1 /*
2 ** 2008 December 3
3 **
4 ** The author disclaims copyright to this source code. In place of
5 ** a legal notice, here is a blessing:
6 **
7 ** May you do good and not evil.
8 ** May you find forgiveness for yourself and forgive others.
9 ** May you share freely, never taking more than you give.
10 **
11 *************************************************************************
12 **
13 ** This module implements an object we call a "RowSet".
14 **
15 ** The RowSet object is a collection of rowids. Rowids
16 ** are inserted into the RowSet in an arbitrary order. Inserts
17 ** can be intermixed with tests to see if a given rowid has been
18 ** previously inserted into the RowSet.
19 **
20 ** After all inserts are finished, it is possible to extract the
21 ** elements of the RowSet in sorted order. Once this extraction
22 ** process has started, no new elements may be inserted.
23 **
24 ** Hence, the primitive operations for a RowSet are:
25 **
26 ** CREATE
27 ** INSERT
28 ** TEST
29 ** SMALLEST
30 ** DESTROY
31 **
32 ** The CREATE and DESTROY primitives are the constructor and destructor,
33 ** obviously. The INSERT primitive adds a new element to the RowSet.
34 ** TEST checks to see if an element is already in the RowSet. SMALLEST
35 ** extracts the least value from the RowSet.
36 **
37 ** The INSERT primitive might allocate additional memory. Memory is
38 ** allocated in chunks so most INSERTs do no allocation. There is an
39 ** upper bound on the size of allocated memory. No memory is freed
40 ** until DESTROY.
41 **
42 ** The TEST primitive includes a "batch" number. The TEST primitive
43 ** will only see elements that were inserted before the last change
44 ** in the batch number. In other words, if an INSERT occurs between
45 ** two TESTs where the TESTs have the same batch nubmer, then the
46 ** value added by the INSERT will not be visible to the second TEST.
47 ** The initial batch number is zero, so if the very first TEST contains
48 ** a non-zero batch number, it will see all prior INSERTs.
49 **
50 ** No INSERTs may occurs after a SMALLEST. An assertion will fail if
51 ** that is attempted.
52 **
53 ** The cost of an INSERT is roughly constant. (Sometime new memory
54 ** has to be allocated on an INSERT.) The cost of a TEST with a new
55 ** batch number is O(NlogN) where N is the number of elements in the RowSet.
56 ** The cost of a TEST using the same batch number is O(logN). The cost
57 ** of the first SMALLEST is O(NlogN). Second and subsequent SMALLEST
58 ** primitives are constant time. The cost of DESTROY is O(N).
59 **
60 ** There is an added cost of O(N) when switching between TEST and
61 ** SMALLEST primitives.
62 */
63 #include "sqliteInt.h"
64
65
66 /*
67 ** Target size for allocation chunks.
68 */
69 #define ROWSET_ALLOCATION_SIZE 1024
70
71 /*
72 ** The number of rowset entries per allocation chunk.
73 */
74 #define ROWSET_ENTRY_PER_CHUNK \
75 ((ROWSET_ALLOCATION_SIZE-8)/sizeof(struct RowSetEntry))
76
77 /*
78 ** Each entry in a RowSet is an instance of the following object.
79 */
80 struct RowSetEntry {
81 i64 v; /* ROWID value for this entry */
82 struct RowSetEntry *pRight; /* Right subtree (larger entries) or list */
83 struct RowSetEntry *pLeft; /* Left subtree (smaller entries) */
84 };
85
86 /*
87 ** RowSetEntry objects are allocated in large chunks (instances of the
88 ** following structure) to reduce memory allocation overhead. The
89 ** chunks are kept on a linked list so that they can be deallocated
90 ** when the RowSet is destroyed.
91 */
92 struct RowSetChunk {
93 struct RowSetChunk *pNextChunk; /* Next chunk on list of them all */
94 struct RowSetEntry aEntry[ROWSET_ENTRY_PER_CHUNK]; /* Allocated entries */
95 };
96
97 /*
98 ** A RowSet in an instance of the following structure.
99 **
100 ** A typedef of this structure if found in sqliteInt.h.
