1 //===--- CGExprScalar.cpp - Emit LLVM Code for Scalar Exprs ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This contains code to emit Expr nodes with scalar LLVM types as LLVM code.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CodeGenFunction.h"
15 #include "CGCXXABI.h"
16 #include "CGDebugInfo.h"
17 #include "CGObjCRuntime.h"
18 #include "CodeGenModule.h"
19 #include "clang/AST/ASTContext.h"
20 #include "clang/AST/DeclObjC.h"
21 #include "clang/AST/RecordLayout.h"
22 #include "clang/AST/StmtVisitor.h"
23 #include "clang/Basic/TargetInfo.h"
24 #include "clang/Frontend/CodeGenOptions.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/IR/GlobalVariable.h"
29 #include "llvm/IR/Intrinsics.h"
30 #include "llvm/IR/Module.h"
31 #include "llvm/Support/CFG.h"
32 #include <cstdarg>
33
34 using namespace clang;
35 using namespace CodeGen;
36 using llvm::Value;
37
38 //===----------------------------------------------------------------------===//
39 // Scalar Expression Emitter
40 //===----------------------------------------------------------------------===//
41
42 namespace {
43 struct BinOpInfo {
44 Value *LHS;
45 Value *RHS;
46 QualType Ty; // Computation Type.
47 BinaryOperator::Opcode Opcode; // Opcode of BinOp to perform
48 bool FPContractable;
49 const Expr *E; // Entire expr, for error unsupported. May not be binop.
50 };
51
MustVisitNullValue(const Expr * E)52 static bool MustVisitNullValue(const Expr *E) {
53 // If a null pointer expression's type is the C++0x nullptr_t, then
54 // it's not necessarily a simple constant and it must be evaluated
55 // for its potential side effects.
56 return E->getType()->isNullPtrType();
57 }
58
59 class ScalarExprEmitter
60 : public StmtVisitor<ScalarExprEmitter, Value*> {
61 CodeGenFunction &CGF;
62 CGBuilderTy &Builder;
63 bool IgnoreResultAssign;
64 llvm::LLVMContext &VMContext;
65 public:
66
ScalarExprEmitter(CodeGenFunction & cgf,bool ira=false)67 ScalarExprEmitter(CodeGenFunction &cgf, bool ira=false)
68 : CGF(cgf), Builder(CGF.Builder), IgnoreResultAssign(ira),
69 VMContext(cgf.getLLVMContext()) {
70 }
71
72 //===--------------------------------------------------------------------===//
73 // Utilities
74 //===--------------------------------------------------------------------===//
75
TestAndClearIgnoreResultAssign()76 bool TestAndClearIgnoreResultAssign() {
77 bool I = IgnoreResultAssign;
78 IgnoreResultAssign = false;
79 return I;
80 }
81
ConvertType(QualType T)82 llvm::Type *ConvertType(QualType T) { return CGF.ConvertType(T); }
EmitLValue(const Expr * E)83 LValue EmitLValue(const Expr *E) { return CGF.EmitLValue(E); }
EmitCheckedLValue(const Expr * E,CodeGenFunction::TypeCheckKind TCK)84 LValue EmitCheckedLValue(const Expr *E, CodeGenFunction::TypeCheckKind TCK) {
85 return CGF.EmitCheckedLValue(E, TCK);
86 }
87
88 void EmitBinOpCheck(Value *Check, const BinOpInfo &Info);
89
EmitLoadOfLValue(LValue LV)90 Value *EmitLoadOfLValue(LValue LV) {
91 return CGF.EmitLoadOfLValue(LV).getScalarVal();
92 }
93
94 /// EmitLoadOfLValue - Given an expression with complex type that represents a
95 /// value l-value, this method emits the address of the l-value, then loads
96 /// and returns the result.
EmitLoadOfLValue(const Expr * E)97 Value *EmitLoadOfLValue(const Expr *E) {
98 return EmitLoadOfLValue(EmitCheckedLValue(E, CodeGenFunction::TCK_Load));
99 }
100
101 /// EmitConversionToBool - Convert the specified expression value to a
102 /// boolean (i1) truth value. This is equivalent to "Val != 0".
103 Value *EmitConversionToBool(Value *Src, QualType DstTy);
104
105 /// \brief Emit a check that a conversion to or from a floating-point type
106 /// does not overflow.
107 void EmitFloatConversionCheck(Value *OrigSrc, QualType OrigSrcType,
108 Value *Src, QualType SrcType,
109 QualType DstType, llvm::Type *DstTy);
110
111 /// EmitScalarConversion - Emit a conversion from the specified type to the
112 /// specified destination type, both of which are LLVM scalar types.
113 Value *EmitScalarConversion(Value *Src, QualType SrcTy, QualType DstTy);
114
115 /// EmitComplexToScalarConversion - Emit a conversion from the specified
116 /// complex type to the specified destination type, where the destination type
117 /// is an LLVM scalar type.
118 Value *EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
119 QualType SrcTy, QualType DstTy);
120
121 /// EmitNullValue - Emit a value that corresponds to null for the given type.
122 Value *EmitNullValue(QualType Ty);
123
124 /// EmitFloatToBoolConversion - Perform an FP to boolean conversion.
EmitFloatToBoolConversion(Value * V)125 Value *EmitFloatToBoolConversion(Value *V) {
126 // Compare against 0.0 for fp scalars.
127 llvm::Value *Zero = llvm::Constant::getNullValue(V->getType());
128 return Builder.CreateFCmpUNE(V, Zero, "tobool");
129 }
130
131 /// EmitPointerToBoolConversion - Perform a pointer to boolean conversion.
EmitPointerToBoolConversion(Value * V)132 Value *EmitPointerToBoolConversion(Value *V) {
133 Value *Zero = llvm::ConstantPointerNull::get(
134 cast<llvm::PointerType>(V->getType()));
135 return Builder.CreateICmpNE(V, Zero, "tobool");
136 }
137
EmitIntToBoolConversion(Value * V)138 Value *EmitIntToBoolConversion(Value *V) {
139 // Because of the type rules of C, we often end up computing a
140 // logical value, then zero extending it to int, then wanting it
141 // as a logical value again. Optimize this common case.
142 if (llvm::ZExtInst *ZI = dyn_cast<llvm::ZExtInst>(V)) {
143 if (ZI->getOperand(0)->getType() == Builder.getInt1Ty()) {
144 Value *Result = ZI->getOperand(0);
145 // If there aren't any more uses, zap the instruction to save space.
146 // Note that there can be more uses, for example if this
147 // is the result of an assignment.
148 if (ZI->use_empty())
149 ZI->eraseFromParent();
150 return Result;
151 }
152 }
153
154 return Builder.CreateIsNotNull(V, "tobool");
155 }
156
157 //===--------------------------------------------------------------------===//
158 // Visitor Methods
159 //===--------------------------------------------------------------------===//
160
Visit(Expr * E)161 Value *Visit(Expr *E) {
162 return StmtVisitor<ScalarExprEmitter, Value*>::Visit(E);
163 }
164
VisitStmt(Stmt * S)165 Value *VisitStmt(Stmt *S) {
166 S->dump(CGF.getContext().getSourceManager());
167 llvm_unreachable("Stmt can't have complex result type!");
168 }
169 Value *VisitExpr(Expr *S);
170
VisitParenExpr(ParenExpr * PE)171 Value *VisitParenExpr(ParenExpr *PE) {
172 return Visit(PE->getSubExpr());
173 }
VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr * E)174 Value *VisitSubstNonTypeTemplateParmExpr(SubstNonTypeTemplateParmExpr *E) {
175 return Visit(E->getReplacement());
176 }
VisitGenericSelectionExpr(GenericSelectionExpr * GE)177 Value *VisitGenericSelectionExpr(GenericSelectionExpr *GE) {
178 return Visit(GE->getResultExpr());
179 }
180
181 // Leaves.
VisitIntegerLiteral(const IntegerLiteral * E)182 Value *VisitIntegerLiteral(const IntegerLiteral *E) {
183 return Builder.getInt(E->getValue());
184 }
VisitFloatingLiteral(const FloatingLiteral * E)185 Value *VisitFloatingLiteral(const FloatingLiteral *E) {
186 return llvm::ConstantFP::get(VMContext, E->getValue());
187 }
VisitCharacterLiteral(const CharacterLiteral * E)188 Value *VisitCharacterLiteral(const CharacterLiteral *E) {
189 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
190 }
VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr * E)191 Value *VisitObjCBoolLiteralExpr(const ObjCBoolLiteralExpr *E) {
192 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
193 }
VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr * E)194 Value *VisitCXXBoolLiteralExpr(const CXXBoolLiteralExpr *E) {
195 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
196 }
VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr * E)197 Value *VisitCXXScalarValueInitExpr(const CXXScalarValueInitExpr *E) {
198 return EmitNullValue(E->getType());
199 }
VisitGNUNullExpr(const GNUNullExpr * E)200 Value *VisitGNUNullExpr(const GNUNullExpr *E) {
201 return EmitNullValue(E->getType());
202 }
203 Value *VisitOffsetOfExpr(OffsetOfExpr *E);
204 Value *VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr *E);
VisitAddrLabelExpr(const AddrLabelExpr * E)205 Value *VisitAddrLabelExpr(const AddrLabelExpr *E) {
206 llvm::Value *V = CGF.GetAddrOfLabel(E->getLabel());
207 return Builder.CreateBitCast(V, ConvertType(E->getType()));
208 }
209
VisitSizeOfPackExpr(SizeOfPackExpr * E)210 Value *VisitSizeOfPackExpr(SizeOfPackExpr *E) {
211 return llvm::ConstantInt::get(ConvertType(E->getType()),E->getPackLength());
212 }
213
VisitPseudoObjectExpr(PseudoObjectExpr * E)214 Value *VisitPseudoObjectExpr(PseudoObjectExpr *E) {
215 return CGF.EmitPseudoObjectRValue(E).getScalarVal();
216 }
217
VisitOpaqueValueExpr(OpaqueValueExpr * E)218 Value *VisitOpaqueValueExpr(OpaqueValueExpr *E) {
219 if (E->isGLValue())
220 return EmitLoadOfLValue(CGF.getOpaqueLValueMapping(E));
221
222 // Otherwise, assume the mapping is the scalar directly.
223 return CGF.getOpaqueRValueMapping(E).getScalarVal();
224 }
225
226 // l-values.
VisitDeclRefExpr(DeclRefExpr * E)227 Value *VisitDeclRefExpr(DeclRefExpr *E) {
228 if (CodeGenFunction::ConstantEmission result = CGF.tryEmitAsConstant(E)) {
229 if (result.isReference())
230 return EmitLoadOfLValue(result.getReferenceLValue(CGF, E));
231 return result.getValue();
232 }
233 return EmitLoadOfLValue(E);
234 }
235
VisitObjCSelectorExpr(ObjCSelectorExpr * E)236 Value *VisitObjCSelectorExpr(ObjCSelectorExpr *E) {
237 return CGF.EmitObjCSelectorExpr(E);
238 }
VisitObjCProtocolExpr(ObjCProtocolExpr * E)239 Value *VisitObjCProtocolExpr(ObjCProtocolExpr *E) {
240 return CGF.EmitObjCProtocolExpr(E);
241 }
VisitObjCIvarRefExpr(ObjCIvarRefExpr * E)242 Value *VisitObjCIvarRefExpr(ObjCIvarRefExpr *E) {
243 return EmitLoadOfLValue(E);
244 }
VisitObjCMessageExpr(ObjCMessageExpr * E)245 Value *VisitObjCMessageExpr(ObjCMessageExpr *E) {
246 if (E->getMethodDecl() &&
247 E->getMethodDecl()->getResultType()->isReferenceType())
248 return EmitLoadOfLValue(E);
249 return CGF.EmitObjCMessageExpr(E).getScalarVal();
250 }
251
VisitObjCIsaExpr(ObjCIsaExpr * E)252 Value *VisitObjCIsaExpr(ObjCIsaExpr *E) {
253 LValue LV = CGF.EmitObjCIsaExpr(E);
254 Value *V = CGF.EmitLoadOfLValue(LV).getScalarVal();
255 return V;
256 }
257
258 Value *VisitArraySubscriptExpr(ArraySubscriptExpr *E);
259 Value *VisitShuffleVectorExpr(ShuffleVectorExpr *E);
260 Value *VisitMemberExpr(MemberExpr *E);
VisitExtVectorElementExpr(Expr * E)261 Value *VisitExtVectorElementExpr(Expr *E) { return EmitLoadOfLValue(E); }
VisitCompoundLiteralExpr(CompoundLiteralExpr * E)262 Value *VisitCompoundLiteralExpr(CompoundLiteralExpr *E) {
263 return EmitLoadOfLValue(E);
264 }
265
266 Value *VisitInitListExpr(InitListExpr *E);
267
VisitImplicitValueInitExpr(const ImplicitValueInitExpr * E)268 Value *VisitImplicitValueInitExpr(const ImplicitValueInitExpr *E) {
269 return EmitNullValue(E->getType());
270 }
VisitExplicitCastExpr(ExplicitCastExpr * E)271 Value *VisitExplicitCastExpr(ExplicitCastExpr *E) {
272 if (E->getType()->isVariablyModifiedType())
273 CGF.EmitVariablyModifiedType(E->getType());
274 return VisitCastExpr(E);
275 }
276 Value *VisitCastExpr(CastExpr *E);
277
VisitCallExpr(const CallExpr * E)278 Value *VisitCallExpr(const CallExpr *E) {
279 if (E->getCallReturnType()->isReferenceType())
280 return EmitLoadOfLValue(E);
281
282 return CGF.EmitCallExpr(E).getScalarVal();
283 }
284
285 Value *VisitStmtExpr(const StmtExpr *E);
286
287 // Unary Operators.
VisitUnaryPostDec(const UnaryOperator * E)288 Value *VisitUnaryPostDec(const UnaryOperator *E) {
289 LValue LV = EmitLValue(E->getSubExpr());
290 return EmitScalarPrePostIncDec(E, LV, false, false);
291 }
VisitUnaryPostInc(const UnaryOperator * E)292 Value *VisitUnaryPostInc(const UnaryOperator *E) {
293 LValue LV = EmitLValue(E->getSubExpr());
294 return EmitScalarPrePostIncDec(E, LV, true, false);
295 }
VisitUnaryPreDec(const UnaryOperator * E)296 Value *VisitUnaryPreDec(const UnaryOperator *E) {
297 LValue LV = EmitLValue(E->getSubExpr());
298 return EmitScalarPrePostIncDec(E, LV, false, true);
299 }
VisitUnaryPreInc(const UnaryOperator * E)300 Value *VisitUnaryPreInc(const UnaryOperator *E) {
301 LValue LV = EmitLValue(E->getSubExpr());
302 return EmitScalarPrePostIncDec(E, LV, true, true);
303 }
304
305 llvm::Value *EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
306 llvm::Value *InVal,
307 llvm::Value *NextVal,
308 bool IsInc);
309
310 llvm::Value *EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
311 bool isInc, bool isPre);
312
313
VisitUnaryAddrOf(const UnaryOperator * E)314 Value *VisitUnaryAddrOf(const UnaryOperator *E) {
315 if (isa<MemberPointerType>(E->getType())) // never sugared
316 return CGF.CGM.getMemberPointerConstant(E);
317
318 return EmitLValue(E->getSubExpr()).getAddress();
319 }
VisitUnaryDeref(const UnaryOperator * E)320 Value *VisitUnaryDeref(const UnaryOperator *E) {
321 if (E->getType()->isVoidType())
322 return Visit(E->getSubExpr()); // the actual value should be unused
323 return EmitLoadOfLValue(E);
324 }
VisitUnaryPlus(const UnaryOperator * E)325 Value *VisitUnaryPlus(const UnaryOperator *E) {
326 // This differs from gcc, though, most likely due to a bug in gcc.
327 TestAndClearIgnoreResultAssign();
328 return Visit(E->getSubExpr());
329 }
330 Value *VisitUnaryMinus (const UnaryOperator *E);
331 Value *VisitUnaryNot (const UnaryOperator *E);
332 Value *VisitUnaryLNot (const UnaryOperator *E);
333 Value *VisitUnaryReal (const UnaryOperator *E);
334 Value *VisitUnaryImag (const UnaryOperator *E);
VisitUnaryExtension(const UnaryOperator * E)335 Value *VisitUnaryExtension(const UnaryOperator *E) {
336 return Visit(E->getSubExpr());
337 }
338
339 // C++
VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr * E)340 Value *VisitMaterializeTemporaryExpr(const MaterializeTemporaryExpr *E) {
341 return EmitLoadOfLValue(E);
342 }
343
VisitCXXDefaultArgExpr(CXXDefaultArgExpr * DAE)344 Value *VisitCXXDefaultArgExpr(CXXDefaultArgExpr *DAE) {
345 return Visit(DAE->getExpr());
346 }
VisitCXXDefaultInitExpr(CXXDefaultInitExpr * DIE)347 Value *VisitCXXDefaultInitExpr(CXXDefaultInitExpr *DIE) {
348 CodeGenFunction::CXXDefaultInitExprScope Scope(CGF);
349 return Visit(DIE->getExpr());
350 }
VisitCXXThisExpr(CXXThisExpr * TE)351 Value *VisitCXXThisExpr(CXXThisExpr *TE) {
352 return CGF.LoadCXXThis();
353 }
354
VisitExprWithCleanups(ExprWithCleanups * E)355 Value *VisitExprWithCleanups(ExprWithCleanups *E) {
356 CGF.enterFullExpression(E);
357 CodeGenFunction::RunCleanupsScope Scope(CGF);
358 return Visit(E->getSubExpr());
359 }
VisitCXXNewExpr(const CXXNewExpr * E)360 Value *VisitCXXNewExpr(const CXXNewExpr *E) {
361 return CGF.EmitCXXNewExpr(E);
362 }
VisitCXXDeleteExpr(const CXXDeleteExpr * E)363 Value *VisitCXXDeleteExpr(const CXXDeleteExpr *E) {
364 CGF.EmitCXXDeleteExpr(E);
365 return 0;
366 }
VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr * E)367 Value *VisitUnaryTypeTraitExpr(const UnaryTypeTraitExpr *E) {
368 return Builder.getInt1(E->getValue());
369 }
370
VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr * E)371 Value *VisitBinaryTypeTraitExpr(const BinaryTypeTraitExpr *E) {
372 return llvm::ConstantInt::get(ConvertType(E->getType()), E->getValue());
373 }
374
VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr * E)375 Value *VisitArrayTypeTraitExpr(const ArrayTypeTraitExpr *E) {
376 return llvm::ConstantInt::get(Builder.getInt32Ty(), E->getValue());
377 }
378
VisitExpressionTraitExpr(const ExpressionTraitExpr * E)379 Value *VisitExpressionTraitExpr(const ExpressionTraitExpr *E) {
380 return llvm::ConstantInt::get(Builder.getInt1Ty(), E->getValue());
381 }
382
VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr * E)383 Value *VisitCXXPseudoDestructorExpr(const CXXPseudoDestructorExpr *E) {
384 // C++ [expr.pseudo]p1:
385 // The result shall only be used as the operand for the function call
386 // operator (), and the result of such a call has type void. The only
387 // effect is the evaluation of the postfix-expression before the dot or
388 // arrow.
389 CGF.EmitScalarExpr(E->getBase());
390 return 0;
391 }
392
VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr * E)393 Value *VisitCXXNullPtrLiteralExpr(const CXXNullPtrLiteralExpr *E) {
394 return EmitNullValue(E->getType());
395 }
396
VisitCXXThrowExpr(const CXXThrowExpr * E)397 Value *VisitCXXThrowExpr(const CXXThrowExpr *E) {
398 CGF.EmitCXXThrowExpr(E);
399 return 0;
400 }
401
VisitCXXNoexceptExpr(const CXXNoexceptExpr * E)402 Value *VisitCXXNoexceptExpr(const CXXNoexceptExpr *E) {
403 return Builder.getInt1(E->getValue());
404 }
405
406 // Binary Operators.
