader);
1579     }
1580 
1581     /**
1582      * Please use {@link #readBundle(ClassLoader)} instead (whose data must have
1583      * been written with {@link #writeBundle}.  Read and return a new HashMap
1584      * object from the parcel at the current dataPosition(), using the given
1585      * class loader to load any enclosed Parcelables.  Returns null if
1586      * the previously written map object was null.
1587      */
readHashMap(ClassLoader loader)1588     public final HashMap readHashMap(ClassLoader loader)
1589     {
1590         int N = readInt();
1591         if (N < 0) {
1592             return null;
1593         }
1594         HashMap m = new HashMap(N);
1595         readMapInternal(m, N, loader);
1596         return m;
1597     }
1598 
1599     /**
1600      * Read and return a new Bundle object from the parcel at the current
1601      * dataPosition().  Returns null if the previously written Bundle object was
1602      * null.
1603      */
readBundle()1604     public final Bundle readBundle() {
1605         return readBundle(null);
1606     }
1607 
1608     /**
1609      * Read and return a new Bundle object from the parcel at the current
1610      * dataPosition(), using the given class loader to initialize the class
1611      * loader of the Bundle for later retrieval of Parcelable objects.
1612      * Returns null if the previously written Bundle object was null.
1613      */
readBundle(ClassLoader loader)1614     public final Bundle readBundle(ClassLoader loader) {
1615         int length = readInt();
1616         if (length < 0) {
1617             if (Bundle.DEBUG) Log.d(TAG, "null bundle: length=" + length);
1618             return null;
1619         }
1620 
1621         final Bundle bundle = new Bundle(this, length);
1622         if (loader != null) {
1623             bundle.setClassLoader(loader);
1624         }
1625         return bundle;
1626     }
1627 
1628     /**
1629      * Read and return a byte[] object from the parcel.
1630      */
createByteArray()1631     public final byte[] createByteArray() {
1632         return nativeCreateByteArray(mNativePtr);
1633     }
1634 
1635     /**
1636      * Read a byte[] object from the parcel and copy it into the
1637      * given byte array.
1638      */
readByteArray(byte[] val)1639     public final void readByteArray(byte[] val) {
1640         // TODO: make this a native method to avoid the extra copy.
1641         byte[] ba = createByteArray();
1642         if (ba.length == val.length) {
1643            System.arraycopy(ba, 0, val, 0, ba.length);
1644         } else {
1645             throw new RuntimeException("bad array lengths");
1646         }
1647     }
1648 
1649     /**
1650      * Read and return a String[] object from the parcel.
1651      * {@hide}
1652      */
readStringArray()1653     public final String[] readStringArray() {
1654         String[] array = null;
1655 
1656         int length = readInt();
1657         if (length >= 0)
1658         {
1659             array = new String[length];
1660 
1661             for (int i = 0 ; i < length ; i++)
1662             {
1663                 array[i] = readString();
1664             }
1665         }
1666 
1667         return array;
1668     }
1669 
1670     /**
1671      * Read and return a CharSequence[] object from the parcel.
1672      * {@hide}
1673      */
readCharSequenceArray()1674     public final CharSequence[] readCharSequenceArray() {
1675         CharSequence[] array = null;
1676 
1677         int length = readInt();
1678         if (length >= 0)
1679         {
1680             array = new CharSequence[length];
1681 
1682             for (int i = 0 ; i < length ; i++)
1683             {
1684                 array[i] = readCharSequence();
1685             }
1686         }
1687 
1688         return array;
1689     }
1690 
1691     /**
1692      * Read and return a new ArrayList object from the parcel at the current
1693      * dataPosition().  Returns null if the previously written list object was
1694      * null.  The given class loader will be used to load any enclosed
1695      * Parcelables.
1696      */
readArrayList(ClassLoader loader)1697     public final ArrayList readArrayList(ClassLoader loader) {
1698         int N = readInt();
1699         if (N < 0) {
1700             return null;
1701         }
1702         ArrayList l = new ArrayList(N);
1703         readListInternal(l, N, loader);
1704         return l;
1705     }
1706 
1707     /**
1708      * Read and return a new Object array from the parcel at the current
1709      * dataPosition().  Returns null if the previously written array was
1710      * null.  The given class loader will be used to load any enclosed
1711      * Parcelables.
