1 //===--- CGRecordLayoutBuilder.cpp - CGRecordLayout builder ----*- C++ -*-===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Builder implementation for CGRecordLayout objects.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "CGRecordLayout.h"
15 #include "CGCXXABI.h"
16 #include "CodeGenTypes.h"
17 #include "clang/AST/ASTContext.h"
18 #include "clang/AST/Attr.h"
19 #include "clang/AST/CXXInheritance.h"
20 #include "clang/AST/DeclCXX.h"
21 #include "clang/AST/Expr.h"
22 #include "clang/AST/RecordLayout.h"
23 #include "clang/Frontend/CodeGenOptions.h"
24 #include "llvm/IR/DataLayout.h"
25 #include "llvm/IR/DerivedTypes.h"
26 #include "llvm/IR/Type.h"
27 #include "llvm/Support/Debug.h"
28 #include "llvm/Support/raw_ostream.h"
29 using namespace clang;
30 using namespace CodeGen;
31
32 namespace {
33
34 class CGRecordLayoutBuilder {
35 public:
36 /// FieldTypes - Holds the LLVM types that the struct is created from.
37 ///
38 SmallVector<llvm::Type *, 16> FieldTypes;
39
40 /// BaseSubobjectType - Holds the LLVM type for the non-virtual part
41 /// of the struct. For example, consider:
42 ///
43 /// struct A { int i; };
44 /// struct B { void *v; };
45 /// struct C : virtual A, B { };
46 ///
47 /// The LLVM type of C will be
48 /// %struct.C = type { i32 (...)**, %struct.A, i32, %struct.B }
49 ///
50 /// And the LLVM type of the non-virtual base struct will be
51 /// %struct.C.base = type { i32 (...)**, %struct.A, i32 }
52 ///
53 /// This only gets initialized if the base subobject type is
54 /// different from the complete-object type.
55 llvm::StructType *BaseSubobjectType;
56
57 /// FieldInfo - Holds a field and its corresponding LLVM field number.
58 llvm::DenseMap<const FieldDecl *, unsigned> Fields;
59
60 /// BitFieldInfo - Holds location and size information about a bit field.
61 llvm::DenseMap<const FieldDecl *, CGBitFieldInfo> BitFields;
62
63 llvm::DenseMap<const CXXRecordDecl *, unsigned> NonVirtualBases;
64 llvm::DenseMap<const CXXRecordDecl *, unsigned> VirtualBases;
65
66 /// IndirectPrimaryBases - Virtual base classes, direct or indirect, that are
67 /// primary base classes for some other direct or indirect base class.
68 CXXIndirectPrimaryBaseSet IndirectPrimaryBases;
69
70 /// LaidOutVirtualBases - A set of all laid out virtual bases, used to avoid
71 /// avoid laying out virtual bases more than once.
72 llvm::SmallPtrSet<const CXXRecordDecl *, 4> LaidOutVirtualBases;
73
74 /// IsZeroInitializable - Whether this struct can be C++
75 /// zero-initialized with an LLVM zeroinitializer.
76 bool IsZeroInitializable;
77 bool IsZeroInitializableAsBase;
78
79 /// Packed - Whether the resulting LLVM struct will be packed or not.
80 bool Packed;
81
82 private:
83 CodeGenTypes &Types;
84
85 /// LastLaidOutBaseInfo - Contains the offset and non-virtual size of the
86 /// last base laid out. Used so that we can replace the last laid out base
87 /// type with an i8 array if needed.
88 struct LastLaidOutBaseInfo {
89 CharUnits Offset;
90 CharUnits NonVirtualSize;
91
isValid__anon714869f80111::CGRecordLayoutBuilder::LastLaidOutBaseInfo92 bool isValid() const { return !NonVirtualSize.isZero(); }
invalidate__anon714869f80111::CGRecordLayoutBuilder::LastLaidOutBaseInfo93 void invalidate() { NonVirtualSize = CharUnits::Zero(); }
94
95 } LastLaidOutBase;
96
97 /// Alignment - Contains the alignment of the RecordDecl.
98 CharUnits Alignment;
99
100 /// NextFieldOffset - Holds the next field offset.
101 CharUnits NextFieldOffset;
102
103 /// LayoutUnionField - Will layout a field in an union and return the type
104 /// that the field will have.
105 llvm::Type *LayoutUnionField(const FieldDecl *Field,
106 const ASTRecordLayout &Layout);
107
108 /// LayoutUnion - Will layout a union RecordDecl.
109 void LayoutUnion(const RecordDecl *D);
110
111 /// Lay out a sequence of contiguous bitfields.
112 bool LayoutBitfields(const ASTRecordLayout &Layout,
113 unsigned &FirstFieldNo,
114 RecordDecl::field_iterator &FI,
115 RecordDecl::field_iterator FE);
116
117 /// LayoutField - try to layout all fields in the record decl.
118 /// Returns false if the operation failed because the struct is not packed.
119 bool LayoutFields(const RecordDecl *D);
120
121 /// Layout a single base, virtual or non-virtual
122 bool LayoutBase(const CXXRecordDecl *base,
123 const CGRecordLayout &baseLayout,
124 CharUnits baseOffset);
125
126 /// LayoutVirtualBase - layout a single virtual base.
127 bool LayoutVirtualBase(const CXXRecordDecl *base,
128 CharUnits baseOffset);
129
130 /// LayoutVirtualBases - layout the virtual bases of a record decl.
131 bool LayoutVirtualBases(const CXXRecordDecl *RD,
132 const ASTRecordLayout &Layout);
133
134 /// MSLayoutVirtualBases - layout the virtual bases of a record decl,
135 /// like MSVC.
136 bool MSLayoutVirtualBases(const CXXRecordDecl *RD,
137 const ASTRecordLayout &Layout);
138
139 /// LayoutNonVirtualBase - layout a single non-virtual base.
140 bool LayoutNonVirtualBase(const CXXRecordDecl *base,
141 CharUnits baseOffset);
142
143 /// LayoutNonVirtualBases - layout the virtual bases of a record decl.
