1 //===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the pass that transforms the ARM machine instructions into
11 // relocatable machine code.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "jit"
16 #include "ARM.h"
17 #include "ARMBaseInstrInfo.h"
18 #include "ARMConstantPoolValue.h"
19 #include "ARMRelocations.h"
20 #include "ARMSubtarget.h"
21 #include "ARMTargetMachine.h"
22 #include "MCTargetDesc/ARMAddressingModes.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/CodeGen/JITCodeEmitter.h"
25 #include "llvm/CodeGen/MachineConstantPool.h"
26 #include "llvm/CodeGen/MachineFunctionPass.h"
27 #include "llvm/CodeGen/MachineInstr.h"
28 #include "llvm/CodeGen/MachineJumpTableInfo.h"
29 #include "llvm/CodeGen/MachineModuleInfo.h"
30 #include "llvm/CodeGen/Passes.h"
31 #include "llvm/IR/Constants.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/PassManager.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #ifndef NDEBUG
39 #include <iomanip>
40 #endif
41 using namespace llvm;
42
43 STATISTIC(NumEmitted, "Number of machine instructions emitted");
44
45 namespace {
46
47 class ARMCodeEmitter : public MachineFunctionPass {
48 ARMJITInfo *JTI;
49 const ARMBaseInstrInfo *II;
50 const DataLayout *TD;
51 const ARMSubtarget *Subtarget;
52 TargetMachine &TM;
53 JITCodeEmitter &MCE;
54 MachineModuleInfo *MMI;
55 const std::vector<MachineConstantPoolEntry> *MCPEs;
56 const std::vector<MachineJumpTableEntry> *MJTEs;
57 bool IsPIC;
58 bool IsThumb;
59
getAnalysisUsage(AnalysisUsage & AU) const60 void getAnalysisUsage(AnalysisUsage &AU) const {
61 AU.addRequired<MachineModuleInfo>();
62 MachineFunctionPass::getAnalysisUsage(AU);
63 }
64
65 static char ID;
66 public:
ARMCodeEmitter(TargetMachine & tm,JITCodeEmitter & mce)67 ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
68 : MachineFunctionPass(ID), JTI(0),
69 II((const ARMBaseInstrInfo *)tm.getInstrInfo()),
70 TD(tm.getDataLayout()), TM(tm),
71 MCE(mce), MCPEs(0), MJTEs(0),
72 IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
73
74 /// getBinaryCodeForInstr - This function, generated by the
75 /// CodeEmitterGenerator using TableGen, produces the binary encoding for
76 /// machine instructions.
77 uint64_t getBinaryCodeForInstr(const MachineInstr &MI) const;
78
79 bool runOnMachineFunction(MachineFunction &MF);
80
getPassName() const81 virtual const char *getPassName() const {
82 return "ARM Machine Code Emitter";
83 }
84
85 void emitInstruction(const MachineInstr &MI);
86
87 private:
88
89 void emitWordLE(unsigned Binary);
90 void emitDWordLE(uint64_t Binary);
91 void emitConstantToMemory(unsigned CPI, const Constant *CV);
92 void emitConstPoolInstruction(const MachineInstr &MI);
93 void emitMOVi32immInstruction(const MachineInstr &MI);
94 void emitMOVi2piecesInstruction(const MachineInstr &MI);
95 void emitLEApcrelInstruction(const MachineInstr &MI);
96 void emitLEApcrelJTInstruction(const MachineInstr &MI);
97 void emitPseudoMoveInstruction(const MachineInstr &MI);
98 void addPCLabel(unsigned LabelID);
99 void emitPseudoInstruction(const MachineInstr &MI);
100 unsigned getMachineSoRegOpValue(const MachineInstr &MI,
101 const MCInstrDesc &MCID,
102 const MachineOperand &MO,
103 unsigned OpIdx);
104
105 unsigned getMachineSoImmOpValue(unsigned SoImm);
106 unsigned getAddrModeSBit(const MachineInstr &MI,
107 const MCInstrDesc &MCID) const;
108
109 void emitDataProcessingInstruction(const MachineInstr &MI,
110 unsigned ImplicitRd = 0,
111 unsigned ImplicitRn = 0);
112
113 void emitLoadStoreInstruction(const MachineInstr &MI,
114 unsigned ImplicitRd = 0,
115 unsigned ImplicitRn = 0);
116
117 void emitMiscLoadStoreInstruction(const MachineInstr &MI,
118 unsigned ImplicitRn = 0);
119
120 void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
121
122 void emitMulFrmInstruction(const MachineInstr &MI);
123
124 void emitExtendInstruction(const MachineInstr &MI);
125
126 void emitMiscArithInstruction(const MachineInstr &MI);
127
128 void emitSaturateInstruction(const MachineInstr &MI);
129
130 void emitBranchInstruction(const MachineInstr &MI);
131
132 void emitInlineJumpTable(unsigned JTIndex);
133
134 void emitMiscBranchInstruction(const MachineInstr &MI);
135
136 void emitVFPArithInstruction(const MachineInstr &MI);
137
138 void emitVFPConversionInstruction(const MachineInstr &MI);
139
140 void emitVFPLoadStoreInstruction(const MachineInstr &MI);
141
142 void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
143
144 void emitMiscInstruction(const MachineInstr &MI);
145
146 void emitNEONLaneInstruction(const MachineInstr &MI);
147 void emitNEONDupInstruction(const MachineInstr &MI);
148 void emitNEON1RegModImmInstruction(const MachineInstr &MI);
149 void emitNEON2RegInstruction(const MachineInstr &MI);
150 void emitNEON3RegInstruction(const MachineInstr &MI);
151
152 /// getMachineOpValue - Return binary encoding of operand. If the machine
153 /// operand requires relocation, record the relocation and return zero.
154 unsigned getMachineOpValue(const MachineInstr &MI,
155 const MachineOperand &MO) const;
getMachineOpValue(const MachineInstr & MI,unsigned OpIdx) const156 unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
157 return getMachineOpValue(MI, MI.getOperand(OpIdx));
158 }
159
160 // FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
161 // TableGen'erated getBinaryCodeForInstr() function to encode any
162 // operand values, instead querying getMachineOpValue() directly for
163 // each operand it needs to encode. Thus, any of the new encoder
164 // helper functions can simply return 0 as the values the return
165 // are already handled elsewhere. They are placeholders to allow this
166 // encoder to continue to function until the MC encoder is sufficiently
167 // far along that this one can be eliminated entirely.
NEONThumb2DataIPostEncoder(const MachineInstr & MI,unsigned Val) const168 unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
169 const { return 0; }
NEONThumb2LoadStorePostEncoder(const MachineInstr & MI,unsigned Val) const170 unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
171 const { return 0; }
NEONThumb2DupPostEncoder(const MachineInstr & MI,unsigned Val) const172 unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
173 const { return 0; }
NEONThumb2V8PostEncoder(const MachineInstr & MI,unsigned Val) const174 unsigned NEONThumb2V8PostEncoder(const MachineInstr &MI,unsigned Val)
175 const { return 0; }
VFPThumb2PostEncoder(const MachineInstr & MI,unsigned Val) const176 unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
177 const {
178 if (IsThumb) {
179 Val &= 0x0FFFFFFF;
180 Val |= 0xE0000000;
181 }
182 return Val;
183 }
getAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const184 unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
185 const { return 0; }
getThumbAdrLabelOpValue(const MachineInstr & MI,unsigned Op) const186 unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
187 const { return 0; }
getThumbBLTargetOpValue(const MachineInstr & MI,unsigned Op) const188 unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
189 const { return 0; }
getThumbBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const190 unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
191 const { return 0; }
getThumbBRTargetOpValue(const MachineInstr & MI,unsigned Op) const192 unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
193 const { return 0; }
getThumbBCCTargetOpValue(const MachineInstr & MI,unsigned Op) const194 unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
195 const { return 0; }
getThumbCBTargetOpValue(const MachineInstr & MI,unsigned Op) const196 unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
197 const { return 0; }
getBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const198 unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
199 const { return 0; }
getUnconditionalBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const200 unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
201 unsigned Op) const { return 0; }
getARMBranchTargetOpValue(const MachineInstr & MI,unsigned Op) const202 unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
203 const { return 0; }
getARMBLTargetOpValue(const MachineInstr & MI,unsigned Op) const204 unsigned getARMBLTargetOpValue(const MachineInstr &MI, unsigned Op)
205 const { return 0; }
getARMBLXTargetOpValue(const MachineInstr & MI,unsigned Op) const206 unsigned getARMBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
207 const { return 0; }
getCCOutOpValue(const MachineInstr & MI,unsigned Op) const208 unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
209 const { return 0; }
getSOImmOpValue(const MachineInstr & MI,unsigned Op) const210 unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
211 const { return 0; }
getT2SOImmOpValue(const MachineInstr & MI,unsigned Op) const212 unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
213 const { return 0; }
getSORegRegOpValue(const MachineInstr & MI,unsigned Op) const214 unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
215 const { return 0; }
getSORegImmOpValue(const MachineInstr & MI,unsigned Op) const216 unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
217 const { return 0; }
getThumbAddrModeRegRegOpValue(const MachineInstr & MI,unsigned Op) const218 unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
219 const { return 0; }
getT2AddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const220 unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
221 const { return 0; }
getT2AddrModeImm8OpValue(const MachineInstr & MI,unsigned Op) const222 unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
223 const { return 0; }
getT2Imm8s4OpValue(const MachineInstr & MI,unsigned Op) const224 unsigned getT2Imm8s4OpValue(const MachineInstr &MI, unsigned Op)
225 const { return 0; }
getT2AddrModeImm8s4OpValue(const MachineInstr & MI,unsigned Op) const226 unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
227 const { return 0; }
getT2AddrModeImm0_1020s4OpValue(const MachineInstr & MI,unsigned Op) const228 unsigned getT2AddrModeImm0_1020s4OpValue(const MachineInstr &MI,unsigned Op)
229 const { return 0; }
getT2AddrModeImm8OffsetOpValue(const MachineInstr & MI,unsigned Op) const230 unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
231 const { return 0; }
getT2AddrModeImm12OffsetOpValue(const MachineInstr & MI,unsigned Op) const232 unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
233 const { return 0; }
getT2AddrModeSORegOpValue(const MachineInstr & MI,unsigned Op) const234 unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
235 const { return 0; }
getT2SORegOpValue(const MachineInstr & MI,unsigned Op) const236 unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
237 const { return 0; }
getT2AdrLabelOpValue(const MachineInstr & MI,unsigned Op) const238 unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
239 const { return 0; }