1712      */
readArray(ClassLoader loader)1713     public final Object[] readArray(ClassLoader loader) {
1714         int N = readInt();
1715         if (N < 0) {
1716             return null;
1717         }
1718         Object[] l = new Object[N];
1719         readArrayInternal(l, N, loader);
1720         return l;
1721     }
1722 
1723     /**
1724      * Read and return a new SparseArray object from the parcel at the current
1725      * dataPosition().  Returns null if the previously written list object was
1726      * null.  The given class loader will be used to load any enclosed
1727      * Parcelables.
1728      */
readSparseArray(ClassLoader loader)1729     public final SparseArray readSparseArray(ClassLoader loader) {
1730         int N = readInt();
1731         if (N < 0) {
1732             return null;
1733         }
1734         SparseArray sa = new SparseArray(N);
1735         readSparseArrayInternal(sa, N, loader);
1736         return sa;
1737     }
1738 
1739     /**
1740      * Read and return a new SparseBooleanArray object from the parcel at the current
1741      * dataPosition().  Returns null if the previously written list object was
1742      * null.
1743      */
readSparseBooleanArray()1744     public final SparseBooleanArray readSparseBooleanArray() {
1745         int N = readInt();
1746         if (N < 0) {
1747             return null;
1748         }
1749         SparseBooleanArray sa = new SparseBooleanArray(N);
1750         readSparseBooleanArrayInternal(sa, N);
1751         return sa;
1752     }
1753 
1754     /**
1755      * Read and return a new ArrayList containing a particular object type from
1756      * the parcel that was written with {@link #writeTypedList} at the
1757      * current dataPosition().  Returns null if the
1758      * previously written list object was null.  The list <em>must</em> have
1759      * previously been written via {@link #writeTypedList} with the same object
1760      * type.
1761      *
1762      * @return A newly created ArrayList containing objects with the same data
1763      *         as those that were previously written.
1764      *
1765      * @see #writeTypedList
1766      */
createTypedArrayList(Parcelable.Creator<T> c)1767     public final <T> ArrayList<T> createTypedArrayList(Parcelable.Creator<T> c) {
1768         int N = readInt();
1769         if (N < 0) {
1770             return null;
1771         }
1772         ArrayList<T> l = new ArrayList<T>(N);
1773         while (N > 0) {
1774             if (readInt() != 0) {
1775                 l.add(c.createFromParcel(this));
1776             } else {
1777                 l.add(null);
1778             }
1779             N--;
1780         }
1781         return l;
1782     }
1783 
1784     /**
1785      * Read into the given List items containing a particular object type
1786      * that were written with {@link #writeTypedList} at the
1787      * current dataPosition().  The list <em>must</em> have
1788      * previously been written via {@link #writeTypedList} with the same object
1789      * type.
1790      *
1791      * @return A newly created ArrayList containing objects with the same data
1792      *         as those that were previously written.
1793      *
1794      * @see #writeTypedList
1795      */
readTypedList(List<T> list, Parcelable.Creator<T> c)1796     public final <T> void readTypedList(List<T> list, Parcelable.Creator<T> c) {
1797         int M = list.size();
1798         int N = readInt();
1799         int i = 0;
1800         for (; i < M && i < N; i++) {
1801             if (readInt() != 0) {
1802                 list.set(i, c.createFromParcel(this));
1803             } else {
1804                 list.set(i, null);
1805             }
1806         }
1807         for (; i<N; i++) {
1808             if (readInt() != 0) {
1809                 list.add(c.createFromParcel(this));
1810             } else {
1811                 list.add(null);
1812             }
1813         }
1814         for (; i<M; i++) {
1815             list.remove(N);
1816         }
1817     }
1818 
1819     /**
1820      * Read and return a new ArrayList containing String objects from
1821      * the parcel that was written with {@link #writeStringList} at the
1822      * current dataPosition().  Returns null if the
1823      * previously written list object was null.