144 bool LayoutNonVirtualBases(const CXXRecordDecl *RD,
145 const ASTRecordLayout &Layout);
146
147 /// ComputeNonVirtualBaseType - Compute the non-virtual base field types.
148 bool ComputeNonVirtualBaseType(const CXXRecordDecl *RD);
149
150 /// LayoutField - layout a single field. Returns false if the operation failed
151 /// because the current struct is not packed.
152 bool LayoutField(const FieldDecl *D, uint64_t FieldOffset);
153
154 /// LayoutBitField - layout a single bit field.
155 void LayoutBitField(const FieldDecl *D, uint64_t FieldOffset);
156
157 /// AppendField - Appends a field with the given offset and type.
158 void AppendField(CharUnits fieldOffset, llvm::Type *FieldTy);
159
160 /// AppendPadding - Appends enough padding bytes so that the total
161 /// struct size is a multiple of the field alignment.
162 void AppendPadding(CharUnits fieldOffset, CharUnits fieldAlignment);
163
164 /// ResizeLastBaseFieldIfNecessary - Fields and bases can be laid out in the
165 /// tail padding of a previous base. If this happens, the type of the previous
166 /// base needs to be changed to an array of i8. Returns true if the last
167 /// laid out base was resized.
168 bool ResizeLastBaseFieldIfNecessary(CharUnits offset);
169
170 /// getByteArrayType - Returns a byte array type with the given number of
171 /// elements.
172 llvm::Type *getByteArrayType(CharUnits NumBytes);
173
174 /// AppendBytes - Append a given number of bytes to the record.
175 void AppendBytes(CharUnits numBytes);
176
177 /// AppendTailPadding - Append enough tail padding so that the type will have
178 /// the passed size.
179 void AppendTailPadding(CharUnits RecordSize);
180
181 CharUnits getTypeAlignment(llvm::Type *Ty) const;
182
183 /// getAlignmentAsLLVMStruct - Returns the maximum alignment of all the
184 /// LLVM element types.
185 CharUnits getAlignmentAsLLVMStruct() const;
186
187 /// CheckZeroInitializable - Check if the given type contains a pointer
188 /// to data member.
189 void CheckZeroInitializable(QualType T);
190
191 public:
CGRecordLayoutBuilder(CodeGenTypes & Types)192 CGRecordLayoutBuilder(CodeGenTypes &Types)
193 : BaseSubobjectType(0),
194 IsZeroInitializable(true), IsZeroInitializableAsBase(true),
195 Packed(false), Types(Types) { }
196
197 /// Layout - Will layout a RecordDecl.
198 void Layout(const RecordDecl *D);
199 };
200
201 }
202
Layout(const RecordDecl * D)203 void CGRecordLayoutBuilder::Layout(const RecordDecl *D) {
204 Alignment = Types.getContext().getASTRecordLayout(D).getAlignment();
205 Packed = D->hasAttr<PackedAttr>();
206
207 if (D->isUnion()) {
208 LayoutUnion(D);
209 return;
210 }
211
212 if (LayoutFields(D))
213 return;
214
215 // We weren't able to layout the struct. Try again with a packed struct
216 Packed = true;
217 LastLaidOutBase.invalidate();
218 NextFieldOffset = CharUnits::Zero();
219 FieldTypes.clear();
220 Fields.clear();
221 BitFields.clear();
222 NonVirtualBases.clear();
223 VirtualBases.clear();
224
225 LayoutFields(D);
226 }
227
MakeInfo(CodeGenTypes & Types,const FieldDecl * FD,uint64_t Offset,uint64_t Size,uint64_t StorageSize,uint64_t StorageAlignment)228 CGBitFieldInfo CGBitFieldInfo::MakeInfo(CodeGenTypes &Types,
229 const FieldDecl *FD,
230 uint64_t Offset, uint64_t Size,
231 uint64_t StorageSize,
232 uint64_t StorageAlignment) {
233 llvm::Type *Ty = Types.ConvertTypeForMem(FD->getType());
234 CharUnits TypeSizeInBytes =
235 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(Ty));
236 uint64_t TypeSizeInBits = Types.getContext().toBits(TypeSizeInBytes);
237
238 bool IsSigned = FD->getType()->isSignedIntegerOrEnumerationType();
239
240 if (Size > TypeSizeInBits) {
241 // We have a wide bit-field. The extra bits are only used for padding, so
242 // if we have a bitfield of type T, with size N:
243 //
244 // T t : N;
245 //
246 // We can just assume that it's:
247 //
248 // T t : sizeof(T);
249 //
250 Size = TypeSizeInBits;
251 }
252
253 // Reverse the bit offsets for big endian machines. Because we represent
254 // a bitfield as a single large integer load, we can imagine the bits
255 // counting from the most-significant-bit instead of the
256 // least-significant-bit.
257 if (Types.getDataLayout().isBigEndian()) {
258 Offset = StorageSize - (Offset + Size);
259 }
260
261 return CGBitFieldInfo(Offset, Size, IsSigned, StorageSize, StorageAlignment);
262 }
263
264 /// \brief Layout the range of bitfields from BFI to BFE as contiguous storage.
LayoutBitfields(const ASTRecordLayout & Layout,unsigned & FirstFieldNo,RecordDecl::field_iterator & FI,RecordDecl::field_iterator FE)265 bool CGRecordLayoutBuilder::LayoutBitfields(const ASTRecordLayout &Layout,
266 unsigned &FirstFieldNo,
267 RecordDecl::field_iterator &FI,
268 RecordDecl::field_iterator FE) {
269 assert(FI != FE);
270 uint64_t FirstFieldOffset = Layout.getFieldOffset(FirstFieldNo);
271 uint64_t NextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
272
273 unsigned CharAlign = Types.getTarget().getCharAlign();
274 assert(FirstFieldOffset % CharAlign == 0 &&
275 "First field offset is misaligned");
276 CharUnits FirstFieldOffsetInBytes
277 = Types.getContext().toCharUnitsFromBits(FirstFieldOffset);
278
279 unsigned StorageAlignment
280 = llvm::MinAlign(Alignment.getQuantity(),
281 FirstFieldOffsetInBytes.getQuantity());
282
283 if (FirstFieldOffset < NextFieldOffsetInBits) {
284 CharUnits FieldOffsetInCharUnits =
285 Types.getContext().toCharUnitsFromBits(FirstFieldOffset);
286
287 // Try to resize the last base field.