getAddrMode6AddressOpValue(const MachineInstr & MI,unsigned Op) const240 unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
241 const { return 0; }
getAddrMode6OneLane32AddressOpValue(const MachineInstr & MI,unsigned Op) const242 unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
243 unsigned Op)
244 const { return 0; }
getAddrMode6DupAddressOpValue(const MachineInstr & MI,unsigned Op) const245 unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
246 const { return 0; }
getAddrMode6OffsetOpValue(const MachineInstr & MI,unsigned Op) const247 unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
248 const { return 0; }
getBitfieldInvertedMaskOpValue(const MachineInstr & MI,unsigned Op) const249 unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
250 unsigned Op) const { return 0; }
getSsatBitPosValue(const MachineInstr & MI,unsigned Op) const251 unsigned getSsatBitPosValue(const MachineInstr &MI,
252 unsigned Op) const { return 0; }
getLdStmModeOpValue(const MachineInstr & MI,unsigned OpIdx) const253 uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
254 const {return 0; }
getLdStSORegOpValue(const MachineInstr & MI,unsigned OpIdx) const255 uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
256 const { return 0; }
257
getAddrModeImm12OpValue(const MachineInstr & MI,unsigned Op) const258 unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
259 const {
260 // {17-13} = reg
261 // {12} = (U)nsigned (add == '1', sub == '0')
262 // {11-0} = imm12
263 const MachineOperand &MO = MI.getOperand(Op);
264 const MachineOperand &MO1 = MI.getOperand(Op + 1);
265 if (!MO.isReg()) {
266 emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
267 return 0;
268 }
269 unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
270 int32_t Imm12 = MO1.getImm();
271 uint32_t Binary;
272 Binary = Imm12 & 0xfff;
273 if (Imm12 >= 0)
274 Binary |= (1 << 12);
275 Binary |= (Reg << 13);
276 return Binary;
277 }
278
getHiLo16ImmOpValue(const MachineInstr & MI,unsigned Op) const279 unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op)
280 const {
281 const MCInstrDesc &MCID = MI.getDesc();
282 const MachineOperand &MO = MI.getOperand(Op);
283
284 unsigned Reloc = (MCID.Opcode == ARM::MOVi16 ?
285 ARM::reloc_arm_movw : ARM::reloc_arm_movt);
286
287 if (!MO.isImm()) {
288 emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
289 return 0;
290 }
291 unsigned Imm16 = static_cast<unsigned>(MO.getImm());
292 return Imm16;
293 }
294
getAddrMode2OpValue(const MachineInstr & MI,unsigned OpIdx) const295 uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
296 const { return 0;}
getAddrMode2OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const297 uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
298 const { return 0;}
getPostIdxRegOpValue(const MachineInstr & MI,unsigned OpIdx) const299 uint32_t getPostIdxRegOpValue(const MachineInstr &MI, unsigned OpIdx)
300 const { return 0;}
getAddrMode3OffsetOpValue(const MachineInstr & MI,unsigned OpIdx) const301 uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
302 const { return 0;}
getAddrMode3OpValue(const MachineInstr & MI,unsigned Op) const303 uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
304 const { return 0; }
getAddrModeThumbSPOpValue(const MachineInstr & MI,unsigned Op) const305 uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
306 const { return 0; }
getAddrModeSOpValue(const MachineInstr & MI,unsigned Op) const307 uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
308 const { return 0; }
getAddrModeISOpValue(const MachineInstr & MI,unsigned Op) const309 uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
310 const { return 0; }
getAddrModePCOpValue(const MachineInstr & MI,unsigned Op) const311 uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
312 const { return 0; }
getAddrMode5OpValue(const MachineInstr & MI,unsigned Op) const313 uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
314 // {12-9} = reg
315 // {8} = (U)nsigned (add == '1', sub == '0')
316 // {7-0} = imm8
317 uint32_t Binary = 0;
318 const MachineOperand &MO = MI.getOperand(Op);
319 const MachineOperand &MO1 = MI.getOperand(Op + 1);
320 if (!MO.isReg()) {
321 emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
322 return 0;
323 }
324 unsigned Reg = II->getRegisterInfo().getEncodingValue(MO.getReg());
325 int32_t Imm12 = MO1.getImm();
326
327 // Special value for #-0
328 if (Imm12 == INT32_MIN)
329 Imm12 = 0;
330
331 // Immediate is always encoded as positive. The 'U' bit controls add vs
332 // sub.
333 bool isAdd = true;
334 if (Imm12 < 0) {
335 Imm12 = -Imm12;
336 isAdd = false;
337 }
338
339 // If immediate offset is omitted, default to +0.
340 Binary |= 1 << 8;
341 return Binary;
342 }
getNEONVcvtImm32OpValue(const MachineInstr & MI,unsigned Op) const343 unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
344 const { return 0; }
345
getRegisterListOpValue(const MachineInstr & MI,unsigned Op) const346 unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
347 const { return 0; }
348
getShiftRight8Imm(const MachineInstr & MI,unsigned Op) const349 unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
350 const { return 0; }
getShiftRight16Imm(const MachineInstr & MI,unsigned Op) const351 unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
352 const { return 0; }
getShiftRight32Imm(const MachineInstr & MI,unsigned Op) const353 unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
354 const { return 0; }
getShiftRight64Imm(const MachineInstr & MI,unsigned Op) const355 unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
356 const { return 0; }
357
358 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
359 /// machine operand requires relocation, record the relocation and return
360 /// zero.
361 unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
362 unsigned Reloc);
363
364 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
365 ///
366 unsigned getShiftOp(unsigned Imm) const ;
367
368 /// Routines that handle operands which add machine relocations which are
369 /// fixed up by the relocation stage.
370 void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
371 bool MayNeedFarStub, bool Indirect,
372 intptr_t ACPV = 0) const;
373 void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
374 void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
375 void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
376 void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
377 intptr_t JTBase = 0) const;
378 unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) const;
379 unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) const;
380 unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) const;
381 unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) const;
382 unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) const;
383 unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) const;
384 };
385 }
386
387 char ARMCodeEmitter::ID = 0;
388
389 /// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
390 /// code to the specified MCE object.
createARMJITCodeEmitterPass(ARMBaseTargetMachine & TM,JITCodeEmitter & JCE)391 FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
392 JITCodeEmitter &JCE) {
393 return new ARMCodeEmitter(TM, JCE);
394 }
395
runOnMachineFunction(MachineFunction & MF)396 bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
397 TargetMachine &Target = const_cast<TargetMachine&>(MF.getTarget());
398
399 assert((Target.getRelocationModel() != Reloc::Default ||
400 Target.getRelocationModel() != Reloc::Static) &&
401 "JIT relocation model must be set to static or default!");
402
403 JTI = static_cast<ARMJITInfo*>(Target.getJITInfo());
404 II = static_cast<const ARMBaseInstrInfo*>(Target.getInstrInfo());
405 TD = Target.getDataLayout();
406
407 Subtarget = &TM.getSubtarget<ARMSubtarget>();
408 MCPEs = &MF.getConstantPool()->getConstants();
409 MJTEs = 0;
410 if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
411 IsPIC = TM.getRelocationModel() == Reloc::PIC_;
412 IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
413 JTI->Initialize(MF, IsPIC);
414 MMI = &getAnalysis<MachineModuleInfo>();
415 MCE.setModuleInfo(MMI);
416
417 do {
418 DEBUG(errs() << "JITTing function '"
419 << MF.getName() << "'\n");
420 MCE.startFunction(MF);
421 for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
422 MBB != E; ++MBB) {
423 MCE.StartMachineBasicBlock(MBB);
424 for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end();
425 I != E; ++I)
426 emitInstruction(*I);
427 }
428 } while (MCE.finishFunction(MF));
429
430 return false;
431 }
432
433 /// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
434 ///
getShiftOp(unsigned Imm) const435 unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
436 switch (ARM_AM::getAM2ShiftOpc(Imm)) {
437 default: llvm_unreachable("Unknown shift opc!");
438 case ARM_AM::asr: return 2;
439 case ARM_AM::lsl: return 0;
440 case ARM_AM::lsr: return 1;
441 case ARM_AM::ror:
442 case ARM_AM::rrx: return 3;
443 }
444 }
445
446 /// getMovi32Value - Return binary encoding of operand for movw/movt. If the
447 /// machine operand requires relocation, record the relocation and return zero.
getMovi32Value(const MachineInstr & MI,const MachineOperand & MO,unsigned Reloc)448 unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
449 const MachineOperand &MO,
450 unsigned Reloc) {
451 assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
452 && "Relocation to this function should be for movt or movw");
453
454 if (MO.isImm())
455 return static_cast<unsigned>(MO.getImm());
456 else if (MO.isGlobal())
457 emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
458 else if (MO.isSymbol())
459 emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
460 else if (MO.isMBB())
461 emitMachineBasicBlock(MO.getMBB(), Reloc);
462 else {
463 #ifndef NDEBUG
464 errs() << MO;
465 #endif
466 llvm_unreachable("Unsupported operand type for movw/movt");
467 }
468 return 0;
469 }
470
471 /// getMachineOpValue - Return binary encoding of operand. If the machine
472 /// operand requires relocation, record the relocation and return zero.
getMachineOpValue(const MachineInstr & MI,const MachineOperand & MO) const473 unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
474 const MachineOperand &MO) const {
475 if (MO.isReg())
476 return II->getRegisterInfo().getEncodingValue(MO.getReg());
477 else if (MO.isImm())
478 return static_cast<unsigned>(MO.getImm());
479 else if (MO.isFPImm())
480 return static_cast<unsigned>(MO.getFPImm()->getValueAPF()
481 .bitcastToAPInt().getHiBits(32).getLimitedValue());
482 else if (MO.isGlobal())
483 emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
484 else if (MO.isSymbol())
485 emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
486 else if (MO.isCPI()) {
487 const MCInstrDesc &MCID = MI.getDesc();
488 // For VFP load, the immediate offset is multiplied by 4.
