• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===- DAGISelMatcherOpt.cpp - Optimize a DAG Matcher ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the DAG Matcher optimizer.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #define DEBUG_TYPE "isel-opt"
15 #include "DAGISelMatcher.h"
16 #include "CodeGenDAGPatterns.h"
17 #include "llvm/ADT/DenseSet.h"
18 #include "llvm/ADT/StringSet.h"
19 #include "llvm/Support/Debug.h"
20 #include "llvm/Support/raw_ostream.h"
21 using namespace llvm;
22 
23 /// ContractNodes - Turn multiple matcher node patterns like 'MoveChild+Record'
24 /// into single compound nodes like RecordChild.
ContractNodes(OwningPtr<Matcher> & MatcherPtr,const CodeGenDAGPatterns & CGP)25 static void ContractNodes(OwningPtr<Matcher> &MatcherPtr,
26                           const CodeGenDAGPatterns &CGP) {
27   // If we reached the end of the chain, we're done.
28   Matcher *N = MatcherPtr.get();
29   if (N == 0) return;
30 
31   // If we have a scope node, walk down all of the children.
32   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
33     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
34       OwningPtr<Matcher> Child(Scope->takeChild(i));
35       ContractNodes(Child, CGP);
36       Scope->resetChild(i, Child.take());
37     }
38     return;
39   }
40 
41   // If we found a movechild node with a node that comes in a 'foochild' form,
42   // transform it.
43   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N)) {
44     Matcher *New = 0;
45     if (RecordMatcher *RM = dyn_cast<RecordMatcher>(MC->getNext()))
46       if (MC->getChildNo() < 8)  // Only have RecordChild0...7
47         New = new RecordChildMatcher(MC->getChildNo(), RM->getWhatFor(),
48                                      RM->getResultNo());
49 
50     if (CheckTypeMatcher *CT = dyn_cast<CheckTypeMatcher>(MC->getNext()))
51       if (MC->getChildNo() < 8 &&  // Only have CheckChildType0...7
52           CT->getResNo() == 0)     // CheckChildType checks res #0
53         New = new CheckChildTypeMatcher(MC->getChildNo(), CT->getType());
54 
55     if (New) {
56       // Insert the new node.
57       New->setNext(MatcherPtr.take());
58       MatcherPtr.reset(New);
59       // Remove the old one.
60       MC->setNext(MC->getNext()->takeNext());
61       return ContractNodes(MatcherPtr, CGP);
62     }
63   }
64 
65   // Zap movechild -> moveparent.
66   if (MoveChildMatcher *MC = dyn_cast<MoveChildMatcher>(N))
67     if (MoveParentMatcher *MP =
68           dyn_cast<MoveParentMatcher>(MC->getNext())) {
69       MatcherPtr.reset(MP->takeNext());
70       return ContractNodes(MatcherPtr, CGP);
71     }
72 
73   // Turn EmitNode->MarkFlagResults->CompleteMatch into
74   // MarkFlagResults->EmitNode->CompleteMatch when we can to encourage
75   // MorphNodeTo formation.  This is safe because MarkFlagResults never refers
76   // to the root of the pattern.
77   if (isa<EmitNodeMatcher>(N) && isa<MarkGlueResultsMatcher>(N->getNext()) &&
78       isa<CompleteMatchMatcher>(N->getNext()->getNext())) {
79     // Unlink the two nodes from the list.
80     Matcher *EmitNode = MatcherPtr.take();
81     Matcher *MFR = EmitNode->takeNext();
82     Matcher *Tail = MFR->takeNext();
83 
84     // Relink them.
85     MatcherPtr.reset(MFR);
86     MFR->setNext(EmitNode);
87     EmitNode->setNext(Tail);
88     return ContractNodes(MatcherPtr, CGP);
89   }
90 
91   // Turn EmitNode->CompleteMatch into MorphNodeTo if we can.
92   if (EmitNodeMatcher *EN = dyn_cast<EmitNodeMatcher>(N))
93     if (CompleteMatchMatcher *CM =
94           dyn_cast<CompleteMatchMatcher>(EN->getNext())) {
95       // We can only use MorphNodeTo if the result values match up.
96       unsigned RootResultFirst = EN->getFirstResultSlot();
97       bool ResultsMatch = true;
98       for (unsigned i = 0, e = CM->getNumResults(); i != e; ++i)
99         if (CM->getResult(i) != RootResultFirst+i)
100           ResultsMatch = false;
101 
102       // If the selected node defines a subset of the glue/chain results, we
103       // can't use MorphNodeTo.  For example, we can't use MorphNodeTo if the
104       // matched pattern has a chain but the root node doesn't.
