• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code.  In place of
5 ** a legal notice, here is a blessing:
6 **
7 **    May you do good and not evil.
8 **    May you find forgiveness for yourself and forgive others.
9 **    May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids.  Rowids
16 ** are inserted into the RowSet in an arbitrary order.  Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order.  Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 **    CREATE
27 **    INSERT
28 **    TEST
29 **    SMALLEST
30 **    DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously.  The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet.  SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory.  Memory is
38 ** allocated in chunks so most INSERTs do no allocation.  There is an
39 ** upper bound on the size of allocated memory.  No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number.  The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number.  In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST.  An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant.  (Sometime new memory
54 ** has to be allocated on an INSERT.)  The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN).  The cost
57 ** of the first SMALLEST is O(NlogN).  Second and subsequent SMALLEST
58 ** primitives are constant time.  The cost of DESTROY is O(N).
59 **
60 ** There is an added cost of O(N) when switching between TEST and
61 ** SMALLEST primitives.
62 */
63 #include "sqliteInt.h"
64 
65 
66 /*
67 ** Target size for allocation chunks.
68 */
69 #define ROWSET_ALLOCATION_SIZE 1024
70 
71 /*
72 ** The number of rowset entries per allocation chunk.
73 */
74 #define ROWSET_ENTRY_PER_CHUNK  \
75                        ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
76 
77 /*
78 ** Each entry in a RowSet is an instance of the following object.
79 */
80 struct RowSetEntry {
81   i64 v;                        /* ROWID value for this entry */
82   struct RowSetEntry *pRight;   /* Right subtree (larger entries) or list */
83   struct RowSetEntry *pLeft;    /* Left subtree (smaller entries) */
84 };
85 
86 /*
87 ** RowSetEntry objects are allocated in large chunks (instances of the
88 ** following structure) to reduce memory allocation overhead.  The
89 ** chunks are kept on a linked list so that they can be deallocated
90 ** when the RowSet is destroyed.
91 */
92 struct RowSetChunk {
93   struct RowSetChunk *pNextChunk;        /* Next chunk on list of them all */
94   struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
95 };
96 
97 /*
98 ** A RowSet in an instance of the following structure.
99 **
100 ** A typedef of this structure if found in sqliteInt.h.
101 */
102 struct RowSet {
103   struct RowSetChunk *pChunk;    /* List of all chunk allocations */
104   sqlite3 *db;                   /* The database connection */
105   struct RowSetEntry *pEntry;    /* List of entries using pRight */
106   struct RowSetEntry *pLast;     /* Last entry on the pEntry list */
107   struct RowSetEntry *pFresh;    /* Source of new entry objects */
108   struct RowSetEntry *pTree;     /* Binary tree of entries */
109   u16 nFresh;                    /* Number of objects on pFresh */
110   u8 isSorted;                   /* True if pEntry is sorted */
111   u8 iBatch;                     /* Current insert batch */
112 };
113 
114 /*
115 ** Turn bulk memory into a RowSet object.  N bytes of memory
116 ** are available at pSpace.  The db pointer is used as a memory context
117 ** for any subsequent allocations that need to occur.
118 ** Return a pointer to the new RowSet object.
119 **
120 ** It must be the case that N is sufficient to make a Rowset.  If not
121 ** an assertion fault occurs.
122 **
123 ** If N is larger than the minimum, use the surplus as an initial
124 ** allocation of entries available to be filled.
125 */
sqlite3RowSetInit(sqlite3 * db,void * pSpace,unsigned int N)126 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
127   RowSet *p;
128   assert( N >= ROUND8(sizeof(*p)) );
129   p = pSpace;
130   p->pChunk = 0;
131   p->db = db;
132   p->pEntry = 0;
133   p->pLast = 0;
134   p->pTree = 0;
135   p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
136   p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
137   p->isSorted = 1;
138   p->iBatch = 0;
139   return p;
140 }
141 
142 /*
143 ** Deallocate all chunks from a RowSet.  This frees all memory that
144 ** the RowSet has allocated over its lifetime.  This routine is
145 ** the destructor for the RowSet.
146 */
sqlite3RowSetClear(RowSet * p)147 void sqlite3RowSetClear(RowSet *p){
148   struct RowSetChunk *pChunk, *pNextChunk;
149   for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
150     pNextChunk = pChunk->pNextChunk;
151     sqlite3DbFree(p->db, pChunk);
152   }
153   p->pChunk = 0;
154   p->nFresh = 0;
155   p->pEntry = 0;
156   p->pLast = 0;
157   p->pTree = 0;
158   p->isSorted = 1;
159 }
160 
161 /*
162 ** Insert a new value into a RowSet.