489 unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
490 ? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
491 emitConstPoolAddress(MO.getIndex(), Reloc);
492 } else if (MO.isJTI())
493 emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
494 else if (MO.isMBB())
495 emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
496 else
497 llvm_unreachable("Unable to encode MachineOperand!");
498 return 0;
499 }
500
501 /// emitGlobalAddress - Emit the specified address to the code stream.
502 ///
emitGlobalAddress(const GlobalValue * GV,unsigned Reloc,bool MayNeedFarStub,bool Indirect,intptr_t ACPV) const503 void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
504 bool MayNeedFarStub, bool Indirect,
505 intptr_t ACPV) const {
506 MachineRelocation MR = Indirect
507 ? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
508 const_cast<GlobalValue *>(GV),
509 ACPV, MayNeedFarStub)
510 : MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
511 const_cast<GlobalValue *>(GV), ACPV,
512 MayNeedFarStub);
513 MCE.addRelocation(MR);
514 }
515
516 /// emitExternalSymbolAddress - Arrange for the address of an external symbol to
517 /// be emitted to the current location in the function, and allow it to be PC
518 /// relative.
519 void ARMCodeEmitter::
emitExternalSymbolAddress(const char * ES,unsigned Reloc) const520 emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
521 MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
522 Reloc, ES));
523 }
524
525 /// emitConstPoolAddress - Arrange for the address of an constant pool
526 /// to be emitted to the current location in the function, and allow it to be PC
527 /// relative.
emitConstPoolAddress(unsigned CPI,unsigned Reloc) const528 void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
529 // Tell JIT emitter we'll resolve the address.
530 MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
531 Reloc, CPI, 0, true));
532 }
533
534 /// emitJumpTableAddress - Arrange for the address of a jump table to
535 /// be emitted to the current location in the function, and allow it to be PC
536 /// relative.
537 void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex,unsigned Reloc) const538 emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
539 MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
540 Reloc, JTIndex, 0, true));
541 }
542
543 /// emitMachineBasicBlock - Emit the specified address basic block.
emitMachineBasicBlock(MachineBasicBlock * BB,unsigned Reloc,intptr_t JTBase) const544 void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
545 unsigned Reloc,
546 intptr_t JTBase) const {
547 MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
548 Reloc, BB, JTBase));
549 }
550
emitWordLE(unsigned Binary)551 void ARMCodeEmitter::emitWordLE(unsigned Binary) {
552 DEBUG(errs() << " 0x";
553 errs().write_hex(Binary) << "\n");
554 MCE.emitWordLE(Binary);
555 }
556
emitDWordLE(uint64_t Binary)557 void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
558 DEBUG(errs() << " 0x";
559 errs().write_hex(Binary) << "\n");
560 MCE.emitDWordLE(Binary);
561 }
562
emitInstruction(const MachineInstr & MI)563 void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
564 DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
565
566 MCE.processDebugLoc(MI.getDebugLoc(), true);
567
568 ++NumEmitted; // Keep track of the # of mi's emitted
569 switch (MI.getDesc().TSFlags & ARMII::FormMask) {
570 default: {
571 llvm_unreachable("Unhandled instruction encoding format!");
572 }
573 case ARMII::MiscFrm:
574 if (MI.getOpcode() == ARM::LEApcrelJT) {
575 // Materialize jumptable address.
576 emitLEApcrelJTInstruction(MI);
577 break;
578 }
579 llvm_unreachable("Unhandled instruction encoding!");
580 case ARMII::Pseudo:
581 emitPseudoInstruction(MI);
582 break;
583 case ARMII::DPFrm:
584 case ARMII::DPSoRegFrm:
585 emitDataProcessingInstruction(MI);
586 break;
587 case ARMII::LdFrm:
588 case ARMII::StFrm:
589 emitLoadStoreInstruction(MI);
590 break;
591 case ARMII::LdMiscFrm:
592 case ARMII::StMiscFrm:
593 emitMiscLoadStoreInstruction(MI);
594 break;
595 case ARMII::LdStMulFrm:
596 emitLoadStoreMultipleInstruction(MI);
597 break;
598 case ARMII::MulFrm:
599 emitMulFrmInstruction(MI);
600 break;
601 case ARMII::ExtFrm:
602 emitExtendInstruction(MI);
603 break;
604 case ARMII::ArithMiscFrm:
605 emitMiscArithInstruction(MI);
606 break;
607 case ARMII::SatFrm:
608 emitSaturateInstruction(MI);
609 break;
610 case ARMII::BrFrm:
611 emitBranchInstruction(MI);
612 break;
613 case ARMII::BrMiscFrm:
614 emitMiscBranchInstruction(MI);
615 break;
616 // VFP instructions.
617 case ARMII::VFPUnaryFrm:
618 case ARMII::VFPBinaryFrm:
619 emitVFPArithInstruction(MI);
620 break;
621 case ARMII::VFPConv1Frm:
622 case ARMII::VFPConv2Frm:
623 case ARMII::VFPConv3Frm:
624 case ARMII::VFPConv4Frm:
625 case ARMII::VFPConv5Frm:
626 emitVFPConversionInstruction(MI);
627 break;
628 case ARMII::VFPLdStFrm:
629 emitVFPLoadStoreInstruction(MI);
630 break;
631 case ARMII::VFPLdStMulFrm:
632 emitVFPLoadStoreMultipleInstruction(MI);
633 break;
634 case ARMII::VFPMiscFrm:
635 emitMiscInstruction(MI);
636 break;
637 // NEON instructions.
638 case ARMII::NGetLnFrm:
639 case ARMII::NSetLnFrm:
640 emitNEONLaneInstruction(MI);
641 break;
642 case ARMII::NDupFrm:
643 emitNEONDupInstruction(MI);
644 break;
645 case ARMII::N1RegModImmFrm:
646 emitNEON1RegModImmInstruction(MI);
647 break;
648 case ARMII::N2RegFrm:
649 emitNEON2RegInstruction(MI);
650 break;
651 case ARMII::N3RegFrm:
652 emitNEON3RegInstruction(MI);
653 break;
654 }
655 MCE.processDebugLoc(MI.getDebugLoc(), false);
656 }
657
emitConstantToMemory(unsigned CPI,const Constant * C)658 void ARMCodeEmitter::emitConstantToMemory(unsigned CPI, const Constant *C) {
659 DEBUG({
660 errs() << " ** Constant pool #" << CPI << " @ "
661 << (void*)MCE.getCurrentPCValue() << " ";
662 if (const Function *F = dyn_cast<Function>(C))
663 errs() << F->getName();
664 else
665 errs() << *C;
666 errs() << '\n';
667 });
668
669 switch (C->getValueID()) {
670 default: {
671 llvm_unreachable("Unable to handle this constantpool entry!");
672 break;
673 }
674 case Value::GlobalVariableVal: {
675 emitGlobalAddress(static_cast<const GlobalValue*>(C),
676 ARM::reloc_arm_absolute, isa<Function>(C), false);
677 emitWordLE(0);
678 break;
679 }
680 case Value::ConstantIntVal: {
681 const ConstantInt *CI = static_cast<const ConstantInt*>(C);
682 uint32_t Val = *(uint32_t*)CI->getValue().getRawData();
683 emitWordLE(Val);
684 break;
685 }
686 case Value::ConstantFPVal: {
687 const ConstantFP *CFP = static_cast<const ConstantFP*>(C);
688 if (CFP->getType()->isFloatTy())
689 emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
690 else if (CFP->getType()->isDoubleTy())
691 emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
692 else {
693 llvm_unreachable("Unable to handle this constantpool entry!");
694 }
695 break;
696 }
697 case Value::ConstantArrayVal: {
698 const ConstantArray *CA = static_cast<const ConstantArray*>(C);
699 for (unsigned i = 0, e = CA->getNumOperands(); i != e; ++i)
700 emitConstantToMemory(CPI, CA->getOperand(i));
701 break;
702 }
703 }
704
705 return;
706 }
707
emitConstPoolInstruction(const MachineInstr & MI)708 void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
709 unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
710 unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
711 const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
712
713 // Remember the CONSTPOOL_ENTRY address for later relocation.
714 JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
715
716 // Emit constpool island entry. In most cases, the actual values will be
717 // resolved and relocated after code emission.
