1 /*
2 * Copyright (C) 2013 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #define ATRACE_TAG ATRACE_TAG_GRAPHICS
18
19 // This is needed for stdint.h to define INT64_MAX in C++
20 #define __STDC_LIMIT_MACROS
21
22 #include <math.h>
23
24 #include <cutils/log.h>
25
26 #include <ui/Fence.h>
27
28 #include <utils/String8.h>
29 #include <utils/Thread.h>
30 #include <utils/Trace.h>
31 #include <utils/Vector.h>
32
33 #include "DispSync.h"
34 #include "EventLog/EventLog.h"
35
36 namespace android {
37
38 // Setting this to true enables verbose tracing that can be used to debug
39 // vsync event model or phase issues.
40 static const bool traceDetailedInfo = false;
41
42 // This is the threshold used to determine when hardware vsync events are
43 // needed to re-synchronize the software vsync model with the hardware. The
44 // error metric used is the mean of the squared difference between each
45 // present time and the nearest software-predicted vsync.
46 static const nsecs_t errorThreshold = 160000000000;
47
48 // This works around the lack of support for the sync framework on some
49 // devices.
50 #ifdef RUNNING_WITHOUT_SYNC_FRAMEWORK
51 static const bool runningWithoutSyncFramework = true;
52 #else
53 static const bool runningWithoutSyncFramework = false;
54 #endif
55
56 // This is the offset from the present fence timestamps to the corresponding
57 // vsync event.
58 static const int64_t presentTimeOffset = PRESENT_TIME_OFFSET_FROM_VSYNC_NS;
59
60 class DispSyncThread: public Thread {
61 public:
62
DispSyncThread()63 DispSyncThread():
64 mStop(false),
65 mPeriod(0),
66 mPhase(0),
67 mWakeupLatency(0) {
68 }
69
~DispSyncThread()70 virtual ~DispSyncThread() {}
71
updateModel(nsecs_t period,nsecs_t phase)72 void updateModel(nsecs_t period, nsecs_t phase) {
73 Mutex::Autolock lock(mMutex);
74 mPeriod = period;
75 mPhase = phase;
76 mCond.signal();
77 }
78
stop()79 void stop() {
80 Mutex::Autolock lock(mMutex);
81 mStop = true;
82 mCond.signal();
83 }
84
threadLoop()85 virtual bool threadLoop() {
86 status_t err;
87 nsecs_t now = systemTime(SYSTEM_TIME_MONOTONIC);
88 nsecs_t nextEventTime = 0;
89
90 while (true) {
91 Vector<CallbackInvocation> callbackInvocations;
92
93 nsecs_t targetTime = 0;
94
95 { // Scope for lock
96 Mutex::Autolock lock(mMutex);
97
98 if (mStop) {
99 return false;
100 }
101
102 if (mPeriod == 0) {
103 err = mCond.wait(mMutex);
104 if (err != NO_ERROR) {
105 ALOGE("error waiting for new events: %s (%d)",
106 strerror(-err), err);
107 return false;
108 }
109 continue;
110 }
111
112 nextEventTime = computeNextEventTimeLocked(now);
113 targetTime = nextEventTime;
114
115 bool isWakeup = false;
116
117 if (now < targetTime) {
118 err = mCond.waitRelative(mMutex, targetTime - now);
119
120 if (err == TIMED_OUT) {
121 isWakeup = true;
122 } else if (err != NO_ERROR) {
123 ALOGE("error waiting for next event: %s (%d)",
124 strerror(-err), err);
125 return false;
126 }
127 }
128
129 now = systemTime(SYSTEM_TIME_MONOTONIC);
130
131 if (isWakeup) {
132 mWakeupLatency = ((mWakeupLatency * 63) +
133 (now - targetTime)) / 64;
134 if (mWakeupLatency > 500000) {
135 // Don't correct by more than 500 us
136 mWakeupLatency = 500000;
137 }
138 if (traceDetailedInfo) {
139 ATRACE_INT64("DispSync:WakeupLat", now - nextEventTime);
140 ATRACE_INT64("DispSync:AvgWakeupLat", mWakeupLatency);
141 }
142 }
143
144 callbackInvocations = gatherCallbackInvocationsLocked(now);
145 }
146
147 if (callbackInvocations.size() > 0) {
148 fireCallbackInvocations(callbackInvocations);
149 }
150 }
151
152 return false;
153 }
154
addEventListener(nsecs_t phase,const sp<DispSync::Callback> & callback)155 status_t addEventListener(nsecs_t phase, const sp<DispSync::Callback>& callback) {
156 Mutex::Autolock lock(mMutex);
157
158 for (size_t i = 0; i < mEventListeners.size(); i++) {
159 if (mEventListeners[i].mCallback == callback) {
160 return BAD_VALUE;
161 }
162 }
163
164 EventListener listener;
165 listener.mPhase = phase;
166 listener.mCallback = callback;
167
168 // We want to allow the firstmost future event to fire without
169 // allowing any past events to fire. Because
170 // computeListenerNextEventTimeLocked filters out events within a half
171 // a period of the last event time, we need to initialize the last
172 // event time to a half a period in the past.