1824      *
1825      * @return A newly created ArrayList containing strings with the same data
1826      *         as those that were previously written.
1827      *
1828      * @see #writeStringList
1829      */
createStringArrayList()1830     public final ArrayList<String> createStringArrayList() {
1831         int N = readInt();
1832         if (N < 0) {
1833             return null;
1834         }
1835         ArrayList<String> l = new ArrayList<String>(N);
1836         while (N > 0) {
1837             l.add(readString());
1838             N--;
1839         }
1840         return l;
1841     }
1842 
1843     /**
1844      * Read and return a new ArrayList containing IBinder objects from
1845      * the parcel that was written with {@link #writeBinderList} at the
1846      * current dataPosition().  Returns null if the
1847      * previously written list object was null.
1848      *
1849      * @return A newly created ArrayList containing strings with the same data
1850      *         as those that were previously written.
1851      *
1852      * @see #writeBinderList
1853      */
createBinderArrayList()1854     public final ArrayList<IBinder> createBinderArrayList() {
1855         int N = readInt();
1856         if (N < 0) {
1857             return null;
1858         }
1859         ArrayList<IBinder> l = new ArrayList<IBinder>(N);
1860         while (N > 0) {
1861             l.add(readStrongBinder());
1862             N--;
1863         }
1864         return l;
1865     }
1866 
1867     /**
1868      * Read into the given List items String objects that were written with
1869      * {@link #writeStringList} at the current dataPosition().
1870      *
1871      * @return A newly created ArrayList containing strings with the same data
1872      *         as those that were previously written.
1873      *
1874      * @see #writeStringList
1875      */
readStringList(List<String> list)1876     public final void readStringList(List<String> list) {
1877         int M = list.size();
1878         int N = readInt();
1879         int i = 0;
1880         for (; i < M && i < N; i++) {
1881             list.set(i, readString());
1882         }
1883         for (; i<N; i++) {
1884             list.add(readString());
1885         }
1886         for (; i<M; i++) {
1887             list.remove(N);
1888         }
1889     }
1890 
1891     /**
1892      * Read into the given List items IBinder objects that were written with
1893      * {@link #writeBinderList} at the current dataPosition().
1894      *
1895      * @return A newly created ArrayList containing strings with the same data
1896      *         as those that were previously written.
1897      *
1898      * @see #writeBinderList
1899      */
readBinderList(List<IBinder> list)1900     public final void readBinderList(List<IBinder> list) {
1901         int M = list.size();
1902         int N = readInt();
1903         int i = 0;
1904         for (; i < M && i < N; i++) {
1905             list.set(i, readStrongBinder());
1906         }
1907         for (; i<N; i++) {
1908             list.add(readStrongBinder());
1909         }
1910         for (; i<M; i++) {
1911             list.remove(N);
1912         }
1913     }
1914 
1915     /**
1916      * Read and return a new array containing a particular object type from
1917      * the parcel at the current dataPosition().  Returns null if the
1918      * previously written array was null.  The array <em>must</em> have
1919      * previously been written via {@link #writeTypedArray} with the same
1920      * object type.
1921      *
1922      * @return A newly created array containing objects with the same data
1923      *         as those that were previously written.
1924      *
1925      * @see #writeTypedArray
1926      */
createTypedArray(Parcelable.Creator<T> c)1927     public final <T> T[] createTypedArray(Parcelable.Creator<T> c) {
1928         int N = readInt();
1929         if (N < 0) {
1930             return null;
1931         }
1932         T[] l = c.newArray(N);
1933         for (int i=0; i<N; i++) {
1934             if (readInt() != 0) {
1935                 l[i] = c.createFromParcel(this);
1936             }
1937         }
1938         return l;
1939     }
1940 
readTypedArray(T[] val, Parcelable.Creator<T> c)1941     public final <T> void readTypedArray(T[] val, Parcelable.Creator<T> c) {
1942         int N = readInt();
1943         if (N == val.length) {
1944             for (int i=0; i<N; i++) {
1945                 if (readInt() != 0) {
1946                     val[i] = c.createFromParcel(this);
1947                 } else {
1948                     val[i] = null;
1949                 }
1950             }
1951         } else {
1952             throw new RuntimeException("bad array lengths");
1953         }
1954     }
1955 
1956     /**
1957      * @deprecated
1958      * @hide
1959      */
1960     @Deprecated
readTypedArray(Parcelable.Creator<T> c)1961     public final <T> T[] readTypedArray(Parcelable.Creator<T> c) {
1962         return createTypedArray(c);
1963     }
1964 
1965     /**
1966      * Write a heterogeneous array of Parcelable objects into the Parcel.