101 */
102 struct RowSet {
103 struct RowSetChunk *pChunk; /* List of all chunk allocations */
104 sqlite3 *db; /* The database connection */
105 struct RowSetEntry *pEntry; /* List of entries using pRight */
106 struct RowSetEntry *pLast; /* Last entry on the pEntry list */
107 struct RowSetEntry *pFresh; /* Source of new entry objects */
108 struct RowSetEntry *pTree; /* Binary tree of entries */
109 u16 nFresh; /* Number of objects on pFresh */
110 u8 isSorted; /* True if pEntry is sorted */
111 u8 iBatch; /* Current insert batch */
112 };
113
114 /*
115 ** Turn bulk memory into a RowSet object. N bytes of memory
116 ** are available at pSpace. The db pointer is used as a memory context
117 ** for any subsequent allocations that need to occur.
118 ** Return a pointer to the new RowSet object.
119 **
120 ** It must be the case that N is sufficient to make a Rowset. If not
121 ** an assertion fault occurs.
122 **
123 ** If N is larger than the minimum, use the surplus as an initial
124 ** allocation of entries available to be filled.
125 */
sqlite3RowSetInit(sqlite3 * db,void * pSpace,unsigned int N)126 RowSet *sqlite3RowSetInit(sqlite3 *db, void *pSpace, unsigned int N){
127 RowSet *p;
128 assert( N >= ROUND8(sizeof(*p)) );
129 p = pSpace;
130 p->pChunk = 0;
131 p->db = db;
132 p->pEntry = 0;
133 p->pLast = 0;
134 p->pTree = 0;
135 p->pFresh = (struct RowSetEntry*)(ROUND8(sizeof(*p)) + (char*)p);
136 p->nFresh = (u16)((N - ROUND8(sizeof(*p)))/sizeof(struct RowSetEntry));
137 p->isSorted = 1;
138 p->iBatch = 0;
139 return p;
140 }
141
142 /*
143 ** Deallocate all chunks from a RowSet. This frees all memory that
144 ** the RowSet has allocated over its lifetime. This routine is
145 ** the destructor for the RowSet.
146 */
sqlite3RowSetClear(RowSet * p)147 void sqlite3RowSetClear(RowSet *p){
148 struct RowSetChunk *pChunk, *pNextChunk;
149 for(pChunk=p->pChunk; pChunk; pChunk = pNextChunk){
150 pNextChunk = pChunk->pNextChunk;
151 sqlite3DbFree(p->db, pChunk);
152 }
153 p->pChunk = 0;
154 p->nFresh = 0;
155 p->pEntry = 0;
156 p->pLast = 0;
157 p->pTree = 0;
158 p->isSorted = 1;
159 }
160
161 /*
162 ** Insert a new value into a RowSet.
163 **
164 ** The mallocFailed flag of the database connection is set if a
165 ** memory allocation fails.
166 */
sqlite3RowSetInsert(RowSet * p,i64 rowid)167 void sqlite3RowSetInsert(RowSet *p, i64 rowid){
168 struct RowSetEntry *pEntry; /* The new entry */
169 struct RowSetEntry *pLast; /* The last prior entry */
170 assert( p!=0 );
171 if( p->nFresh==0 ){
172 struct RowSetChunk *pNew;
173 pNew = sqlite3DbMallocRaw(p->db, sizeof(*pNew));
174 if( pNew==0 ){
175 return;
176 }
177 pNew->pNextChunk = p->pChunk;
178 p->pChunk = pNew;
179 p->pFresh = pNew->aEntry;
180 p->nFresh = ROWSET_ENTRY_PER_CHUNK;
181 }
182 pEntry = p->pFresh++;
183 p->nFresh--;
184 pEntry->v = rowid;
185 pEntry->pRight = 0;
186 pLast = p->pLast;
187 if( pLast ){
188 if( p->isSorted && rowid<=pLast->v ){
189 p->isSorted = 0;
190 }
191 pLast->pRight = pEntry;
192 }else{
193 assert( p->pEntry==0 ); /* Fires if INSERT after SMALLEST */
194 p->pEntry = pEntry;
195 }
196 p->pLast = pEntry;
197 }
198
199 /*
200 ** Merge two lists of RowSetEntry objects. Remove duplicates.
201 **
202 ** The input lists are connected via pRight pointers and are
203 ** assumed to each already be in sorted order.