288 if (!ResizeLastBaseFieldIfNecessary(FieldOffsetInCharUnits))
289 llvm_unreachable("We must be able to resize the last base if we need to "
290 "pack bits into it.");
291
292 NextFieldOffsetInBits = Types.getContext().toBits(NextFieldOffset);
293 assert(FirstFieldOffset >= NextFieldOffsetInBits);
294 }
295
296 // Append padding if necessary.
297 AppendPadding(Types.getContext().toCharUnitsFromBits(FirstFieldOffset),
298 CharUnits::One());
299
300 // Find the last bitfield in a contiguous run of bitfields.
301 RecordDecl::field_iterator BFI = FI;
302 unsigned LastFieldNo = FirstFieldNo;
303 uint64_t NextContiguousFieldOffset = FirstFieldOffset;
304 for (RecordDecl::field_iterator FJ = FI;
305 (FJ != FE && (*FJ)->isBitField() &&
306 NextContiguousFieldOffset == Layout.getFieldOffset(LastFieldNo) &&
307 (*FJ)->getBitWidthValue(Types.getContext()) != 0); FI = FJ++) {
308 NextContiguousFieldOffset += (*FJ)->getBitWidthValue(Types.getContext());
309 ++LastFieldNo;
310
311 // We must use packed structs for packed fields, and also unnamed bit
312 // fields since they don't affect the struct alignment.
313 if (!Packed && ((*FJ)->hasAttr<PackedAttr>() || !(*FJ)->getDeclName()))
314 return false;
315 }
316 RecordDecl::field_iterator BFE = llvm::next(FI);
317 --LastFieldNo;
318 assert(LastFieldNo >= FirstFieldNo && "Empty run of contiguous bitfields");
319 FieldDecl *LastFD = *FI;
320
321 // Find the last bitfield's offset, add its size, and round it up to the
322 // character alignment to compute the storage required.
323 uint64_t LastFieldOffset = Layout.getFieldOffset(LastFieldNo);
324 uint64_t LastFieldSize = LastFD->getBitWidthValue(Types.getContext());
325 uint64_t TotalBits = (LastFieldOffset + LastFieldSize) - FirstFieldOffset;
326 CharUnits StorageBytes = Types.getContext().toCharUnitsFromBits(
327 llvm::RoundUpToAlignment(TotalBits, CharAlign));
328 uint64_t StorageBits = Types.getContext().toBits(StorageBytes);
329
330 // Grow the storage to encompass any known padding in the layout when doing
331 // so will make the storage a power-of-two. There are two cases when we can
332 // do this. The first is when we have a subsequent field and can widen up to
333 // its offset. The second is when the data size of the AST record layout is
334 // past the end of the current storage. The latter is true when there is tail
335 // padding on a struct and no members of a super class can be packed into it.
336 //
337 // Note that we widen the storage as much as possible here to express the
338 // maximum latitude the language provides, and rely on the backend to lower
339 // these in conjunction with shifts and masks to narrower operations where
340 // beneficial.
341 uint64_t EndOffset = Types.getContext().toBits(Layout.getDataSize());
342 if (BFE != FE)
343 // If there are more fields to be laid out, the offset at the end of the
344 // bitfield is the offset of the next field in the record.
345 EndOffset = Layout.getFieldOffset(LastFieldNo + 1);
346 assert(EndOffset >= (FirstFieldOffset + TotalBits) &&
347 "End offset is not past the end of the known storage bits.");
348 uint64_t SpaceBits = EndOffset - FirstFieldOffset;
349 uint64_t LongBits = Types.getTarget().getLongWidth();
350 uint64_t WidenedBits = (StorageBits / LongBits) * LongBits +
351 llvm::NextPowerOf2(StorageBits % LongBits - 1);
352 assert(WidenedBits >= StorageBits && "Widening shrunk the bits!");
353 if (WidenedBits <= SpaceBits) {
354 StorageBits = WidenedBits;
355 StorageBytes = Types.getContext().toCharUnitsFromBits(StorageBits);
356 assert(StorageBits == (uint64_t)Types.getContext().toBits(StorageBytes));
357 }
358
359 unsigned FieldIndex = FieldTypes.size();
360 AppendBytes(StorageBytes);
361
362 // Now walk the bitfields associating them with this field of storage and
363 // building up the bitfield specific info.
364 unsigned FieldNo = FirstFieldNo;
365 for (; BFI != BFE; ++BFI, ++FieldNo) {
366 FieldDecl *FD = *BFI;
367 uint64_t FieldOffset = Layout.getFieldOffset(FieldNo) - FirstFieldOffset;
368 uint64_t FieldSize = FD->getBitWidthValue(Types.getContext());
369 Fields[FD] = FieldIndex;
370 BitFields[FD] = CGBitFieldInfo::MakeInfo(Types, FD, FieldOffset, FieldSize,
371 StorageBits, StorageAlignment);
372 }
373 FirstFieldNo = LastFieldNo;
374 return true;
375 }
376
LayoutField(const FieldDecl * D,uint64_t fieldOffset)377 bool CGRecordLayoutBuilder::LayoutField(const FieldDecl *D,
378 uint64_t fieldOffset) {
379 // If the field is packed, then we need a packed struct.
380 if (!Packed && D->hasAttr<PackedAttr>())
381 return false;
382
383 assert(!D->isBitField() && "Bitfields should be laid out seperately.");
384
385 CheckZeroInitializable(D->getType());
386
387 assert(fieldOffset % Types.getTarget().getCharWidth() == 0
388 && "field offset is not on a byte boundary!");
389 CharUnits fieldOffsetInBytes
390 = Types.getContext().toCharUnitsFromBits(fieldOffset);
391
392 llvm::Type *Ty = Types.ConvertTypeForMem(D->getType());
393 CharUnits typeAlignment = getTypeAlignment(Ty);
394
395 // If the type alignment is larger then the struct alignment, we must use
396 // a packed struct.