105       const PatternToMatch &Pattern = CM->getPattern();
106 
107       if (!EN->hasChain() &&
108           Pattern.getSrcPattern()->NodeHasProperty(SDNPHasChain, CGP))
109         ResultsMatch = false;
110 
111       // If the matched node has glue and the output root doesn't, we can't
112       // use MorphNodeTo.
113       //
114       // NOTE: Strictly speaking, we don't have to check for glue here
115       // because the code in the pattern generator doesn't handle it right.  We
116       // do it anyway for thoroughness.
117       if (!EN->hasOutFlag() &&
118           Pattern.getSrcPattern()->NodeHasProperty(SDNPOutGlue, CGP))
119         ResultsMatch = false;
120 
121 
122       // If the root result node defines more results than the source root node
123       // *and* has a chain or glue input, then we can't match it because it
124       // would end up replacing the extra result with the chain/glue.
125 #if 0
126       if ((EN->hasGlue() || EN->hasChain()) &&
127           EN->getNumNonChainGlueVTs() > ... need to get no results reliably ...)
128         ResultMatch = false;
129 #endif
130 
131       if (ResultsMatch) {
132         const SmallVectorImpl<MVT::SimpleValueType> &VTs = EN->getVTList();
133         const SmallVectorImpl<unsigned> &Operands = EN->getOperandList();
134         MatcherPtr.reset(new MorphNodeToMatcher(EN->getOpcodeName(),
135                                                 VTs.data(), VTs.size(),
136                                                 Operands.data(),Operands.size(),
137                                                 EN->hasChain(), EN->hasInFlag(),
138                                                 EN->hasOutFlag(),
139                                                 EN->hasMemRefs(),
140                                                 EN->getNumFixedArityOperands(),
141                                                 Pattern));
142         return;
143       }
144 
145       // FIXME2: Kill off all the SelectionDAG::SelectNodeTo and getMachineNode
146       // variants.
147     }
148 
149   ContractNodes(N->getNextPtr(), CGP);
150 
151 
152   // If we have a CheckType/CheckChildType/Record node followed by a
153   // CheckOpcode, invert the two nodes.  We prefer to do structural checks
154   // before type checks, as this opens opportunities for factoring on targets
155   // like X86 where many operations are valid on multiple types.
156   if ((isa<CheckTypeMatcher>(N) || isa<CheckChildTypeMatcher>(N) ||
157        isa<RecordMatcher>(N)) &&
158       isa<CheckOpcodeMatcher>(N->getNext())) {
159     // Unlink the two nodes from the list.
160     Matcher *CheckType = MatcherPtr.take();
161     Matcher *CheckOpcode = CheckType->takeNext();
162     Matcher *Tail = CheckOpcode->takeNext();
163 
164     // Relink them.
165     MatcherPtr.reset(CheckOpcode);
166     CheckOpcode->setNext(CheckType);
167     CheckType->setNext(Tail);
168     return ContractNodes(MatcherPtr, CGP);
169   }
170 }
171 
172 /// SinkPatternPredicates - Pattern predicates can be checked at any level of
173 /// the matching tree.  The generator dumps them at the top level of the pattern
174 /// though, which prevents factoring from being able to see past them.  This
175 /// optimization sinks them as far down into the pattern as possible.
176 ///
177 /// Conceptually, we'd like to sink these predicates all the way to the last
178 /// matcher predicate in the series.  However, it turns out that some
179 /// ComplexPatterns have side effects on the graph, so we really don't want to
180 /// run a the complex pattern if the pattern predicate will fail.  For this
181 /// reason, we refuse to sink the pattern predicate past a ComplexPattern.
182 ///
SinkPatternPredicates(OwningPtr<Matcher> & MatcherPtr)183 static void SinkPatternPredicates(OwningPtr<Matcher> &MatcherPtr) {
184   // Recursively scan for a PatternPredicate.
185   // If we reached the end of the chain, we're done.
186   Matcher *N = MatcherPtr.get();
187   if (N == 0) return;
188 
189   // Walk down all members of a scope node.
190   if (ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N)) {
191     for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
192       OwningPtr<Matcher> Child(Scope->takeChild(i));
193       SinkPatternPredicates(Child);
194       Scope->resetChild(i, Child.take());
195     }
196     return;
197   }
198 
199   // If this node isn't a CheckPatternPredicateMatcher we keep scanning until
200   // we find one.