1967      * Each object in the array is written along with its class name, so
1968      * that the correct class can later be instantiated.  As a result, this
1969      * has significantly more overhead than {@link #writeTypedArray}, but will
1970      * correctly handle an array containing more than one type of object.
1971      *
1972      * @param value The array of objects to be written.
1973      * @param parcelableFlags Contextual flags as per
1974      * {@link Parcelable#writeToParcel(Parcel, int) Parcelable.writeToParcel()}.
1975      *
1976      * @see #writeTypedArray
1977      */
writeParcelableArray(T[] value, int parcelableFlags)1978     public final <T extends Parcelable> void writeParcelableArray(T[] value,
1979             int parcelableFlags) {
1980         if (value != null) {
1981             int N = value.length;
1982             writeInt(N);
1983             for (int i=0; i<N; i++) {
1984                 writeParcelable(value[i], parcelableFlags);
1985             }
1986         } else {
1987             writeInt(-1);
1988         }
1989     }
1990 
1991     /**
1992      * Read a typed object from a parcel.  The given class loader will be
1993      * used to load any enclosed Parcelables.  If it is null, the default class
1994      * loader will be used.
1995      */
readValue(ClassLoader loader)1996     public final Object readValue(ClassLoader loader) {
1997         int type = readInt();
1998 
1999         switch (type) {
2000         case VAL_NULL:
2001             return null;
2002 
2003         case VAL_STRING:
2004             return readString();
2005 
2006         case VAL_INTEGER:
2007             return readInt();
2008 
2009         case VAL_MAP:
2010             return readHashMap(loader);
2011 
2012         case VAL_PARCELABLE:
2013             return readParcelable(loader);
2014 
2015         case VAL_SHORT:
2016             return (short) readInt();
2017 
2018         case VAL_LONG:
2019             return readLong();
2020 
2021         case VAL_FLOAT:
2022             return readFloat();
2023 
2024         case VAL_DOUBLE:
2025             return readDouble();
2026 
2027         case VAL_BOOLEAN:
2028             return readInt() == 1;
2029 
2030         case VAL_CHARSEQUENCE:
2031             return readCharSequence();
2032 
2033         case VAL_LIST:
2034             return readArrayList(loader);
2035 
2036         case VAL_BOOLEANARRAY:
2037             return createBooleanArray();
2038 
2039         case VAL_BYTEARRAY:
2040             return createByteArray();
2041 
2042         case VAL_STRINGARRAY:
2043             return readStringArray();
2044 
2045         case VAL_CHARSEQUENCEARRAY:
2046             return readCharSequenceArray();
2047 
2048         case VAL_IBINDER:
2049             return readStrongBinder();
2050 
2051         case VAL_OBJECTARRAY:
2052             return readArray(loader);
2053 
2054         case VAL_INTARRAY:
2055             return createIntArray();
2056 
2057         case VAL_LONGARRAY:
2058             return createLongArray();
2059 
2060         case VAL_BYTE:
2061             return readByte();
2062 
2063         case VAL_SERIALIZABLE:
2064             return readSerializable();
2065 
2066         case VAL_PARCELABLEARRAY:
2067             return readParcelableArray(loader);
2068 
2069         case VAL_SPARSEARRAY:
2070             return readSparseArray(loader);
2071 
2072         case VAL_SPARSEBOOLEANARRAY:
2073             return readSparseBooleanArray();
2074 
2075         case VAL_BUNDLE:
2076             return readBundle(loader); // loading will be deferred
2077 
2078         default:
2079             int off = dataPosition() - 4;
2080             throw new RuntimeException(
2081                 "Parcel " + this + ": Unmarshalling unknown type code " + type + " at offset " + off);
2082         }
2083     }
2084 
2085     /**
2086      * Read and return a new Parcelable from the parcel.  The given class loader
2087      * will be used to load any enclosed Parcelables.  If it is null, the default
2088      * class loader will be used.