397 if (typeAlignment > Alignment) {
398 assert(!Packed && "Alignment is wrong even with packed struct!");
399 return false;
400 }
401
402 if (!Packed) {
403 if (const RecordType *RT = D->getType()->getAs<RecordType>()) {
404 const RecordDecl *RD = cast<RecordDecl>(RT->getDecl());
405 if (const MaxFieldAlignmentAttr *MFAA =
406 RD->getAttr<MaxFieldAlignmentAttr>()) {
407 if (MFAA->getAlignment() != Types.getContext().toBits(typeAlignment))
408 return false;
409 }
410 }
411 }
412
413 // Round up the field offset to the alignment of the field type.
414 CharUnits alignedNextFieldOffsetInBytes =
415 NextFieldOffset.RoundUpToAlignment(typeAlignment);
416
417 if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
418 // Try to resize the last base field.
419 if (ResizeLastBaseFieldIfNecessary(fieldOffsetInBytes)) {
420 alignedNextFieldOffsetInBytes =
421 NextFieldOffset.RoundUpToAlignment(typeAlignment);
422 }
423 }
424
425 if (fieldOffsetInBytes < alignedNextFieldOffsetInBytes) {
426 assert(!Packed && "Could not place field even with packed struct!");
427 return false;
428 }
429
430 AppendPadding(fieldOffsetInBytes, typeAlignment);
431
432 // Now append the field.
433 Fields[D] = FieldTypes.size();
434 AppendField(fieldOffsetInBytes, Ty);
435
436 LastLaidOutBase.invalidate();
437 return true;
438 }
439
440 llvm::Type *
LayoutUnionField(const FieldDecl * Field,const ASTRecordLayout & Layout)441 CGRecordLayoutBuilder::LayoutUnionField(const FieldDecl *Field,
442 const ASTRecordLayout &Layout) {
443 Fields[Field] = 0;
444 if (Field->isBitField()) {
445 uint64_t FieldSize = Field->getBitWidthValue(Types.getContext());
446
447 // Ignore zero sized bit fields.
448 if (FieldSize == 0)
449 return 0;
450
451 unsigned StorageBits = llvm::RoundUpToAlignment(
452 FieldSize, Types.getTarget().getCharAlign());
453 CharUnits NumBytesToAppend
454 = Types.getContext().toCharUnitsFromBits(StorageBits);
455
456 llvm::Type *FieldTy = llvm::Type::getInt8Ty(Types.getLLVMContext());
457 if (NumBytesToAppend > CharUnits::One())
458 FieldTy = llvm::ArrayType::get(FieldTy, NumBytesToAppend.getQuantity());
459
460 // Add the bit field info.
461 BitFields[Field] = CGBitFieldInfo::MakeInfo(Types, Field, 0, FieldSize,
462 StorageBits,
463 Alignment.getQuantity());
464 return FieldTy;
465 }
466
467 // This is a regular union field.
468 return Types.ConvertTypeForMem(Field->getType());
469 }
470
LayoutUnion(const RecordDecl * D)471 void CGRecordLayoutBuilder::LayoutUnion(const RecordDecl *D) {
472 assert(D->isUnion() && "Can't call LayoutUnion on a non-union record!");
473
474 const ASTRecordLayout &layout = Types.getContext().getASTRecordLayout(D);
475
476 llvm::Type *unionType = 0;
477 CharUnits unionSize = CharUnits::Zero();
478 CharUnits unionAlign = CharUnits::Zero();
479
480 bool hasOnlyZeroSizedBitFields = true;
481 bool checkedFirstFieldZeroInit = false;
482
483 unsigned fieldNo = 0;
484 for (RecordDecl::field_iterator field = D->field_begin(),
485 fieldEnd = D->field_end(); field != fieldEnd; ++field, ++fieldNo) {
486 assert(layout.getFieldOffset(fieldNo) == 0 &&
487 "Union field offset did not start at the beginning of record!");
488 llvm::Type *fieldType = LayoutUnionField(*field, layout);
489
490 if (!fieldType)
491 continue;
492
493 if (field->getDeclName() && !checkedFirstFieldZeroInit) {
494 CheckZeroInitializable(field->getType());
495 checkedFirstFieldZeroInit = true;
496 }
497
498 hasOnlyZeroSizedBitFields = false;
499
500 CharUnits fieldAlign = CharUnits::fromQuantity(
501 Types.getDataLayout().getABITypeAlignment(fieldType));
502 CharUnits fieldSize = CharUnits::fromQuantity(
503 Types.getDataLayout().getTypeAllocSize(fieldType));
504
505 if (fieldAlign < unionAlign)
506 continue;
507
508 if (fieldAlign > unionAlign || fieldSize > unionSize) {
509 unionType = fieldType;
510 unionAlign = fieldAlign;
511 unionSize = fieldSize;
512 }
513 }
514
515 // Now add our field.
516 if (unionType) {
517 AppendField(CharUnits::Zero(), unionType);
518
519 if (getTypeAlignment(unionType) > layout.getAlignment()) {
520 // We need a packed struct.
521 Packed = true;
522 unionAlign = CharUnits::One();
523 }
524 }
525 if (unionAlign.isZero()) {
526 (void)hasOnlyZeroSizedBitFields;
527 assert(hasOnlyZeroSizedBitFields &&
528 "0-align record did not have all zero-sized bit-fields!");
529 unionAlign = CharUnits::One();
530 }
531
532 // Append tail padding.
533 CharUnits recordSize = layout.getSize();
534 if (recordSize > unionSize)
535 AppendPadding(recordSize, unionAlign);
536 }
537
LayoutBase(const CXXRecordDecl * base,const CGRecordLayout & baseLayout,CharUnits baseOffset)538 bool CGRecordLayoutBuilder::LayoutBase(const CXXRecordDecl *base,
539 const CGRecordLayout &baseLayout,
540 CharUnits baseOffset) {
541 ResizeLastBaseFieldIfNecessary(baseOffset);
542
543 AppendPadding(baseOffset, CharUnits::One());
544
545 const ASTRecordLayout &baseASTLayout
546 = Types.getContext().getASTRecordLayout(base);
547
548 LastLaidOutBase.Offset = NextFieldOffset;
549 LastLaidOutBase.NonVirtualSize = baseASTLayout.getNonVirtualSize();
550
551 llvm::StructType *subobjectType = baseLayout.getBaseSubobjectLLVMType();
552 if (getTypeAlignment(subobjectType) > Alignment)
553 return false;
554
555 AppendField(baseOffset, subobjectType);
556 return true;
557 }
558
LayoutNonVirtualBase(const CXXRecordDecl * base,CharUnits baseOffset)559 bool CGRecordLayoutBuilder::LayoutNonVirtualBase(const CXXRecordDecl *base,
560 CharUnits baseOffset) {
561 // Ignore empty bases.