718 if (MCPE.isMachineConstantPoolEntry()) {
719 ARMConstantPoolValue *ACPV =
720 static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
721
722 DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
723 << (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
724
725 assert(ACPV->isGlobalValue() && "unsupported constant pool value");
726 const GlobalValue *GV = cast<ARMConstantPoolConstant>(ACPV)->getGV();
727 if (GV) {
728 Reloc::Model RelocM = TM.getRelocationModel();
729 emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
730 isa<Function>(GV),
731 Subtarget->GVIsIndirectSymbol(GV, RelocM),
732 (intptr_t)ACPV);
733 } else {
734 const char *Sym = cast<ARMConstantPoolSymbol>(ACPV)->getSymbol();
735 emitExternalSymbolAddress(Sym, ARM::reloc_arm_absolute);
736 }
737 emitWordLE(0);
738 } else {
739 emitConstantToMemory(CPI, MCPE.Val.ConstVal);
740 }
741 }
742
emitMOVi32immInstruction(const MachineInstr & MI)743 void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
744 const MachineOperand &MO0 = MI.getOperand(0);
745 const MachineOperand &MO1 = MI.getOperand(1);
746
747 // Emit the 'movw' instruction.
748 unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
749
750 unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
751
752 // Set the conditional execution predicate.
753 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
754
755 // Encode Rd.
756 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
757
758 // Encode imm16 as imm4:imm12
759 Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
760 Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
761 emitWordLE(Binary);
762
763 unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
764 // Emit the 'movt' instruction.
765 Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
766
767 // Set the conditional execution predicate.
768 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
769
770 // Encode Rd.
771 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
772
773 // Encode imm16 as imm4:imm1, same as movw above.
774 Binary |= Hi16 & 0xFFF;
775 Binary |= ((Hi16 >> 12) & 0xF) << 16;
776 emitWordLE(Binary);
777 }
778
emitMOVi2piecesInstruction(const MachineInstr & MI)779 void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
780 const MachineOperand &MO0 = MI.getOperand(0);
781 const MachineOperand &MO1 = MI.getOperand(1);
782 assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
783 "Not a valid so_imm value!");
784 unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
785 unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
786
787 // Emit the 'mov' instruction.
788 unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
789
790 // Set the conditional execution predicate.
791 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
792
793 // Encode Rd.
794 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
795
796 // Encode so_imm.
797 // Set bit I(25) to identify this is the immediate form of <shifter_op>
798 Binary |= 1 << ARMII::I_BitShift;
799 Binary |= getMachineSoImmOpValue(V1);
800 emitWordLE(Binary);
801
802 // Now the 'orr' instruction.
803 Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
804
805 // Set the conditional execution predicate.
806 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
807
808 // Encode Rd.
809 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
810
811 // Encode Rn.
812 Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
813
814 // Encode so_imm.
815 // Set bit I(25) to identify this is the immediate form of <shifter_op>
816 Binary |= 1 << ARMII::I_BitShift;
817 Binary |= getMachineSoImmOpValue(V2);
818 emitWordLE(Binary);
819 }
820
emitLEApcrelInstruction(const MachineInstr & MI)821 void ARMCodeEmitter::emitLEApcrelInstruction(const MachineInstr &MI) {
822 // It's basically add r, pc, (LCPI - $+8)
823 const MCInstrDesc &MCID = MI.getDesc();
824
825 unsigned Binary = 0;
826
827 // Set the conditional execution predicate
828 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
829
830 // Encode S bit if MI modifies CPSR.
831 Binary |= getAddrModeSBit(MI, MCID);
832
833 // Encode Rd.
834 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
835
836 // Encode Rn which is PC.
837 Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
838
839 // Encode the displacement which is a so_imm.
840 // Set bit I(25) to identify this is the immediate form of <shifter_op>
841 Binary |= 1 << ARMII::I_BitShift;
842 emitConstPoolAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_so_imm_cp_entry);
843
844 emitWordLE(Binary);
845 }
846
emitLEApcrelJTInstruction(const MachineInstr & MI)847 void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
848 // It's basically add r, pc, (LJTI - $+8)
849
850 const MCInstrDesc &MCID = MI.getDesc();
851
852 // Emit the 'add' instruction.
853 unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
854
855 // Set the conditional execution predicate
856 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
857
858 // Encode S bit if MI modifies CPSR.
859 Binary |= getAddrModeSBit(MI, MCID);
860
861 // Encode Rd.
862 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
863
864 // Encode Rn which is PC.
865 Binary |= II->getRegisterInfo().getEncodingValue(ARM::PC) << ARMII::RegRnShift;
866
867 // Encode the displacement.
868 Binary |= 1 << ARMII::I_BitShift;
869 emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
870
871 emitWordLE(Binary);
872 }
873
emitPseudoMoveInstruction(const MachineInstr & MI)874 void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
875 unsigned Opcode = MI.getDesc().Opcode;
876
877 // Part of binary is determined by TableGn.
878 unsigned Binary = getBinaryCodeForInstr(MI);
879
880 // Set the conditional execution predicate
881 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
882
883 // Encode S bit if MI modifies CPSR.
884 if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
885 Binary |= 1 << ARMII::S_BitShift;
886
887 // Encode register def if there is one.
888 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
889
890 // Encode the shift operation.
891 switch (Opcode) {
892 default: break;
893 case ARM::RRX:
894 // rrx
895 Binary |= 0x6 << 4;
896 break;
897 case ARM::MOVsrl_flag:
898 // lsr #1
899 Binary |= (0x2 << 4) | (1 << 7);
900 break;
901 case ARM::MOVsra_flag:
902 // asr #1
903 Binary |= (0x4 << 4) | (1 << 7);
904 break;
905 }
906
907 // Encode register Rm.
908 Binary |= getMachineOpValue(MI, 1);
909
910 emitWordLE(Binary);
911 }
912
addPCLabel(unsigned LabelID)913 void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
914 DEBUG(errs() << " ** LPC" << LabelID << " @ "
915 << (void*)MCE.getCurrentPCValue() << '\n');
916 JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
917 }
918
emitPseudoInstruction(const MachineInstr & MI)919 void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
920 unsigned Opcode = MI.getDesc().Opcode;
921 switch (Opcode) {
922 default:
923 llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
924 case ARM::B:
925 emitBranchInstruction(MI);
926 break;
927 case ARM::BR_JTr:
928 case ARM::BR_JTm:
929 case ARM::BR_JTadd:
930 emitMiscBranchInstruction(MI);
931 break;
932 case ARM::BX_CALL:
933 case ARM::BMOVPCRX_CALL: {
934 // First emit mov lr, pc
935 unsigned Binary = 0x01a0e00f;
936 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
937 emitWordLE(Binary);
938
939 // and then emit the branch.
940 emitMiscBranchInstruction(MI);
941 break;
942 }
943 case TargetOpcode::INLINEASM: {
944 // We allow inline assembler nodes with empty bodies - they can
945 // implicitly define registers, which is ok for JIT.
946 if (MI.getOperand(0).getSymbolName()[0]) {
947 report_fatal_error("JIT does not support inline asm!");
948 }
949 break;
950 }
951 case TargetOpcode::PROLOG_LABEL:
952 case TargetOpcode::EH_LABEL:
953 MCE.emitLabel(MI.getOperand(0).getMCSymbol());
954 break;
955 case TargetOpcode::IMPLICIT_DEF:
956 case TargetOpcode::KILL:
957 // Do nothing.
958 break;
959 case ARM::CONSTPOOL_ENTRY:
960 emitConstPoolInstruction(MI);
961 break;
962 case ARM::LDMIA_RET:
963 emitLoadStoreMultipleInstruction(MI);
964 break;
965 case ARM::PICADD: {
966 // Remember of the address of the PC label for relocation later.
967 addPCLabel(MI.getOperand(2).getImm());
968 // PICADD is just an add instruction that implicitly read pc.
969 emitDataProcessingInstruction(MI, 0, ARM::PC);
970 break;
971 }
972 case ARM::PICLDR:
973 case ARM::PICLDRB:
974 case ARM::PICSTR:
975 case ARM::PICSTRB: {
976 // Remember of the address of the PC label for relocation later.
977 addPCLabel(MI.getOperand(2).getImm());
978 // These are just load / store instructions that implicitly read pc.
979 emitLoadStoreInstruction(MI, 0, ARM::PC);
980 break;
981 }
982 case ARM::PICLDRH:
983 case ARM::PICLDRSH:
984 case ARM::PICLDRSB:
985 case ARM::PICSTRH: {
986 // Remember of the address of the PC label for relocation later.
987 addPCLabel(MI.getOperand(2).getImm());
988 // These are just load / store instructions that implicitly read pc.
989 emitMiscLoadStoreInstruction(MI, ARM::PC);
990 break;
991 }
992
993 case ARM::MOVi32imm:
994 // Two instructions to materialize a constant.
995 if (Subtarget->hasV6T2Ops())
996 emitMOVi32immInstruction(MI);
997 else
998 emitMOVi2piecesInstruction(MI);
999 break;
1000 case ARM::LEApcrel:
1001 // Materialize constantpool index address.
1002 emitLEApcrelInstruction(MI);
1003 break;
1004 case ARM::LEApcrelJT:
1005 // Materialize jumptable address.