2089      * @param loader A ClassLoader from which to instantiate the Parcelable
2090      * object, or null for the default class loader.
2091      * @return Returns the newly created Parcelable, or null if a null
2092      * object has been written.
2093      * @throws BadParcelableException Throws BadParcelableException if there
2094      * was an error trying to instantiate the Parcelable.
2095      */
readParcelable(ClassLoader loader)2096     public final <T extends Parcelable> T readParcelable(ClassLoader loader) {
2097         Parcelable.Creator<T> creator = readParcelableCreator(loader);
2098         if (creator == null) {
2099             return null;
2100         }
2101         if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2102             return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2103         }
2104         return creator.createFromParcel(this);
2105     }
2106 
2107     /** @hide */
readCreator(Parcelable.Creator<T> creator, ClassLoader loader)2108     public final <T extends Parcelable> T readCreator(Parcelable.Creator<T> creator,
2109             ClassLoader loader) {
2110         if (creator instanceof Parcelable.ClassLoaderCreator<?>) {
2111             return ((Parcelable.ClassLoaderCreator<T>)creator).createFromParcel(this, loader);
2112         }
2113         return creator.createFromParcel(this);
2114     }
2115 
2116     /** @hide */
readParcelableCreator( ClassLoader loader)2117     public final <T extends Parcelable> Parcelable.Creator<T> readParcelableCreator(
2118             ClassLoader loader) {
2119         String name = readString();
2120         if (name == null) {
2121             return null;
2122         }
2123         Parcelable.Creator<T> creator;
2124         synchronized (mCreators) {
2125             HashMap<String,Parcelable.Creator> map = mCreators.get(loader);
2126             if (map == null) {
2127                 map = new HashMap<String,Parcelable.Creator>();
2128                 mCreators.put(loader, map);
2129             }
2130             creator = map.get(name);
2131             if (creator == null) {
2132                 try {
2133                     Class c = loader == null ?
2134                         Class.forName(name) : Class.forName(name, true, loader);
2135                     Field f = c.getField("CREATOR");
2136                     creator = (Parcelable.Creator)f.get(null);
2137                 }
2138                 catch (IllegalAccessException e) {
2139                     Log.e(TAG, "Illegal access when unmarshalling: "
2140                                         + name, e);
2141                     throw new BadParcelableException(
2142                             "IllegalAccessException when unmarshalling: " + name);
2143                 }
2144                 catch (ClassNotFoundException e) {
2145                     Log.e(TAG, "Class not found when unmarshalling: "
2146                                         + name, e);
2147                     throw new BadParcelableException(
2148                             "ClassNotFoundException when unmarshalling: " + name);
2149                 }
2150                 catch (ClassCastException e) {
2151                     throw new BadParcelableException("Parcelable protocol requires a "
2152                                         + "Parcelable.Creator object called "
2153                                         + " CREATOR on class " + name);
2154                 }
2155                 catch (NoSuchFieldException e) {
2156                     throw new BadParcelableException("Parcelable protocol requires a "
2157                                         + "Parcelable.Creator object called "
2158                                         + " CREATOR on class " + name);
2159                 }
2160                 catch (NullPointerException e) {
2161                     throw new BadParcelableException("Parcelable protocol requires "
2162                             + "the CREATOR object to be static on class " + name);
2163                 }
2164                 if (creator == null) {
2165                     throw new BadParcelableException("Parcelable protocol requires a "
2166                                         + "Parcelable.Creator object called "
2167                                         + " CREATOR on class " + name);
2168                 }
2169 
2170                 map.put(name, creator);
2171             }
2172         }
2173 
2174         return creator;
2175     }
2176 
2177     /**
2178      * Read and return a new Parcelable array from the parcel.