173 listener.mLastEventTime = systemTime(SYSTEM_TIME_MONOTONIC) - mPeriod / 2;
174
175 mEventListeners.push(listener);
176
177 mCond.signal();
178
179 return NO_ERROR;
180 }
181
removeEventListener(const sp<DispSync::Callback> & callback)182 status_t removeEventListener(const sp<DispSync::Callback>& callback) {
183 Mutex::Autolock lock(mMutex);
184
185 for (size_t i = 0; i < mEventListeners.size(); i++) {
186 if (mEventListeners[i].mCallback == callback) {
187 mEventListeners.removeAt(i);
188 mCond.signal();
189 return NO_ERROR;
190 }
191 }
192
193 return BAD_VALUE;
194 }
195
196 // This method is only here to handle the runningWithoutSyncFramework
197 // case.
hasAnyEventListeners()198 bool hasAnyEventListeners() {
199 Mutex::Autolock lock(mMutex);
200 return !mEventListeners.empty();
201 }
202
203 private:
204
205 struct EventListener {
206 nsecs_t mPhase;
207 nsecs_t mLastEventTime;
208 sp<DispSync::Callback> mCallback;
209 };
210
211 struct CallbackInvocation {
212 sp<DispSync::Callback> mCallback;
213 nsecs_t mEventTime;
214 };
215
computeNextEventTimeLocked(nsecs_t now)216 nsecs_t computeNextEventTimeLocked(nsecs_t now) {
217 nsecs_t nextEventTime = INT64_MAX;
218 for (size_t i = 0; i < mEventListeners.size(); i++) {
219 nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
220 now);
221
222 if (t < nextEventTime) {
223 nextEventTime = t;
224 }
225 }
226
227 return nextEventTime;
228 }
229
gatherCallbackInvocationsLocked(nsecs_t now)230 Vector<CallbackInvocation> gatherCallbackInvocationsLocked(nsecs_t now) {
231 Vector<CallbackInvocation> callbackInvocations;
232 nsecs_t ref = now - mPeriod;
233
234 for (size_t i = 0; i < mEventListeners.size(); i++) {
235 nsecs_t t = computeListenerNextEventTimeLocked(mEventListeners[i],
236 ref);
237
238 if (t < now) {
239 CallbackInvocation ci;
240 ci.mCallback = mEventListeners[i].mCallback;
241 ci.mEventTime = t;
242 callbackInvocations.push(ci);
243 mEventListeners.editItemAt(i).mLastEventTime = t;
244 }
245 }
246
247 return callbackInvocations;
248 }
249
computeListenerNextEventTimeLocked(const EventListener & listener,nsecs_t ref)250 nsecs_t computeListenerNextEventTimeLocked(const EventListener& listener,
251 nsecs_t ref) {
252
253 nsecs_t lastEventTime = listener.mLastEventTime;
254 if (ref < lastEventTime) {
255 ref = lastEventTime;
256 }
257
258 nsecs_t phase = mPhase + listener.mPhase;
259 nsecs_t t = (((ref - phase) / mPeriod) + 1) * mPeriod + phase;
260
261 if (t - listener.mLastEventTime < mPeriod / 2) {
262 t += mPeriod;
263 }
264
265 return t;
266 }
267
fireCallbackInvocations(const Vector<CallbackInvocation> & callbacks)268 void fireCallbackInvocations(const Vector<CallbackInvocation>& callbacks) {
269 for (size_t i = 0; i < callbacks.size(); i++) {
270 callbacks[i].mCallback->onDispSyncEvent(callbacks[i].mEventTime);
271 }
272 }
273
274 bool mStop;
275
276 nsecs_t mPeriod;
277 nsecs_t mPhase;
278 nsecs_t mWakeupLatency;
279
280 Vector<EventListener> mEventListeners;
281
282 Mutex mMutex;