163 **
164 ** The mallocFailed flag of the database connection is set if a
165 ** memory allocation fails.
166 */
sqlite3RowSetInsert(RowSet * p,i64 rowid)167 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
168   struct RowSetEntry *pEntry;  /* The new entry */
169   struct RowSetEntry *pLast;   /* The last prior entry */
170   assert( p!=0 );
171   if( p->nFresh==0 ){
172     struct RowSetChunk *pNew;
173     pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
174     if( pNew==0 ){
175       return;
176     }
177     pNew->pNextChunk = p->pChunk;
178     p->pChunk = pNew;
179     p->pFresh = pNew->aEntry;
180     p->nFresh = ROWSET_ENTRY_PER_CHUNK;
181   }
182   pEntry = p->pFresh++;
183   p->nFresh--;
184   pEntry->v = rowid;
185   pEntry->pRight = 0;
186   pLast = p->pLast;
187   if( pLast ){
188     if( p->isSorted && rowid<=pLast->v ){
189       p->isSorted = 0;
190     }
191     pLast->pRight = pEntry;
192   }else{
193     assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
194     p->pEntry = pEntry;
195   }
196   p->pLast = pEntry;
197 }
198 
199 /*
200 ** Merge two lists of RowSetEntry objects.  Remove duplicates.
201 **
202 ** The input lists are connected via pRight pointers and are
203 ** assumed to each already be in sorted order.
204 */
rowSetMerge(struct RowSetEntry * pA,struct RowSetEntry * pB)205 static struct RowSetEntry *rowSetMerge(
206   struct RowSetEntry *pA,    /* First sorted list to be merged */
207   struct RowSetEntry *pB     /* Second sorted list to be merged */
208 ){
209   struct RowSetEntry head;
210   struct RowSetEntry *pTail;
211 
212   pTail = &head;
213   while( pA && pB ){
214     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
215     assert( pB->pRight==0 || pB->v<=pB->pRight->v );
216     if( pA->v<pB->v ){
217       pTail->pRight = pA;
218       pA = pA->pRight;
219       pTail = pTail->pRight;
220     }else if( pB->v<pA->v ){
221       pTail->pRight = pB;
222       pB = pB->pRight;
223       pTail = pTail->pRight;
224     }else{
225       pA = pA->pRight;
226     }
227   }
228   if( pA ){
229     assert( pA->pRight==0 || pA->v<=pA->pRight->v );
230     pTail->pRight = pA;
231   }else{
232     assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
233     pTail->pRight = pB;
234   }
235   return head.pRight;
236 }
237 
238 /*
239 ** Sort all elements on the pEntry list of the RowSet into ascending order.
240 */
rowSetSort(RowSet * p)241 static void rowSetSort(RowSet *p){
242   unsigned int i;
243   struct RowSetEntry *pEntry;
244   struct RowSetEntry *aBucket[40];
245 
246   assert( p->isSorted==0 );
247   memset(aBucket, 0, sizeof(aBucket));
248   while( p->pEntry ){
249     pEntry = p->pEntry;
250     p->pEntry = pEntry->pRight;
251     pEntry->pRight = 0;
252     for(i=0; aBucket[i]; i++){
253       pEntry = rowSetMerge(aBucket[i], pEntry);
254       aBucket[i] = 0;
255     }
256     aBucket[i] = pEntry;
257   }
258   pEntry = 0;
259   for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
260     pEntry = rowSetMerge(pEntry, aBucket[i]);
261   }
262   p->pEntry = pEntry;
263   p->pLast = 0;
264   p->isSorted = 1;
265 }
266 
267 
268 /*
269 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
270 ** Convert this tree into a linked list connected by the pRight pointers
271 ** and return pointers to the first and last elements of the new list.
272 */
rowSetTreeToList(struct RowSetEntry * pIn,struct RowSetEntry ** ppFirst,struct RowSetEntry ** ppLast)273 static void rowSetTreeToList(
274   struct RowSetEntry *pIn,         /* Root of the input tree */
275   struct RowSetEntry **ppFirst,    /* Write head of the output list here */
276   struct RowSetEntry **ppLast      /* Write tail of the output list here */
277 ){
278   assert( pIn!=0 );
279   if( pIn->pLeft ){
280     struct RowSetEntry *p;
281     rowSetTreeToList(pIn->pLeft, ppFirst, &p);
282     p->pRight = pIn;
283   }else{
284     *ppFirst = pIn;
285   }
286   if( pIn->pRight ){
287     rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
288   }else{
289     *ppLast = pIn;
290   }
291   assert( (*ppLast)->pRight==0 );
292 }
293 
294 
295 /*
296 ** Convert a sorted list of elements (connected by pRight) into a binary
297 ** tree with depth of iDepth.  A depth of 1 means the tree contains a single
298 ** node taken from the head of *ppList.  A depth of 2 means a tree with
299 ** three nodes.  And so forth.