562 if (base->isEmpty()) return true;
563
564 const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
565 if (IsZeroInitializableAsBase) {
566 assert(IsZeroInitializable &&
567 "class zero-initializable as base but not as complete object");
568
569 IsZeroInitializable = IsZeroInitializableAsBase =
570 baseLayout.isZeroInitializableAsBase();
571 }
572
573 if (!LayoutBase(base, baseLayout, baseOffset))
574 return false;
575 NonVirtualBases[base] = (FieldTypes.size() - 1);
576 return true;
577 }
578
579 bool
LayoutVirtualBase(const CXXRecordDecl * base,CharUnits baseOffset)580 CGRecordLayoutBuilder::LayoutVirtualBase(const CXXRecordDecl *base,
581 CharUnits baseOffset) {
582 // Ignore empty bases.
583 if (base->isEmpty()) return true;
584
585 const CGRecordLayout &baseLayout = Types.getCGRecordLayout(base);
586 if (IsZeroInitializable)
587 IsZeroInitializable = baseLayout.isZeroInitializableAsBase();
588
589 if (!LayoutBase(base, baseLayout, baseOffset))
590 return false;
591 VirtualBases[base] = (FieldTypes.size() - 1);
592 return true;
593 }
594
595 bool
MSLayoutVirtualBases(const CXXRecordDecl * RD,const ASTRecordLayout & Layout)596 CGRecordLayoutBuilder::MSLayoutVirtualBases(const CXXRecordDecl *RD,
597 const ASTRecordLayout &Layout) {
598 if (!RD->getNumVBases())
599 return true;
600
601 // The vbases list is uniqued and ordered by a depth-first
602 // traversal, which is what we need here.
603 for (CXXRecordDecl::base_class_const_iterator I = RD->vbases_begin(),
604 E = RD->vbases_end(); I != E; ++I) {
605
606 const CXXRecordDecl *BaseDecl =
607 cast<CXXRecordDecl>(I->getType()->castAs<RecordType>()->getDecl());
608
609 CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
610 if (!LayoutVirtualBase(BaseDecl, vbaseOffset))
611 return false;
612 }
613 return true;
614 }
615
616 /// LayoutVirtualBases - layout the non-virtual bases of a record decl.
617 bool
LayoutVirtualBases(const CXXRecordDecl * RD,const ASTRecordLayout & Layout)618 CGRecordLayoutBuilder::LayoutVirtualBases(const CXXRecordDecl *RD,
619 const ASTRecordLayout &Layout) {
620 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
621 E = RD->bases_end(); I != E; ++I) {
622 const CXXRecordDecl *BaseDecl =
623 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
624
625 // We only want to lay out virtual bases that aren't indirect primary bases
626 // of some other base.
627 if (I->isVirtual() && !IndirectPrimaryBases.count(BaseDecl)) {
628 // Only lay out the base once.
629 if (!LaidOutVirtualBases.insert(BaseDecl))
630 continue;
631
632 CharUnits vbaseOffset = Layout.getVBaseClassOffset(BaseDecl);
633 if (!LayoutVirtualBase(BaseDecl, vbaseOffset))
634 return false;
635 }
636
637 if (!BaseDecl->getNumVBases()) {
638 // This base isn't interesting since it doesn't have any virtual bases.
639 continue;
640 }
641
642 if (!LayoutVirtualBases(BaseDecl, Layout))
643 return false;
644 }
645 return true;
646 }
647
648 bool
LayoutNonVirtualBases(const CXXRecordDecl * RD,const ASTRecordLayout & Layout)649 CGRecordLayoutBuilder::LayoutNonVirtualBases(const CXXRecordDecl *RD,
650 const ASTRecordLayout &Layout) {
651 const CXXRecordDecl *PrimaryBase = Layout.getPrimaryBase();
652
653 // If we have a primary base, lay it out first.
654 if (PrimaryBase) {
655 if (!Layout.isPrimaryBaseVirtual()) {
656 if (!LayoutNonVirtualBase(PrimaryBase, CharUnits::Zero()))
657 return false;
658 } else {
659 if (!LayoutVirtualBase(PrimaryBase, CharUnits::Zero()))
660 return false;
661 }
662
663 // Otherwise, add a vtable / vf-table if the layout says to do so.
664 } else if (Layout.hasOwnVFPtr()) {
665 llvm::Type *FunctionType =
666 llvm::FunctionType::get(llvm::Type::getInt32Ty(Types.getLLVMContext()),
667 /*isVarArg=*/true);
668 llvm::Type *VTableTy = FunctionType->getPointerTo();
669
670 if (getTypeAlignment(VTableTy) > Alignment) {
671 // FIXME: Should we allow this to happen in Sema?
672 assert(!Packed && "Alignment is wrong even with packed struct!");
673 return false;
674 }
675
676 assert(NextFieldOffset.isZero() &&
677 "VTable pointer must come first!");
678 AppendField(CharUnits::Zero(), VTableTy->getPointerTo());
679 }
680
681 // Layout the non-virtual bases.
682 for (CXXRecordDecl::base_class_const_iterator I = RD->bases_begin(),
683 E = RD->bases_end(); I != E; ++I) {
684 if (I->isVirtual())
685 continue;
686
687 const CXXRecordDecl *BaseDecl =
688 cast<CXXRecordDecl>(I->getType()->getAs<RecordType>()->getDecl());
689
690 // We've already laid out the primary base.