EmitMul(const BinOpInfo & Ops)407 Value *EmitMul(const BinOpInfo &Ops) {
408 if (Ops.Ty->isSignedIntegerOrEnumerationType()) {
409 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
410 case LangOptions::SOB_Defined:
411 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
412 case LangOptions::SOB_Undefined:
413 if (!CGF.SanOpts->SignedIntegerOverflow)
414 return Builder.CreateNSWMul(Ops.LHS, Ops.RHS, "mul");
415 // Fall through.
416 case LangOptions::SOB_Trapping:
417 return EmitOverflowCheckedBinOp(Ops);
418 }
419 }
420
421 if (Ops.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
422 return EmitOverflowCheckedBinOp(Ops);
423
424 if (Ops.LHS->getType()->isFPOrFPVectorTy())
425 return Builder.CreateFMul(Ops.LHS, Ops.RHS, "mul");
426 return Builder.CreateMul(Ops.LHS, Ops.RHS, "mul");
427 }
428 /// Create a binary op that checks for overflow.
429 /// Currently only supports +, - and *.
430 Value *EmitOverflowCheckedBinOp(const BinOpInfo &Ops);
431
432 // Check for undefined division and modulus behaviors.
433 void EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo &Ops,
434 llvm::Value *Zero,bool isDiv);
435 // Common helper for getting how wide LHS of shift is.
436 static Value *GetWidthMinusOneValue(Value* LHS,Value* RHS);
437 Value *EmitDiv(const BinOpInfo &Ops);
438 Value *EmitRem(const BinOpInfo &Ops);
439 Value *EmitAdd(const BinOpInfo &Ops);
440 Value *EmitSub(const BinOpInfo &Ops);
441 Value *EmitShl(const BinOpInfo &Ops);
442 Value *EmitShr(const BinOpInfo &Ops);
EmitAnd(const BinOpInfo & Ops)443 Value *EmitAnd(const BinOpInfo &Ops) {
444 return Builder.CreateAnd(Ops.LHS, Ops.RHS, "and");
445 }
EmitXor(const BinOpInfo & Ops)446 Value *EmitXor(const BinOpInfo &Ops) {
447 return Builder.CreateXor(Ops.LHS, Ops.RHS, "xor");
448 }
EmitOr(const BinOpInfo & Ops)449 Value *EmitOr (const BinOpInfo &Ops) {
450 return Builder.CreateOr(Ops.LHS, Ops.RHS, "or");
451 }
452
453 BinOpInfo EmitBinOps(const BinaryOperator *E);
454 LValue EmitCompoundAssignLValue(const CompoundAssignOperator *E,
455 Value *(ScalarExprEmitter::*F)(const BinOpInfo &),
456 Value *&Result);
457
458 Value *EmitCompoundAssign(const CompoundAssignOperator *E,
459 Value *(ScalarExprEmitter::*F)(const BinOpInfo &));
460
461 // Binary operators and binary compound assignment operators.
462 #define HANDLEBINOP(OP) \
463 Value *VisitBin ## OP(const BinaryOperator *E) { \
464 return Emit ## OP(EmitBinOps(E)); \
465 } \
466 Value *VisitBin ## OP ## Assign(const CompoundAssignOperator *E) { \
467 return EmitCompoundAssign(E, &ScalarExprEmitter::Emit ## OP); \
468 }
469 HANDLEBINOP(Mul)
470 HANDLEBINOP(Div)
471 HANDLEBINOP(Rem)
472 HANDLEBINOP(Add)
473 HANDLEBINOP(Sub)
474 HANDLEBINOP(Shl)
475 HANDLEBINOP(Shr)
476 HANDLEBINOP(And)
477 HANDLEBINOP(Xor)
478 HANDLEBINOP(Or)
479 #undef HANDLEBINOP
480
481 // Comparisons.
482 Value *EmitCompare(const BinaryOperator *E, unsigned UICmpOpc,
483 unsigned SICmpOpc, unsigned FCmpOpc);
484 #define VISITCOMP(CODE, UI, SI, FP) \
485 Value *VisitBin##CODE(const BinaryOperator *E) { \
486 return EmitCompare(E, llvm::ICmpInst::UI, llvm::ICmpInst::SI, \
487 llvm::FCmpInst::FP); }
488 VISITCOMP(LT, ICMP_ULT, ICMP_SLT, FCMP_OLT)
489 VISITCOMP(GT, ICMP_UGT, ICMP_SGT, FCMP_OGT)
490 VISITCOMP(LE, ICMP_ULE, ICMP_SLE, FCMP_OLE)
491 VISITCOMP(GE, ICMP_UGE, ICMP_SGE, FCMP_OGE)
492 VISITCOMP(EQ, ICMP_EQ , ICMP_EQ , FCMP_OEQ)
493 VISITCOMP(NE, ICMP_NE , ICMP_NE , FCMP_UNE)
494 #undef VISITCOMP
495
496 Value *VisitBinAssign (const BinaryOperator *E);
497
498 Value *VisitBinLAnd (const BinaryOperator *E);
499 Value *VisitBinLOr (const BinaryOperator *E);
500 Value *VisitBinComma (const BinaryOperator *E);
501
VisitBinPtrMemD(const Expr * E)502 Value *VisitBinPtrMemD(const Expr *E) { return EmitLoadOfLValue(E); }
VisitBinPtrMemI(const Expr * E)503 Value *VisitBinPtrMemI(const Expr *E) { return EmitLoadOfLValue(E); }
504
505 // Other Operators.
506 Value *VisitBlockExpr(const BlockExpr *BE);
507 Value *VisitAbstractConditionalOperator(const AbstractConditionalOperator *);
508 Value *VisitChooseExpr(ChooseExpr *CE);
509 Value *VisitVAArgExpr(VAArgExpr *VE);
VisitObjCStringLiteral(const ObjCStringLiteral * E)510 Value *VisitObjCStringLiteral(const ObjCStringLiteral *E) {
511 return CGF.EmitObjCStringLiteral(E);
512 }
VisitObjCBoxedExpr(ObjCBoxedExpr * E)513 Value *VisitObjCBoxedExpr(ObjCBoxedExpr *E) {
514 return CGF.EmitObjCBoxedExpr(E);
515 }
VisitObjCArrayLiteral(ObjCArrayLiteral * E)516 Value *VisitObjCArrayLiteral(ObjCArrayLiteral *E) {
517 return CGF.EmitObjCArrayLiteral(E);
518 }
VisitObjCDictionaryLiteral(ObjCDictionaryLiteral * E)519 Value *VisitObjCDictionaryLiteral(ObjCDictionaryLiteral *E) {
520 return CGF.EmitObjCDictionaryLiteral(E);
521 }
522 Value *VisitAsTypeExpr(AsTypeExpr *CE);
523 Value *VisitAtomicExpr(AtomicExpr *AE);
524 };
525 } // end anonymous namespace.
526
527 //===----------------------------------------------------------------------===//
528 // Utilities
529 //===----------------------------------------------------------------------===//
530
531 /// EmitConversionToBool - Convert the specified expression value to a
532 /// boolean (i1) truth value. This is equivalent to "Val != 0".
EmitConversionToBool(Value * Src,QualType SrcType)533 Value *ScalarExprEmitter::EmitConversionToBool(Value *Src, QualType SrcType) {
534 assert(SrcType.isCanonical() && "EmitScalarConversion strips typedefs");
535
536 if (SrcType->isRealFloatingType())
537 return EmitFloatToBoolConversion(Src);
538
539 if (const MemberPointerType *MPT = dyn_cast<MemberPointerType>(SrcType))
540 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, Src, MPT);
541
542 assert((SrcType->isIntegerType() || isa<llvm::PointerType>(Src->getType())) &&
543 "Unknown scalar type to convert");
544
545 if (isa<llvm::IntegerType>(Src->getType()))
546 return EmitIntToBoolConversion(Src);
547
548 assert(isa<llvm::PointerType>(Src->getType()));
549 return EmitPointerToBoolConversion(Src);
550 }
551
EmitFloatConversionCheck(Value * OrigSrc,QualType OrigSrcType,Value * Src,QualType SrcType,QualType DstType,llvm::Type * DstTy)552 void ScalarExprEmitter::EmitFloatConversionCheck(Value *OrigSrc,
553 QualType OrigSrcType,
554 Value *Src, QualType SrcType,
555 QualType DstType,
556 llvm::Type *DstTy) {
557 using llvm::APFloat;
558 using llvm::APSInt;
559
560 llvm::Type *SrcTy = Src->getType();
561
562 llvm::Value *Check = 0;
563 if (llvm::IntegerType *IntTy = dyn_cast<llvm::IntegerType>(SrcTy)) {
564 // Integer to floating-point. This can fail for unsigned short -> __half
565 // or unsigned __int128 -> float.
566 assert(DstType->isFloatingType());
567 bool SrcIsUnsigned = OrigSrcType->isUnsignedIntegerOrEnumerationType();
568
569 APFloat LargestFloat =
570 APFloat::getLargest(CGF.getContext().getFloatTypeSemantics(DstType));
571 APSInt LargestInt(IntTy->getBitWidth(), SrcIsUnsigned);
572
573 bool IsExact;
574 if (LargestFloat.convertToInteger(LargestInt, APFloat::rmTowardZero,
575 &IsExact) != APFloat::opOK)
576 // The range of representable values of this floating point type includes
577 // all values of this integer type. Don't need an overflow check.
578 return;
579
580 llvm::Value *Max = llvm::ConstantInt::get(VMContext, LargestInt);
581 if (SrcIsUnsigned)
582 Check = Builder.CreateICmpULE(Src, Max);
583 else {
584 llvm::Value *Min = llvm::ConstantInt::get(VMContext, -LargestInt);
585 llvm::Value *GE = Builder.CreateICmpSGE(Src, Min);
586 llvm::Value *LE = Builder.CreateICmpSLE(Src, Max);
587 Check = Builder.CreateAnd(GE, LE);
588 }
589 } else {
590 const llvm::fltSemantics &SrcSema =
591 CGF.getContext().getFloatTypeSemantics(OrigSrcType);
592 if (isa<llvm::IntegerType>(DstTy)) {
593 // Floating-point to integer. This has undefined behavior if the source is
594 // +-Inf, NaN, or doesn't fit into the destination type (after truncation
595 // to an integer).
596 unsigned Width = CGF.getContext().getIntWidth(DstType);
597 bool Unsigned = DstType->isUnsignedIntegerOrEnumerationType();
598
599 APSInt Min = APSInt::getMinValue(Width, Unsigned);
600 APFloat MinSrc(SrcSema, APFloat::uninitialized);
601 if (MinSrc.convertFromAPInt(Min, !Unsigned, APFloat::rmTowardZero) &
602 APFloat::opOverflow)
603 // Don't need an overflow check for lower bound. Just check for
604 // -Inf/NaN.
605 MinSrc = APFloat::getInf(SrcSema, true);
606 else
607 // Find the largest value which is too small to represent (before
608 // truncation toward zero).
609 MinSrc.subtract(APFloat(SrcSema, 1), APFloat::rmTowardNegative);
610
611 APSInt Max = APSInt::getMaxValue(Width, Unsigned);
612 APFloat MaxSrc(SrcSema, APFloat::uninitialized);
613 if (MaxSrc.convertFromAPInt(Max, !Unsigned, APFloat::rmTowardZero) &
614 APFloat::opOverflow)
615 // Don't need an overflow check for upper bound. Just check for
616 // +Inf/NaN.
617 MaxSrc = APFloat::getInf(SrcSema, false);
618 else
619 // Find the smallest value which is too large to represent (before
620 // truncation toward zero).
621 MaxSrc.add(APFloat(SrcSema, 1), APFloat::rmTowardPositive);
622
623 // If we're converting from __half, convert the range to float to match
624 // the type of src.
625 if (OrigSrcType->isHalfType()) {
626 const llvm::fltSemantics &Sema =
627 CGF.getContext().getFloatTypeSemantics(SrcType);
628 bool IsInexact;
629 MinSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
630 MaxSrc.convert(Sema, APFloat::rmTowardZero, &IsInexact);
631 }
632
633 llvm::Value *GE =
634 Builder.CreateFCmpOGT(Src, llvm::ConstantFP::get(VMContext, MinSrc));
635 llvm::Value *LE =
636 Builder.CreateFCmpOLT(Src, llvm::ConstantFP::get(VMContext, MaxSrc));
637 Check = Builder.CreateAnd(GE, LE);
638 } else {
639 // FIXME: Maybe split this sanitizer out from float-cast-overflow.
640 //
641 // Floating-point to floating-point. This has undefined behavior if the
642 // source is not in the range of representable values of the destination
643 // type. The C and C++ standards are spectacularly unclear here. We
644 // diagnose finite out-of-range conversions, but allow infinities and NaNs
645 // to convert to the corresponding value in the smaller type.
646 //
647 // C11 Annex F gives all such conversions defined behavior for IEC 60559
648 // conforming implementations. Unfortunately, LLVM's fptrunc instruction
649 // does not.
650
651 // Converting from a lower rank to a higher rank can never have
652 // undefined behavior, since higher-rank types must have a superset
653 // of values of lower-rank types.
654 if (CGF.getContext().getFloatingTypeOrder(OrigSrcType, DstType) != 1)
655 return;
656
657 assert(!OrigSrcType->isHalfType() &&
658 "should not check conversion from __half, it has the lowest rank");
659
660 const llvm::fltSemantics &DstSema =
661 CGF.getContext().getFloatTypeSemantics(DstType);
662 APFloat MinBad = APFloat::getLargest(DstSema, false);
663 APFloat MaxBad = APFloat::getInf(DstSema, false);
664
665 bool IsInexact;
666 MinBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
667 MaxBad.convert(SrcSema, APFloat::rmTowardZero, &IsInexact);
668
669 Value *AbsSrc = CGF.EmitNounwindRuntimeCall(
670 CGF.CGM.getIntrinsic(llvm::Intrinsic::fabs, Src->getType()), Src);
671 llvm::Value *GE =
672 Builder.CreateFCmpOGT(AbsSrc, llvm::ConstantFP::get(VMContext, MinBad));
673 llvm::Value *LE =
674 Builder.CreateFCmpOLT(AbsSrc, llvm::ConstantFP::get(VMContext, MaxBad));
675 Check = Builder.CreateNot(Builder.CreateAnd(GE, LE));
676 }
677 }
678
679 // FIXME: Provide a SourceLocation.
680 llvm::Constant *StaticArgs[] = {
681 CGF.EmitCheckTypeDescriptor(OrigSrcType),
682 CGF.EmitCheckTypeDescriptor(DstType)
683 };
684 CGF.EmitCheck(Check, "float_cast_overflow", StaticArgs, OrigSrc,
685 CodeGenFunction::CRK_Recoverable);
686 }
687
688 /// EmitScalarConversion - Emit a conversion from the specified type to the
689 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcType,QualType DstType)690 Value *ScalarExprEmitter::EmitScalarConversion(Value *Src, QualType SrcType,
691 QualType DstType) {
692 SrcType = CGF.getContext().getCanonicalType(SrcType);
693 DstType = CGF.getContext().getCanonicalType(DstType);
694 if (SrcType == DstType) return Src;
695
696 if (DstType->isVoidType()) return 0;
697
698 llvm::Value *OrigSrc = Src;
699 QualType OrigSrcType = SrcType;
700 llvm::Type *SrcTy = Src->getType();
701
702 // If casting to/from storage-only half FP, use special intrinsics.
703 if (SrcType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
704 Src = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16), Src);
705 SrcType = CGF.getContext().FloatTy;
706 SrcTy = CGF.FloatTy;
707 }
708
709 // Handle conversions to bool first, they are special: comparisons against 0.
710 if (DstType->isBooleanType())
711 return EmitConversionToBool(Src, SrcType);
712
713 llvm::Type *DstTy = ConvertType(DstType);
714
715 // Ignore conversions like int -> uint.
716 if (SrcTy == DstTy)
717 return Src;
718
719 // Handle pointer conversions next: pointers can only be converted to/from
720 // other pointers and integers. Check for pointer types in terms of LLVM, as
721 // some native types (like Obj-C id) may map to a pointer type.
722 if (isa<llvm::PointerType>(DstTy)) {
723 // The source value may be an integer, or a pointer.
724 if (isa<llvm::PointerType>(SrcTy))
725 return Builder.CreateBitCast(Src, DstTy, "conv");
726
727 assert(SrcType->isIntegerType() && "Not ptr->ptr or int->ptr conversion?");
728 // First, convert to the correct width so that we control the kind of
729 // extension.
730 llvm::Type *MiddleTy = CGF.IntPtrTy;
731 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
732 llvm::Value* IntResult =
733 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
734 // Then, cast to pointer.
735 return Builder.CreateIntToPtr(IntResult, DstTy, "conv");
736 }
737
738 if (isa<llvm::PointerType>(SrcTy)) {
739 // Must be an ptr to int cast.
740 assert(isa<llvm::IntegerType>(DstTy) && "not ptr->int?");
741 return Builder.CreatePtrToInt(Src, DstTy, "conv");
742 }
743
744 // A scalar can be splatted to an extended vector of the same element type
745 if (DstType->isExtVectorType() && !SrcType->isVectorType()) {
746 // Cast the scalar to element type
747 QualType EltTy = DstType->getAs<ExtVectorType>()->getElementType();
748 llvm::Value *Elt = EmitScalarConversion(Src, SrcType, EltTy);
749
750 // Splat the element across to all elements
751 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
752 return Builder.CreateVectorSplat(NumElements, Elt, "splat");
753 }
754
755 // Allow bitcast from vector to integer/fp of the same size.
756 if (isa<llvm::VectorType>(SrcTy) ||
757 isa<llvm::VectorType>(DstTy))
758 return Builder.CreateBitCast(Src, DstTy, "conv");
759
760 // Finally, we have the arithmetic types: real int/float.
761 Value *Res = NULL;
762 llvm::Type *ResTy = DstTy;
763
764 // An overflowing conversion has undefined behavior if either the source type
765 // or the destination type is a floating-point type.
766 if (CGF.SanOpts->FloatCastOverflow &&
767 (OrigSrcType->isFloatingType() || DstType->isFloatingType()))
768 EmitFloatConversionCheck(OrigSrc, OrigSrcType, Src, SrcType, DstType,
769 DstTy);
770
771 // Cast to half via float
772 if (DstType->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
773 DstTy = CGF.FloatTy;
774
775 if (isa<llvm::IntegerType>(SrcTy)) {
776 bool InputSigned = SrcType->isSignedIntegerOrEnumerationType();
777 if (isa<llvm::IntegerType>(DstTy))
778 Res = Builder.CreateIntCast(Src, DstTy, InputSigned, "conv");
779 else if (InputSigned)
780 Res = Builder.CreateSIToFP(Src, DstTy, "conv");
781 else
782 Res = Builder.CreateUIToFP(Src, DstTy, "conv");
783 } else if (isa<llvm::IntegerType>(DstTy)) {
784 assert(SrcTy->isFloatingPointTy() && "Unknown real conversion");
785 if (DstType->isSignedIntegerOrEnumerationType())
786 Res = Builder.CreateFPToSI(Src, DstTy, "conv");
787 else
788 Res = Builder.CreateFPToUI(Src, DstTy, "conv");
789 } else {
790 assert(SrcTy->isFloatingPointTy() && DstTy->isFloatingPointTy() &&
791 "Unknown real conversion");
792 if (DstTy->getTypeID() < SrcTy->getTypeID())
793 Res = Builder.CreateFPTrunc(Src, DstTy, "conv");
794 else
795 Res = Builder.CreateFPExt(Src, DstTy, "conv");
796 }
797
798 if (DstTy != ResTy) {
799 assert(ResTy->isIntegerTy(16) && "Only half FP requires extra conversion");
800 Res = Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16), Res);
801 }
802
803 return Res;
804 }
805
806 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
807 /// type to the specified destination type, where the destination type is an
808 /// LLVM scalar type.