2179      * The given class loader will be used to load any enclosed
2180      * Parcelables.
2181      * @return the Parcelable array, or null if the array is null
2182      */
readParcelableArray(ClassLoader loader)2183     public final Parcelable[] readParcelableArray(ClassLoader loader) {
2184         int N = readInt();
2185         if (N < 0) {
2186             return null;
2187         }
2188         Parcelable[] p = new Parcelable[N];
2189         for (int i = 0; i < N; i++) {
2190             p[i] = (Parcelable) readParcelable(loader);
2191         }
2192         return p;
2193     }
2194 
2195     /**
2196      * Read and return a new Serializable object from the parcel.
2197      * @return the Serializable object, or null if the Serializable name
2198      * wasn't found in the parcel.
2199      */
readSerializable()2200     public final Serializable readSerializable() {
2201         String name = readString();
2202         if (name == null) {
2203             // For some reason we were unable to read the name of the Serializable (either there
2204             // is nothing left in the Parcel to read, or the next value wasn't a String), so
2205             // return null, which indicates that the name wasn't found in the parcel.
2206             return null;
2207         }
2208 
2209         byte[] serializedData = createByteArray();
2210         ByteArrayInputStream bais = new ByteArrayInputStream(serializedData);
2211         try {
2212             ObjectInputStream ois = new ObjectInputStream(bais);
2213             return (Serializable) ois.readObject();
2214         } catch (IOException ioe) {
2215             throw new RuntimeException("Parcelable encountered " +
2216                 "IOException reading a Serializable object (name = " + name +
2217                 ")", ioe);
2218         } catch (ClassNotFoundException cnfe) {
2219             throw new RuntimeException("Parcelable encountered" +
2220                 "ClassNotFoundException reading a Serializable object (name = "
2221                 + name + ")", cnfe);
2222         }
2223     }
2224 
2225     // Cache of previously looked up CREATOR.createFromParcel() methods for
2226     // particular classes.  Keys are the names of the classes, values are
2227     // Method objects.
2228     private static final HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>
2229         mCreators = new HashMap<ClassLoader,HashMap<String,Parcelable.Creator>>();
2230 
obtain(int obj)2231     static protected final Parcel obtain(int obj) {
2232         final Parcel[] pool = sHolderPool;
2233         synchronized (pool) {
2234             Parcel p;
2235             for (int i=0; i<POOL_SIZE; i++) {
2236                 p = pool[i];
2237                 if (p != null) {
2238                     pool[i] = null;
2239                     if (DEBUG_RECYCLE) {
2240                         p.mStack = new RuntimeException();
2241                     }
2242                     p.init(obj);
2243                     return p;
2244                 }
2245             }
2246         }
2247         return new Parcel(obj);
2248     }
2249 
Parcel(int nativePtr)2250     private Parcel(int nativePtr) {
2251         if (DEBUG_RECYCLE) {
2252             mStack = new RuntimeException();
2253         }
2254         //Log.i(TAG, "Initializing obj=0x" + Integer.toHexString(obj), mStack);
2255         init(nativePtr);
2256     }
2257 
init(int nativePtr)2258     private void init(int nativePtr) {
2259         if (nativePtr != 0) {
2260             mNativePtr = nativePtr;
2261             mOwnsNativeParcelObject = false;
2262         } else {
2263             mNativePtr = nativeCreate();
2264             mOwnsNativeParcelObject = true;
2265         }
2266     }
2267 
freeBuffer()2268     private void freeBuffer() {
2269         if (mOwnsNativeParcelObject) {
2270             nativeFreeBuffer(mNativePtr);
2271         }
2272     }
2273 
destroy()2274     private void destroy() {
2275         if (mNativePtr != 0) {
2276             if (mOwnsNativeParcelObject) {
2277                 nativeDestroy(mNativePtr);
2278             }
2279             mNativePtr = 0;
2280         }
2281     }