691 if (BaseDecl == PrimaryBase && !Layout.isPrimaryBaseVirtual())
692 continue;
693
694 if (!LayoutNonVirtualBase(BaseDecl, Layout.getBaseClassOffset(BaseDecl)))
695 return false;
696 }
697
698 // Add a vb-table pointer if the layout insists.
699 if (Layout.getVBPtrOffset() != CharUnits::fromQuantity(-1)) {
700 CharUnits VBPtrOffset = Layout.getVBPtrOffset();
701 llvm::Type *Vbptr = llvm::Type::getInt32PtrTy(Types.getLLVMContext());
702 AppendPadding(VBPtrOffset, getTypeAlignment(Vbptr));
703 AppendField(VBPtrOffset, Vbptr);
704 }
705
706 return true;
707 }
708
709 bool
ComputeNonVirtualBaseType(const CXXRecordDecl * RD)710 CGRecordLayoutBuilder::ComputeNonVirtualBaseType(const CXXRecordDecl *RD) {
711 const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(RD);
712
713 CharUnits NonVirtualSize = Layout.getNonVirtualSize();
714 CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
715 CharUnits AlignedNonVirtualTypeSize =
716 NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
717
718 // First check if we can use the same fields as for the complete class.
719 CharUnits RecordSize = Layout.getSize();
720 if (AlignedNonVirtualTypeSize == RecordSize)
721 return true;
722
723 // Check if we need padding.
724 CharUnits AlignedNextFieldOffset =
725 NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
726
727 if (AlignedNextFieldOffset > AlignedNonVirtualTypeSize) {
728 assert(!Packed && "cannot layout even as packed struct");
729 return false; // Needs packing.
730 }
731
732 bool needsPadding = (AlignedNonVirtualTypeSize != AlignedNextFieldOffset);
733 if (needsPadding) {
734 CharUnits NumBytes = AlignedNonVirtualTypeSize - AlignedNextFieldOffset;
735 FieldTypes.push_back(getByteArrayType(NumBytes));
736 }
737
738 BaseSubobjectType = llvm::StructType::create(Types.getLLVMContext(),
739 FieldTypes, "", Packed);
740 Types.addRecordTypeName(RD, BaseSubobjectType, ".base");
741
742 // Pull the padding back off.
743 if (needsPadding)
744 FieldTypes.pop_back();
745
746 return true;
747 }
748
LayoutFields(const RecordDecl * D)749 bool CGRecordLayoutBuilder::LayoutFields(const RecordDecl *D) {
750 assert(!D->isUnion() && "Can't call LayoutFields on a union!");
751 assert(!Alignment.isZero() && "Did not set alignment!");
752
753 const ASTRecordLayout &Layout = Types.getContext().getASTRecordLayout(D);
754
755 const CXXRecordDecl *RD = dyn_cast<CXXRecordDecl>(D);
756 if (RD)
757 if (!LayoutNonVirtualBases(RD, Layout))
758 return false;
759
760 unsigned FieldNo = 0;
761
762 for (RecordDecl::field_iterator FI = D->field_begin(), FE = D->field_end();
763 FI != FE; ++FI, ++FieldNo) {
764 FieldDecl *FD = *FI;
765
766 // If this field is a bitfield, layout all of the consecutive
767 // non-zero-length bitfields and the last zero-length bitfield; these will
768 // all share storage.
769 if (FD->isBitField()) {
770 // If all we have is a zero-width bitfield, skip it.
771 if (FD->getBitWidthValue(Types.getContext()) == 0)
772 continue;
773
774 // Layout this range of bitfields.
775 if (!LayoutBitfields(Layout, FieldNo, FI, FE)) {
776 assert(!Packed &&
777 "Could not layout bitfields even with a packed LLVM struct!");
778 return false;
779 }
780 assert(FI != FE && "Advanced past the last bitfield");
781 continue;
782 }
783
784 if (!LayoutField(FD, Layout.getFieldOffset(FieldNo))) {
785 assert(!Packed &&
786 "Could not layout fields even with a packed LLVM struct!");
787 return false;
788 }
789 }
790
791 if (RD) {
792 // We've laid out the non-virtual bases and the fields, now compute the
793 // non-virtual base field types.
794 if (!ComputeNonVirtualBaseType(RD)) {
795 assert(!Packed && "Could not layout even with a packed LLVM struct!");
796 return false;
797 }
798
799 // Lay out the virtual bases. The MS ABI uses a different
800 // algorithm here due to the lack of primary virtual bases.
801 if (Types.getTarget().getCXXABI().hasPrimaryVBases()) {
802 RD->getIndirectPrimaryBases(IndirectPrimaryBases);
803 if (Layout.isPrimaryBaseVirtual())
804 IndirectPrimaryBases.insert(Layout.getPrimaryBase());
805
806 if (!LayoutVirtualBases(RD, Layout))
807 return false;
808 } else {
809 if (!MSLayoutVirtualBases(RD, Layout))
810 return false;
811 }
812 }
813
814 // Append tail padding if necessary.
815 AppendTailPadding(Layout.getSize());
816
817 return true;
818 }
819
AppendTailPadding(CharUnits RecordSize)820 void CGRecordLayoutBuilder::AppendTailPadding(CharUnits RecordSize) {
821 ResizeLastBaseFieldIfNecessary(RecordSize);
822
823 assert(NextFieldOffset <= RecordSize && "Size mismatch!");
824
825 CharUnits AlignedNextFieldOffset =
826 NextFieldOffset.RoundUpToAlignment(getAlignmentAsLLVMStruct());
827
828 if (AlignedNextFieldOffset == RecordSize) {
829 // We don't need any padding.
830 return;
831 }
832
833 CharUnits NumPadBytes = RecordSize - NextFieldOffset;
834 AppendBytes(NumPadBytes);
835 }
836
AppendField(CharUnits fieldOffset,llvm::Type * fieldType)837 void CGRecordLayoutBuilder::AppendField(CharUnits fieldOffset,
838 llvm::Type *fieldType) {
839 CharUnits fieldSize =
840 CharUnits::fromQuantity(Types.getDataLayout().getTypeAllocSize(fieldType));
841
842 FieldTypes.push_back(fieldType);
843
844 NextFieldOffset = fieldOffset + fieldSize;
845 }
846
AppendPadding(CharUnits fieldOffset,CharUnits fieldAlignment)847 void CGRecordLayoutBuilder::AppendPadding(CharUnits fieldOffset,
848 CharUnits fieldAlignment) {
849 assert(NextFieldOffset <= fieldOffset &&
850 "Incorrect field layout!");
851
852 // Do nothing if we're already at the right offset.