809 Value *ScalarExprEmitter::
EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,QualType SrcTy,QualType DstTy)810 EmitComplexToScalarConversion(CodeGenFunction::ComplexPairTy Src,
811 QualType SrcTy, QualType DstTy) {
812 // Get the source element type.
813 SrcTy = SrcTy->castAs<ComplexType>()->getElementType();
814
815 // Handle conversions to bool first, they are special: comparisons against 0.
816 if (DstTy->isBooleanType()) {
817 // Complex != 0 -> (Real != 0) | (Imag != 0)
818 Src.first = EmitScalarConversion(Src.first, SrcTy, DstTy);
819 Src.second = EmitScalarConversion(Src.second, SrcTy, DstTy);
820 return Builder.CreateOr(Src.first, Src.second, "tobool");
821 }
822
823 // C99 6.3.1.7p2: "When a value of complex type is converted to a real type,
824 // the imaginary part of the complex value is discarded and the value of the
825 // real part is converted according to the conversion rules for the
826 // corresponding real type.
827 return EmitScalarConversion(Src.first, SrcTy, DstTy);
828 }
829
EmitNullValue(QualType Ty)830 Value *ScalarExprEmitter::EmitNullValue(QualType Ty) {
831 return CGF.EmitFromMemory(CGF.CGM.EmitNullConstant(Ty), Ty);
832 }
833
834 /// \brief Emit a sanitization check for the given "binary" operation (which
835 /// might actually be a unary increment which has been lowered to a binary
836 /// operation). The check passes if \p Check, which is an \c i1, is \c true.
EmitBinOpCheck(Value * Check,const BinOpInfo & Info)837 void ScalarExprEmitter::EmitBinOpCheck(Value *Check, const BinOpInfo &Info) {
838 StringRef CheckName;
839 SmallVector<llvm::Constant *, 4> StaticData;
840 SmallVector<llvm::Value *, 2> DynamicData;
841
842 BinaryOperatorKind Opcode = Info.Opcode;
843 if (BinaryOperator::isCompoundAssignmentOp(Opcode))
844 Opcode = BinaryOperator::getOpForCompoundAssignment(Opcode);
845
846 StaticData.push_back(CGF.EmitCheckSourceLocation(Info.E->getExprLoc()));
847 const UnaryOperator *UO = dyn_cast<UnaryOperator>(Info.E);
848 if (UO && UO->getOpcode() == UO_Minus) {
849 CheckName = "negate_overflow";
850 StaticData.push_back(CGF.EmitCheckTypeDescriptor(UO->getType()));
851 DynamicData.push_back(Info.RHS);
852 } else {
853 if (BinaryOperator::isShiftOp(Opcode)) {
854 // Shift LHS negative or too large, or RHS out of bounds.
855 CheckName = "shift_out_of_bounds";
856 const BinaryOperator *BO = cast<BinaryOperator>(Info.E);
857 StaticData.push_back(
858 CGF.EmitCheckTypeDescriptor(BO->getLHS()->getType()));
859 StaticData.push_back(
860 CGF.EmitCheckTypeDescriptor(BO->getRHS()->getType()));
861 } else if (Opcode == BO_Div || Opcode == BO_Rem) {
862 // Divide or modulo by zero, or signed overflow (eg INT_MAX / -1).
863 CheckName = "divrem_overflow";
864 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
865 } else {
866 // Signed arithmetic overflow (+, -, *).
867 switch (Opcode) {
868 case BO_Add: CheckName = "add_overflow"; break;
869 case BO_Sub: CheckName = "sub_overflow"; break;
870 case BO_Mul: CheckName = "mul_overflow"; break;
871 default: llvm_unreachable("unexpected opcode for bin op check");
872 }
873 StaticData.push_back(CGF.EmitCheckTypeDescriptor(Info.Ty));
874 }
875 DynamicData.push_back(Info.LHS);
876 DynamicData.push_back(Info.RHS);
877 }
878
879 CGF.EmitCheck(Check, CheckName, StaticData, DynamicData,
880 CodeGenFunction::CRK_Recoverable);
881 }
882
883 //===----------------------------------------------------------------------===//
884 // Visitor Methods
885 //===----------------------------------------------------------------------===//
886
VisitExpr(Expr * E)887 Value *ScalarExprEmitter::VisitExpr(Expr *E) {
888 CGF.ErrorUnsupported(E, "scalar expression");
889 if (E->getType()->isVoidType())
890 return 0;
891 return llvm::UndefValue::get(CGF.ConvertType(E->getType()));
892 }
893
VisitShuffleVectorExpr(ShuffleVectorExpr * E)894 Value *ScalarExprEmitter::VisitShuffleVectorExpr(ShuffleVectorExpr *E) {
895 // Vector Mask Case
896 if (E->getNumSubExprs() == 2 ||
897 (E->getNumSubExprs() == 3 && E->getExpr(2)->getType()->isVectorType())) {
898 Value *LHS = CGF.EmitScalarExpr(E->getExpr(0));
899 Value *RHS = CGF.EmitScalarExpr(E->getExpr(1));
900 Value *Mask;
901
902 llvm::VectorType *LTy = cast<llvm::VectorType>(LHS->getType());
903 unsigned LHSElts = LTy->getNumElements();
904
905 if (E->getNumSubExprs() == 3) {
906 Mask = CGF.EmitScalarExpr(E->getExpr(2));
907
908 // Shuffle LHS & RHS into one input vector.
909 SmallVector<llvm::Constant*, 32> concat;
910 for (unsigned i = 0; i != LHSElts; ++i) {
911 concat.push_back(Builder.getInt32(2*i));
912 concat.push_back(Builder.getInt32(2*i+1));
913 }
914
915 Value* CV = llvm::ConstantVector::get(concat);
916 LHS = Builder.CreateShuffleVector(LHS, RHS, CV, "concat");
917 LHSElts *= 2;
918 } else {
919 Mask = RHS;
920 }
921
922 llvm::VectorType *MTy = cast<llvm::VectorType>(Mask->getType());
923 llvm::Constant* EltMask;
924
925 EltMask = llvm::ConstantInt::get(MTy->getElementType(),
926 llvm::NextPowerOf2(LHSElts-1)-1);
927
928 // Mask off the high bits of each shuffle index.
929 Value *MaskBits = llvm::ConstantVector::getSplat(MTy->getNumElements(),
930 EltMask);
931 Mask = Builder.CreateAnd(Mask, MaskBits, "mask");
932
933 // newv = undef
934 // mask = mask & maskbits
935 // for each elt
936 // n = extract mask i
937 // x = extract val n
938 // newv = insert newv, x, i
939 llvm::VectorType *RTy = llvm::VectorType::get(LTy->getElementType(),
940 MTy->getNumElements());
941 Value* NewV = llvm::UndefValue::get(RTy);
942 for (unsigned i = 0, e = MTy->getNumElements(); i != e; ++i) {
943 Value *IIndx = Builder.getInt32(i);
944 Value *Indx = Builder.CreateExtractElement(Mask, IIndx, "shuf_idx");
945 Indx = Builder.CreateZExt(Indx, CGF.Int32Ty, "idx_zext");
946
947 Value *VExt = Builder.CreateExtractElement(LHS, Indx, "shuf_elt");
948 NewV = Builder.CreateInsertElement(NewV, VExt, IIndx, "shuf_ins");
949 }
950 return NewV;
951 }
952
953 Value* V1 = CGF.EmitScalarExpr(E->getExpr(0));
954 Value* V2 = CGF.EmitScalarExpr(E->getExpr(1));
955
956 SmallVector<llvm::Constant*, 32> indices;
957 for (unsigned i = 2; i < E->getNumSubExprs(); ++i) {
958 llvm::APSInt Idx = E->getShuffleMaskIdx(CGF.getContext(), i-2);
959 // Check for -1 and output it as undef in the IR.
960 if (Idx.isSigned() && Idx.isAllOnesValue())
961 indices.push_back(llvm::UndefValue::get(CGF.Int32Ty));
962 else
963 indices.push_back(Builder.getInt32(Idx.getZExtValue()));
964 }
965
966 Value *SV = llvm::ConstantVector::get(indices);
967 return Builder.CreateShuffleVector(V1, V2, SV, "shuffle");
968 }
VisitMemberExpr(MemberExpr * E)969 Value *ScalarExprEmitter::VisitMemberExpr(MemberExpr *E) {
970 llvm::APSInt Value;
971 if (E->EvaluateAsInt(Value, CGF.getContext(), Expr::SE_AllowSideEffects)) {
972 if (E->isArrow())
973 CGF.EmitScalarExpr(E->getBase());
974 else
975 EmitLValue(E->getBase());
976 return Builder.getInt(Value);
977 }
978
979 return EmitLoadOfLValue(E);
980 }
981
VisitArraySubscriptExpr(ArraySubscriptExpr * E)982 Value *ScalarExprEmitter::VisitArraySubscriptExpr(ArraySubscriptExpr *E) {
983 TestAndClearIgnoreResultAssign();
984
985 // Emit subscript expressions in rvalue context's. For most cases, this just
986 // loads the lvalue formed by the subscript expr. However, we have to be
987 // careful, because the base of a vector subscript is occasionally an rvalue,
988 // so we can't get it as an lvalue.
989 if (!E->getBase()->getType()->isVectorType())
990 return EmitLoadOfLValue(E);
991
992 // Handle the vector case. The base must be a vector, the index must be an
993 // integer value.
994 Value *Base = Visit(E->getBase());
995 Value *Idx = Visit(E->getIdx());
996 QualType IdxTy = E->getIdx()->getType();
997
998 if (CGF.SanOpts->Bounds)
999 CGF.EmitBoundsCheck(E, E->getBase(), Idx, IdxTy, /*Accessed*/true);
1000
1001 bool IdxSigned = IdxTy->isSignedIntegerOrEnumerationType();
1002 Idx = Builder.CreateIntCast(Idx, CGF.Int32Ty, IdxSigned, "vecidxcast");
1003 return Builder.CreateExtractElement(Base, Idx, "vecext");
1004 }
1005
getMaskElt(llvm::ShuffleVectorInst * SVI,unsigned Idx,unsigned Off,llvm::Type * I32Ty)1006 static llvm::Constant *getMaskElt(llvm::ShuffleVectorInst *SVI, unsigned Idx,
1007 unsigned Off, llvm::Type *I32Ty) {
1008 int MV = SVI->getMaskValue(Idx);
1009 if (MV == -1)
1010 return llvm::UndefValue::get(I32Ty);
1011 return llvm::ConstantInt::get(I32Ty, Off+MV);
1012 }
1013
VisitInitListExpr(InitListExpr * E)1014 Value *ScalarExprEmitter::VisitInitListExpr(InitListExpr *E) {
1015 bool Ignore = TestAndClearIgnoreResultAssign();
1016 (void)Ignore;
1017 assert (Ignore == false && "init list ignored");
1018 unsigned NumInitElements = E->getNumInits();
1019
1020 if (E->hadArrayRangeDesignator())
1021 CGF.ErrorUnsupported(E, "GNU array range designator extension");
1022
1023 llvm::VectorType *VType =
1024 dyn_cast<llvm::VectorType>(ConvertType(E->getType()));
1025
1026 if (!VType) {
1027 if (NumInitElements == 0) {
1028 // C++11 value-initialization for the scalar.
1029 return EmitNullValue(E->getType());
1030 }
1031 // We have a scalar in braces. Just use the first element.
1032 return Visit(E->getInit(0));
1033 }
1034
1035 unsigned ResElts = VType->getNumElements();
1036
1037 // Loop over initializers collecting the Value for each, and remembering
1038 // whether the source was swizzle (ExtVectorElementExpr). This will allow
1039 // us to fold the shuffle for the swizzle into the shuffle for the vector
1040 // initializer, since LLVM optimizers generally do not want to touch
1041 // shuffles.
1042 unsigned CurIdx = 0;
1043 bool VIsUndefShuffle = false;
1044 llvm::Value *V = llvm::UndefValue::get(VType);
1045 for (unsigned i = 0; i != NumInitElements; ++i) {
1046 Expr *IE = E->getInit(i);
1047 Value *Init = Visit(IE);
1048 SmallVector<llvm::Constant*, 16> Args;
1049
1050 llvm::VectorType *VVT = dyn_cast<llvm::VectorType>(Init->getType());
1051
1052 // Handle scalar elements. If the scalar initializer is actually one
1053 // element of a different vector of the same width, use shuffle instead of
1054 // extract+insert.
1055 if (!VVT) {
1056 if (isa<ExtVectorElementExpr>(IE)) {
1057 llvm::ExtractElementInst *EI = cast<llvm::ExtractElementInst>(Init);
1058
1059 if (EI->getVectorOperandType()->getNumElements() == ResElts) {
1060 llvm::ConstantInt *C = cast<llvm::ConstantInt>(EI->getIndexOperand());
1061 Value *LHS = 0, *RHS = 0;
1062 if (CurIdx == 0) {
1063 // insert into undef -> shuffle (src, undef)
1064 Args.push_back(C);
1065 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1066
1067 LHS = EI->getVectorOperand();
1068 RHS = V;
1069 VIsUndefShuffle = true;
1070 } else if (VIsUndefShuffle) {
1071 // insert into undefshuffle && size match -> shuffle (v, src)
1072 llvm::ShuffleVectorInst *SVV = cast<llvm::ShuffleVectorInst>(V);
1073 for (unsigned j = 0; j != CurIdx; ++j)
1074 Args.push_back(getMaskElt(SVV, j, 0, CGF.Int32Ty));
1075 Args.push_back(Builder.getInt32(ResElts + C->getZExtValue()));
1076 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1077
1078 LHS = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1079 RHS = EI->getVectorOperand();
1080 VIsUndefShuffle = false;
1081 }
1082 if (!Args.empty()) {
1083 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1084 V = Builder.CreateShuffleVector(LHS, RHS, Mask);
1085 ++CurIdx;
1086 continue;
1087 }
1088 }
1089 }
1090 V = Builder.CreateInsertElement(V, Init, Builder.getInt32(CurIdx),
1091 "vecinit");
1092 VIsUndefShuffle = false;
1093 ++CurIdx;
1094 continue;
1095 }
1096
1097 unsigned InitElts = VVT->getNumElements();
1098
1099 // If the initializer is an ExtVecEltExpr (a swizzle), and the swizzle's
1100 // input is the same width as the vector being constructed, generate an
1101 // optimized shuffle of the swizzle input into the result.
1102 unsigned Offset = (CurIdx == 0) ? 0 : ResElts;
1103 if (isa<ExtVectorElementExpr>(IE)) {
1104 llvm::ShuffleVectorInst *SVI = cast<llvm::ShuffleVectorInst>(Init);
1105 Value *SVOp = SVI->getOperand(0);
1106 llvm::VectorType *OpTy = cast<llvm::VectorType>(SVOp->getType());
1107
1108 if (OpTy->getNumElements() == ResElts) {
1109 for (unsigned j = 0; j != CurIdx; ++j) {
1110 // If the current vector initializer is a shuffle with undef, merge
1111 // this shuffle directly into it.
1112 if (VIsUndefShuffle) {
1113 Args.push_back(getMaskElt(cast<llvm::ShuffleVectorInst>(V), j, 0,
1114 CGF.Int32Ty));
1115 } else {
1116 Args.push_back(Builder.getInt32(j));
1117 }
1118 }
1119 for (unsigned j = 0, je = InitElts; j != je; ++j)
1120 Args.push_back(getMaskElt(SVI, j, Offset, CGF.Int32Ty));
1121 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1122
1123 if (VIsUndefShuffle)
1124 V = cast<llvm::ShuffleVectorInst>(V)->getOperand(0);
1125
1126 Init = SVOp;
1127 }
1128 }
1129
1130 // Extend init to result vector length, and then shuffle its contribution
1131 // to the vector initializer into V.
1132 if (Args.empty()) {
1133 for (unsigned j = 0; j != InitElts; ++j)
1134 Args.push_back(Builder.getInt32(j));
1135 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1136 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1137 Init = Builder.CreateShuffleVector(Init, llvm::UndefValue::get(VVT),
1138 Mask, "vext");
1139
1140 Args.clear();
1141 for (unsigned j = 0; j != CurIdx; ++j)
1142 Args.push_back(Builder.getInt32(j));
1143 for (unsigned j = 0; j != InitElts; ++j)
1144 Args.push_back(Builder.getInt32(j+Offset));
1145 Args.resize(ResElts, llvm::UndefValue::get(CGF.Int32Ty));
1146 }
1147
1148 // If V is undef, make sure it ends up on the RHS of the shuffle to aid
1149 // merging subsequent shuffles into this one.
1150 if (CurIdx == 0)
1151 std::swap(V, Init);
1152 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
1153 V = Builder.CreateShuffleVector(V, Init, Mask, "vecinit");
1154 VIsUndefShuffle = isa<llvm::UndefValue>(Init);
1155 CurIdx += InitElts;
1156 }
1157
1158 // FIXME: evaluate codegen vs. shuffling against constant null vector.
1159 // Emit remaining default initializers.
1160 llvm::Type *EltTy = VType->getElementType();
1161
1162 // Emit remaining default initializers
1163 for (/* Do not initialize i*/; CurIdx < ResElts; ++CurIdx) {
1164 Value *Idx = Builder.getInt32(CurIdx);
1165 llvm::Value *Init = llvm::Constant::getNullValue(EltTy);
1166 V = Builder.CreateInsertElement(V, Init, Idx, "vecinit");
1167 }
1168 return V;
1169 }
1170
ShouldNullCheckClassCastValue(const CastExpr * CE)1171 static bool ShouldNullCheckClassCastValue(const CastExpr *CE) {
1172 const Expr *E = CE->getSubExpr();
1173
1174 if (CE->getCastKind() == CK_UncheckedDerivedToBase)
1175 return false;
1176
1177 if (isa<CXXThisExpr>(E)) {
1178 // We always assume that 'this' is never null.
1179 return false;
1180 }
1181
1182 if (const ImplicitCastExpr *ICE = dyn_cast<ImplicitCastExpr>(CE)) {
1183 // And that glvalue casts are never null.
1184 if (ICE->getValueKind() != VK_RValue)
1185 return false;
1186 }
1187
1188 return true;
1189 }
1190
1191 // VisitCastExpr - Emit code for an explicit or implicit cast. Implicit casts
1192 // have to handle a more broad range of conversions than explicit casts, as they
1193 // handle things like function to ptr-to-function decay etc.
VisitCastExpr(CastExpr * CE)1194 Value *ScalarExprEmitter::VisitCastExpr(CastExpr *CE) {
1195 Expr *E = CE->getSubExpr();
1196 QualType DestTy = CE->getType();
1197 CastKind Kind = CE->getCastKind();
1198
1199 if (!DestTy->isVoidType())
1200 TestAndClearIgnoreResultAssign();
1201
1202 // Since almost all cast kinds apply to scalars, this switch doesn't have
1203 // a default case, so the compiler will warn on a missing case. The cases
1204 // are in the same order as in the CastKind enum.