1006 emitLEApcrelJTInstruction(MI);
1007 break;
1008 case ARM::RRX:
1009 case ARM::MOVsrl_flag:
1010 case ARM::MOVsra_flag:
1011 emitPseudoMoveInstruction(MI);
1012 break;
1013 }
1014 }
1015
getMachineSoRegOpValue(const MachineInstr & MI,const MCInstrDesc & MCID,const MachineOperand & MO,unsigned OpIdx)1016 unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
1017 const MCInstrDesc &MCID,
1018 const MachineOperand &MO,
1019 unsigned OpIdx) {
1020 unsigned Binary = getMachineOpValue(MI, MO);
1021
1022 const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
1023 const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
1024 ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
1025
1026 // Encode the shift opcode.
1027 unsigned SBits = 0;
1028 unsigned Rs = MO1.getReg();
1029 if (Rs) {
1030 // Set shift operand (bit[7:4]).
1031 // LSL - 0001
1032 // LSR - 0011
1033 // ASR - 0101
1034 // ROR - 0111
1035 // RRX - 0110 and bit[11:8] clear.
1036 switch (SOpc) {
1037 default: llvm_unreachable("Unknown shift opc!");
1038 case ARM_AM::lsl: SBits = 0x1; break;
1039 case ARM_AM::lsr: SBits = 0x3; break;
1040 case ARM_AM::asr: SBits = 0x5; break;
1041 case ARM_AM::ror: SBits = 0x7; break;
1042 case ARM_AM::rrx: SBits = 0x6; break;
1043 }
1044 } else {
1045 // Set shift operand (bit[6:4]).
1046 // LSL - 000
1047 // LSR - 010
1048 // ASR - 100
1049 // ROR - 110
1050 switch (SOpc) {
1051 default: llvm_unreachable("Unknown shift opc!");
1052 case ARM_AM::lsl: SBits = 0x0; break;
1053 case ARM_AM::lsr: SBits = 0x2; break;
1054 case ARM_AM::asr: SBits = 0x4; break;
1055 case ARM_AM::ror: SBits = 0x6; break;
1056 }
1057 }
1058 Binary |= SBits << 4;
1059 if (SOpc == ARM_AM::rrx)
1060 return Binary;
1061
1062 // Encode the shift operation Rs or shift_imm (except rrx).
1063 if (Rs) {
1064 // Encode Rs bit[11:8].
1065 assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
1066 return Binary | (II->getRegisterInfo().getEncodingValue(Rs) << ARMII::RegRsShift);
1067 }
1068
1069 // Encode shift_imm bit[11:7].
1070 return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
1071 }
1072
getMachineSoImmOpValue(unsigned SoImm)1073 unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
1074 int SoImmVal = ARM_AM::getSOImmVal(SoImm);
1075 assert(SoImmVal != -1 && "Not a valid so_imm value!");
1076
1077 // Encode rotate_imm.
1078 unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
1079 << ARMII::SoRotImmShift;
1080
1081 // Encode immed_8.
1082 Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
1083 return Binary;
1084 }
1085
getAddrModeSBit(const MachineInstr & MI,const MCInstrDesc & MCID) const1086 unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
1087 const MCInstrDesc &MCID) const {
1088 for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e;--i){
1089 const MachineOperand &MO = MI.getOperand(i-1);
1090 if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
1091 return 1 << ARMII::S_BitShift;
1092 }
1093 return 0;
1094 }
1095
emitDataProcessingInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1096 void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
1097 unsigned ImplicitRd,
1098 unsigned ImplicitRn) {
1099 const MCInstrDesc &MCID = MI.getDesc();
1100
1101 // Part of binary is determined by TableGn.
1102 unsigned Binary = getBinaryCodeForInstr(MI);
1103
1104 if (MCID.Opcode == ARM::MOVi16 || MCID.Opcode == ARM::MOVTi16) {
1105 emitWordLE(Binary);
1106 return;
1107 }
1108
1109 // Set the conditional execution predicate
1110 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1111
1112 // Encode S bit if MI modifies CPSR.
1113 Binary |= getAddrModeSBit(MI, MCID);
1114
1115 // Encode register def if there is one.
1116 unsigned NumDefs = MCID.getNumDefs();
1117 unsigned OpIdx = 0;
1118 if (NumDefs)
1119 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1120 else if (ImplicitRd)
1121 // Special handling for implicit use (e.g. PC).
1122 Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1123
1124 if (MCID.Opcode == ARM::MOVi16) {
1125 // Get immediate from MI.
1126 unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
1127 ARM::reloc_arm_movw);
1128 // Encode imm which is the same as in emitMOVi32immInstruction().
1129 Binary |= Lo16 & 0xFFF;
1130 Binary |= ((Lo16 >> 12) & 0xF) << 16;
1131 emitWordLE(Binary);
1132 return;
1133 } else if(MCID.Opcode == ARM::MOVTi16) {
1134 unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
1135 ARM::reloc_arm_movt) >> 16);
1136 Binary |= Hi16 & 0xFFF;
1137 Binary |= ((Hi16 >> 12) & 0xF) << 16;
1138 emitWordLE(Binary);
1139 return;
1140 } else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
1141 uint32_t v = ~MI.getOperand(2).getImm();
1142 int32_t lsb = countTrailingZeros(v);
1143 int32_t msb = (32 - countLeadingZeros(v)) - 1;
1144 // Instr{20-16} = msb, Instr{11-7} = lsb
1145 Binary |= (msb & 0x1F) << 16;
1146 Binary |= (lsb & 0x1F) << 7;
1147 emitWordLE(Binary);
1148 return;
1149 } else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
1150 // Encode Rn in Instr{0-3}
1151 Binary |= getMachineOpValue(MI, OpIdx++);
1152
1153 uint32_t lsb = MI.getOperand(OpIdx++).getImm();
1154 uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
1155
1156 // Instr{20-16} = widthm1, Instr{11-7} = lsb
1157 Binary |= (widthm1 & 0x1F) << 16;
1158 Binary |= (lsb & 0x1F) << 7;
1159 emitWordLE(Binary);
1160 return;
1161 }
1162
1163 // If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
1164 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1165 ++OpIdx;
1166
1167 // Encode first non-shifter register operand if there is one.
1168 bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
1169 if (!isUnary) {
1170 if (ImplicitRn)
1171 // Special handling for implicit use (e.g. PC).
1172 Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1173 else {
1174 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
1175 ++OpIdx;
1176 }
1177 }
1178
1179 // Encode shifter operand.
1180 const MachineOperand &MO = MI.getOperand(OpIdx);
1181 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
1182 // Encode SoReg.
1183 emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
1184 return;
1185 }
1186
1187 if (MO.isReg()) {
1188 // Encode register Rm.
1189 emitWordLE(Binary | II->getRegisterInfo().getEncodingValue(MO.getReg()));
1190 return;
1191 }
1192
1193 // Encode so_imm.
1194 Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
1195
1196 emitWordLE(Binary);
1197 }
1198
emitLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRd,unsigned ImplicitRn)1199 void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
1200 unsigned ImplicitRd,
1201 unsigned ImplicitRn) {
1202 const MCInstrDesc &MCID = MI.getDesc();
1203 unsigned Form = MCID.TSFlags & ARMII::FormMask;
1204 bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1205
1206 // Part of binary is determined by TableGn.
1207 unsigned Binary = getBinaryCodeForInstr(MI);
1208
1209 // If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
1210 if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
1211 MI.getOpcode() == ARM::STRi12 || MI.getOpcode() == ARM::LDRBi12 ||
1212 MI.getOpcode() == ARM::STRBi12) {
1213 emitWordLE(Binary);
1214 return;
1215 }
1216
1217 if (MI.getOpcode() == ARM::BR_JTm)
1218 Binary = 0x710F000;
1219 else if (MI.getOpcode() == ARM::BR_JTr)
1220 Binary = 0x1A0F000;
1221
1222 // Set the conditional execution predicate
1223 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1224
1225 unsigned OpIdx = 0;
1226
1227 // Operand 0 of a pre- and post-indexed store is the address base
1228 // writeback. Skip it.
1229 bool Skipped = false;
1230 if (IsPrePost && Form == ARMII::StFrm) {
1231 ++OpIdx;
1232 Skipped = true;
1233 }
1234
1235 // Set first operand
1236 if (ImplicitRd)
1237 // Special handling for implicit use (e.g. PC).
1238 Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRd) << ARMII::RegRdShift);
1239 else
1240 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1241
1242 // Set second operand
1243 if (ImplicitRn)
1244 // Special handling for implicit use (e.g. PC).
1245 Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1246 else
1247 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1248
1249 // If this is a two-address operand, skip it. e.g. LDR_PRE.
1250 if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1251 ++OpIdx;
1252
1253 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1254 unsigned AM2Opc = (ImplicitRn == ARM::PC)
1255 ? 0 : MI.getOperand(OpIdx+1).getImm();
1256
1257 // Set bit U(23) according to sign of immed value (positive or negative).
1258 Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
1259 ARMII::U_BitShift);
1260 if (!MO2.getReg()) { // is immediate
1261 if (ARM_AM::getAM2Offset(AM2Opc))
1262 // Set the value of offset_12 field
1263 Binary |= ARM_AM::getAM2Offset(AM2Opc);
1264 emitWordLE(Binary);
1265 return;
1266 }
1267
1268 // Set bit I(25), because this is not in immediate encoding.
1269 Binary |= 1 << ARMII::I_BitShift;
1270 assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
1271 // Set bit[3:0] to the corresponding Rm register
1272 Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1273
1274 // If this instr is in scaled register offset/index instruction, set
1275 // shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
1276 if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
1277 Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
1278 Binary |= ShImm << ARMII::ShiftShift; // shift_immed
1279 }
1280
1281 emitWordLE(Binary);
1282 }
1283
emitMiscLoadStoreInstruction(const MachineInstr & MI,unsigned ImplicitRn)1284 void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
1285 unsigned ImplicitRn) {
1286 const MCInstrDesc &MCID = MI.getDesc();
1287 unsigned Form = MCID.TSFlags & ARMII::FormMask;
1288 bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1289
1290 // Part of binary is determined by TableGn.