201   CheckPatternPredicateMatcher *CPPM =dyn_cast<CheckPatternPredicateMatcher>(N);
202   if (CPPM == 0)
203     return SinkPatternPredicates(N->getNextPtr());
204 
205   // Ok, we found one, lets try to sink it. Check if we can sink it past the
206   // next node in the chain.  If not, we won't be able to change anything and
207   // might as well bail.
208   if (!CPPM->getNext()->isSafeToReorderWithPatternPredicate())
209     return;
210 
211   // Okay, we know we can sink it past at least one node.  Unlink it from the
212   // chain and scan for the new insertion point.
213   MatcherPtr.take();  // Don't delete CPPM.
214   MatcherPtr.reset(CPPM->takeNext());
215 
216   N = MatcherPtr.get();
217   while (N->getNext()->isSafeToReorderWithPatternPredicate())
218     N = N->getNext();
219 
220   // At this point, we want to insert CPPM after N.
221   CPPM->setNext(N->takeNext());
222   N->setNext(CPPM);
223 }
224 
225 /// FindNodeWithKind - Scan a series of matchers looking for a matcher with a
226 /// specified kind.  Return null if we didn't find one otherwise return the
227 /// matcher.
FindNodeWithKind(Matcher * M,Matcher::KindTy Kind)228 static Matcher *FindNodeWithKind(Matcher *M, Matcher::KindTy Kind) {
229   for (; M; M = M->getNext())
230     if (M->getKind() == Kind)
231       return M;
232   return 0;
233 }
234 
235 
236 /// FactorNodes - Turn matches like this:
237 ///   Scope
238 ///     OPC_CheckType i32
239 ///       ABC
240 ///     OPC_CheckType i32
241 ///       XYZ
242 /// into:
243 ///   OPC_CheckType i32
244 ///     Scope
245 ///       ABC
246 ///       XYZ
247 ///
FactorNodes(OwningPtr<Matcher> & MatcherPtr)248 static void FactorNodes(OwningPtr<Matcher> &MatcherPtr) {
249   // If we reached the end of the chain, we're done.
250   Matcher *N = MatcherPtr.get();
251   if (N == 0) return;
252 
253   // If this is not a push node, just scan for one.
254   ScopeMatcher *Scope = dyn_cast<ScopeMatcher>(N);
255   if (Scope == 0)
256     return FactorNodes(N->getNextPtr());
257 
258   // Okay, pull together the children of the scope node into a vector so we can
259   // inspect it more easily.  While we're at it, bucket them up by the hash
260   // code of their first predicate.
261   SmallVector<Matcher*, 32> OptionsToMatch;
262 
263   for (unsigned i = 0, e = Scope->getNumChildren(); i != e; ++i) {
264     // Factor the subexpression.
265     OwningPtr<Matcher> Child(Scope->takeChild(i));
266     FactorNodes(Child);
267 
268     if (Matcher *N = Child.take())
269       OptionsToMatch.push_back(N);
270   }
271 
272   SmallVector<Matcher*, 32> NewOptionsToMatch;
273 
274   // Loop over options to match, merging neighboring patterns with identical
275   // starting nodes into a shared matcher.
276   for (unsigned OptionIdx = 0, e = OptionsToMatch.size(); OptionIdx != e;) {
277     // Find the set of matchers that start with this node.
278     Matcher *Optn = OptionsToMatch[OptionIdx++];
279 
280     if (OptionIdx == e) {
281       NewOptionsToMatch.push_back(Optn);
282       continue;
283     }
284 
285     // See if the next option starts with the same matcher.  If the two
286     // neighbors *do* start with the same matcher, we can factor the matcher out
287     // of at least these two patterns.  See what the maximal set we can merge
288     // together is.
289     SmallVector<Matcher*, 8> EqualMatchers;
290     EqualMatchers.push_back(Optn);
291 
292     // Factor all of the known-equal matchers after this one into the same
293     // group.
294     while (OptionIdx != e && OptionsToMatch[OptionIdx]->isEqual(Optn))
295       EqualMatchers.push_back(OptionsToMatch[OptionIdx++]);
296 
297     // If we found a non-equal matcher, see if it is contradictory with the
298     // current node.  If so, we know that the ordering relation between the
299     // current sets of nodes and this node don't matter.  Look past it to see if
300     // we can merge anything else into this matching group.
301     unsigned Scan = OptionIdx;
302     while (1) {
303       // If we ran out of stuff to scan, we're done.