300 **
301 ** Use as many entries from the input list as required and update the
302 ** *ppList to point to the unused elements of the list.  If the input
303 ** list contains too few elements, then construct an incomplete tree
304 ** and leave *ppList set to NULL.
305 **
306 ** Return a pointer to the root of the constructed binary tree.
307 */
rowSetNDeepTree(struct RowSetEntry ** ppList,int iDepth)308 static struct RowSetEntry *rowSetNDeepTree(
309   struct RowSetEntry **ppList,
310   int iDepth
311 ){
312   struct RowSetEntry *p;         /* Root of the new tree */
313   struct RowSetEntry *pLeft;     /* Left subtree */
314   if( *ppList==0 ){
315     return 0;
316   }
317   if( iDepth==1 ){
318     p = *ppList;
319     *ppList = p->pRight;
320     p->pLeft = p->pRight = 0;
321     return p;
322   }
323   pLeft = rowSetNDeepTree(ppList, iDepth-1);
324   p = *ppList;
325   if( p==0 ){
326     return pLeft;
327   }
328   p->pLeft = pLeft;
329   *ppList = p->pRight;
330   p->pRight = rowSetNDeepTree(ppList, iDepth-1);
331   return p;
332 }
333 
334 /*
335 ** Convert a sorted list of elements into a binary tree. Make the tree
336 ** as deep as it needs to be in order to contain the entire list.
337 */
rowSetListToTree(struct RowSetEntry * pList)338 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
339   int iDepth;           /* Depth of the tree so far */
340   struct RowSetEntry *p;       /* Current tree root */
341   struct RowSetEntry *pLeft;   /* Left subtree */
342 
343   assert( pList!=0 );
344   p = pList;
345   pList = p->pRight;
346   p->pLeft = p->pRight = 0;
347   for(iDepth=1; pList; iDepth++){
348     pLeft = p;
349     p = pList;
350     pList = p->pRight;
351     p->pLeft = pLeft;
352     p->pRight = rowSetNDeepTree(&pList, iDepth);
353   }
354   return p;
355 }
356 
357 /*
358 ** Convert the list in p->pEntry into a sorted list if it is not
359 ** sorted already.  If there is a binary tree on p->pTree, then
360 ** convert it into a list too and merge it into the p->pEntry list.
361 */
rowSetToList(RowSet * p)362 static void rowSetToList(RowSet *p){
363   if( !p->isSorted ){
364     rowSetSort(p);
365   }
366   if( p->pTree ){
367     struct RowSetEntry *pHead, *pTail;
368     rowSetTreeToList(p->pTree, &pHead, &pTail);
369     p->pTree = 0;
370     p->pEntry = rowSetMerge(p->pEntry, pHead);
371   }
372 }
373 
374 /*
375 ** Extract the smallest element from the RowSet.
376 ** Write the element into *pRowid.  Return 1 on success.  Return
377 ** 0 if the RowSet is already empty.
378 **
379 ** After this routine has been called, the sqlite3RowSetInsert()
380 ** routine may not be called again.
381 */
sqlite3RowSetNext(RowSet * p,i64 * pRowid)382 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
383   rowSetToList(p);
384   if( p->pEntry ){
385     *pRowid = p->pEntry->v;
386     p->pEntry = p->pEntry->pRight;
387     if( p->pEntry==0 ){
388       sqlite3RowSetClear(p);
389     }
390     return 1;
391   }else{
392     return 0;
393   }
394 }
395 
396 /*
397 ** Check to see if element iRowid was inserted into the the rowset as
398 ** part of any insert batch prior to iBatch.  Return 1 or 0.
399 */
sqlite3RowSetTest(RowSet * pRowSet,u8 iBatch,sqlite3_int64 iRowid)400 int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
401   struct RowSetEntry *p;
402   if( iBatch!=pRowSet->iBatch ){
403     if( pRowSet->pEntry ){
404       rowSetToList(pRowSet);
405       pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
406       pRowSet->pEntry = 0;
407       pRowSet->pLast = 0;
408     }
409     pRowSet->iBatch = iBatch;
410   }
411   p = pRowSet->pTree;
412   while( p ){
413     if( p->v<iRowid ){
414       p = p->pRight;
415     }else if( p->v>iRowid ){
416       p = p->pLeft;
417     }else{
418       return 1;
419     }
420   }
421   return 0;
422 }
423