853 if (fieldOffset == NextFieldOffset) return;
854
855 // If we're not emitting a packed LLVM type, try to avoid adding
856 // unnecessary padding fields.
857 if (!Packed) {
858 // Round up the field offset to the alignment of the field type.
859 CharUnits alignedNextFieldOffset =
860 NextFieldOffset.RoundUpToAlignment(fieldAlignment);
861 assert(alignedNextFieldOffset <= fieldOffset);
862
863 // If that's the right offset, we're done.
864 if (alignedNextFieldOffset == fieldOffset) return;
865 }
866
867 // Otherwise we need explicit padding.
868 CharUnits padding = fieldOffset - NextFieldOffset;
869 AppendBytes(padding);
870 }
871
ResizeLastBaseFieldIfNecessary(CharUnits offset)872 bool CGRecordLayoutBuilder::ResizeLastBaseFieldIfNecessary(CharUnits offset) {
873 // Check if we have a base to resize.
874 if (!LastLaidOutBase.isValid())
875 return false;
876
877 // This offset does not overlap with the tail padding.
878 if (offset >= NextFieldOffset)
879 return false;
880
881 // Restore the field offset and append an i8 array instead.
882 FieldTypes.pop_back();
883 NextFieldOffset = LastLaidOutBase.Offset;
884 AppendBytes(LastLaidOutBase.NonVirtualSize);
885 LastLaidOutBase.invalidate();
886
887 return true;
888 }
889
getByteArrayType(CharUnits numBytes)890 llvm::Type *CGRecordLayoutBuilder::getByteArrayType(CharUnits numBytes) {
891 assert(!numBytes.isZero() && "Empty byte arrays aren't allowed.");
892
893 llvm::Type *Ty = llvm::Type::getInt8Ty(Types.getLLVMContext());
894 if (numBytes > CharUnits::One())
895 Ty = llvm::ArrayType::get(Ty, numBytes.getQuantity());
896
897 return Ty;
898 }
899
AppendBytes(CharUnits numBytes)900 void CGRecordLayoutBuilder::AppendBytes(CharUnits numBytes) {
901 if (numBytes.isZero())
902 return;
903
904 // Append the padding field
905 AppendField(NextFieldOffset, getByteArrayType(numBytes));
906 }
907
getTypeAlignment(llvm::Type * Ty) const908 CharUnits CGRecordLayoutBuilder::getTypeAlignment(llvm::Type *Ty) const {
909 if (Packed)
910 return CharUnits::One();
911
912 return CharUnits::fromQuantity(Types.getDataLayout().getABITypeAlignment(Ty));
913 }
914
getAlignmentAsLLVMStruct() const915 CharUnits CGRecordLayoutBuilder::getAlignmentAsLLVMStruct() const {
916 if (Packed)
917 return CharUnits::One();
918
919 CharUnits maxAlignment = CharUnits::One();
920 for (size_t i = 0; i != FieldTypes.size(); ++i)
921 maxAlignment = std::max(maxAlignment, getTypeAlignment(FieldTypes[i]));
922
923 return maxAlignment;
924 }
925
926 /// Merge in whether a field of the given type is zero-initializable.
CheckZeroInitializable(QualType T)927 void CGRecordLayoutBuilder::CheckZeroInitializable(QualType T) {
928 // This record already contains a member pointer.
929 if (!IsZeroInitializableAsBase)
930 return;
931
932 // Can only have member pointers if we're compiling C++.
933 if (!Types.getContext().getLangOpts().CPlusPlus)
934 return;
935
936 const Type *elementType = T->getBaseElementTypeUnsafe();
937
938 if (const MemberPointerType *MPT = elementType->getAs<MemberPointerType>()) {
939 if (!Types.getCXXABI().isZeroInitializable(MPT))
940 IsZeroInitializable = IsZeroInitializableAsBase = false;
941 } else if (const RecordType *RT = elementType->getAs<RecordType>()) {
942 const CXXRecordDecl *RD = cast<CXXRecordDecl>(RT->getDecl());
943 const CGRecordLayout &Layout = Types.getCGRecordLayout(RD);
944 if (!Layout.isZeroInitializable())
945 IsZeroInitializable = IsZeroInitializableAsBase = false;
946 }
947 }
948
ComputeRecordLayout(const RecordDecl * D,llvm::StructType * Ty)949 CGRecordLayout *CodeGenTypes::ComputeRecordLayout(const RecordDecl *D,
950 llvm::StructType *Ty) {
951 CGRecordLayoutBuilder Builder(*this);
952
953 Builder.Layout(D);
954
955 Ty->setBody(Builder.FieldTypes, Builder.Packed);
956
957 // If we're in C++, compute the base subobject type.
958 llvm::StructType *BaseTy = 0;
959 if (isa<CXXRecordDecl>(D) && !D->isUnion()) {
960 BaseTy = Builder.BaseSubobjectType;
961 if (!BaseTy) BaseTy = Ty;
962 }
963
964 CGRecordLayout *RL =
965 new CGRecordLayout(Ty, BaseTy, Builder.IsZeroInitializable,
966 Builder.IsZeroInitializableAsBase);
967
968 RL->NonVirtualBases.swap(Builder.NonVirtualBases);
969 RL->CompleteObjectVirtualBases.swap(Builder.VirtualBases);
970
971 // Add all the field numbers.
972 RL->FieldInfo.swap(Builder.Fields);
973
974 // Add bitfield info.
975 RL->BitFields.swap(Builder.BitFields);
976
977 // Dump the layout, if requested.
978 if (getContext().getLangOpts().DumpRecordLayouts) {
979 llvm::outs() << "\n*** Dumping IRgen Record Layout\n";
980 llvm::outs() << "Record: ";
981 D->dump(llvm::outs());
982 llvm::outs() << "\nLayout: ";
983 RL->print(llvm::outs());
984 }
985
986 #ifndef NDEBUG
987 // Verify that the computed LLVM struct size matches the AST layout size.