2282 
2283     @Override
finalize()2284     protected void finalize() throws Throwable {
2285         if (DEBUG_RECYCLE) {
2286             if (mStack != null) {
2287                 Log.w(TAG, "Client did not call Parcel.recycle()", mStack);
2288             }
2289         }
2290         destroy();
2291     }
2292 
readMapInternal(Map outVal, int N, ClassLoader loader)2293     /* package */ void readMapInternal(Map outVal, int N,
2294         ClassLoader loader) {
2295         while (N > 0) {
2296             Object key = readValue(loader);
2297             Object value = readValue(loader);
2298             outVal.put(key, value);
2299             N--;
2300         }
2301     }
2302 
readArrayMapInternal(ArrayMap outVal, int N, ClassLoader loader)2303     /* package */ void readArrayMapInternal(ArrayMap outVal, int N,
2304         ClassLoader loader) {
2305         if (DEBUG_ARRAY_MAP) {
2306             RuntimeException here =  new RuntimeException("here");
2307             here.fillInStackTrace();
2308             Log.d(TAG, "Reading " + N + " ArrayMap entries", here);
2309         }
2310         int startPos;
2311         while (N > 0) {
2312             if (DEBUG_ARRAY_MAP) startPos = dataPosition();
2313             Object key = readValue(loader);
2314             Object value = readValue(loader);
2315             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read #" + (N-1) + " "
2316                     + (dataPosition()-startPos) + " bytes: key=0x"
2317                     + Integer.toHexString((key != null ? key.hashCode() : 0)) + " " + key);
2318             outVal.append(key, value);
2319             N--;
2320         }
2321     }
2322 
readArrayMapSafelyInternal(ArrayMap outVal, int N, ClassLoader loader)2323     /* package */ void readArrayMapSafelyInternal(ArrayMap outVal, int N,
2324         ClassLoader loader) {
2325         if (DEBUG_ARRAY_MAP) {
2326             RuntimeException here =  new RuntimeException("here");
2327             here.fillInStackTrace();
2328             Log.d(TAG, "Reading safely " + N + " ArrayMap entries", here);
2329         }
2330         while (N > 0) {
2331             Object key = readValue(loader);
2332             if (DEBUG_ARRAY_MAP) Log.d(TAG, "  Read safe #" + (N-1) + ": key=0x"
2333                     + (key != null ? key.hashCode() : 0) + " " + key);
2334             Object value = readValue(loader);
2335             outVal.put(key, value);
2336             N--;
2337         }
2338     }
2339 
readListInternal(List outVal, int N, ClassLoader loader)2340     private void readListInternal(List outVal, int N,
2341         ClassLoader loader) {
2342         while (N > 0) {
2343             Object value = readValue(loader);
2344             //Log.d(TAG, "Unmarshalling value=" + value);
2345             outVal.add(value);
2346             N--;
2347         }
2348     }
2349 
readArrayInternal(Object[] outVal, int N, ClassLoader loader)2350     private void readArrayInternal(Object[] outVal, int N,
2351         ClassLoader loader) {
2352         for (int i = 0; i < N; i++) {
2353             Object value = readValue(loader);
2354             //Log.d(TAG, "Unmarshalling value=" + value);
2355             outVal[i] = value;
2356         }
2357     }
2358 
readSparseArrayInternal(SparseArray outVal, int N, ClassLoader loader)2359     private void readSparseArrayInternal(SparseArray outVal, int N,
2360         ClassLoader loader) {
2361         while (N > 0) {
2362             int key = readInt();
2363             Object value = readValue(loader);
2364             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2365             outVal.append(key, value);
2366             N--;
2367         }
2368     }
2369 
2370 
readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N)2371     private void readSparseBooleanArrayInternal(SparseBooleanArray outVal, int N) {
2372         while (N > 0) {
2373             int key = readInt();
2374             boolean value = this.readByte() == 1;
2375             //Log.i(TAG, "Unmarshalling key=" + key + " value=" + value);
2376             outVal.append(key, value);
2377             N--;
2378         }
2379     }
2380 }
2381