1205 switch (Kind) {
1206 case CK_Dependent: llvm_unreachable("dependent cast kind in IR gen!");
1207 case CK_BuiltinFnToFnPtr:
1208 llvm_unreachable("builtin functions are handled elsewhere");
1209
1210 case CK_LValueBitCast:
1211 case CK_ObjCObjectLValueCast: {
1212 Value *V = EmitLValue(E).getAddress();
1213 V = Builder.CreateBitCast(V,
1214 ConvertType(CGF.getContext().getPointerType(DestTy)));
1215 return EmitLoadOfLValue(CGF.MakeNaturalAlignAddrLValue(V, DestTy));
1216 }
1217
1218 case CK_CPointerToObjCPointerCast:
1219 case CK_BlockPointerToObjCPointerCast:
1220 case CK_AnyPointerToBlockPointerCast:
1221 case CK_BitCast: {
1222 Value *Src = Visit(const_cast<Expr*>(E));
1223 return Builder.CreateBitCast(Src, ConvertType(DestTy));
1224 }
1225 case CK_AtomicToNonAtomic:
1226 case CK_NonAtomicToAtomic:
1227 case CK_NoOp:
1228 case CK_UserDefinedConversion:
1229 return Visit(const_cast<Expr*>(E));
1230
1231 case CK_BaseToDerived: {
1232 const CXXRecordDecl *DerivedClassDecl = DestTy->getPointeeCXXRecordDecl();
1233 assert(DerivedClassDecl && "BaseToDerived arg isn't a C++ object pointer!");
1234
1235 llvm::Value *V = Visit(E);
1236
1237 // C++11 [expr.static.cast]p11: Behavior is undefined if a downcast is
1238 // performed and the object is not of the derived type.
1239 if (CGF.SanitizePerformTypeCheck)
1240 CGF.EmitTypeCheck(CodeGenFunction::TCK_DowncastPointer, CE->getExprLoc(),
1241 V, DestTy->getPointeeType());
1242
1243 return CGF.GetAddressOfDerivedClass(V, DerivedClassDecl,
1244 CE->path_begin(), CE->path_end(),
1245 ShouldNullCheckClassCastValue(CE));
1246 }
1247 case CK_UncheckedDerivedToBase:
1248 case CK_DerivedToBase: {
1249 const CXXRecordDecl *DerivedClassDecl =
1250 E->getType()->getPointeeCXXRecordDecl();
1251 assert(DerivedClassDecl && "DerivedToBase arg isn't a C++ object pointer!");
1252
1253 return CGF.GetAddressOfBaseClass(Visit(E), DerivedClassDecl,
1254 CE->path_begin(), CE->path_end(),
1255 ShouldNullCheckClassCastValue(CE));
1256 }
1257 case CK_Dynamic: {
1258 Value *V = Visit(const_cast<Expr*>(E));
1259 const CXXDynamicCastExpr *DCE = cast<CXXDynamicCastExpr>(CE);
1260 return CGF.EmitDynamicCast(V, DCE);
1261 }
1262
1263 case CK_ArrayToPointerDecay: {
1264 assert(E->getType()->isArrayType() &&
1265 "Array to pointer decay must have array source type!");
1266
1267 Value *V = EmitLValue(E).getAddress(); // Bitfields can't be arrays.
1268
1269 // Note that VLA pointers are always decayed, so we don't need to do
1270 // anything here.
1271 if (!E->getType()->isVariableArrayType()) {
1272 assert(isa<llvm::PointerType>(V->getType()) && "Expected pointer");
1273 assert(isa<llvm::ArrayType>(cast<llvm::PointerType>(V->getType())
1274 ->getElementType()) &&
1275 "Expected pointer to array");
1276 V = Builder.CreateStructGEP(V, 0, "arraydecay");
1277 }
1278
1279 // Make sure the array decay ends up being the right type. This matters if
1280 // the array type was of an incomplete type.
1281 return CGF.Builder.CreateBitCast(V, ConvertType(CE->getType()));
1282 }
1283 case CK_FunctionToPointerDecay:
1284 return EmitLValue(E).getAddress();
1285
1286 case CK_NullToPointer:
1287 if (MustVisitNullValue(E))
1288 (void) Visit(E);
1289
1290 return llvm::ConstantPointerNull::get(
1291 cast<llvm::PointerType>(ConvertType(DestTy)));
1292
1293 case CK_NullToMemberPointer: {
1294 if (MustVisitNullValue(E))
1295 (void) Visit(E);
1296
1297 const MemberPointerType *MPT = CE->getType()->getAs<MemberPointerType>();
1298 return CGF.CGM.getCXXABI().EmitNullMemberPointer(MPT);
1299 }
1300
1301 case CK_ReinterpretMemberPointer:
1302 case CK_BaseToDerivedMemberPointer:
1303 case CK_DerivedToBaseMemberPointer: {
1304 Value *Src = Visit(E);
1305
1306 // Note that the AST doesn't distinguish between checked and
1307 // unchecked member pointer conversions, so we always have to
1308 // implement checked conversions here. This is inefficient when
1309 // actual control flow may be required in order to perform the
1310 // check, which it is for data member pointers (but not member
1311 // function pointers on Itanium and ARM).
1312 return CGF.CGM.getCXXABI().EmitMemberPointerConversion(CGF, CE, Src);
1313 }
1314
1315 case CK_ARCProduceObject:
1316 return CGF.EmitARCRetainScalarExpr(E);
1317 case CK_ARCConsumeObject:
1318 return CGF.EmitObjCConsumeObject(E->getType(), Visit(E));
1319 case CK_ARCReclaimReturnedObject: {
1320 llvm::Value *value = Visit(E);
1321 value = CGF.EmitARCRetainAutoreleasedReturnValue(value);
1322 return CGF.EmitObjCConsumeObject(E->getType(), value);
1323 }
1324 case CK_ARCExtendBlockObject:
1325 return CGF.EmitARCExtendBlockObject(E);
1326
1327 case CK_CopyAndAutoreleaseBlockObject:
1328 return CGF.EmitBlockCopyAndAutorelease(Visit(E), E->getType());
1329
1330 case CK_FloatingRealToComplex:
1331 case CK_FloatingComplexCast:
1332 case CK_IntegralRealToComplex:
1333 case CK_IntegralComplexCast:
1334 case CK_IntegralComplexToFloatingComplex:
1335 case CK_FloatingComplexToIntegralComplex:
1336 case CK_ConstructorConversion:
1337 case CK_ToUnion:
1338 llvm_unreachable("scalar cast to non-scalar value");
1339
1340 case CK_LValueToRValue:
1341 assert(CGF.getContext().hasSameUnqualifiedType(E->getType(), DestTy));
1342 assert(E->isGLValue() && "lvalue-to-rvalue applied to r-value!");
1343 return Visit(const_cast<Expr*>(E));
1344
1345 case CK_IntegralToPointer: {
1346 Value *Src = Visit(const_cast<Expr*>(E));
1347
1348 // First, convert to the correct width so that we control the kind of
1349 // extension.
1350 llvm::Type *MiddleTy = CGF.IntPtrTy;
1351 bool InputSigned = E->getType()->isSignedIntegerOrEnumerationType();
1352 llvm::Value* IntResult =
1353 Builder.CreateIntCast(Src, MiddleTy, InputSigned, "conv");
1354
1355 return Builder.CreateIntToPtr(IntResult, ConvertType(DestTy));
1356 }
1357 case CK_PointerToIntegral:
1358 assert(!DestTy->isBooleanType() && "bool should use PointerToBool");
1359 return Builder.CreatePtrToInt(Visit(E), ConvertType(DestTy));
1360
1361 case CK_ToVoid: {
1362 CGF.EmitIgnoredExpr(E);
1363 return 0;
1364 }
1365 case CK_VectorSplat: {
1366 llvm::Type *DstTy = ConvertType(DestTy);
1367 Value *Elt = Visit(const_cast<Expr*>(E));
1368 Elt = EmitScalarConversion(Elt, E->getType(),
1369 DestTy->getAs<VectorType>()->getElementType());
1370
1371 // Splat the element across to all elements
1372 unsigned NumElements = cast<llvm::VectorType>(DstTy)->getNumElements();
1373 return Builder.CreateVectorSplat(NumElements, Elt, "splat");;
1374 }
1375
1376 case CK_IntegralCast:
1377 case CK_IntegralToFloating:
1378 case CK_FloatingToIntegral:
1379 case CK_FloatingCast:
1380 return EmitScalarConversion(Visit(E), E->getType(), DestTy);
1381 case CK_IntegralToBoolean:
1382 return EmitIntToBoolConversion(Visit(E));
1383 case CK_PointerToBoolean:
1384 return EmitPointerToBoolConversion(Visit(E));
1385 case CK_FloatingToBoolean:
1386 return EmitFloatToBoolConversion(Visit(E));
1387 case CK_MemberPointerToBoolean: {
1388 llvm::Value *MemPtr = Visit(E);
1389 const MemberPointerType *MPT = E->getType()->getAs<MemberPointerType>();
1390 return CGF.CGM.getCXXABI().EmitMemberPointerIsNotNull(CGF, MemPtr, MPT);
1391 }
1392
1393 case CK_FloatingComplexToReal:
1394 case CK_IntegralComplexToReal:
1395 return CGF.EmitComplexExpr(E, false, true).first;
1396
1397 case CK_FloatingComplexToBoolean:
1398 case CK_IntegralComplexToBoolean: {
1399 CodeGenFunction::ComplexPairTy V = CGF.EmitComplexExpr(E);
1400
1401 // TODO: kill this function off, inline appropriate case here
1402 return EmitComplexToScalarConversion(V, E->getType(), DestTy);
1403 }
1404
1405 case CK_ZeroToOCLEvent: {
1406 assert(DestTy->isEventT() && "CK_ZeroToOCLEvent cast on non event type");
1407 return llvm::Constant::getNullValue(ConvertType(DestTy));
1408 }
1409
1410 }
1411
1412 llvm_unreachable("unknown scalar cast");
1413 }
1414
VisitStmtExpr(const StmtExpr * E)1415 Value *ScalarExprEmitter::VisitStmtExpr(const StmtExpr *E) {
1416 CodeGenFunction::StmtExprEvaluation eval(CGF);
1417 llvm::Value *RetAlloca = CGF.EmitCompoundStmt(*E->getSubStmt(),
1418 !E->getType()->isVoidType());
1419 if (!RetAlloca)
1420 return 0;
1421 return CGF.EmitLoadOfScalar(CGF.MakeAddrLValue(RetAlloca, E->getType()));
1422
1423 }
1424
1425 //===----------------------------------------------------------------------===//
1426 // Unary Operators
1427 //===----------------------------------------------------------------------===//
1428
1429 llvm::Value *ScalarExprEmitter::
EmitAddConsiderOverflowBehavior(const UnaryOperator * E,llvm::Value * InVal,llvm::Value * NextVal,bool IsInc)1430 EmitAddConsiderOverflowBehavior(const UnaryOperator *E,
1431 llvm::Value *InVal,
1432 llvm::Value *NextVal, bool IsInc) {
1433 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
1434 case LangOptions::SOB_Defined:
1435 return Builder.CreateAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1436 case LangOptions::SOB_Undefined:
1437 if (!CGF.SanOpts->SignedIntegerOverflow)
1438 return Builder.CreateNSWAdd(InVal, NextVal, IsInc ? "inc" : "dec");
1439 // Fall through.
1440 case LangOptions::SOB_Trapping:
1441 BinOpInfo BinOp;
1442 BinOp.LHS = InVal;
1443 BinOp.RHS = NextVal;
1444 BinOp.Ty = E->getType();
1445 BinOp.Opcode = BO_Add;
1446 BinOp.FPContractable = false;
1447 BinOp.E = E;
1448 return EmitOverflowCheckedBinOp(BinOp);
1449 }
1450 llvm_unreachable("Unknown SignedOverflowBehaviorTy");
1451 }
1452
1453 llvm::Value *
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)1454 ScalarExprEmitter::EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
1455 bool isInc, bool isPre) {
1456
1457 QualType type = E->getSubExpr()->getType();
1458 llvm::PHINode *atomicPHI = 0;
1459 llvm::Value *value;
1460 llvm::Value *input;
1461
1462 int amount = (isInc ? 1 : -1);
1463
1464 if (const AtomicType *atomicTy = type->getAs<AtomicType>()) {
1465 type = atomicTy->getValueType();
1466 if (isInc && type->isBooleanType()) {
1467 llvm::Value *True = CGF.EmitToMemory(Builder.getTrue(), type);
1468 if (isPre) {
1469 Builder.Insert(new llvm::StoreInst(True,
1470 LV.getAddress(), LV.isVolatileQualified(),
1471 LV.getAlignment().getQuantity(),
1472 llvm::SequentiallyConsistent));
1473 return Builder.getTrue();
1474 }
1475 // For atomic bool increment, we just store true and return it for
1476 // preincrement, do an atomic swap with true for postincrement
1477 return Builder.CreateAtomicRMW(llvm::AtomicRMWInst::Xchg,
1478 LV.getAddress(), True, llvm::SequentiallyConsistent);
1479 }
1480 // Special case for atomic increment / decrement on integers, emit
1481 // atomicrmw instructions. We skip this if we want to be doing overflow
1482 // checking, and fall into the slow path with the atomic cmpxchg loop.
1483 if (!type->isBooleanType() && type->isIntegerType() &&
1484 !(type->isUnsignedIntegerType() &&
1485 CGF.SanOpts->UnsignedIntegerOverflow) &&
1486 CGF.getLangOpts().getSignedOverflowBehavior() !=
1487 LangOptions::SOB_Trapping) {
1488 llvm::AtomicRMWInst::BinOp aop = isInc ? llvm::AtomicRMWInst::Add :
1489 llvm::AtomicRMWInst::Sub;
1490 llvm::Instruction::BinaryOps op = isInc ? llvm::Instruction::Add :
1491 llvm::Instruction::Sub;
1492 llvm::Value *amt = CGF.EmitToMemory(
1493 llvm::ConstantInt::get(ConvertType(type), 1, true), type);
1494 llvm::Value *old = Builder.CreateAtomicRMW(aop,
1495 LV.getAddress(), amt, llvm::SequentiallyConsistent);
1496 return isPre ? Builder.CreateBinOp(op, old, amt) : old;
1497 }
1498 value = EmitLoadOfLValue(LV);
1499 input = value;
1500 // For every other atomic operation, we need to emit a load-op-cmpxchg loop
1501 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1502 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1503 value = CGF.EmitToMemory(value, type);
1504 Builder.CreateBr(opBB);
1505 Builder.SetInsertPoint(opBB);
1506 atomicPHI = Builder.CreatePHI(value->getType(), 2);
1507 atomicPHI->addIncoming(value, startBB);
1508 value = atomicPHI;
1509 } else {
1510 value = EmitLoadOfLValue(LV);
1511 input = value;
1512 }
1513
1514 // Special case of integer increment that we have to check first: bool++.
1515 // Due to promotion rules, we get:
1516 // bool++ -> bool = bool + 1
1517 // -> bool = (int)bool + 1
1518 // -> bool = ((int)bool + 1 != 0)
1519 // An interesting aspect of this is that increment is always true.
1520 // Decrement does not have this property.
1521 if (isInc && type->isBooleanType()) {
1522 value = Builder.getTrue();
1523
1524 // Most common case by far: integer increment.
1525 } else if (type->isIntegerType()) {
1526
1527 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount, true);
1528
1529 // Note that signed integer inc/dec with width less than int can't
1530 // overflow because of promotion rules; we're just eliding a few steps here.
1531 if (value->getType()->getPrimitiveSizeInBits() >=
1532 CGF.IntTy->getBitWidth() &&
1533 type->isSignedIntegerOrEnumerationType()) {
1534 value = EmitAddConsiderOverflowBehavior(E, value, amt, isInc);
1535 } else if (value->getType()->getPrimitiveSizeInBits() >=
1536 CGF.IntTy->getBitWidth() && type->isUnsignedIntegerType() &&
1537 CGF.SanOpts->UnsignedIntegerOverflow) {
1538 BinOpInfo BinOp;
1539 BinOp.LHS = value;
1540 BinOp.RHS = llvm::ConstantInt::get(value->getType(), 1, false);
1541 BinOp.Ty = E->getType();
1542 BinOp.Opcode = isInc ? BO_Add : BO_Sub;
1543 BinOp.FPContractable = false;
1544 BinOp.E = E;
1545 value = EmitOverflowCheckedBinOp(BinOp);
1546 } else
1547 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1548
1549 // Next most common: pointer increment.
1550 } else if (const PointerType *ptr = type->getAs<PointerType>()) {
1551 QualType type = ptr->getPointeeType();
1552
1553 // VLA types don't have constant size.
1554 if (const VariableArrayType *vla
1555 = CGF.getContext().getAsVariableArrayType(type)) {
1556 llvm::Value *numElts = CGF.getVLASize(vla).first;
1557 if (!isInc) numElts = Builder.CreateNSWNeg(numElts, "vla.negsize");
1558 if (CGF.getLangOpts().isSignedOverflowDefined())
1559 value = Builder.CreateGEP(value, numElts, "vla.inc");
1560 else
1561 value = Builder.CreateInBoundsGEP(value, numElts, "vla.inc");
1562
1563 // Arithmetic on function pointers (!) is just +-1.
1564 } else if (type->isFunctionType()) {
1565 llvm::Value *amt = Builder.getInt32(amount);
1566
1567 value = CGF.EmitCastToVoidPtr(value);
1568 if (CGF.getLangOpts().isSignedOverflowDefined())
1569 value = Builder.CreateGEP(value, amt, "incdec.funcptr");
1570 else
1571 value = Builder.CreateInBoundsGEP(value, amt, "incdec.funcptr");
1572 value = Builder.CreateBitCast(value, input->getType());
1573
1574 // For everything else, we can just do a simple increment.
1575 } else {
1576 llvm::Value *amt = Builder.getInt32(amount);
1577 if (CGF.getLangOpts().isSignedOverflowDefined())
1578 value = Builder.CreateGEP(value, amt, "incdec.ptr");
1579 else
1580 value = Builder.CreateInBoundsGEP(value, amt, "incdec.ptr");
1581 }
1582
1583 // Vector increment/decrement.
1584 } else if (type->isVectorType()) {
1585 if (type->hasIntegerRepresentation()) {
1586 llvm::Value *amt = llvm::ConstantInt::get(value->getType(), amount);
1587
1588 value = Builder.CreateAdd(value, amt, isInc ? "inc" : "dec");
1589 } else {
1590 value = Builder.CreateFAdd(
1591 value,
1592 llvm::ConstantFP::get(value->getType(), amount),
1593 isInc ? "inc" : "dec");
1594 }
1595
1596 // Floating point.
1597 } else if (type->isRealFloatingType()) {
1598 // Add the inc/dec to the real part.
1599 llvm::Value *amt;
1600
1601 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType) {
1602 // Another special case: half FP increment should be done via float
1603 value =
1604 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_from_fp16),
1605 input);
1606 }
1607
1608 if (value->getType()->isFloatTy())
1609 amt = llvm::ConstantFP::get(VMContext,
1610 llvm::APFloat(static_cast<float>(amount)));
1611 else if (value->getType()->isDoubleTy())
1612 amt = llvm::ConstantFP::get(VMContext,
1613 llvm::APFloat(static_cast<double>(amount)));
1614 else {
1615 llvm::APFloat F(static_cast<float>(amount));
1616 bool ignored;
1617 F.convert(CGF.getTarget().getLongDoubleFormat(),
1618 llvm::APFloat::rmTowardZero, &ignored);
1619 amt = llvm::ConstantFP::get(VMContext, F);
1620 }
1621 value = Builder.CreateFAdd(value, amt, isInc ? "inc" : "dec");
1622
1623 if (type->isHalfType() && !CGF.getContext().getLangOpts().NativeHalfType)
1624 value =
1625 Builder.CreateCall(CGF.CGM.getIntrinsic(llvm::Intrinsic::convert_to_fp16),
1626 value);
1627
1628 // Objective-C pointer types.