204 */
rowSetMerge(struct RowSetEntry * pA,struct RowSetEntry * pB)205 static struct RowSetEntry *rowSetMerge(
206 struct RowSetEntry *pA, /* First sorted list to be merged */
207 struct RowSetEntry *pB /* Second sorted list to be merged */
208 ){
209 struct RowSetEntry head;
210 struct RowSetEntry *pTail;
211
212 pTail = &head;
213 while( pA && pB ){
214 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
215 assert( pB->pRight==0 || pB->v<=pB->pRight->v );
216 if( pA->v<pB->v ){
217 pTail->pRight = pA;
218 pA = pA->pRight;
219 pTail = pTail->pRight;
220 }else if( pB->v<pA->v ){
221 pTail->pRight = pB;
222 pB = pB->pRight;
223 pTail = pTail->pRight;
224 }else{
225 pA = pA->pRight;
226 }
227 }
228 if( pA ){
229 assert( pA->pRight==0 || pA->v<=pA->pRight->v );
230 pTail->pRight = pA;
231 }else{
232 assert( pB==0 || pB->pRight==0 || pB->v<=pB->pRight->v );
233 pTail->pRight = pB;
234 }
235 return head.pRight;
236 }
237
238 /*
239 ** Sort all elements on the pEntry list of the RowSet into ascending order.
240 */
rowSetSort(RowSet * p)241 static void rowSetSort(RowSet *p){
242 unsigned int i;
243 struct RowSetEntry *pEntry;
244 struct RowSetEntry *aBucket[40];
245
246 assert( p->isSorted==0 );
247 memset(aBucket, 0, sizeof(aBucket));
248 while( p->pEntry ){
249 pEntry = p->pEntry;
250 p->pEntry = pEntry->pRight;
251 pEntry->pRight = 0;
252 for(i=0; aBucket[i]; i++){
253 pEntry = rowSetMerge(aBucket[i], pEntry);
254 aBucket[i] = 0;
255 }
256 aBucket[i] = pEntry;
257 }
258 pEntry = 0;
259 for(i=0; i<sizeof(aBucket)/sizeof(aBucket[0]); i++){
260 pEntry = rowSetMerge(pEntry, aBucket[i]);
261 }
262 p->pEntry = pEntry;
263 p->pLast = 0;
264 p->isSorted = 1;
265 }
266
267
268 /*
269 ** The input, pIn, is a binary tree (or subtree) of RowSetEntry objects.
270 ** Convert this tree into a linked list connected by the pRight pointers
271 ** and return pointers to the first and last elements of the new list.
272 */
rowSetTreeToList(struct RowSetEntry * pIn,struct RowSetEntry ** ppFirst,struct RowSetEntry ** ppLast)273 static void rowSetTreeToList(
274 struct RowSetEntry *pIn, /* Root of the input tree */
275 struct RowSetEntry **ppFirst, /* Write head of the output list here */
276 struct RowSetEntry **ppLast /* Write tail of the output list here */
277 ){
278 assert( pIn!=0 );
279 if( pIn->pLeft ){
280 struct RowSetEntry *p;
281 rowSetTreeToList(pIn->pLeft, ppFirst, &p);
282 p->pRight = pIn;
283 }else{
284 *ppFirst = pIn;
285 }
286 if( pIn->pRight ){
287 rowSetTreeToList(pIn->pRight, &pIn->pRight, ppLast);
288 }else{
289 *ppLast = pIn;
290 }
291 assert( (*ppLast)->pRight==0 );
292 }
293
294
295 /*
296 ** Convert a sorted list of elements (connected by pRight) into a binary
297 ** tree with depth of iDepth. A depth of 1 means the tree contains a single
298 ** node taken from the head of *ppList. A depth of 2 means a tree with
299 ** three nodes. And so forth.
300 **
301 ** Use as many entries from the input list as required and update the
302 ** *ppList to point to the unused elements of the list. If the input
303 ** list contains too few elements, then construct an incomplete tree
304 ** and leave *ppList set to NULL.
305 **
306 ** Return a pointer to the root of the constructed binary tree.