304       if (Scan == e) break;
305 
306       Matcher *ScanMatcher = OptionsToMatch[Scan];
307 
308       // If we found an entry that matches out matcher, merge it into the set to
309       // handle.
310       if (Optn->isEqual(ScanMatcher)) {
311         // If is equal after all, add the option to EqualMatchers and remove it
312         // from OptionsToMatch.
313         EqualMatchers.push_back(ScanMatcher);
314         OptionsToMatch.erase(OptionsToMatch.begin()+Scan);
315         --e;
316         continue;
317       }
318 
319       // If the option we're checking for contradicts the start of the list,
320       // skip over it.
321       if (Optn->isContradictory(ScanMatcher)) {
322         ++Scan;
323         continue;
324       }
325 
326       // If we're scanning for a simple node, see if it occurs later in the
327       // sequence.  If so, and if we can move it up, it might be contradictory
328       // or the same as what we're looking for.  If so, reorder it.
329       if (Optn->isSimplePredicateOrRecordNode()) {
330         Matcher *M2 = FindNodeWithKind(ScanMatcher, Optn->getKind());
331         if (M2 != 0 && M2 != ScanMatcher &&
332             M2->canMoveBefore(ScanMatcher) &&
333             (M2->isEqual(Optn) || M2->isContradictory(Optn))) {
334           Matcher *MatcherWithoutM2 = ScanMatcher->unlinkNode(M2);
335           M2->setNext(MatcherWithoutM2);
336           OptionsToMatch[Scan] = M2;
337           continue;
338         }
339       }
340 
341       // Otherwise, we don't know how to handle this entry, we have to bail.
342       break;
343     }
344 
345     if (Scan != e &&
346         // Don't print it's obvious nothing extra could be merged anyway.
347         Scan+1 != e) {
348       DEBUG(errs() << "Couldn't merge this:\n";
349             Optn->print(errs(), 4);
350             errs() << "into this:\n";
351             OptionsToMatch[Scan]->print(errs(), 4);
352             if (Scan+1 != e)
353               OptionsToMatch[Scan+1]->printOne(errs());
354             if (Scan+2 < e)
355               OptionsToMatch[Scan+2]->printOne(errs());
356             errs() << "\n");
357     }
358 
359     // If we only found one option starting with this matcher, no factoring is
360     // possible.
361     if (EqualMatchers.size() == 1) {
362       NewOptionsToMatch.push_back(EqualMatchers[0]);
363       continue;
364     }
365 
366     // Factor these checks by pulling the first node off each entry and
367     // discarding it.  Take the first one off the first entry to reuse.
368     Matcher *Shared = Optn;
369     Optn = Optn->takeNext();
370     EqualMatchers[0] = Optn;
371 
372     // Remove and delete the first node from the other matchers we're factoring.
373     for (unsigned i = 1, e = EqualMatchers.size(); i != e; ++i) {
374       Matcher *Tmp = EqualMatchers[i]->takeNext();
375       delete EqualMatchers[i];
376       EqualMatchers[i] = Tmp;
377     }
378 
379     Shared->setNext(new ScopeMatcher(&EqualMatchers[0], EqualMatchers.size()));
380 
381     // Recursively factor the newly created node.
382     FactorNodes(Shared->getNextPtr());
383 
384     NewOptionsToMatch.push_back(Shared);
385   }
386 
387   // If we're down to a single pattern to match, then we don't need this scope
388   // anymore.
389   if (NewOptionsToMatch.size() == 1) {
390     MatcherPtr.reset(NewOptionsToMatch[0]);
391     return;
392   }
393 
394   if (NewOptionsToMatch.empty()) {
395     MatcherPtr.reset(0);
396     return;
397   }
398 
399   // If our factoring failed (didn't achieve anything) see if we can simplify in
400   // other ways.
401 
402   // Check to see if all of the leading entries are now opcode checks.  If so,
403   // we can convert this Scope to be a OpcodeSwitch instead.
404   bool AllOpcodeChecks = true, AllTypeChecks = true;
405   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
406     // Check to see if this breaks a series of CheckOpcodeMatchers.
407     if (AllOpcodeChecks &&
408         !isa<CheckOpcodeMatcher>(NewOptionsToMatch[i])) {
409 #if 0
410       if (i > 3) {
411         errs() << "FAILING OPC #" << i << "\n";
412         NewOptionsToMatch[i]->dump();
413       }
414 #endif
415       AllOpcodeChecks = false;
416     }
417 
418     // Check to see if this breaks a series of CheckTypeMatcher's.