1629 } else {
1630 const ObjCObjectPointerType *OPT = type->castAs<ObjCObjectPointerType>();
1631 value = CGF.EmitCastToVoidPtr(value);
1632
1633 CharUnits size = CGF.getContext().getTypeSizeInChars(OPT->getObjectType());
1634 if (!isInc) size = -size;
1635 llvm::Value *sizeValue =
1636 llvm::ConstantInt::get(CGF.SizeTy, size.getQuantity());
1637
1638 if (CGF.getLangOpts().isSignedOverflowDefined())
1639 value = Builder.CreateGEP(value, sizeValue, "incdec.objptr");
1640 else
1641 value = Builder.CreateInBoundsGEP(value, sizeValue, "incdec.objptr");
1642 value = Builder.CreateBitCast(value, input->getType());
1643 }
1644
1645 if (atomicPHI) {
1646 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1647 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1648 llvm::Value *old = Builder.CreateAtomicCmpXchg(LV.getAddress(), atomicPHI,
1649 CGF.EmitToMemory(value, type), llvm::SequentiallyConsistent);
1650 atomicPHI->addIncoming(old, opBB);
1651 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1652 Builder.CreateCondBr(success, contBB, opBB);
1653 Builder.SetInsertPoint(contBB);
1654 return isPre ? value : input;
1655 }
1656
1657 // Store the updated result through the lvalue.
1658 if (LV.isBitField())
1659 CGF.EmitStoreThroughBitfieldLValue(RValue::get(value), LV, &value);
1660 else
1661 CGF.EmitStoreThroughLValue(RValue::get(value), LV);
1662
1663 // If this is a postinc, return the value read from memory, otherwise use the
1664 // updated value.
1665 return isPre ? value : input;
1666 }
1667
1668
1669
VisitUnaryMinus(const UnaryOperator * E)1670 Value *ScalarExprEmitter::VisitUnaryMinus(const UnaryOperator *E) {
1671 TestAndClearIgnoreResultAssign();
1672 // Emit unary minus with EmitSub so we handle overflow cases etc.
1673 BinOpInfo BinOp;
1674 BinOp.RHS = Visit(E->getSubExpr());
1675
1676 if (BinOp.RHS->getType()->isFPOrFPVectorTy())
1677 BinOp.LHS = llvm::ConstantFP::getZeroValueForNegation(BinOp.RHS->getType());
1678 else
1679 BinOp.LHS = llvm::Constant::getNullValue(BinOp.RHS->getType());
1680 BinOp.Ty = E->getType();
1681 BinOp.Opcode = BO_Sub;
1682 BinOp.FPContractable = false;
1683 BinOp.E = E;
1684 return EmitSub(BinOp);
1685 }
1686
VisitUnaryNot(const UnaryOperator * E)1687 Value *ScalarExprEmitter::VisitUnaryNot(const UnaryOperator *E) {
1688 TestAndClearIgnoreResultAssign();
1689 Value *Op = Visit(E->getSubExpr());
1690 return Builder.CreateNot(Op, "neg");
1691 }
1692
VisitUnaryLNot(const UnaryOperator * E)1693 Value *ScalarExprEmitter::VisitUnaryLNot(const UnaryOperator *E) {
1694 // Perform vector logical not on comparison with zero vector.
1695 if (E->getType()->isExtVectorType()) {
1696 Value *Oper = Visit(E->getSubExpr());
1697 Value *Zero = llvm::Constant::getNullValue(Oper->getType());
1698 Value *Result;
1699 if (Oper->getType()->isFPOrFPVectorTy())
1700 Result = Builder.CreateFCmp(llvm::CmpInst::FCMP_OEQ, Oper, Zero, "cmp");
1701 else
1702 Result = Builder.CreateICmp(llvm::CmpInst::ICMP_EQ, Oper, Zero, "cmp");
1703 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
1704 }
1705
1706 // Compare operand to zero.
1707 Value *BoolVal = CGF.EvaluateExprAsBool(E->getSubExpr());
1708
1709 // Invert value.
1710 // TODO: Could dynamically modify easy computations here. For example, if
1711 // the operand is an icmp ne, turn into icmp eq.
1712 BoolVal = Builder.CreateNot(BoolVal, "lnot");
1713
1714 // ZExt result to the expr type.
1715 return Builder.CreateZExt(BoolVal, ConvertType(E->getType()), "lnot.ext");
1716 }
1717
VisitOffsetOfExpr(OffsetOfExpr * E)1718 Value *ScalarExprEmitter::VisitOffsetOfExpr(OffsetOfExpr *E) {
1719 // Try folding the offsetof to a constant.
1720 llvm::APSInt Value;
1721 if (E->EvaluateAsInt(Value, CGF.getContext()))
1722 return Builder.getInt(Value);
1723
1724 // Loop over the components of the offsetof to compute the value.
1725 unsigned n = E->getNumComponents();
1726 llvm::Type* ResultType = ConvertType(E->getType());
1727 llvm::Value* Result = llvm::Constant::getNullValue(ResultType);
1728 QualType CurrentType = E->getTypeSourceInfo()->getType();
1729 for (unsigned i = 0; i != n; ++i) {
1730 OffsetOfExpr::OffsetOfNode ON = E->getComponent(i);
1731 llvm::Value *Offset = 0;
1732 switch (ON.getKind()) {
1733 case OffsetOfExpr::OffsetOfNode::Array: {
1734 // Compute the index
1735 Expr *IdxExpr = E->getIndexExpr(ON.getArrayExprIndex());
1736 llvm::Value* Idx = CGF.EmitScalarExpr(IdxExpr);
1737 bool IdxSigned = IdxExpr->getType()->isSignedIntegerOrEnumerationType();
1738 Idx = Builder.CreateIntCast(Idx, ResultType, IdxSigned, "conv");
1739
1740 // Save the element type
1741 CurrentType =
1742 CGF.getContext().getAsArrayType(CurrentType)->getElementType();
1743
1744 // Compute the element size
1745 llvm::Value* ElemSize = llvm::ConstantInt::get(ResultType,
1746 CGF.getContext().getTypeSizeInChars(CurrentType).getQuantity());
1747
1748 // Multiply out to compute the result
1749 Offset = Builder.CreateMul(Idx, ElemSize);
1750 break;
1751 }
1752
1753 case OffsetOfExpr::OffsetOfNode::Field: {
1754 FieldDecl *MemberDecl = ON.getField();
1755 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1756 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1757
1758 // Compute the index of the field in its parent.
1759 unsigned i = 0;
1760 // FIXME: It would be nice if we didn't have to loop here!
1761 for (RecordDecl::field_iterator Field = RD->field_begin(),
1762 FieldEnd = RD->field_end();
1763 Field != FieldEnd; ++Field, ++i) {
1764 if (*Field == MemberDecl)
1765 break;
1766 }
1767 assert(i < RL.getFieldCount() && "offsetof field in wrong type");
1768
1769 // Compute the offset to the field
1770 int64_t OffsetInt = RL.getFieldOffset(i) /
1771 CGF.getContext().getCharWidth();
1772 Offset = llvm::ConstantInt::get(ResultType, OffsetInt);
1773
1774 // Save the element type.
1775 CurrentType = MemberDecl->getType();
1776 break;
1777 }
1778
1779 case OffsetOfExpr::OffsetOfNode::Identifier:
1780 llvm_unreachable("dependent __builtin_offsetof");
1781
1782 case OffsetOfExpr::OffsetOfNode::Base: {
1783 if (ON.getBase()->isVirtual()) {
1784 CGF.ErrorUnsupported(E, "virtual base in offsetof");
1785 continue;
1786 }
1787
1788 RecordDecl *RD = CurrentType->getAs<RecordType>()->getDecl();
1789 const ASTRecordLayout &RL = CGF.getContext().getASTRecordLayout(RD);
1790
1791 // Save the element type.
1792 CurrentType = ON.getBase()->getType();
1793
1794 // Compute the offset to the base.
1795 const RecordType *BaseRT = CurrentType->getAs<RecordType>();
1796 CXXRecordDecl *BaseRD = cast<CXXRecordDecl>(BaseRT->getDecl());
1797 CharUnits OffsetInt = RL.getBaseClassOffset(BaseRD);
1798 Offset = llvm::ConstantInt::get(ResultType, OffsetInt.getQuantity());
1799 break;
1800 }
1801 }
1802 Result = Builder.CreateAdd(Result, Offset);
1803 }
1804 return Result;
1805 }
1806
1807 /// VisitUnaryExprOrTypeTraitExpr - Return the size or alignment of the type of
1808 /// argument of the sizeof expression as an integer.
1809 Value *
VisitUnaryExprOrTypeTraitExpr(const UnaryExprOrTypeTraitExpr * E)1810 ScalarExprEmitter::VisitUnaryExprOrTypeTraitExpr(
1811 const UnaryExprOrTypeTraitExpr *E) {
1812 QualType TypeToSize = E->getTypeOfArgument();
1813 if (E->getKind() == UETT_SizeOf) {
1814 if (const VariableArrayType *VAT =
1815 CGF.getContext().getAsVariableArrayType(TypeToSize)) {
1816 if (E->isArgumentType()) {
1817 // sizeof(type) - make sure to emit the VLA size.
1818 CGF.EmitVariablyModifiedType(TypeToSize);
1819 } else {
1820 // C99 6.5.3.4p2: If the argument is an expression of type
1821 // VLA, it is evaluated.
1822 CGF.EmitIgnoredExpr(E->getArgumentExpr());
1823 }
1824
1825 QualType eltType;
1826 llvm::Value *numElts;
1827 llvm::tie(numElts, eltType) = CGF.getVLASize(VAT);
1828
1829 llvm::Value *size = numElts;
1830
1831 // Scale the number of non-VLA elements by the non-VLA element size.
1832 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(eltType);
1833 if (!eltSize.isOne())
1834 size = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), numElts);
1835
1836 return size;
1837 }
1838 }
1839
1840 // If this isn't sizeof(vla), the result must be constant; use the constant
1841 // folding logic so we don't have to duplicate it here.
1842 return Builder.getInt(E->EvaluateKnownConstInt(CGF.getContext()));
1843 }
1844
VisitUnaryReal(const UnaryOperator * E)1845 Value *ScalarExprEmitter::VisitUnaryReal(const UnaryOperator *E) {
1846 Expr *Op = E->getSubExpr();
1847 if (Op->getType()->isAnyComplexType()) {
1848 // If it's an l-value, load through the appropriate subobject l-value.
1849 // Note that we have to ask E because Op might be an l-value that
1850 // this won't work for, e.g. an Obj-C property.
1851 if (E->isGLValue())
1852 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1853
1854 // Otherwise, calculate and project.
1855 return CGF.EmitComplexExpr(Op, false, true).first;
1856 }
1857
1858 return Visit(Op);
1859 }
1860
VisitUnaryImag(const UnaryOperator * E)1861 Value *ScalarExprEmitter::VisitUnaryImag(const UnaryOperator *E) {
1862 Expr *Op = E->getSubExpr();
1863 if (Op->getType()->isAnyComplexType()) {
1864 // If it's an l-value, load through the appropriate subobject l-value.
1865 // Note that we have to ask E because Op might be an l-value that
1866 // this won't work for, e.g. an Obj-C property.
1867 if (Op->isGLValue())
1868 return CGF.EmitLoadOfLValue(CGF.EmitLValue(E)).getScalarVal();
1869
1870 // Otherwise, calculate and project.
1871 return CGF.EmitComplexExpr(Op, true, false).second;
1872 }
1873
1874 // __imag on a scalar returns zero. Emit the subexpr to ensure side
1875 // effects are evaluated, but not the actual value.
1876 if (Op->isGLValue())
1877 CGF.EmitLValue(Op);
1878 else
1879 CGF.EmitScalarExpr(Op, true);
1880 return llvm::Constant::getNullValue(ConvertType(E->getType()));
1881 }
1882
1883 //===----------------------------------------------------------------------===//
1884 // Binary Operators
1885 //===----------------------------------------------------------------------===//
1886
EmitBinOps(const BinaryOperator * E)1887 BinOpInfo ScalarExprEmitter::EmitBinOps(const BinaryOperator *E) {
1888 TestAndClearIgnoreResultAssign();
1889 BinOpInfo Result;
1890 Result.LHS = Visit(E->getLHS());
1891 Result.RHS = Visit(E->getRHS());
1892 Result.Ty = E->getType();
1893 Result.Opcode = E->getOpcode();
1894 Result.FPContractable = E->isFPContractable();
1895 Result.E = E;
1896 return Result;
1897 }
1898
EmitCompoundAssignLValue(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &),Value * & Result)1899 LValue ScalarExprEmitter::EmitCompoundAssignLValue(
1900 const CompoundAssignOperator *E,
1901 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &),
1902 Value *&Result) {
1903 QualType LHSTy = E->getLHS()->getType();
1904 BinOpInfo OpInfo;
1905
1906 if (E->getComputationResultType()->isAnyComplexType())
1907 return CGF.EmitScalarCompooundAssignWithComplex(E, Result);
1908
1909 // Emit the RHS first. __block variables need to have the rhs evaluated
1910 // first, plus this should improve codegen a little.
1911 OpInfo.RHS = Visit(E->getRHS());
1912 OpInfo.Ty = E->getComputationResultType();
1913 OpInfo.Opcode = E->getOpcode();
1914 OpInfo.FPContractable = false;
1915 OpInfo.E = E;
1916 // Load/convert the LHS.
1917 LValue LHSLV = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
1918
1919 llvm::PHINode *atomicPHI = 0;
1920 if (const AtomicType *atomicTy = LHSTy->getAs<AtomicType>()) {
1921 QualType type = atomicTy->getValueType();
1922 if (!type->isBooleanType() && type->isIntegerType() &&
1923 !(type->isUnsignedIntegerType() &&
1924 CGF.SanOpts->UnsignedIntegerOverflow) &&
1925 CGF.getLangOpts().getSignedOverflowBehavior() !=
1926 LangOptions::SOB_Trapping) {
1927 llvm::AtomicRMWInst::BinOp aop = llvm::AtomicRMWInst::BAD_BINOP;
1928 switch (OpInfo.Opcode) {
1929 // We don't have atomicrmw operands for *, %, /, <<, >>
1930 case BO_MulAssign: case BO_DivAssign:
1931 case BO_RemAssign:
1932 case BO_ShlAssign:
1933 case BO_ShrAssign:
1934 break;
1935 case BO_AddAssign:
1936 aop = llvm::AtomicRMWInst::Add;
1937 break;
1938 case BO_SubAssign:
1939 aop = llvm::AtomicRMWInst::Sub;
1940 break;
1941 case BO_AndAssign:
1942 aop = llvm::AtomicRMWInst::And;
1943 break;
1944 case BO_XorAssign:
1945 aop = llvm::AtomicRMWInst::Xor;
1946 break;
1947 case BO_OrAssign:
1948 aop = llvm::AtomicRMWInst::Or;
1949 break;
1950 default:
1951 llvm_unreachable("Invalid compound assignment type");
1952 }
1953 if (aop != llvm::AtomicRMWInst::BAD_BINOP) {
1954 llvm::Value *amt = CGF.EmitToMemory(EmitScalarConversion(OpInfo.RHS,
1955 E->getRHS()->getType(), LHSTy), LHSTy);
1956 Builder.CreateAtomicRMW(aop, LHSLV.getAddress(), amt,
1957 llvm::SequentiallyConsistent);
1958 return LHSLV;
1959 }
1960 }
1961 // FIXME: For floating point types, we should be saving and restoring the
1962 // floating point environment in the loop.
1963 llvm::BasicBlock *startBB = Builder.GetInsertBlock();
1964 llvm::BasicBlock *opBB = CGF.createBasicBlock("atomic_op", CGF.CurFn);
1965 OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1966 OpInfo.LHS = CGF.EmitToMemory(OpInfo.LHS, type);
1967 Builder.CreateBr(opBB);
1968 Builder.SetInsertPoint(opBB);
1969 atomicPHI = Builder.CreatePHI(OpInfo.LHS->getType(), 2);
1970 atomicPHI->addIncoming(OpInfo.LHS, startBB);
1971 OpInfo.LHS = atomicPHI;
1972 }
1973 else
1974 OpInfo.LHS = EmitLoadOfLValue(LHSLV);
1975
1976 OpInfo.LHS = EmitScalarConversion(OpInfo.LHS, LHSTy,
1977 E->getComputationLHSType());
1978
1979 // Expand the binary operator.
1980 Result = (this->*Func)(OpInfo);
1981
1982 // Convert the result back to the LHS type.
1983 Result = EmitScalarConversion(Result, E->getComputationResultType(), LHSTy);
1984
1985 if (atomicPHI) {
1986 llvm::BasicBlock *opBB = Builder.GetInsertBlock();
1987 llvm::BasicBlock *contBB = CGF.createBasicBlock("atomic_cont", CGF.CurFn);
1988 llvm::Value *old = Builder.CreateAtomicCmpXchg(LHSLV.getAddress(), atomicPHI,
1989 CGF.EmitToMemory(Result, LHSTy), llvm::SequentiallyConsistent);
1990 atomicPHI->addIncoming(old, opBB);
1991 llvm::Value *success = Builder.CreateICmpEQ(old, atomicPHI);
1992 Builder.CreateCondBr(success, contBB, opBB);
1993 Builder.SetInsertPoint(contBB);
1994 return LHSLV;
1995 }
1996
1997 // Store the result value into the LHS lvalue. Bit-fields are handled
1998 // specially because the result is altered by the store, i.e., [C99 6.5.16p1]
1999 // 'An assignment expression has the value of the left operand after the
2000 // assignment...'.
2001 if (LHSLV.isBitField())
2002 CGF.EmitStoreThroughBitfieldLValue(RValue::get(Result), LHSLV, &Result);
2003 else
2004 CGF.EmitStoreThroughLValue(RValue::get(Result), LHSLV);
2005
2006 return LHSLV;
2007 }
2008
EmitCompoundAssign(const CompoundAssignOperator * E,Value * (ScalarExprEmitter::* Func)(const BinOpInfo &))2009 Value *ScalarExprEmitter::EmitCompoundAssign(const CompoundAssignOperator *E,
2010 Value *(ScalarExprEmitter::*Func)(const BinOpInfo &)) {
2011 bool Ignore = TestAndClearIgnoreResultAssign();
2012 Value *RHS;
2013 LValue LHS = EmitCompoundAssignLValue(E, Func, RHS);
2014
2015 // If the result is clearly ignored, return now.
2016 if (Ignore)
2017 return 0;
2018
2019 // The result of an assignment in C is the assigned r-value.
2020 if (!CGF.getLangOpts().CPlusPlus)
2021 return RHS;
2022
2023 // If the lvalue is non-volatile, return the computed value of the assignment.
2024 if (!LHS.isVolatileQualified())
2025 return RHS;
2026
2027 // Otherwise, reload the value.