1291 unsigned Binary = getBinaryCodeForInstr(MI);
1292
1293 // Set the conditional execution predicate
1294 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1295
1296 unsigned OpIdx = 0;
1297
1298 // Operand 0 of a pre- and post-indexed store is the address base
1299 // writeback. Skip it.
1300 bool Skipped = false;
1301 if (IsPrePost && Form == ARMII::StMiscFrm) {
1302 ++OpIdx;
1303 Skipped = true;
1304 }
1305
1306 // Set first operand
1307 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1308
1309 // Skip LDRD and STRD's second operand.
1310 if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
1311 ++OpIdx;
1312
1313 // Set second operand
1314 if (ImplicitRn)
1315 // Special handling for implicit use (e.g. PC).
1316 Binary |= (II->getRegisterInfo().getEncodingValue(ImplicitRn) << ARMII::RegRnShift);
1317 else
1318 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1319
1320 // If this is a two-address operand, skip it. e.g. LDRH_POST.
1321 if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1322 ++OpIdx;
1323
1324 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1325 unsigned AM3Opc = (ImplicitRn == ARM::PC)
1326 ? 0 : MI.getOperand(OpIdx+1).getImm();
1327
1328 // Set bit U(23) according to sign of immed value (positive or negative)
1329 Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
1330 ARMII::U_BitShift);
1331
1332 // If this instr is in register offset/index encoding, set bit[3:0]
1333 // to the corresponding Rm register.
1334 if (MO2.getReg()) {
1335 Binary |= II->getRegisterInfo().getEncodingValue(MO2.getReg());
1336 emitWordLE(Binary);
1337 return;
1338 }
1339
1340 // This instr is in immediate offset/index encoding, set bit 22 to 1.
1341 Binary |= 1 << ARMII::AM3_I_BitShift;
1342 if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
1343 // Set operands
1344 Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
1345 Binary |= (ImmOffs & 0xF); // immedL
1346 }
1347
1348 emitWordLE(Binary);
1349 }
1350
getAddrModeUPBits(unsigned Mode)1351 static unsigned getAddrModeUPBits(unsigned Mode) {
1352 unsigned Binary = 0;
1353
1354 // Set addressing mode by modifying bits U(23) and P(24)
1355 // IA - Increment after - bit U = 1 and bit P = 0
1356 // IB - Increment before - bit U = 1 and bit P = 1
1357 // DA - Decrement after - bit U = 0 and bit P = 0
1358 // DB - Decrement before - bit U = 0 and bit P = 1
1359 switch (Mode) {
1360 default: llvm_unreachable("Unknown addressing sub-mode!");
1361 case ARM_AM::da: break;
1362 case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
1363 case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
1364 case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
1365 }
1366
1367 return Binary;
1368 }
1369
emitLoadStoreMultipleInstruction(const MachineInstr & MI)1370 void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
1371 const MCInstrDesc &MCID = MI.getDesc();
1372 bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1373
1374 // Part of binary is determined by TableGn.
1375 unsigned Binary = getBinaryCodeForInstr(MI);
1376
1377 if (MCID.getOpcode() == ARM::LDMIA_RET) {
1378 IsUpdating = true;
1379 Binary |= 0x8B00000;
1380 }
1381
1382 // Set the conditional execution predicate
1383 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1384
1385 // Skip operand 0 of an instruction with base register update.
1386 unsigned OpIdx = 0;
1387 if (IsUpdating)
1388 ++OpIdx;
1389
1390 // Set base address operand
1391 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1392
1393 // Set addressing mode by modifying bits U(23) and P(24)
1394 ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1395 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1396
1397 // Set bit W(21)
1398 if (IsUpdating)
1399 Binary |= 0x1 << ARMII::W_BitShift;
1400
1401 // Set registers
1402 for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
1403 const MachineOperand &MO = MI.getOperand(i);
1404 if (!MO.isReg() || MO.isImplicit())
1405 break;
1406 unsigned RegNum = II->getRegisterInfo().getEncodingValue(MO.getReg());
1407 assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
1408 RegNum < 16);
1409 Binary |= 0x1 << RegNum;
1410 }
1411
1412 emitWordLE(Binary);
1413 }
1414
emitMulFrmInstruction(const MachineInstr & MI)1415 void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
1416 const MCInstrDesc &MCID = MI.getDesc();
1417
1418 // Part of binary is determined by TableGn.
1419 unsigned Binary = getBinaryCodeForInstr(MI);
1420
1421 // Set the conditional execution predicate
1422 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1423
1424 // Encode S bit if MI modifies CPSR.
1425 Binary |= getAddrModeSBit(MI, MCID);
1426
1427 // 32x32->64bit operations have two destination registers. The number
1428 // of register definitions will tell us if that's what we're dealing with.
1429 unsigned OpIdx = 0;
1430 if (MCID.getNumDefs() == 2)
1431 Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
1432
1433 // Encode Rd
1434 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
1435
1436 // Encode Rm
1437 Binary |= getMachineOpValue(MI, OpIdx++);
1438
1439 // Encode Rs
1440 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
1441
1442 // Many multiple instructions (e.g. MLA) have three src operands. Encode
1443 // it as Rn (for multiply, that's in the same offset as RdLo.
1444 if (MCID.getNumOperands() > OpIdx &&
1445 !MCID.OpInfo[OpIdx].isPredicate() &&
1446 !MCID.OpInfo[OpIdx].isOptionalDef())
1447 Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
1448
1449 emitWordLE(Binary);
1450 }
1451
emitExtendInstruction(const MachineInstr & MI)1452 void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
1453 const MCInstrDesc &MCID = MI.getDesc();
1454
1455 // Part of binary is determined by TableGn.
1456 unsigned Binary = getBinaryCodeForInstr(MI);
1457
1458 // Set the conditional execution predicate
1459 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1460
1461 unsigned OpIdx = 0;
1462
1463 // Encode Rd
1464 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1465
1466 const MachineOperand &MO1 = MI.getOperand(OpIdx++);
1467 const MachineOperand &MO2 = MI.getOperand(OpIdx);
1468 if (MO2.isReg()) {
1469 // Two register operand form.
1470 // Encode Rn.
1471 Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
1472
1473 // Encode Rm.
1474 Binary |= getMachineOpValue(MI, MO2);
1475 ++OpIdx;
1476 } else {
1477 Binary |= getMachineOpValue(MI, MO1);
1478 }
1479
1480 // Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
1481 if (MI.getOperand(OpIdx).isImm() &&
1482 !MCID.OpInfo[OpIdx].isPredicate() &&
1483 !MCID.OpInfo[OpIdx].isOptionalDef())
1484 Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
1485
1486 emitWordLE(Binary);
1487 }
1488
emitMiscArithInstruction(const MachineInstr & MI)1489 void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
1490 const MCInstrDesc &MCID = MI.getDesc();
1491
1492 // Part of binary is determined by TableGn.
1493 unsigned Binary = getBinaryCodeForInstr(MI);
1494
1495 // Set the conditional execution predicate
1496 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1497
1498 // PKH instructions are finished at this point
1499 if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
1500 emitWordLE(Binary);
1501 return;
1502 }
1503
1504 unsigned OpIdx = 0;
1505
1506 // Encode Rd
1507 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
1508
1509 const MachineOperand &MO = MI.getOperand(OpIdx++);
1510 if (OpIdx == MCID.getNumOperands() ||
1511 MCID.OpInfo[OpIdx].isPredicate() ||
1512 MCID.OpInfo[OpIdx].isOptionalDef()) {
1513 // Encode Rm and it's done.
1514 Binary |= getMachineOpValue(MI, MO);
1515 emitWordLE(Binary);
1516 return;
1517 }
1518
1519 // Encode Rn.
1520 Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
1521
1522 // Encode Rm.
1523 Binary |= getMachineOpValue(MI, OpIdx++);
1524
1525 // Encode shift_imm.
1526 unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
1527 if (MCID.Opcode == ARM::PKHTB) {
1528 assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
1529 if (ShiftAmt == 32)
1530 ShiftAmt = 0;
1531 }
1532 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1533 Binary |= ShiftAmt << ARMII::ShiftShift;
1534
1535 emitWordLE(Binary);
1536 }
1537
emitSaturateInstruction(const MachineInstr & MI)1538 void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
1539 const MCInstrDesc &MCID = MI.getDesc();
1540
1541 // Part of binary is determined by TableGen.
1542 unsigned Binary = getBinaryCodeForInstr(MI);
1543
1544 // Set the conditional execution predicate
1545 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1546
1547 // Encode Rd
1548 Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
1549
1550 // Encode saturate bit position.
1551 unsigned Pos = MI.getOperand(1).getImm();
1552 if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
1553 Pos -= 1;
1554 assert((Pos < 16 || (Pos < 32 &&
1555 MCID.Opcode != ARM::SSAT16 &&
1556 MCID.Opcode != ARM::USAT16)) &&
1557 "saturate bit position out of range");
1558 Binary |= Pos << 16;
1559
1560 // Encode Rm
1561 Binary |= getMachineOpValue(MI, 2);
1562
1563 // Encode shift_imm.