283 Condition mCond;
284 };
285
286 class ZeroPhaseTracer : public DispSync::Callback {
287 public:
ZeroPhaseTracer()288 ZeroPhaseTracer() : mParity(false) {}
289
onDispSyncEvent(nsecs_t when)290 virtual void onDispSyncEvent(nsecs_t when) {
291 mParity = !mParity;
292 ATRACE_INT("ZERO_PHASE_VSYNC", mParity ? 1 : 0);
293 }
294
295 private:
296 bool mParity;
297 };
298
DispSync()299 DispSync::DispSync() {
300 mThread = new DispSyncThread();
301 mThread->run("DispSync", PRIORITY_URGENT_DISPLAY + PRIORITY_MORE_FAVORABLE);
302
303 reset();
304 beginResync();
305
306 if (traceDetailedInfo) {
307 // If runningWithoutSyncFramework is true then the ZeroPhaseTracer
308 // would prevent HW vsync event from ever being turned off.
309 // Furthermore the zero-phase tracing is not needed because any time
310 // there is an event registered we will turn on the HW vsync events.
311 if (!runningWithoutSyncFramework) {
312 addEventListener(0, new ZeroPhaseTracer());
313 }
314 }
315 }
316
~DispSync()317 DispSync::~DispSync() {}
318
reset()319 void DispSync::reset() {
320 Mutex::Autolock lock(mMutex);
321
322 mNumResyncSamples = 0;
323 mFirstResyncSample = 0;
324 mNumResyncSamplesSincePresent = 0;
325 resetErrorLocked();
326 }
327
addPresentFence(const sp<Fence> & fence)328 bool DispSync::addPresentFence(const sp<Fence>& fence) {
329 Mutex::Autolock lock(mMutex);
330
331 mPresentFences[mPresentSampleOffset] = fence;
332 mPresentTimes[mPresentSampleOffset] = 0;
333 mPresentSampleOffset = (mPresentSampleOffset + 1) % NUM_PRESENT_SAMPLES;
334 mNumResyncSamplesSincePresent = 0;
335
336 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
337 const sp<Fence>& f(mPresentFences[i]);
338 if (f != NULL) {
339 nsecs_t t = f->getSignalTime();
340 if (t < INT64_MAX) {
341 mPresentFences[i].clear();
342 mPresentTimes[i] = t + presentTimeOffset;
343 }
344 }
345 }
346
347 updateErrorLocked();
348
349 return mPeriod == 0 || mError > errorThreshold;
350 }
351
beginResync()352 void DispSync::beginResync() {
353 Mutex::Autolock lock(mMutex);
354
355 mNumResyncSamples = 0;
356 }
357
addResyncSample(nsecs_t timestamp)358 bool DispSync::addResyncSample(nsecs_t timestamp) {
359 Mutex::Autolock lock(mMutex);
360
361 size_t idx = (mFirstResyncSample + mNumResyncSamples) % MAX_RESYNC_SAMPLES;
362 mResyncSamples[idx] = timestamp;
363
364 if (mNumResyncSamples < MAX_RESYNC_SAMPLES) {
365 mNumResyncSamples++;
366 } else {
367 mFirstResyncSample = (mFirstResyncSample + 1) % MAX_RESYNC_SAMPLES;
368 }
369
370 updateModelLocked();
371
372 if (mNumResyncSamplesSincePresent++ > MAX_RESYNC_SAMPLES_WITHOUT_PRESENT) {
373 resetErrorLocked();
374 }
375
376 if (runningWithoutSyncFramework) {
377 // If we don't have the sync framework we will never have
378 // addPresentFence called. This means we have no way to know whether
379 // or not we're synchronized with the HW vsyncs, so we just request
380 // that the HW vsync events be turned on whenever we need to generate
381 // SW vsync events.