2028 return EmitLoadOfLValue(LHS);
2029 }
2030
EmitUndefinedBehaviorIntegerDivAndRemCheck(const BinOpInfo & Ops,llvm::Value * Zero,bool isDiv)2031 void ScalarExprEmitter::EmitUndefinedBehaviorIntegerDivAndRemCheck(
2032 const BinOpInfo &Ops, llvm::Value *Zero, bool isDiv) {
2033 llvm::Value *Cond = 0;
2034
2035 if (CGF.SanOpts->IntegerDivideByZero)
2036 Cond = Builder.CreateICmpNE(Ops.RHS, Zero);
2037
2038 if (CGF.SanOpts->SignedIntegerOverflow &&
2039 Ops.Ty->hasSignedIntegerRepresentation()) {
2040 llvm::IntegerType *Ty = cast<llvm::IntegerType>(Zero->getType());
2041
2042 llvm::Value *IntMin =
2043 Builder.getInt(llvm::APInt::getSignedMinValue(Ty->getBitWidth()));
2044 llvm::Value *NegOne = llvm::ConstantInt::get(Ty, -1ULL);
2045
2046 llvm::Value *LHSCmp = Builder.CreateICmpNE(Ops.LHS, IntMin);
2047 llvm::Value *RHSCmp = Builder.CreateICmpNE(Ops.RHS, NegOne);
2048 llvm::Value *Overflow = Builder.CreateOr(LHSCmp, RHSCmp, "or");
2049 Cond = Cond ? Builder.CreateAnd(Cond, Overflow, "and") : Overflow;
2050 }
2051
2052 if (Cond)
2053 EmitBinOpCheck(Cond, Ops);
2054 }
2055
EmitDiv(const BinOpInfo & Ops)2056 Value *ScalarExprEmitter::EmitDiv(const BinOpInfo &Ops) {
2057 if ((CGF.SanOpts->IntegerDivideByZero ||
2058 CGF.SanOpts->SignedIntegerOverflow) &&
2059 Ops.Ty->isIntegerType()) {
2060 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2061 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, true);
2062 } else if (CGF.SanOpts->FloatDivideByZero &&
2063 Ops.Ty->isRealFloatingType()) {
2064 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2065 EmitBinOpCheck(Builder.CreateFCmpUNE(Ops.RHS, Zero), Ops);
2066 }
2067
2068 if (Ops.LHS->getType()->isFPOrFPVectorTy()) {
2069 llvm::Value *Val = Builder.CreateFDiv(Ops.LHS, Ops.RHS, "div");
2070 if (CGF.getLangOpts().OpenCL) {
2071 // OpenCL 1.1 7.4: minimum accuracy of single precision / is 2.5ulp
2072 llvm::Type *ValTy = Val->getType();
2073 if (ValTy->isFloatTy() ||
2074 (isa<llvm::VectorType>(ValTy) &&
2075 cast<llvm::VectorType>(ValTy)->getElementType()->isFloatTy()))
2076 CGF.SetFPAccuracy(Val, 2.5);
2077 }
2078 return Val;
2079 }
2080 else if (Ops.Ty->hasUnsignedIntegerRepresentation())
2081 return Builder.CreateUDiv(Ops.LHS, Ops.RHS, "div");
2082 else
2083 return Builder.CreateSDiv(Ops.LHS, Ops.RHS, "div");
2084 }
2085
EmitRem(const BinOpInfo & Ops)2086 Value *ScalarExprEmitter::EmitRem(const BinOpInfo &Ops) {
2087 // Rem in C can't be a floating point type: C99 6.5.5p2.
2088 if (CGF.SanOpts->IntegerDivideByZero) {
2089 llvm::Value *Zero = llvm::Constant::getNullValue(ConvertType(Ops.Ty));
2090
2091 if (Ops.Ty->isIntegerType())
2092 EmitUndefinedBehaviorIntegerDivAndRemCheck(Ops, Zero, false);
2093 }
2094
2095 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2096 return Builder.CreateURem(Ops.LHS, Ops.RHS, "rem");
2097 else
2098 return Builder.CreateSRem(Ops.LHS, Ops.RHS, "rem");
2099 }
2100
EmitOverflowCheckedBinOp(const BinOpInfo & Ops)2101 Value *ScalarExprEmitter::EmitOverflowCheckedBinOp(const BinOpInfo &Ops) {
2102 unsigned IID;
2103 unsigned OpID = 0;
2104
2105 bool isSigned = Ops.Ty->isSignedIntegerOrEnumerationType();
2106 switch (Ops.Opcode) {
2107 case BO_Add:
2108 case BO_AddAssign:
2109 OpID = 1;
2110 IID = isSigned ? llvm::Intrinsic::sadd_with_overflow :
2111 llvm::Intrinsic::uadd_with_overflow;
2112 break;
2113 case BO_Sub:
2114 case BO_SubAssign:
2115 OpID = 2;
2116 IID = isSigned ? llvm::Intrinsic::ssub_with_overflow :
2117 llvm::Intrinsic::usub_with_overflow;
2118 break;
2119 case BO_Mul:
2120 case BO_MulAssign:
2121 OpID = 3;
2122 IID = isSigned ? llvm::Intrinsic::smul_with_overflow :
2123 llvm::Intrinsic::umul_with_overflow;
2124 break;
2125 default:
2126 llvm_unreachable("Unsupported operation for overflow detection");
2127 }
2128 OpID <<= 1;
2129 if (isSigned)
2130 OpID |= 1;
2131
2132 llvm::Type *opTy = CGF.CGM.getTypes().ConvertType(Ops.Ty);
2133
2134 llvm::Function *intrinsic = CGF.CGM.getIntrinsic(IID, opTy);
2135
2136 Value *resultAndOverflow = Builder.CreateCall2(intrinsic, Ops.LHS, Ops.RHS);
2137 Value *result = Builder.CreateExtractValue(resultAndOverflow, 0);
2138 Value *overflow = Builder.CreateExtractValue(resultAndOverflow, 1);
2139
2140 // Handle overflow with llvm.trap if no custom handler has been specified.
2141 const std::string *handlerName =
2142 &CGF.getLangOpts().OverflowHandler;
2143 if (handlerName->empty()) {
2144 // If the signed-integer-overflow sanitizer is enabled, emit a call to its
2145 // runtime. Otherwise, this is a -ftrapv check, so just emit a trap.
2146 if (!isSigned || CGF.SanOpts->SignedIntegerOverflow)
2147 EmitBinOpCheck(Builder.CreateNot(overflow), Ops);
2148 else
2149 CGF.EmitTrapCheck(Builder.CreateNot(overflow));
2150 return result;
2151 }
2152
2153 // Branch in case of overflow.
2154 llvm::BasicBlock *initialBB = Builder.GetInsertBlock();
2155 llvm::Function::iterator insertPt = initialBB;
2156 llvm::BasicBlock *continueBB = CGF.createBasicBlock("nooverflow", CGF.CurFn,
2157 llvm::next(insertPt));
2158 llvm::BasicBlock *overflowBB = CGF.createBasicBlock("overflow", CGF.CurFn);
2159
2160 Builder.CreateCondBr(overflow, overflowBB, continueBB);
2161
2162 // If an overflow handler is set, then we want to call it and then use its
2163 // result, if it returns.
2164 Builder.SetInsertPoint(overflowBB);
2165
2166 // Get the overflow handler.
2167 llvm::Type *Int8Ty = CGF.Int8Ty;
2168 llvm::Type *argTypes[] = { CGF.Int64Ty, CGF.Int64Ty, Int8Ty, Int8Ty };
2169 llvm::FunctionType *handlerTy =
2170 llvm::FunctionType::get(CGF.Int64Ty, argTypes, true);
2171 llvm::Value *handler = CGF.CGM.CreateRuntimeFunction(handlerTy, *handlerName);
2172
2173 // Sign extend the args to 64-bit, so that we can use the same handler for
2174 // all types of overflow.
2175 llvm::Value *lhs = Builder.CreateSExt(Ops.LHS, CGF.Int64Ty);
2176 llvm::Value *rhs = Builder.CreateSExt(Ops.RHS, CGF.Int64Ty);
2177
2178 // Call the handler with the two arguments, the operation, and the size of
2179 // the result.
2180 llvm::Value *handlerArgs[] = {
2181 lhs,
2182 rhs,
2183 Builder.getInt8(OpID),
2184 Builder.getInt8(cast<llvm::IntegerType>(opTy)->getBitWidth())
2185 };
2186 llvm::Value *handlerResult =
2187 CGF.EmitNounwindRuntimeCall(handler, handlerArgs);
2188
2189 // Truncate the result back to the desired size.
2190 handlerResult = Builder.CreateTrunc(handlerResult, opTy);
2191 Builder.CreateBr(continueBB);
2192
2193 Builder.SetInsertPoint(continueBB);
2194 llvm::PHINode *phi = Builder.CreatePHI(opTy, 2);
2195 phi->addIncoming(result, initialBB);
2196 phi->addIncoming(handlerResult, overflowBB);
2197
2198 return phi;
2199 }
2200
2201 /// Emit pointer + index arithmetic.
emitPointerArithmetic(CodeGenFunction & CGF,const BinOpInfo & op,bool isSubtraction)2202 static Value *emitPointerArithmetic(CodeGenFunction &CGF,
2203 const BinOpInfo &op,
2204 bool isSubtraction) {
2205 // Must have binary (not unary) expr here. Unary pointer
2206 // increment/decrement doesn't use this path.
2207 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2208
2209 Value *pointer = op.LHS;
2210 Expr *pointerOperand = expr->getLHS();
2211 Value *index = op.RHS;
2212 Expr *indexOperand = expr->getRHS();
2213
2214 // In a subtraction, the LHS is always the pointer.
2215 if (!isSubtraction && !pointer->getType()->isPointerTy()) {
2216 std::swap(pointer, index);
2217 std::swap(pointerOperand, indexOperand);
2218 }
2219
2220 unsigned width = cast<llvm::IntegerType>(index->getType())->getBitWidth();
2221 if (width != CGF.PointerWidthInBits) {
2222 // Zero-extend or sign-extend the pointer value according to
2223 // whether the index is signed or not.
2224 bool isSigned = indexOperand->getType()->isSignedIntegerOrEnumerationType();
2225 index = CGF.Builder.CreateIntCast(index, CGF.PtrDiffTy, isSigned,
2226 "idx.ext");
2227 }
2228
2229 // If this is subtraction, negate the index.
2230 if (isSubtraction)
2231 index = CGF.Builder.CreateNeg(index, "idx.neg");
2232
2233 if (CGF.SanOpts->Bounds)
2234 CGF.EmitBoundsCheck(op.E, pointerOperand, index, indexOperand->getType(),
2235 /*Accessed*/ false);
2236
2237 const PointerType *pointerType
2238 = pointerOperand->getType()->getAs<PointerType>();
2239 if (!pointerType) {
2240 QualType objectType = pointerOperand->getType()
2241 ->castAs<ObjCObjectPointerType>()
2242 ->getPointeeType();
2243 llvm::Value *objectSize
2244 = CGF.CGM.getSize(CGF.getContext().getTypeSizeInChars(objectType));
2245
2246 index = CGF.Builder.CreateMul(index, objectSize);
2247
2248 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2249 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2250 return CGF.Builder.CreateBitCast(result, pointer->getType());
2251 }
2252
2253 QualType elementType = pointerType->getPointeeType();
2254 if (const VariableArrayType *vla
2255 = CGF.getContext().getAsVariableArrayType(elementType)) {
2256 // The element count here is the total number of non-VLA elements.
2257 llvm::Value *numElements = CGF.getVLASize(vla).first;
2258
2259 // Effectively, the multiply by the VLA size is part of the GEP.
2260 // GEP indexes are signed, and scaling an index isn't permitted to
2261 // signed-overflow, so we use the same semantics for our explicit
2262 // multiply. We suppress this if overflow is not undefined behavior.
2263 if (CGF.getLangOpts().isSignedOverflowDefined()) {
2264 index = CGF.Builder.CreateMul(index, numElements, "vla.index");
2265 pointer = CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2266 } else {
2267 index = CGF.Builder.CreateNSWMul(index, numElements, "vla.index");
2268 pointer = CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2269 }
2270 return pointer;
2271 }
2272
2273 // Explicitly handle GNU void* and function pointer arithmetic extensions. The
2274 // GNU void* casts amount to no-ops since our void* type is i8*, but this is
2275 // future proof.
2276 if (elementType->isVoidType() || elementType->isFunctionType()) {
2277 Value *result = CGF.Builder.CreateBitCast(pointer, CGF.VoidPtrTy);
2278 result = CGF.Builder.CreateGEP(result, index, "add.ptr");
2279 return CGF.Builder.CreateBitCast(result, pointer->getType());
2280 }
2281
2282 if (CGF.getLangOpts().isSignedOverflowDefined())
2283 return CGF.Builder.CreateGEP(pointer, index, "add.ptr");
2284
2285 return CGF.Builder.CreateInBoundsGEP(pointer, index, "add.ptr");
2286 }
2287
2288 // Construct an fmuladd intrinsic to represent a fused mul-add of MulOp and
2289 // Addend. Use negMul and negAdd to negate the first operand of the Mul or
2290 // the add operand respectively. This allows fmuladd to represent a*b-c, or
2291 // c-a*b. Patterns in LLVM should catch the negated forms and translate them to
2292 // efficient operations.
buildFMulAdd(llvm::BinaryOperator * MulOp,Value * Addend,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool negMul,bool negAdd)2293 static Value* buildFMulAdd(llvm::BinaryOperator *MulOp, Value *Addend,
2294 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2295 bool negMul, bool negAdd) {
2296 assert(!(negMul && negAdd) && "Only one of negMul and negAdd should be set.");
2297
2298 Value *MulOp0 = MulOp->getOperand(0);
2299 Value *MulOp1 = MulOp->getOperand(1);
2300 if (negMul) {
2301 MulOp0 =
2302 Builder.CreateFSub(
2303 llvm::ConstantFP::getZeroValueForNegation(MulOp0->getType()), MulOp0,
2304 "neg");
2305 } else if (negAdd) {
2306 Addend =
2307 Builder.CreateFSub(
2308 llvm::ConstantFP::getZeroValueForNegation(Addend->getType()), Addend,
2309 "neg");
2310 }
2311
2312 Value *FMulAdd =
2313 Builder.CreateCall3(
2314 CGF.CGM.getIntrinsic(llvm::Intrinsic::fmuladd, Addend->getType()),
2315 MulOp0, MulOp1, Addend);
2316 MulOp->eraseFromParent();
2317
2318 return FMulAdd;
2319 }
2320
2321 // Check whether it would be legal to emit an fmuladd intrinsic call to
2322 // represent op and if so, build the fmuladd.
2323 //
2324 // Checks that (a) the operation is fusable, and (b) -ffp-contract=on.
2325 // Does NOT check the type of the operation - it's assumed that this function
2326 // will be called from contexts where it's known that the type is contractable.
tryEmitFMulAdd(const BinOpInfo & op,const CodeGenFunction & CGF,CGBuilderTy & Builder,bool isSub=false)2327 static Value* tryEmitFMulAdd(const BinOpInfo &op,
2328 const CodeGenFunction &CGF, CGBuilderTy &Builder,
2329 bool isSub=false) {
2330
2331 assert((op.Opcode == BO_Add || op.Opcode == BO_AddAssign ||
2332 op.Opcode == BO_Sub || op.Opcode == BO_SubAssign) &&
2333 "Only fadd/fsub can be the root of an fmuladd.");
2334
2335 // Check whether this op is marked as fusable.
2336 if (!op.FPContractable)
2337 return 0;
2338
2339 // Check whether -ffp-contract=on. (If -ffp-contract=off/fast, fusing is
2340 // either disabled, or handled entirely by the LLVM backend).
2341 if (CGF.CGM.getCodeGenOpts().getFPContractMode() != CodeGenOptions::FPC_On)
2342 return 0;
2343
2344 // We have a potentially fusable op. Look for a mul on one of the operands.
2345 if (llvm::BinaryOperator* LHSBinOp = dyn_cast<llvm::BinaryOperator>(op.LHS)) {
2346 if (LHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2347 assert(LHSBinOp->getNumUses() == 0 &&
2348 "Operations with multiple uses shouldn't be contracted.");
2349 return buildFMulAdd(LHSBinOp, op.RHS, CGF, Builder, false, isSub);
2350 }
2351 } else if (llvm::BinaryOperator* RHSBinOp =
2352 dyn_cast<llvm::BinaryOperator>(op.RHS)) {
2353 if (RHSBinOp->getOpcode() == llvm::Instruction::FMul) {
2354 assert(RHSBinOp->getNumUses() == 0 &&
2355 "Operations with multiple uses shouldn't be contracted.");
2356 return buildFMulAdd(RHSBinOp, op.LHS, CGF, Builder, isSub, false);
2357 }
2358 }
2359
2360 return 0;
2361 }
2362
EmitAdd(const BinOpInfo & op)2363 Value *ScalarExprEmitter::EmitAdd(const BinOpInfo &op) {
2364 if (op.LHS->getType()->isPointerTy() ||
2365 op.RHS->getType()->isPointerTy())
2366 return emitPointerArithmetic(CGF, op, /*subtraction*/ false);
2367
2368 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2369 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2370 case LangOptions::SOB_Defined:
2371 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2372 case LangOptions::SOB_Undefined:
2373 if (!CGF.SanOpts->SignedIntegerOverflow)
2374 return Builder.CreateNSWAdd(op.LHS, op.RHS, "add");
2375 // Fall through.
2376 case LangOptions::SOB_Trapping:
2377 return EmitOverflowCheckedBinOp(op);
2378 }
2379 }
2380
2381 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2382 return EmitOverflowCheckedBinOp(op);
2383
2384 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2385 // Try to form an fmuladd.
2386 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder))
2387 return FMulAdd;
2388
2389 return Builder.CreateFAdd(op.LHS, op.RHS, "add");
2390 }
2391
2392 return Builder.CreateAdd(op.LHS, op.RHS, "add");
2393 }
2394
EmitSub(const BinOpInfo & op)2395 Value *ScalarExprEmitter::EmitSub(const BinOpInfo &op) {
2396 // The LHS is always a pointer if either side is.
2397 if (!op.LHS->getType()->isPointerTy()) {
2398 if (op.Ty->isSignedIntegerOrEnumerationType()) {
2399 switch (CGF.getLangOpts().getSignedOverflowBehavior()) {
2400 case LangOptions::SOB_Defined:
2401 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2402 case LangOptions::SOB_Undefined:
2403 if (!CGF.SanOpts->SignedIntegerOverflow)
2404 return Builder.CreateNSWSub(op.LHS, op.RHS, "sub");
2405 // Fall through.
2406 case LangOptions::SOB_Trapping:
2407 return EmitOverflowCheckedBinOp(op);
2408 }
2409 }
2410
2411 if (op.Ty->isUnsignedIntegerType() && CGF.SanOpts->UnsignedIntegerOverflow)
2412 return EmitOverflowCheckedBinOp(op);
2413
2414 if (op.LHS->getType()->isFPOrFPVectorTy()) {
2415 // Try to form an fmuladd.
2416 if (Value *FMulAdd = tryEmitFMulAdd(op, CGF, Builder, true))
2417 return FMulAdd;
2418 return Builder.CreateFSub(op.LHS, op.RHS, "sub");
2419 }
2420
2421 return Builder.CreateSub(op.LHS, op.RHS, "sub");
2422 }
2423
2424 // If the RHS is not a pointer, then we have normal pointer
2425 // arithmetic.
2426 if (!op.RHS->getType()->isPointerTy())
2427 return emitPointerArithmetic(CGF, op, /*subtraction*/ true);
2428
2429 // Otherwise, this is a pointer subtraction.
2430
2431 // Do the raw subtraction part.
2432 llvm::Value *LHS
2433 = Builder.CreatePtrToInt(op.LHS, CGF.PtrDiffTy, "sub.ptr.lhs.cast");
2434 llvm::Value *RHS
2435 = Builder.CreatePtrToInt(op.RHS, CGF.PtrDiffTy, "sub.ptr.rhs.cast");
2436 Value *diffInChars = Builder.CreateSub(LHS, RHS, "sub.ptr.sub");
2437
2438 // Okay, figure out the element size.
2439 const BinaryOperator *expr = cast<BinaryOperator>(op.E);
2440 QualType elementType = expr->getLHS()->getType()->getPointeeType();
2441
2442 llvm::Value *divisor = 0;
2443
2444 // For a variable-length array, this is going to be non-constant.
2445 if (const VariableArrayType *vla
2446 = CGF.getContext().getAsVariableArrayType(elementType)) {
2447 llvm::Value *numElements;
2448 llvm::tie(numElements, elementType) = CGF.getVLASize(vla);
2449
2450 divisor = numElements;
2451
2452 // Scale the number of non-VLA elements by the non-VLA element size.
2453 CharUnits eltSize = CGF.getContext().getTypeSizeInChars(elementType);
2454 if (!eltSize.isOne())
2455 divisor = CGF.Builder.CreateNUWMul(CGF.CGM.getSize(eltSize), divisor);
2456
2457 // For everything elese, we can just compute it, safe in the
2458 // assumption that Sema won't let anything through that we can't
2459 // safely compute the size of.
2460 } else {
2461 CharUnits elementSize;
2462 // Handle GCC extension for pointer arithmetic on void* and
2463 // function pointer types.