988 const ASTRecordLayout &Layout = getContext().getASTRecordLayout(D);
989
990 uint64_t TypeSizeInBits = getContext().toBits(Layout.getSize());
991 assert(TypeSizeInBits == getDataLayout().getTypeAllocSizeInBits(Ty) &&
992 "Type size mismatch!");
993
994 if (BaseTy) {
995 CharUnits NonVirtualSize = Layout.getNonVirtualSize();
996 CharUnits NonVirtualAlign = Layout.getNonVirtualAlign();
997 CharUnits AlignedNonVirtualTypeSize =
998 NonVirtualSize.RoundUpToAlignment(NonVirtualAlign);
999
1000 uint64_t AlignedNonVirtualTypeSizeInBits =
1001 getContext().toBits(AlignedNonVirtualTypeSize);
1002
1003 assert(AlignedNonVirtualTypeSizeInBits ==
1004 getDataLayout().getTypeAllocSizeInBits(BaseTy) &&
1005 "Type size mismatch!");
1006 }
1007
1008 // Verify that the LLVM and AST field offsets agree.
1009 llvm::StructType *ST =
1010 dyn_cast<llvm::StructType>(RL->getLLVMType());
1011 const llvm::StructLayout *SL = getDataLayout().getStructLayout(ST);
1012
1013 const ASTRecordLayout &AST_RL = getContext().getASTRecordLayout(D);
1014 RecordDecl::field_iterator it = D->field_begin();
1015 for (unsigned i = 0, e = AST_RL.getFieldCount(); i != e; ++i, ++it) {
1016 const FieldDecl *FD = *it;
1017
1018 // For non-bit-fields, just check that the LLVM struct offset matches the
1019 // AST offset.
1020 if (!FD->isBitField()) {
1021 unsigned FieldNo = RL->getLLVMFieldNo(FD);
1022 assert(AST_RL.getFieldOffset(i) == SL->getElementOffsetInBits(FieldNo) &&
1023 "Invalid field offset!");
1024 continue;
1025 }
1026
1027 // Ignore unnamed bit-fields.
1028 if (!FD->getDeclName())
1029 continue;
1030
1031 // Don't inspect zero-length bitfields.
1032 if (FD->getBitWidthValue(getContext()) == 0)
1033 continue;
1034
1035 const CGBitFieldInfo &Info = RL->getBitFieldInfo(FD);
1036 llvm::Type *ElementTy = ST->getTypeAtIndex(RL->getLLVMFieldNo(FD));
1037
1038 // Unions have overlapping elements dictating their layout, but for
1039 // non-unions we can verify that this section of the layout is the exact
1040 // expected size.
1041 if (D->isUnion()) {
1042 // For unions we verify that the start is zero and the size
1043 // is in-bounds. However, on BE systems, the offset may be non-zero, but
1044 // the size + offset should match the storage size in that case as it
1045 // "starts" at the back.
1046 if (getDataLayout().isBigEndian())
1047 assert(static_cast<unsigned>(Info.Offset + Info.Size) ==
1048 Info.StorageSize &&
1049 "Big endian union bitfield does not end at the back");
1050 else
1051 assert(Info.Offset == 0 &&
1052 "Little endian union bitfield with a non-zero offset");
1053 assert(Info.StorageSize <= SL->getSizeInBits() &&
1054 "Union not large enough for bitfield storage");
1055 } else {
1056 assert(Info.StorageSize ==
1057 getDataLayout().getTypeAllocSizeInBits(ElementTy) &&
1058 "Storage size does not match the element type size");
1059 }
1060 assert(Info.Size > 0 && "Empty bitfield!");
1061 assert(static_cast<unsigned>(Info.Offset) + Info.Size <= Info.StorageSize &&
1062 "Bitfield outside of its allocated storage");
1063 }
1064 #endif
1065
1066 return RL;
1067 }
1068
print(raw_ostream & OS) const1069 void CGRecordLayout::print(raw_ostream &OS) const {
1070 OS << "<CGRecordLayout\n";
1071 OS << " LLVMType:" << *CompleteObjectType << "\n";
1072 if (BaseSubobjectType)
1073 OS << " NonVirtualBaseLLVMType:" << *BaseSubobjectType << "\n";
1074 OS << " IsZeroInitializable:" << IsZeroInitializable << "\n";
1075 OS << " BitFields:[\n";
1076
1077 // Print bit-field infos in declaration order.
1078 std::vector<std::pair<unsigned, const CGBitFieldInfo*> > BFIs;
1079 for (llvm::DenseMap<const FieldDecl*, CGBitFieldInfo>::const_iterator
1080 it = BitFields.begin(), ie = BitFields.end();
1081 it != ie; ++it) {
1082 const RecordDecl *RD = it->first->getParent();
1083 unsigned Index = 0;
1084 for (RecordDecl::field_iterator
1085 it2 = RD->field_begin(); *it2 != it->first; ++it2)
1086 ++Index;
1087 BFIs.push_back(std::make_pair(Index, &it->second));
1088 }
1089 llvm::array_pod_sort(BFIs.begin(), BFIs.end());
1090 for (unsigned i = 0, e = BFIs.size(); i != e; ++i) {
1091 OS.indent(4);
1092 BFIs[i].second->print(OS);
1093 OS << "\n";
1094 }
1095
1096 OS << "]>\n";
1097 }
1098
dump() const1099 void CGRecordLayout::dump() const {
1100 print(llvm::errs());
1101 }
1102
print(raw_ostream & OS) const1103 void CGBitFieldInfo::print(raw_ostream &OS) const {
1104 OS << "<CGBitFieldInfo"
1105 << " Offset:" << Offset
1106 << " Size:" << Size
1107 << " IsSigned:" << IsSigned
1108 << " StorageSize:" << StorageSize
1109 << " StorageAlignment:" << StorageAlignment << ">";
1110 }
1111
dump() const1112 void CGBitFieldInfo::dump() const {
1113 print(llvm::errs());
1114 }
1115