419     if (AllTypeChecks) {
420       CheckTypeMatcher *CTM =
421         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
422                                                         Matcher::CheckType));
423       if (CTM == 0 ||
424           // iPTR checks could alias any other case without us knowing, don't
425           // bother with them.
426           CTM->getType() == MVT::iPTR ||
427           // SwitchType only works for result #0.
428           CTM->getResNo() != 0 ||
429           // If the CheckType isn't at the start of the list, see if we can move
430           // it there.
431           !CTM->canMoveBefore(NewOptionsToMatch[i])) {
432 #if 0
433         if (i > 3 && AllTypeChecks) {
434           errs() << "FAILING TYPE #" << i << "\n";
435           NewOptionsToMatch[i]->dump();
436         }
437 #endif
438         AllTypeChecks = false;
439       }
440     }
441   }
442 
443   // If all the options are CheckOpcode's, we can form the SwitchOpcode, woot.
444   if (AllOpcodeChecks) {
445     StringSet<> Opcodes;
446     SmallVector<std::pair<const SDNodeInfo*, Matcher*>, 8> Cases;
447     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
448       CheckOpcodeMatcher *COM = cast<CheckOpcodeMatcher>(NewOptionsToMatch[i]);
449       assert(Opcodes.insert(COM->getOpcode().getEnumName()) &&
450              "Duplicate opcodes not factored?");
451       Cases.push_back(std::make_pair(&COM->getOpcode(), COM->getNext()));
452     }
453 
454     MatcherPtr.reset(new SwitchOpcodeMatcher(&Cases[0], Cases.size()));
455     return;
456   }
457 
458   // If all the options are CheckType's, we can form the SwitchType, woot.
459   if (AllTypeChecks) {
460     DenseMap<unsigned, unsigned> TypeEntry;
461     SmallVector<std::pair<MVT::SimpleValueType, Matcher*>, 8> Cases;
462     for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i) {
463       CheckTypeMatcher *CTM =
464         cast_or_null<CheckTypeMatcher>(FindNodeWithKind(NewOptionsToMatch[i],
465                                                         Matcher::CheckType));
466       Matcher *MatcherWithoutCTM = NewOptionsToMatch[i]->unlinkNode(CTM);
467       MVT::SimpleValueType CTMTy = CTM->getType();
468       delete CTM;
469 
470       unsigned &Entry = TypeEntry[CTMTy];
471       if (Entry != 0) {
472         // If we have unfactored duplicate types, then we should factor them.
473         Matcher *PrevMatcher = Cases[Entry-1].second;
474         if (ScopeMatcher *SM = dyn_cast<ScopeMatcher>(PrevMatcher)) {
475           SM->setNumChildren(SM->getNumChildren()+1);
476           SM->resetChild(SM->getNumChildren()-1, MatcherWithoutCTM);
477           continue;
478         }
479 
480         Matcher *Entries[2] = { PrevMatcher, MatcherWithoutCTM };
481         Cases[Entry-1].second = new ScopeMatcher(Entries, 2);
482         continue;
483       }
484 
485       Entry = Cases.size()+1;
486       Cases.push_back(std::make_pair(CTMTy, MatcherWithoutCTM));
487     }
488 
489     if (Cases.size() != 1) {
490       MatcherPtr.reset(new SwitchTypeMatcher(&Cases[0], Cases.size()));
491     } else {
492       // If we factored and ended up with one case, create it now.
493       MatcherPtr.reset(new CheckTypeMatcher(Cases[0].first, 0));
494       MatcherPtr->setNext(Cases[0].second);
495     }
496     return;
497   }
498 
499 
500   // Reassemble the Scope node with the adjusted children.
501   Scope->setNumChildren(NewOptionsToMatch.size());
502   for (unsigned i = 0, e = NewOptionsToMatch.size(); i != e; ++i)
503     Scope->resetChild(i, NewOptionsToMatch[i]);
504 }
505 
OptimizeMatcher(Matcher * TheMatcher,const CodeGenDAGPatterns & CGP)506 Matcher *llvm::OptimizeMatcher(Matcher *TheMatcher,
507                                const CodeGenDAGPatterns &CGP) {
508   OwningPtr<Matcher> MatcherPtr(TheMatcher);
509   ContractNodes(MatcherPtr, CGP);
510   SinkPatternPredicates(MatcherPtr);
511   FactorNodes(MatcherPtr);
512   return MatcherPtr.take();
513 }
514