2464 if (elementType->isVoidType() || elementType->isFunctionType())
2465 elementSize = CharUnits::One();
2466 else
2467 elementSize = CGF.getContext().getTypeSizeInChars(elementType);
2468
2469 // Don't even emit the divide for element size of 1.
2470 if (elementSize.isOne())
2471 return diffInChars;
2472
2473 divisor = CGF.CGM.getSize(elementSize);
2474 }
2475
2476 // Otherwise, do a full sdiv. This uses the "exact" form of sdiv, since
2477 // pointer difference in C is only defined in the case where both operands
2478 // are pointing to elements of an array.
2479 return Builder.CreateExactSDiv(diffInChars, divisor, "sub.ptr.div");
2480 }
2481
GetWidthMinusOneValue(Value * LHS,Value * RHS)2482 Value *ScalarExprEmitter::GetWidthMinusOneValue(Value* LHS,Value* RHS) {
2483 llvm::IntegerType *Ty;
2484 if (llvm::VectorType *VT = dyn_cast<llvm::VectorType>(LHS->getType()))
2485 Ty = cast<llvm::IntegerType>(VT->getElementType());
2486 else
2487 Ty = cast<llvm::IntegerType>(LHS->getType());
2488 return llvm::ConstantInt::get(RHS->getType(), Ty->getBitWidth() - 1);
2489 }
2490
EmitShl(const BinOpInfo & Ops)2491 Value *ScalarExprEmitter::EmitShl(const BinOpInfo &Ops) {
2492 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2493 // RHS to the same size as the LHS.
2494 Value *RHS = Ops.RHS;
2495 if (Ops.LHS->getType() != RHS->getType())
2496 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2497
2498 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2499 isa<llvm::IntegerType>(Ops.LHS->getType())) {
2500 llvm::Value *WidthMinusOne = GetWidthMinusOneValue(Ops.LHS, RHS);
2501 llvm::Value *Valid = Builder.CreateICmpULE(RHS, WidthMinusOne);
2502
2503 if (Ops.Ty->hasSignedIntegerRepresentation()) {
2504 llvm::BasicBlock *Orig = Builder.GetInsertBlock();
2505 llvm::BasicBlock *Cont = CGF.createBasicBlock("cont");
2506 llvm::BasicBlock *CheckBitsShifted = CGF.createBasicBlock("check");
2507 Builder.CreateCondBr(Valid, CheckBitsShifted, Cont);
2508
2509 // Check whether we are shifting any non-zero bits off the top of the
2510 // integer.
2511 CGF.EmitBlock(CheckBitsShifted);
2512 llvm::Value *BitsShiftedOff =
2513 Builder.CreateLShr(Ops.LHS,
2514 Builder.CreateSub(WidthMinusOne, RHS, "shl.zeros",
2515 /*NUW*/true, /*NSW*/true),
2516 "shl.check");
2517 if (CGF.getLangOpts().CPlusPlus) {
2518 // In C99, we are not permitted to shift a 1 bit into the sign bit.
2519 // Under C++11's rules, shifting a 1 bit into the sign bit is
2520 // OK, but shifting a 1 bit out of it is not. (C89 and C++03 don't
2521 // define signed left shifts, so we use the C99 and C++11 rules there).
2522 llvm::Value *One = llvm::ConstantInt::get(BitsShiftedOff->getType(), 1);
2523 BitsShiftedOff = Builder.CreateLShr(BitsShiftedOff, One);
2524 }
2525 llvm::Value *Zero = llvm::ConstantInt::get(BitsShiftedOff->getType(), 0);
2526 llvm::Value *SecondCheck = Builder.CreateICmpEQ(BitsShiftedOff, Zero);
2527 CGF.EmitBlock(Cont);
2528 llvm::PHINode *P = Builder.CreatePHI(Valid->getType(), 2);
2529 P->addIncoming(Valid, Orig);
2530 P->addIncoming(SecondCheck, CheckBitsShifted);
2531 Valid = P;
2532 }
2533
2534 EmitBinOpCheck(Valid, Ops);
2535 }
2536 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2537 if (CGF.getLangOpts().OpenCL)
2538 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shl.mask");
2539
2540 return Builder.CreateShl(Ops.LHS, RHS, "shl");
2541 }
2542
EmitShr(const BinOpInfo & Ops)2543 Value *ScalarExprEmitter::EmitShr(const BinOpInfo &Ops) {
2544 // LLVM requires the LHS and RHS to be the same type: promote or truncate the
2545 // RHS to the same size as the LHS.
2546 Value *RHS = Ops.RHS;
2547 if (Ops.LHS->getType() != RHS->getType())
2548 RHS = Builder.CreateIntCast(RHS, Ops.LHS->getType(), false, "sh_prom");
2549
2550 if (CGF.SanOpts->Shift && !CGF.getLangOpts().OpenCL &&
2551 isa<llvm::IntegerType>(Ops.LHS->getType()))
2552 EmitBinOpCheck(Builder.CreateICmpULE(RHS, GetWidthMinusOneValue(Ops.LHS, RHS)), Ops);
2553
2554 // OpenCL 6.3j: shift values are effectively % word size of LHS.
2555 if (CGF.getLangOpts().OpenCL)
2556 RHS = Builder.CreateAnd(RHS, GetWidthMinusOneValue(Ops.LHS, RHS), "shr.mask");
2557
2558 if (Ops.Ty->hasUnsignedIntegerRepresentation())
2559 return Builder.CreateLShr(Ops.LHS, RHS, "shr");
2560 return Builder.CreateAShr(Ops.LHS, RHS, "shr");
2561 }
2562
2563 enum IntrinsicType { VCMPEQ, VCMPGT };
2564 // return corresponding comparison intrinsic for given vector type
GetIntrinsic(IntrinsicType IT,BuiltinType::Kind ElemKind)2565 static llvm::Intrinsic::ID GetIntrinsic(IntrinsicType IT,
2566 BuiltinType::Kind ElemKind) {
2567 switch (ElemKind) {
2568 default: llvm_unreachable("unexpected element type");
2569 case BuiltinType::Char_U:
2570 case BuiltinType::UChar:
2571 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2572 llvm::Intrinsic::ppc_altivec_vcmpgtub_p;
2573 case BuiltinType::Char_S:
2574 case BuiltinType::SChar:
2575 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequb_p :
2576 llvm::Intrinsic::ppc_altivec_vcmpgtsb_p;
2577 case BuiltinType::UShort:
2578 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2579 llvm::Intrinsic::ppc_altivec_vcmpgtuh_p;
2580 case BuiltinType::Short:
2581 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequh_p :
2582 llvm::Intrinsic::ppc_altivec_vcmpgtsh_p;
2583 case BuiltinType::UInt:
2584 case BuiltinType::ULong:
2585 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2586 llvm::Intrinsic::ppc_altivec_vcmpgtuw_p;
2587 case BuiltinType::Int:
2588 case BuiltinType::Long:
2589 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpequw_p :
2590 llvm::Intrinsic::ppc_altivec_vcmpgtsw_p;
2591 case BuiltinType::Float:
2592 return (IT == VCMPEQ) ? llvm::Intrinsic::ppc_altivec_vcmpeqfp_p :
2593 llvm::Intrinsic::ppc_altivec_vcmpgtfp_p;
2594 }
2595 }
2596
EmitCompare(const BinaryOperator * E,unsigned UICmpOpc,unsigned SICmpOpc,unsigned FCmpOpc)2597 Value *ScalarExprEmitter::EmitCompare(const BinaryOperator *E,unsigned UICmpOpc,
2598 unsigned SICmpOpc, unsigned FCmpOpc) {
2599 TestAndClearIgnoreResultAssign();
2600 Value *Result;
2601 QualType LHSTy = E->getLHS()->getType();
2602 if (const MemberPointerType *MPT = LHSTy->getAs<MemberPointerType>()) {
2603 assert(E->getOpcode() == BO_EQ ||
2604 E->getOpcode() == BO_NE);
2605 Value *LHS = CGF.EmitScalarExpr(E->getLHS());
2606 Value *RHS = CGF.EmitScalarExpr(E->getRHS());
2607 Result = CGF.CGM.getCXXABI().EmitMemberPointerComparison(
2608 CGF, LHS, RHS, MPT, E->getOpcode() == BO_NE);
2609 } else if (!LHSTy->isAnyComplexType()) {
2610 Value *LHS = Visit(E->getLHS());
2611 Value *RHS = Visit(E->getRHS());
2612
2613 // If AltiVec, the comparison results in a numeric type, so we use
2614 // intrinsics comparing vectors and giving 0 or 1 as a result
2615 if (LHSTy->isVectorType() && !E->getType()->isVectorType()) {
2616 // constants for mapping CR6 register bits to predicate result
2617 enum { CR6_EQ=0, CR6_EQ_REV, CR6_LT, CR6_LT_REV } CR6;
2618
2619 llvm::Intrinsic::ID ID = llvm::Intrinsic::not_intrinsic;
2620
2621 // in several cases vector arguments order will be reversed
2622 Value *FirstVecArg = LHS,
2623 *SecondVecArg = RHS;
2624
2625 QualType ElTy = LHSTy->getAs<VectorType>()->getElementType();
2626 const BuiltinType *BTy = ElTy->getAs<BuiltinType>();
2627 BuiltinType::Kind ElementKind = BTy->getKind();
2628
2629 switch(E->getOpcode()) {
2630 default: llvm_unreachable("is not a comparison operation");
2631 case BO_EQ:
2632 CR6 = CR6_LT;
2633 ID = GetIntrinsic(VCMPEQ, ElementKind);
2634 break;
2635 case BO_NE:
2636 CR6 = CR6_EQ;
2637 ID = GetIntrinsic(VCMPEQ, ElementKind);
2638 break;
2639 case BO_LT:
2640 CR6 = CR6_LT;
2641 ID = GetIntrinsic(VCMPGT, ElementKind);
2642 std::swap(FirstVecArg, SecondVecArg);
2643 break;
2644 case BO_GT:
2645 CR6 = CR6_LT;
2646 ID = GetIntrinsic(VCMPGT, ElementKind);
2647 break;
2648 case BO_LE:
2649 if (ElementKind == BuiltinType::Float) {
2650 CR6 = CR6_LT;
2651 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2652 std::swap(FirstVecArg, SecondVecArg);
2653 }
2654 else {
2655 CR6 = CR6_EQ;
2656 ID = GetIntrinsic(VCMPGT, ElementKind);
2657 }
2658 break;
2659 case BO_GE:
2660 if (ElementKind == BuiltinType::Float) {
2661 CR6 = CR6_LT;
2662 ID = llvm::Intrinsic::ppc_altivec_vcmpgefp_p;
2663 }
2664 else {
2665 CR6 = CR6_EQ;
2666 ID = GetIntrinsic(VCMPGT, ElementKind);
2667 std::swap(FirstVecArg, SecondVecArg);
2668 }
2669 break;
2670 }
2671
2672 Value *CR6Param = Builder.getInt32(CR6);
2673 llvm::Function *F = CGF.CGM.getIntrinsic(ID);
2674 Result = Builder.CreateCall3(F, CR6Param, FirstVecArg, SecondVecArg, "");
2675 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2676 }
2677
2678 if (LHS->getType()->isFPOrFPVectorTy()) {
2679 Result = Builder.CreateFCmp((llvm::CmpInst::Predicate)FCmpOpc,
2680 LHS, RHS, "cmp");
2681 } else if (LHSTy->hasSignedIntegerRepresentation()) {
2682 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)SICmpOpc,
2683 LHS, RHS, "cmp");
2684 } else {
2685 // Unsigned integers and pointers.
2686 Result = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2687 LHS, RHS, "cmp");
2688 }
2689
2690 // If this is a vector comparison, sign extend the result to the appropriate
2691 // vector integer type and return it (don't convert to bool).
2692 if (LHSTy->isVectorType())
2693 return Builder.CreateSExt(Result, ConvertType(E->getType()), "sext");
2694
2695 } else {
2696 // Complex Comparison: can only be an equality comparison.
2697 CodeGenFunction::ComplexPairTy LHS = CGF.EmitComplexExpr(E->getLHS());
2698 CodeGenFunction::ComplexPairTy RHS = CGF.EmitComplexExpr(E->getRHS());
2699
2700 QualType CETy = LHSTy->getAs<ComplexType>()->getElementType();
2701
2702 Value *ResultR, *ResultI;
2703 if (CETy->isRealFloatingType()) {
2704 ResultR = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2705 LHS.first, RHS.first, "cmp.r");
2706 ResultI = Builder.CreateFCmp((llvm::FCmpInst::Predicate)FCmpOpc,
2707 LHS.second, RHS.second, "cmp.i");
2708 } else {
2709 // Complex comparisons can only be equality comparisons. As such, signed
2710 // and unsigned opcodes are the same.
2711 ResultR = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2712 LHS.first, RHS.first, "cmp.r");
2713 ResultI = Builder.CreateICmp((llvm::ICmpInst::Predicate)UICmpOpc,
2714 LHS.second, RHS.second, "cmp.i");
2715 }
2716
2717 if (E->getOpcode() == BO_EQ) {
2718 Result = Builder.CreateAnd(ResultR, ResultI, "and.ri");
2719 } else {
2720 assert(E->getOpcode() == BO_NE &&
2721 "Complex comparison other than == or != ?");
2722 Result = Builder.CreateOr(ResultR, ResultI, "or.ri");
2723 }
2724 }
2725
2726 return EmitScalarConversion(Result, CGF.getContext().BoolTy, E->getType());
2727 }
2728
VisitBinAssign(const BinaryOperator * E)2729 Value *ScalarExprEmitter::VisitBinAssign(const BinaryOperator *E) {
2730 bool Ignore = TestAndClearIgnoreResultAssign();
2731
2732 Value *RHS;
2733 LValue LHS;
2734
2735 switch (E->getLHS()->getType().getObjCLifetime()) {
2736 case Qualifiers::OCL_Strong:
2737 llvm::tie(LHS, RHS) = CGF.EmitARCStoreStrong(E, Ignore);
2738 break;
2739
2740 case Qualifiers::OCL_Autoreleasing:
2741 llvm::tie(LHS,RHS) = CGF.EmitARCStoreAutoreleasing(E);
2742 break;
2743
2744 case Qualifiers::OCL_Weak:
2745 RHS = Visit(E->getRHS());
2746 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2747 RHS = CGF.EmitARCStoreWeak(LHS.getAddress(), RHS, Ignore);
2748 break;
2749
2750 // No reason to do any of these differently.
2751 case Qualifiers::OCL_None:
2752 case Qualifiers::OCL_ExplicitNone:
2753 // __block variables need to have the rhs evaluated first, plus
2754 // this should improve codegen just a little.
2755 RHS = Visit(E->getRHS());
2756 LHS = EmitCheckedLValue(E->getLHS(), CodeGenFunction::TCK_Store);
2757
2758 // Store the value into the LHS. Bit-fields are handled specially
2759 // because the result is altered by the store, i.e., [C99 6.5.16p1]
2760 // 'An assignment expression has the value of the left operand after
2761 // the assignment...'.
2762 if (LHS.isBitField())
2763 CGF.EmitStoreThroughBitfieldLValue(RValue::get(RHS), LHS, &RHS);
2764 else
2765 CGF.EmitStoreThroughLValue(RValue::get(RHS), LHS);
2766 }
2767
2768 // If the result is clearly ignored, return now.
2769 if (Ignore)
2770 return 0;
2771
2772 // The result of an assignment in C is the assigned r-value.
2773 if (!CGF.getLangOpts().CPlusPlus)
2774 return RHS;
2775
2776 // If the lvalue is non-volatile, return the computed value of the assignment.
2777 if (!LHS.isVolatileQualified())
2778 return RHS;
2779
2780 // Otherwise, reload the value.
2781 return EmitLoadOfLValue(LHS);
2782 }
2783
VisitBinLAnd(const BinaryOperator * E)2784 Value *ScalarExprEmitter::VisitBinLAnd(const BinaryOperator *E) {
2785 // Perform vector logical and on comparisons with zero vectors.
2786 if (E->getType()->isVectorType()) {
2787 Value *LHS = Visit(E->getLHS());
2788 Value *RHS = Visit(E->getRHS());
2789 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2790 if (LHS->getType()->isFPOrFPVectorTy()) {
2791 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2792 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2793 } else {
2794 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2795 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2796 }
2797 Value *And = Builder.CreateAnd(LHS, RHS);
2798 return Builder.CreateSExt(And, ConvertType(E->getType()), "sext");
2799 }
2800
2801 llvm::Type *ResTy = ConvertType(E->getType());
2802
2803 // If we have 0 && RHS, see if we can elide RHS, if so, just return 0.
2804 // If we have 1 && X, just emit X without inserting the control flow.
2805 bool LHSCondVal;
2806 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2807 if (LHSCondVal) { // If we have 1 && X, just emit X.
2808 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2809 // ZExt result to int or bool.
2810 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "land.ext");
2811 }
2812
2813 // 0 && RHS: If it is safe, just elide the RHS, and return 0/false.
2814 if (!CGF.ContainsLabel(E->getRHS()))
2815 return llvm::Constant::getNullValue(ResTy);
2816 }
2817
2818 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("land.end");
2819 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("land.rhs");
2820
2821 CodeGenFunction::ConditionalEvaluation eval(CGF);
2822
2823 // Branch on the LHS first. If it is false, go to the failure (cont) block.
2824 CGF.EmitBranchOnBoolExpr(E->getLHS(), RHSBlock, ContBlock);
2825
2826 // Any edges into the ContBlock are now from an (indeterminate number of)
2827 // edges from this first condition. All of these values will be false. Start
2828 // setting up the PHI node in the Cont Block for this.
2829 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2830 "", ContBlock);
2831 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2832 PI != PE; ++PI)
2833 PN->addIncoming(llvm::ConstantInt::getFalse(VMContext), *PI);
2834
2835 eval.begin(CGF);
2836 CGF.EmitBlock(RHSBlock);
2837 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2838 eval.end(CGF);
2839
2840 // Reaquire the RHS block, as there may be subblocks inserted.
2841 RHSBlock = Builder.GetInsertBlock();
2842
2843 // Emit an unconditional branch from this block to ContBlock. Insert an entry
2844 // into the phi node for the edge with the value of RHSCond.
2845 if (CGF.getDebugInfo())
2846 // There is no need to emit line number for unconditional branch.
2847 Builder.SetCurrentDebugLocation(llvm::DebugLoc());
2848 CGF.EmitBlock(ContBlock);
2849 PN->addIncoming(RHSCond, RHSBlock);
2850
2851 // ZExt result to int.
2852 return Builder.CreateZExtOrBitCast(PN, ResTy, "land.ext");
2853 }
2854
VisitBinLOr(const BinaryOperator * E)2855 Value *ScalarExprEmitter::VisitBinLOr(const BinaryOperator *E) {
2856 // Perform vector logical or on comparisons with zero vectors.
2857 if (E->getType()->isVectorType()) {
2858 Value *LHS = Visit(E->getLHS());
2859 Value *RHS = Visit(E->getRHS());
2860 Value *Zero = llvm::ConstantAggregateZero::get(LHS->getType());
2861 if (LHS->getType()->isFPOrFPVectorTy()) {
2862 LHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, LHS, Zero, "cmp");
2863 RHS = Builder.CreateFCmp(llvm::CmpInst::FCMP_UNE, RHS, Zero, "cmp");
2864 } else {
2865 LHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, LHS, Zero, "cmp");
2866 RHS = Builder.CreateICmp(llvm::CmpInst::ICMP_NE, RHS, Zero, "cmp");
2867 }
2868 Value *Or = Builder.CreateOr(LHS, RHS);
2869 return Builder.CreateSExt(Or, ConvertType(E->getType()), "sext");
2870 }
2871
2872 llvm::Type *ResTy = ConvertType(E->getType());
2873
2874 // If we have 1 || RHS, see if we can elide RHS, if so, just return 1.