1564 if (MCID.getNumOperands() == 4) {
1565 unsigned ShiftOp = MI.getOperand(3).getImm();
1566 ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
1567 if (Opc == ARM_AM::asr)
1568 Binary |= (1 << 6);
1569 unsigned ShiftAmt = MI.getOperand(3).getImm();
1570 if (ShiftAmt == 32 && Opc == ARM_AM::asr)
1571 ShiftAmt = 0;
1572 assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
1573 Binary |= ShiftAmt << ARMII::ShiftShift;
1574 }
1575
1576 emitWordLE(Binary);
1577 }
1578
emitBranchInstruction(const MachineInstr & MI)1579 void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
1580 const MCInstrDesc &MCID = MI.getDesc();
1581
1582 if (MCID.Opcode == ARM::TPsoft) {
1583 llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
1584 }
1585
1586 // Part of binary is determined by TableGn.
1587 unsigned Binary = getBinaryCodeForInstr(MI);
1588
1589 if (MCID.Opcode == ARM::B) {
1590 Binary = 0xEA000000;
1591 }
1592
1593 // Set the conditional execution predicate
1594 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1595
1596 // Set signed_immed_24 field
1597 Binary |= getMachineOpValue(MI, 0);
1598
1599 emitWordLE(Binary);
1600 }
1601
emitInlineJumpTable(unsigned JTIndex)1602 void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
1603 // Remember the base address of the inline jump table.
1604 uintptr_t JTBase = MCE.getCurrentPCValue();
1605 JTI->addJumpTableBaseAddr(JTIndex, JTBase);
1606 DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
1607 << '\n');
1608
1609 // Now emit the jump table entries.
1610 const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
1611 for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
1612 if (IsPIC)
1613 // DestBB address - JT base.
1614 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
1615 else
1616 // Absolute DestBB address.
1617 emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
1618 emitWordLE(0);
1619 }
1620 }
1621
emitMiscBranchInstruction(const MachineInstr & MI)1622 void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
1623 const MCInstrDesc &MCID = MI.getDesc();
1624
1625 // Handle jump tables.
1626 if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
1627 // First emit a ldr pc, [] instruction.
1628 emitDataProcessingInstruction(MI, ARM::PC);
1629
1630 // Then emit the inline jump table.
1631 unsigned JTIndex =
1632 (MCID.Opcode == ARM::BR_JTr)
1633 ? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
1634 emitInlineJumpTable(JTIndex);
1635 return;
1636 } else if (MCID.Opcode == ARM::BR_JTm) {
1637 // First emit a ldr pc, [] instruction.
1638 emitLoadStoreInstruction(MI, ARM::PC);
1639
1640 // Then emit the inline jump table.
1641 emitInlineJumpTable(MI.getOperand(3).getIndex());
1642 return;
1643 }
1644
1645 // Part of binary is determined by TableGn.
1646 unsigned Binary = getBinaryCodeForInstr(MI);
1647
1648 // Set the conditional execution predicate
1649 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1650
1651 if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
1652 // The return register is LR.
1653 Binary |= II->getRegisterInfo().getEncodingValue(ARM::LR);
1654 else
1655 // otherwise, set the return register
1656 Binary |= getMachineOpValue(MI, 0);
1657
1658 emitWordLE(Binary);
1659 }
1660
encodeVFPRd(const MachineInstr & MI,unsigned OpIdx) const1661 unsigned ARMCodeEmitter::encodeVFPRd(const MachineInstr &MI,
1662 unsigned OpIdx) const {
1663 unsigned RegD = MI.getOperand(OpIdx).getReg();
1664 unsigned Binary = 0;
1665 bool isSPVFP = ARM::SPRRegClass.contains(RegD);
1666 RegD = II->getRegisterInfo().getEncodingValue(RegD);
1667 if (!isSPVFP) {
1668 Binary |= (RegD & 0x0F) << ARMII::RegRdShift;
1669 Binary |= ((RegD & 0x10) >> 4) << ARMII::D_BitShift;
1670 } else {
1671 Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
1672 Binary |= (RegD & 0x01) << ARMII::D_BitShift;
1673 }
1674 return Binary;
1675 }
1676
encodeVFPRn(const MachineInstr & MI,unsigned OpIdx) const1677 unsigned ARMCodeEmitter::encodeVFPRn(const MachineInstr &MI,
1678 unsigned OpIdx) const {
1679 unsigned RegN = MI.getOperand(OpIdx).getReg();
1680 unsigned Binary = 0;
1681 bool isSPVFP = ARM::SPRRegClass.contains(RegN);
1682 RegN = II->getRegisterInfo().getEncodingValue(RegN);
1683 if (!isSPVFP) {
1684 Binary |= (RegN & 0x0F) << ARMII::RegRnShift;
1685 Binary |= ((RegN & 0x10) >> 4) << ARMII::N_BitShift;
1686 } else {
1687 Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
1688 Binary |= (RegN & 0x01) << ARMII::N_BitShift;
1689 }
1690 return Binary;
1691 }
1692
encodeVFPRm(const MachineInstr & MI,unsigned OpIdx) const1693 unsigned ARMCodeEmitter::encodeVFPRm(const MachineInstr &MI,
1694 unsigned OpIdx) const {
1695 unsigned RegM = MI.getOperand(OpIdx).getReg();
1696 unsigned Binary = 0;
1697 bool isSPVFP = ARM::SPRRegClass.contains(RegM);
1698 RegM = II->getRegisterInfo().getEncodingValue(RegM);
1699 if (!isSPVFP) {
1700 Binary |= (RegM & 0x0F);
1701 Binary |= ((RegM & 0x10) >> 4) << ARMII::M_BitShift;
1702 } else {
1703 Binary |= ((RegM & 0x1E) >> 1);
1704 Binary |= (RegM & 0x01) << ARMII::M_BitShift;
1705 }
1706 return Binary;
1707 }
1708
emitVFPArithInstruction(const MachineInstr & MI)1709 void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
1710 const MCInstrDesc &MCID = MI.getDesc();
1711
1712 // Part of binary is determined by TableGn.
1713 unsigned Binary = getBinaryCodeForInstr(MI);
1714
1715 // Set the conditional execution predicate
1716 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1717
1718 unsigned OpIdx = 0;
1719
1720 // Encode Dd / Sd.
1721 Binary |= encodeVFPRd(MI, OpIdx++);
1722
1723 // If this is a two-address operand, skip it, e.g. FMACD.
1724 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
1725 ++OpIdx;
1726
1727 // Encode Dn / Sn.
1728 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
1729 Binary |= encodeVFPRn(MI, OpIdx++);
1730
1731 if (OpIdx == MCID.getNumOperands() ||
1732 MCID.OpInfo[OpIdx].isPredicate() ||
1733 MCID.OpInfo[OpIdx].isOptionalDef()) {
1734 // FCMPEZD etc. has only one operand.
1735 emitWordLE(Binary);
1736 return;
1737 }
1738
1739 // Encode Dm / Sm.
1740 Binary |= encodeVFPRm(MI, OpIdx);
1741
1742 emitWordLE(Binary);
1743 }
1744
emitVFPConversionInstruction(const MachineInstr & MI)1745 void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
1746 const MCInstrDesc &MCID = MI.getDesc();
1747 unsigned Form = MCID.TSFlags & ARMII::FormMask;
1748
1749 // Part of binary is determined by TableGn.
1750 unsigned Binary = getBinaryCodeForInstr(MI);
1751
1752 // Set the conditional execution predicate
1753 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1754
1755 switch (Form) {
1756 default: break;
1757 case ARMII::VFPConv1Frm:
1758 case ARMII::VFPConv2Frm:
1759 case ARMII::VFPConv3Frm:
1760 // Encode Dd / Sd.
1761 Binary |= encodeVFPRd(MI, 0);
1762 break;
1763 case ARMII::VFPConv4Frm:
1764 // Encode Dn / Sn.
1765 Binary |= encodeVFPRn(MI, 0);
1766 break;
1767 case ARMII::VFPConv5Frm:
1768 // Encode Dm / Sm.
1769 Binary |= encodeVFPRm(MI, 0);
1770 break;
1771 }
1772
1773 switch (Form) {
1774 default: break;
1775 case ARMII::VFPConv1Frm:
1776 // Encode Dm / Sm.
1777 Binary |= encodeVFPRm(MI, 1);
1778 break;
1779 case ARMII::VFPConv2Frm:
1780 case ARMII::VFPConv3Frm:
1781 // Encode Dn / Sn.
1782 Binary |= encodeVFPRn(MI, 1);
1783 break;
1784 case ARMII::VFPConv4Frm:
1785 case ARMII::VFPConv5Frm:
1786 // Encode Dd / Sd.
1787 Binary |= encodeVFPRd(MI, 1);
1788 break;
1789 }
1790
1791 if (Form == ARMII::VFPConv5Frm)
1792 // Encode Dn / Sn.
1793 Binary |= encodeVFPRn(MI, 2);
1794 else if (Form == ARMII::VFPConv3Frm)
1795 // Encode Dm / Sm.
1796 Binary |= encodeVFPRm(MI, 2);
1797
1798 emitWordLE(Binary);
1799 }
1800
emitVFPLoadStoreInstruction(const MachineInstr & MI)1801 void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
1802 // Part of binary is determined by TableGn.
1803 unsigned Binary = getBinaryCodeForInstr(MI);
1804
1805 // Set the conditional execution predicate
1806 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1807
1808 if (MI.getOpcode() == ARM::VLDRS || MI.getOpcode() == ARM::VLDRD ||
1809 MI.getOpcode() == ARM::VSTRS || MI.getOpcode() == ARM::VSTRD){
1810 emitWordLE(Binary);
1811 return;
1812 }
1813
1814 unsigned OpIdx = 0;
1815
1816 // Encode Dd / Sd.
1817 Binary |= encodeVFPRd(MI, OpIdx++);
1818
1819 // Encode address base.