307 */
rowSetNDeepTree(struct RowSetEntry ** ppList,int iDepth)308 static struct RowSetEntry *rowSetNDeepTree(
309 struct RowSetEntry **ppList,
310 int iDepth
311 ){
312 struct RowSetEntry *p; /* Root of the new tree */
313 struct RowSetEntry *pLeft; /* Left subtree */
314 if( *ppList==0 ){
315 return 0;
316 }
317 if( iDepth==1 ){
318 p = *ppList;
319 *ppList = p->pRight;
320 p->pLeft = p->pRight = 0;
321 return p;
322 }
323 pLeft = rowSetNDeepTree(ppList, iDepth-1);
324 p = *ppList;
325 if( p==0 ){
326 return pLeft;
327 }
328 p->pLeft = pLeft;
329 *ppList = p->pRight;
330 p->pRight = rowSetNDeepTree(ppList, iDepth-1);
331 return p;
332 }
333
334 /*
335 ** Convert a sorted list of elements into a binary tree. Make the tree
336 ** as deep as it needs to be in order to contain the entire list.
337 */
rowSetListToTree(struct RowSetEntry * pList)338 static struct RowSetEntry *rowSetListToTree(struct RowSetEntry *pList){
339 int iDepth; /* Depth of the tree so far */
340 struct RowSetEntry *p; /* Current tree root */
341 struct RowSetEntry *pLeft; /* Left subtree */
342
343 assert( pList!=0 );
344 p = pList;
345 pList = p->pRight;
346 p->pLeft = p->pRight = 0;
347 for(iDepth=1; pList; iDepth++){
348 pLeft = p;
349 p = pList;
350 pList = p->pRight;
351 p->pLeft = pLeft;
352 p->pRight = rowSetNDeepTree(&pList, iDepth);
353 }
354 return p;
355 }
356
357 /*
358 ** Convert the list in p->pEntry into a sorted list if it is not
359 ** sorted already. If there is a binary tree on p->pTree, then
360 ** convert it into a list too and merge it into the p->pEntry list.
361 */
rowSetToList(RowSet * p)362 static void rowSetToList(RowSet *p){
363 if( !p->isSorted ){
364 rowSetSort(p);
365 }
366 if( p->pTree ){
367 struct RowSetEntry *pHead, *pTail;
368 rowSetTreeToList(p->pTree, &pHead, &pTail);
369 p->pTree = 0;
370 p->pEntry = rowSetMerge(p->pEntry, pHead);
371 }
372 }
373
374 /*
375 ** Extract the smallest element from the RowSet.
376 ** Write the element into *pRowid. Return 1 on success. Return
377 ** 0 if the RowSet is already empty.
378 **
379 ** After this routine has been called, the sqlite3RowSetInsert()
380 ** routine may not be called again.
381 */
sqlite3RowSetNext(RowSet * p,i64 * pRowid)382 int sqlite3RowSetNext(RowSet *p, i64 *pRowid){
383 rowSetToList(p);
384 if( p->pEntry ){
385 *pRowid = p->pEntry->v;
386 p->pEntry = p->pEntry->pRight;
387 if( p->pEntry==0 ){
388 sqlite3RowSetClear(p);
389 }
390 return 1;
391 }else{
392 return 0;
393 }
394 }
395
396 /*
397 ** Check to see if element iRowid was inserted into the the rowset as
398 ** part of any insert batch prior to iBatch. Return 1 or 0.
399 */
sqlite3RowSetTest(RowSet * pRowSet,u8 iBatch,sqlite3_int64 iRowid)400 int sqlite3RowSetTest(RowSet *pRowSet, u8 iBatch, sqlite3_int64 iRowid){
401 struct RowSetEntry *p;
402 if( iBatch!=pRowSet->iBatch ){
403 if( pRowSet->pEntry ){
404 rowSetToList(pRowSet);
405 pRowSet->pTree = rowSetListToTree(pRowSet->pEntry);
406 pRowSet->pEntry = 0;
407 pRowSet->pLast = 0;
408 }
409 pRowSet->iBatch = iBatch;
410 }
411 p = pRowSet->pTree;
412 while( p ){
413 if( p->v<iRowid ){
414 p = p->pRight;
415 }else if( p->v>iRowid ){
416 p = p->pLeft;
417 }else{
418 return 1;
419 }
420 }
421 return 0;
422 }
423