2875 // If we have 0 || X, just emit X without inserting the control flow.
2876 bool LHSCondVal;
2877 if (CGF.ConstantFoldsToSimpleInteger(E->getLHS(), LHSCondVal)) {
2878 if (!LHSCondVal) { // If we have 0 || X, just emit X.
2879 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2880 // ZExt result to int or bool.
2881 return Builder.CreateZExtOrBitCast(RHSCond, ResTy, "lor.ext");
2882 }
2883
2884 // 1 || RHS: If it is safe, just elide the RHS, and return 1/true.
2885 if (!CGF.ContainsLabel(E->getRHS()))
2886 return llvm::ConstantInt::get(ResTy, 1);
2887 }
2888
2889 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("lor.end");
2890 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("lor.rhs");
2891
2892 CodeGenFunction::ConditionalEvaluation eval(CGF);
2893
2894 // Branch on the LHS first. If it is true, go to the success (cont) block.
2895 CGF.EmitBranchOnBoolExpr(E->getLHS(), ContBlock, RHSBlock);
2896
2897 // Any edges into the ContBlock are now from an (indeterminate number of)
2898 // edges from this first condition. All of these values will be true. Start
2899 // setting up the PHI node in the Cont Block for this.
2900 llvm::PHINode *PN = llvm::PHINode::Create(llvm::Type::getInt1Ty(VMContext), 2,
2901 "", ContBlock);
2902 for (llvm::pred_iterator PI = pred_begin(ContBlock), PE = pred_end(ContBlock);
2903 PI != PE; ++PI)
2904 PN->addIncoming(llvm::ConstantInt::getTrue(VMContext), *PI);
2905
2906 eval.begin(CGF);
2907
2908 // Emit the RHS condition as a bool value.
2909 CGF.EmitBlock(RHSBlock);
2910 Value *RHSCond = CGF.EvaluateExprAsBool(E->getRHS());
2911
2912 eval.end(CGF);
2913
2914 // Reaquire the RHS block, as there may be subblocks inserted.
2915 RHSBlock = Builder.GetInsertBlock();
2916
2917 // Emit an unconditional branch from this block to ContBlock. Insert an entry
2918 // into the phi node for the edge with the value of RHSCond.
2919 CGF.EmitBlock(ContBlock);
2920 PN->addIncoming(RHSCond, RHSBlock);
2921
2922 // ZExt result to int.
2923 return Builder.CreateZExtOrBitCast(PN, ResTy, "lor.ext");
2924 }
2925
VisitBinComma(const BinaryOperator * E)2926 Value *ScalarExprEmitter::VisitBinComma(const BinaryOperator *E) {
2927 CGF.EmitIgnoredExpr(E->getLHS());
2928 CGF.EnsureInsertPoint();
2929 return Visit(E->getRHS());
2930 }
2931
2932 //===----------------------------------------------------------------------===//
2933 // Other Operators
2934 //===----------------------------------------------------------------------===//
2935
2936 /// isCheapEnoughToEvaluateUnconditionally - Return true if the specified
2937 /// expression is cheap enough and side-effect-free enough to evaluate
2938 /// unconditionally instead of conditionally. This is used to convert control
2939 /// flow into selects in some cases.
isCheapEnoughToEvaluateUnconditionally(const Expr * E,CodeGenFunction & CGF)2940 static bool isCheapEnoughToEvaluateUnconditionally(const Expr *E,
2941 CodeGenFunction &CGF) {
2942 E = E->IgnoreParens();
2943
2944 // Anything that is an integer or floating point constant is fine.
2945 if (E->isEvaluatable(CGF.getContext()))
2946 return true;
2947
2948 // Non-volatile automatic variables too, to get "cond ? X : Y" where
2949 // X and Y are local variables.
2950 if (const DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E))
2951 if (const VarDecl *VD = dyn_cast<VarDecl>(DRE->getDecl()))
2952 if (VD->hasLocalStorage() && !(CGF.getContext()
2953 .getCanonicalType(VD->getType())
2954 .isVolatileQualified()))
2955 return true;
2956
2957 return false;
2958 }
2959
2960
2961 Value *ScalarExprEmitter::
VisitAbstractConditionalOperator(const AbstractConditionalOperator * E)2962 VisitAbstractConditionalOperator(const AbstractConditionalOperator *E) {
2963 TestAndClearIgnoreResultAssign();
2964
2965 // Bind the common expression if necessary.
2966 CodeGenFunction::OpaqueValueMapping binding(CGF, E);
2967
2968 Expr *condExpr = E->getCond();
2969 Expr *lhsExpr = E->getTrueExpr();
2970 Expr *rhsExpr = E->getFalseExpr();
2971
2972 // If the condition constant folds and can be elided, try to avoid emitting
2973 // the condition and the dead arm.
2974 bool CondExprBool;
2975 if (CGF.ConstantFoldsToSimpleInteger(condExpr, CondExprBool)) {
2976 Expr *live = lhsExpr, *dead = rhsExpr;
2977 if (!CondExprBool) std::swap(live, dead);
2978
2979 // If the dead side doesn't have labels we need, just emit the Live part.
2980 if (!CGF.ContainsLabel(dead)) {
2981 Value *Result = Visit(live);
2982
2983 // If the live part is a throw expression, it acts like it has a void
2984 // type, so evaluating it returns a null Value*. However, a conditional
2985 // with non-void type must return a non-null Value*.
2986 if (!Result && !E->getType()->isVoidType())
2987 Result = llvm::UndefValue::get(CGF.ConvertType(E->getType()));
2988
2989 return Result;
2990 }
2991 }
2992
2993 // OpenCL: If the condition is a vector, we can treat this condition like
2994 // the select function.
2995 if (CGF.getLangOpts().OpenCL
2996 && condExpr->getType()->isVectorType()) {
2997 llvm::Value *CondV = CGF.EmitScalarExpr(condExpr);
2998 llvm::Value *LHS = Visit(lhsExpr);
2999 llvm::Value *RHS = Visit(rhsExpr);
3000
3001 llvm::Type *condType = ConvertType(condExpr->getType());
3002 llvm::VectorType *vecTy = cast<llvm::VectorType>(condType);
3003
3004 unsigned numElem = vecTy->getNumElements();
3005 llvm::Type *elemType = vecTy->getElementType();
3006
3007 llvm::Value *zeroVec = llvm::Constant::getNullValue(vecTy);
3008 llvm::Value *TestMSB = Builder.CreateICmpSLT(CondV, zeroVec);
3009 llvm::Value *tmp = Builder.CreateSExt(TestMSB,
3010 llvm::VectorType::get(elemType,
3011 numElem),
3012 "sext");
3013 llvm::Value *tmp2 = Builder.CreateNot(tmp);
3014
3015 // Cast float to int to perform ANDs if necessary.
3016 llvm::Value *RHSTmp = RHS;
3017 llvm::Value *LHSTmp = LHS;
3018 bool wasCast = false;
3019 llvm::VectorType *rhsVTy = cast<llvm::VectorType>(RHS->getType());
3020 if (rhsVTy->getElementType()->isFloatingPointTy()) {
3021 RHSTmp = Builder.CreateBitCast(RHS, tmp2->getType());
3022 LHSTmp = Builder.CreateBitCast(LHS, tmp->getType());
3023 wasCast = true;
3024 }
3025
3026 llvm::Value *tmp3 = Builder.CreateAnd(RHSTmp, tmp2);
3027 llvm::Value *tmp4 = Builder.CreateAnd(LHSTmp, tmp);
3028 llvm::Value *tmp5 = Builder.CreateOr(tmp3, tmp4, "cond");
3029 if (wasCast)
3030 tmp5 = Builder.CreateBitCast(tmp5, RHS->getType());
3031
3032 return tmp5;
3033 }
3034
3035 // If this is a really simple expression (like x ? 4 : 5), emit this as a
3036 // select instead of as control flow. We can only do this if it is cheap and
3037 // safe to evaluate the LHS and RHS unconditionally.
3038 if (isCheapEnoughToEvaluateUnconditionally(lhsExpr, CGF) &&
3039 isCheapEnoughToEvaluateUnconditionally(rhsExpr, CGF)) {
3040 llvm::Value *CondV = CGF.EvaluateExprAsBool(condExpr);
3041 llvm::Value *LHS = Visit(lhsExpr);
3042 llvm::Value *RHS = Visit(rhsExpr);
3043 if (!LHS) {
3044 // If the conditional has void type, make sure we return a null Value*.
3045 assert(!RHS && "LHS and RHS types must match");
3046 return 0;
3047 }
3048 return Builder.CreateSelect(CondV, LHS, RHS, "cond");
3049 }
3050
3051 llvm::BasicBlock *LHSBlock = CGF.createBasicBlock("cond.true");
3052 llvm::BasicBlock *RHSBlock = CGF.createBasicBlock("cond.false");
3053 llvm::BasicBlock *ContBlock = CGF.createBasicBlock("cond.end");
3054
3055 CodeGenFunction::ConditionalEvaluation eval(CGF);
3056 CGF.EmitBranchOnBoolExpr(condExpr, LHSBlock, RHSBlock);
3057
3058 CGF.EmitBlock(LHSBlock);
3059 eval.begin(CGF);
3060 Value *LHS = Visit(lhsExpr);
3061 eval.end(CGF);
3062
3063 LHSBlock = Builder.GetInsertBlock();
3064 Builder.CreateBr(ContBlock);
3065
3066 CGF.EmitBlock(RHSBlock);
3067 eval.begin(CGF);
3068 Value *RHS = Visit(rhsExpr);
3069 eval.end(CGF);
3070
3071 RHSBlock = Builder.GetInsertBlock();
3072 CGF.EmitBlock(ContBlock);
3073
3074 // If the LHS or RHS is a throw expression, it will be legitimately null.
3075 if (!LHS)
3076 return RHS;
3077 if (!RHS)
3078 return LHS;
3079
3080 // Create a PHI node for the real part.
3081 llvm::PHINode *PN = Builder.CreatePHI(LHS->getType(), 2, "cond");
3082 PN->addIncoming(LHS, LHSBlock);
3083 PN->addIncoming(RHS, RHSBlock);
3084 return PN;
3085 }
3086
VisitChooseExpr(ChooseExpr * E)3087 Value *ScalarExprEmitter::VisitChooseExpr(ChooseExpr *E) {
3088 return Visit(E->getChosenSubExpr());
3089 }
3090
VisitVAArgExpr(VAArgExpr * VE)3091 Value *ScalarExprEmitter::VisitVAArgExpr(VAArgExpr *VE) {
3092 llvm::Value *ArgValue = CGF.EmitVAListRef(VE->getSubExpr());
3093 llvm::Value *ArgPtr = CGF.EmitVAArg(ArgValue, VE->getType());
3094
3095 // If EmitVAArg fails, we fall back to the LLVM instruction.
3096 if (!ArgPtr)
3097 return Builder.CreateVAArg(ArgValue, ConvertType(VE->getType()));
3098
3099 // FIXME Volatility.
3100 return Builder.CreateLoad(ArgPtr);
3101 }
3102
VisitBlockExpr(const BlockExpr * block)3103 Value *ScalarExprEmitter::VisitBlockExpr(const BlockExpr *block) {
3104 return CGF.EmitBlockLiteral(block);
3105 }
3106
VisitAsTypeExpr(AsTypeExpr * E)3107 Value *ScalarExprEmitter::VisitAsTypeExpr(AsTypeExpr *E) {
3108 Value *Src = CGF.EmitScalarExpr(E->getSrcExpr());
3109 llvm::Type *DstTy = ConvertType(E->getType());
3110
3111 // Going from vec4->vec3 or vec3->vec4 is a special case and requires
3112 // a shuffle vector instead of a bitcast.
3113 llvm::Type *SrcTy = Src->getType();
3114 if (isa<llvm::VectorType>(DstTy) && isa<llvm::VectorType>(SrcTy)) {
3115 unsigned numElementsDst = cast<llvm::VectorType>(DstTy)->getNumElements();
3116 unsigned numElementsSrc = cast<llvm::VectorType>(SrcTy)->getNumElements();
3117 if ((numElementsDst == 3 && numElementsSrc == 4)
3118 || (numElementsDst == 4 && numElementsSrc == 3)) {
3119
3120
3121 // In the case of going from int4->float3, a bitcast is needed before
3122 // doing a shuffle.
3123 llvm::Type *srcElemTy =
3124 cast<llvm::VectorType>(SrcTy)->getElementType();
3125 llvm::Type *dstElemTy =
3126 cast<llvm::VectorType>(DstTy)->getElementType();
3127
3128 if ((srcElemTy->isIntegerTy() && dstElemTy->isFloatTy())
3129 || (srcElemTy->isFloatTy() && dstElemTy->isIntegerTy())) {
3130 // Create a float type of the same size as the source or destination.
3131 llvm::VectorType *newSrcTy = llvm::VectorType::get(dstElemTy,
3132 numElementsSrc);
3133
3134 Src = Builder.CreateBitCast(Src, newSrcTy, "astypeCast");
3135 }
3136
3137 llvm::Value *UnV = llvm::UndefValue::get(Src->getType());
3138
3139 SmallVector<llvm::Constant*, 3> Args;
3140 Args.push_back(Builder.getInt32(0));
3141 Args.push_back(Builder.getInt32(1));
3142 Args.push_back(Builder.getInt32(2));
3143
3144 if (numElementsDst == 4)
3145 Args.push_back(llvm::UndefValue::get(CGF.Int32Ty));
3146
3147 llvm::Constant *Mask = llvm::ConstantVector::get(Args);
3148
3149 return Builder.CreateShuffleVector(Src, UnV, Mask, "astype");
3150 }
3151 }
3152
3153 return Builder.CreateBitCast(Src, DstTy, "astype");
3154 }
3155
VisitAtomicExpr(AtomicExpr * E)3156 Value *ScalarExprEmitter::VisitAtomicExpr(AtomicExpr *E) {
3157 return CGF.EmitAtomicExpr(E).getScalarVal();
3158 }
3159
3160 //===----------------------------------------------------------------------===//
3161 // Entry Point into this File
3162 //===----------------------------------------------------------------------===//
3163
3164 /// EmitScalarExpr - Emit the computation of the specified expression of scalar
3165 /// type, ignoring the result.
EmitScalarExpr(const Expr * E,bool IgnoreResultAssign)3166 Value *CodeGenFunction::EmitScalarExpr(const Expr *E, bool IgnoreResultAssign) {
3167 assert(E && hasScalarEvaluationKind(E->getType()) &&
3168 "Invalid scalar expression to emit");
3169
3170 if (isa<CXXDefaultArgExpr>(E))
3171 disableDebugInfo();
3172 Value *V = ScalarExprEmitter(*this, IgnoreResultAssign)
3173 .Visit(const_cast<Expr*>(E));
3174 if (isa<CXXDefaultArgExpr>(E))
3175 enableDebugInfo();
3176 return V;
3177 }
3178
3179 /// EmitScalarConversion - Emit a conversion from the specified type to the
3180 /// specified destination type, both of which are LLVM scalar types.
EmitScalarConversion(Value * Src,QualType SrcTy,QualType DstTy)3181 Value *CodeGenFunction::EmitScalarConversion(Value *Src, QualType SrcTy,
3182 QualType DstTy) {
3183 assert(hasScalarEvaluationKind(SrcTy) && hasScalarEvaluationKind(DstTy) &&
3184 "Invalid scalar expression to emit");
3185 return ScalarExprEmitter(*this).EmitScalarConversion(Src, SrcTy, DstTy);
3186 }
3187
3188 /// EmitComplexToScalarConversion - Emit a conversion from the specified complex
3189 /// type to the specified destination type, where the destination type is an
3190 /// LLVM scalar type.
EmitComplexToScalarConversion(ComplexPairTy Src,QualType SrcTy,QualType DstTy)3191 Value *CodeGenFunction::EmitComplexToScalarConversion(ComplexPairTy Src,
3192 QualType SrcTy,
3193 QualType DstTy) {
3194 assert(SrcTy->isAnyComplexType() && hasScalarEvaluationKind(DstTy) &&
3195 "Invalid complex -> scalar conversion");
3196 return ScalarExprEmitter(*this).EmitComplexToScalarConversion(Src, SrcTy,
3197 DstTy);
3198 }
3199
3200
3201 llvm::Value *CodeGenFunction::
EmitScalarPrePostIncDec(const UnaryOperator * E,LValue LV,bool isInc,bool isPre)3202 EmitScalarPrePostIncDec(const UnaryOperator *E, LValue LV,
3203 bool isInc, bool isPre) {
3204 return ScalarExprEmitter(*this).EmitScalarPrePostIncDec(E, LV, isInc, isPre);
3205 }
3206
EmitObjCIsaExpr(const ObjCIsaExpr * E)3207 LValue CodeGenFunction::EmitObjCIsaExpr(const ObjCIsaExpr *E) {
3208 llvm::Value *V;
3209 // object->isa or (*object).isa
3210 // Generate code as for: *(Class*)object
3211 // build Class* type
3212 llvm::Type *ClassPtrTy = ConvertType(E->getType());
3213
3214 Expr *BaseExpr = E->getBase();
3215 if (BaseExpr->isRValue()) {
3216 V = CreateMemTemp(E->getType(), "resval");
3217 llvm::Value *Src = EmitScalarExpr(BaseExpr);
3218 Builder.CreateStore(Src, V);
3219 V = ScalarExprEmitter(*this).EmitLoadOfLValue(
3220 MakeNaturalAlignAddrLValue(V, E->getType()));
3221 } else {
3222 if (E->isArrow())
3223 V = ScalarExprEmitter(*this).EmitLoadOfLValue(BaseExpr);
3224 else
3225 V = EmitLValue(BaseExpr).getAddress();
3226 }
3227
3228 // build Class* type
3229 ClassPtrTy = ClassPtrTy->getPointerTo();
3230 V = Builder.CreateBitCast(V, ClassPtrTy);
3231 return MakeNaturalAlignAddrLValue(V, E->getType());
3232 }
3233
3234
EmitCompoundAssignmentLValue(const CompoundAssignOperator * E)3235 LValue CodeGenFunction::EmitCompoundAssignmentLValue(
3236 const CompoundAssignOperator *E) {
3237 ScalarExprEmitter Scalar(*this);
3238 Value *Result = 0;
3239 switch (E->getOpcode()) {
3240 #define COMPOUND_OP(Op) \
3241 case BO_##Op##Assign: \
3242 return Scalar.EmitCompoundAssignLValue(E, &ScalarExprEmitter::Emit##Op, \
3243 Result)
3244 COMPOUND_OP(Mul);
3245 COMPOUND_OP(Div);
3246 COMPOUND_OP(Rem);
3247 COMPOUND_OP(Add);
3248 COMPOUND_OP(Sub);
3249 COMPOUND_OP(Shl);
3250 COMPOUND_OP(Shr);
3251 COMPOUND_OP(And);
3252 COMPOUND_OP(Xor);
3253 COMPOUND_OP(Or);
3254 #undef COMPOUND_OP
3255
3256 case BO_PtrMemD:
3257 case BO_PtrMemI:
3258 case BO_Mul:
3259 case BO_Div:
3260 case BO_Rem:
3261 case BO_Add:
3262 case BO_Sub:
3263 case BO_Shl:
3264 case BO_Shr:
3265 case BO_LT:
3266 case BO_GT:
3267 case BO_LE:
3268 case BO_GE:
3269 case BO_EQ:
3270 case BO_NE:
3271 case BO_And:
3272 case BO_Xor:
3273 case BO_Or:
3274 case BO_LAnd:
3275 case BO_LOr:
3276 case BO_Assign:
3277 case BO_Comma:
3278 llvm_unreachable("Not valid compound assignment operators");
3279 }
3280
3281 llvm_unreachable("Unhandled compound assignment operator");
3282 }
3283