1820 const MachineOperand &Base = MI.getOperand(OpIdx++);
1821 Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
1822
1823 // If there is a non-zero immediate offset, encode it.
1824 if (Base.isReg()) {
1825 const MachineOperand &Offset = MI.getOperand(OpIdx);
1826 if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
1827 if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
1828 Binary |= 1 << ARMII::U_BitShift;
1829 Binary |= ImmOffs;
1830 emitWordLE(Binary);
1831 return;
1832 }
1833 }
1834
1835 // If immediate offset is omitted, default to +0.
1836 Binary |= 1 << ARMII::U_BitShift;
1837
1838 emitWordLE(Binary);
1839 }
1840
1841 void
emitVFPLoadStoreMultipleInstruction(const MachineInstr & MI)1842 ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
1843 const MCInstrDesc &MCID = MI.getDesc();
1844 bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
1845
1846 // Part of binary is determined by TableGn.
1847 unsigned Binary = getBinaryCodeForInstr(MI);
1848
1849 // Set the conditional execution predicate
1850 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1851
1852 // Skip operand 0 of an instruction with base register update.
1853 unsigned OpIdx = 0;
1854 if (IsUpdating)
1855 ++OpIdx;
1856
1857 // Set base address operand
1858 Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
1859
1860 // Set addressing mode by modifying bits U(23) and P(24)
1861 ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
1862 Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
1863
1864 // Set bit W(21)
1865 if (IsUpdating)
1866 Binary |= 0x1 << ARMII::W_BitShift;
1867
1868 // First register is encoded in Dd.
1869 Binary |= encodeVFPRd(MI, OpIdx+2);
1870
1871 // Count the number of registers.
1872 unsigned NumRegs = 1;
1873 for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
1874 const MachineOperand &MO = MI.getOperand(i);
1875 if (!MO.isReg() || MO.isImplicit())
1876 break;
1877 ++NumRegs;
1878 }
1879 // Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
1880 // Otherwise, it will be 0, in the case of 32-bit registers.
1881 if(Binary & 0x100)
1882 Binary |= NumRegs * 2;
1883 else
1884 Binary |= NumRegs;
1885
1886 emitWordLE(Binary);
1887 }
1888
emitMiscInstruction(const MachineInstr & MI)1889 void ARMCodeEmitter::emitMiscInstruction(const MachineInstr &MI) {
1890 unsigned Opcode = MI.getDesc().Opcode;
1891 // Part of binary is determined by TableGn.
1892 unsigned Binary = getBinaryCodeForInstr(MI);
1893
1894 if (Opcode == ARM::FCONSTS) {
1895 unsigned Imm = getMachineOpValue(MI, 1);
1896 Binary &= ~(0x780000 >> 19);
1897 Binary |= (Imm & 0x780000) >> 19;
1898 Binary &= ~(0x3800000 >> 7);
1899 Binary |= (Imm & 0x3800000) >> 7;
1900 Binary = VFPThumb2PostEncoder(MI, Binary);
1901 }
1902
1903 // Set the conditional execution predicate
1904 Binary |= II->getPredicate(&MI) << ARMII::CondShift;
1905
1906 emitWordLE(Binary);
1907 }
1908
encodeNEONRd(const MachineInstr & MI,unsigned OpIdx) const1909 unsigned ARMCodeEmitter::encodeNEONRd(const MachineInstr &MI,
1910 unsigned OpIdx) const {
1911 unsigned RegD = MI.getOperand(OpIdx).getReg();
1912 unsigned Binary = 0;
1913 RegD = II->getRegisterInfo().getEncodingValue(RegD);
1914 Binary |= (RegD & 0xf) << ARMII::RegRdShift;
1915 Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
1916 return Binary;
1917 }
1918
encodeNEONRn(const MachineInstr & MI,unsigned OpIdx) const1919 unsigned ARMCodeEmitter::encodeNEONRn(const MachineInstr &MI,
1920 unsigned OpIdx) const {
1921 unsigned RegN = MI.getOperand(OpIdx).getReg();
1922 unsigned Binary = 0;
1923 RegN = II->getRegisterInfo().getEncodingValue(RegN);
1924 Binary |= (RegN & 0xf) << ARMII::RegRnShift;
1925 Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
1926 return Binary;
1927 }
1928
encodeNEONRm(const MachineInstr & MI,unsigned OpIdx) const1929 unsigned ARMCodeEmitter::encodeNEONRm(const MachineInstr &MI,
1930 unsigned OpIdx) const {
1931 unsigned RegM = MI.getOperand(OpIdx).getReg();
1932 unsigned Binary = 0;
1933 RegM = II->getRegisterInfo().getEncodingValue(RegM);
1934 Binary |= (RegM & 0xf);
1935 Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
1936 return Binary;
1937 }
1938
1939 /// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
1940 /// data-processing instruction to the corresponding Thumb encoding.
convertNEONDataProcToThumb(unsigned Binary)1941 static unsigned convertNEONDataProcToThumb(unsigned Binary) {
1942 assert((Binary & 0xfe000000) == 0xf2000000 &&
1943 "not an ARM NEON data-processing instruction");
1944 unsigned UBit = (Binary >> 24) & 1;
1945 return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
1946 }
1947
emitNEONLaneInstruction(const MachineInstr & MI)1948 void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
1949 unsigned Binary = getBinaryCodeForInstr(MI);
1950
1951 unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
1952 const MCInstrDesc &MCID = MI.getDesc();
1953 if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
1954 RegTOpIdx = 0;
1955 RegNOpIdx = 1;
1956 LnOpIdx = 2;
1957 } else { // ARMII::NSetLnFrm
1958 RegTOpIdx = 2;
1959 RegNOpIdx = 0;
1960 LnOpIdx = 3;
1961 }
1962
1963 // Set the conditional execution predicate
1964 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1965
1966 unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
1967 RegT = II->getRegisterInfo().getEncodingValue(RegT);
1968 Binary |= (RegT << ARMII::RegRdShift);
1969 Binary |= encodeNEONRn(MI, RegNOpIdx);
1970
1971 unsigned LaneShift;
1972 if ((Binary & (1 << 22)) != 0)
1973 LaneShift = 0; // 8-bit elements
1974 else if ((Binary & (1 << 5)) != 0)
1975 LaneShift = 1; // 16-bit elements
1976 else
1977 LaneShift = 2; // 32-bit elements
1978
1979 unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
1980 unsigned Opc1 = Lane >> 2;
1981 unsigned Opc2 = Lane & 3;
1982 assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
1983 Binary |= (Opc1 << 21);
1984 Binary |= (Opc2 << 5);
1985
1986 emitWordLE(Binary);
1987 }
1988
emitNEONDupInstruction(const MachineInstr & MI)1989 void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
1990 unsigned Binary = getBinaryCodeForInstr(MI);
1991
1992 // Set the conditional execution predicate
1993 Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
1994
1995 unsigned RegT = MI.getOperand(1).getReg();
1996 RegT = II->getRegisterInfo().getEncodingValue(RegT);
1997 Binary |= (RegT << ARMII::RegRdShift);
1998 Binary |= encodeNEONRn(MI, 0);
1999 emitWordLE(Binary);
2000 }
2001
emitNEON1RegModImmInstruction(const MachineInstr & MI)2002 void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
2003 unsigned Binary = getBinaryCodeForInstr(MI);
2004 // Destination register is encoded in Dd.
2005 Binary |= encodeNEONRd(MI, 0);
2006 // Immediate fields: Op, Cmode, I, Imm3, Imm4
2007 unsigned Imm = MI.getOperand(1).getImm();
2008 unsigned Op = (Imm >> 12) & 1;
2009 unsigned Cmode = (Imm >> 8) & 0xf;
2010 unsigned I = (Imm >> 7) & 1;
2011 unsigned Imm3 = (Imm >> 4) & 0x7;
2012 unsigned Imm4 = Imm & 0xf;
2013 Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
2014 if (IsThumb)
2015 Binary = convertNEONDataProcToThumb(Binary);
2016 emitWordLE(Binary);
2017 }
2018
emitNEON2RegInstruction(const MachineInstr & MI)2019 void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
2020 const MCInstrDesc &MCID = MI.getDesc();
2021 unsigned Binary = getBinaryCodeForInstr(MI);
2022 // Destination register is encoded in Dd; source register in Dm.
2023 unsigned OpIdx = 0;
2024 Binary |= encodeNEONRd(MI, OpIdx++);
2025 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2026 ++OpIdx;
2027 Binary |= encodeNEONRm(MI, OpIdx);
2028 if (IsThumb)
2029 Binary = convertNEONDataProcToThumb(Binary);
2030 // FIXME: This does not handle VDUPfdf or VDUPfqf.
2031 emitWordLE(Binary);
2032 }
2033
emitNEON3RegInstruction(const MachineInstr & MI)2034 void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
2035 const MCInstrDesc &MCID = MI.getDesc();
2036 unsigned Binary = getBinaryCodeForInstr(MI);
2037 // Destination register is encoded in Dd; source registers in Dn and Dm.
2038 unsigned OpIdx = 0;
2039 Binary |= encodeNEONRd(MI, OpIdx++);
2040 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2041 ++OpIdx;
2042 Binary |= encodeNEONRn(MI, OpIdx++);
2043 if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
2044 ++OpIdx;
2045 Binary |= encodeNEONRm(MI, OpIdx);
2046 if (IsThumb)
2047 Binary = convertNEONDataProcToThumb(Binary);
2048 // FIXME: This does not handle VMOVDneon or VMOVQ.
2049 emitWordLE(Binary);
2050 }
2051
2052 #include "ARMGenCodeEmitter.inc"
2053