382 return mThread->hasAnyEventListeners();
383 }
384
385 return mPeriod == 0 || mError > errorThreshold;
386 }
387
endResync()388 void DispSync::endResync() {
389 }
390
addEventListener(nsecs_t phase,const sp<Callback> & callback)391 status_t DispSync::addEventListener(nsecs_t phase,
392 const sp<Callback>& callback) {
393
394 Mutex::Autolock lock(mMutex);
395 return mThread->addEventListener(phase, callback);
396 }
397
removeEventListener(const sp<Callback> & callback)398 status_t DispSync::removeEventListener(const sp<Callback>& callback) {
399 Mutex::Autolock lock(mMutex);
400 return mThread->removeEventListener(callback);
401 }
402
setPeriod(nsecs_t period)403 void DispSync::setPeriod(nsecs_t period) {
404 Mutex::Autolock lock(mMutex);
405 mPeriod = period;
406 mPhase = 0;
407 mThread->updateModel(mPeriod, mPhase);
408 }
409
updateModelLocked()410 void DispSync::updateModelLocked() {
411 if (mNumResyncSamples >= MIN_RESYNC_SAMPLES_FOR_UPDATE) {
412 nsecs_t durationSum = 0;
413 for (size_t i = 1; i < mNumResyncSamples; i++) {
414 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
415 size_t prev = (idx + MAX_RESYNC_SAMPLES - 1) % MAX_RESYNC_SAMPLES;
416 durationSum += mResyncSamples[idx] - mResyncSamples[prev];
417 }
418
419 mPeriod = durationSum / (mNumResyncSamples - 1);
420
421 double sampleAvgX = 0;
422 double sampleAvgY = 0;
423 double scale = 2.0 * M_PI / double(mPeriod);
424 for (size_t i = 0; i < mNumResyncSamples; i++) {
425 size_t idx = (mFirstResyncSample + i) % MAX_RESYNC_SAMPLES;
426 nsecs_t sample = mResyncSamples[idx];
427 double samplePhase = double(sample % mPeriod) * scale;
428 sampleAvgX += cos(samplePhase);
429 sampleAvgY += sin(samplePhase);
430 }
431
432 sampleAvgX /= double(mNumResyncSamples);
433 sampleAvgY /= double(mNumResyncSamples);
434
435 mPhase = nsecs_t(atan2(sampleAvgY, sampleAvgX) / scale);
436
437 if (mPhase < 0) {
438 mPhase += mPeriod;
439 }
440
441 if (traceDetailedInfo) {
442 ATRACE_INT64("DispSync:Period", mPeriod);
443 ATRACE_INT64("DispSync:Phase", mPhase);
444 }
445
446 mThread->updateModel(mPeriod, mPhase);
447 }
448 }
449
updateErrorLocked()450 void DispSync::updateErrorLocked() {
451 if (mPeriod == 0) {
452 return;
453 }
454
455 int numErrSamples = 0;
456 nsecs_t sqErrSum = 0;
457
458 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
459 nsecs_t sample = mPresentTimes[i];
460 if (sample > mPhase) {
461 nsecs_t sampleErr = (sample - mPhase) % mPeriod;
462 if (sampleErr > mPeriod / 2) {
463 sampleErr -= mPeriod;
464 }
465 sqErrSum += sampleErr * sampleErr;
466 numErrSamples++;
467 }
468 }
469
470 if (numErrSamples > 0) {
471 mError = sqErrSum / numErrSamples;
472 } else {
473 mError = 0;
474 }
475
476 if (traceDetailedInfo) {
477 ATRACE_INT64("DispSync:Error", mError);
478 }
479 }
480
resetErrorLocked()481 void DispSync::resetErrorLocked() {
482 mPresentSampleOffset = 0;
483 mError = 0;
484 for (size_t i = 0; i < NUM_PRESENT_SAMPLES; i++) {
485 mPresentFences[i].clear();
486 mPresentTimes[i] = 0;
487 }
488 }
489
490 } // namespace android
491