1 //===-- LiveIntervalAnalysis.cpp - Live Interval Analysis -----------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements the LiveInterval analysis pass which is used
11 // by the Linear Scan Register allocator. This pass linearizes the
12 // basic blocks of the function in DFS order and uses the
13 // LiveVariables pass to conservatively compute live intervals for
14 // each virtual and physical register.
15 //
16 //===----------------------------------------------------------------------===//
17
18 #define DEBUG_TYPE "regalloc"
19 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
20 #include "LiveRangeCalc.h"
21 #include "llvm/ADT/DenseSet.h"
22 #include "llvm/ADT/STLExtras.h"
23 #include "llvm/Analysis/AliasAnalysis.h"
24 #include "llvm/CodeGen/LiveVariables.h"
25 #include "llvm/CodeGen/MachineDominators.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineRegisterInfo.h"
28 #include "llvm/CodeGen/Passes.h"
29 #include "llvm/CodeGen/VirtRegMap.h"
30 #include "llvm/IR/Value.h"
31 #include "llvm/Support/BlockFrequency.h"
32 #include "llvm/Support/CommandLine.h"
33 #include "llvm/Support/Debug.h"
34 #include "llvm/Support/ErrorHandling.h"
35 #include "llvm/Support/raw_ostream.h"
36 #include "llvm/Target/TargetInstrInfo.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Target/TargetRegisterInfo.h"
39 #include <algorithm>
40 #include <cmath>
41 #include <limits>
42 using namespace llvm;
43
44 char LiveIntervals::ID = 0;
45 char &llvm::LiveIntervalsID = LiveIntervals::ID;
46 INITIALIZE_PASS_BEGIN(LiveIntervals, "liveintervals",
47 "Live Interval Analysis", false, false)
48 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
49 INITIALIZE_PASS_DEPENDENCY(LiveVariables)
50 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
51 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
52 INITIALIZE_PASS_END(LiveIntervals, "liveintervals",
53 "Live Interval Analysis", false, false)
54
55 #ifndef NDEBUG
56 static cl::opt<bool> EnablePrecomputePhysRegs(
57 "precompute-phys-liveness", cl::Hidden,
58 cl::desc("Eagerly compute live intervals for all physreg units."));
59 #else
60 static bool EnablePrecomputePhysRegs = false;
61 #endif // NDEBUG
62
getAnalysisUsage(AnalysisUsage & AU) const63 void LiveIntervals::getAnalysisUsage(AnalysisUsage &AU) const {
64 AU.setPreservesCFG();
65 AU.addRequired<AliasAnalysis>();
66 AU.addPreserved<AliasAnalysis>();
67 // LiveVariables isn't really required by this analysis, it is only required
68 // here to make sure it is live during TwoAddressInstructionPass and
69 // PHIElimination. This is temporary.
70 AU.addRequired<LiveVariables>();
71 AU.addPreserved<LiveVariables>();
72 AU.addPreservedID(MachineLoopInfoID);
73 AU.addRequiredTransitiveID(MachineDominatorsID);
74 AU.addPreservedID(MachineDominatorsID);
75 AU.addPreserved<SlotIndexes>();
76 AU.addRequiredTransitive<SlotIndexes>();
77 MachineFunctionPass::getAnalysisUsage(AU);
78 }
79
LiveIntervals()80 LiveIntervals::LiveIntervals() : MachineFunctionPass(ID),
81 DomTree(0), LRCalc(0) {
82 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
83 }
84
~LiveIntervals()85 LiveIntervals::~LiveIntervals() {
86 delete LRCalc;
87 }
88
releaseMemory()89 void LiveIntervals::releaseMemory() {
90 // Free the live intervals themselves.
91 for (unsigned i = 0, e = VirtRegIntervals.size(); i != e; ++i)
92 delete VirtRegIntervals[TargetRegisterInfo::index2VirtReg(i)];
93 VirtRegIntervals.clear();
94 RegMaskSlots.clear();
95 RegMaskBits.clear();
96 RegMaskBlocks.clear();
97
98 for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
99 delete RegUnitIntervals[i];
100 RegUnitIntervals.clear();
101
102 // Release VNInfo memory regions, VNInfo objects don't need to be dtor'd.
103 VNInfoAllocator.Reset();
104 }
105
106 /// runOnMachineFunction - Register allocate the whole function
107 ///
runOnMachineFunction(MachineFunction & fn)108 bool LiveIntervals::runOnMachineFunction(MachineFunction &fn) {
109 MF = &fn;
110 MRI = &MF->getRegInfo();
111 TM = &fn.getTarget();
112 TRI = TM->getRegisterInfo();
113 TII = TM->getInstrInfo();
114 AA = &getAnalysis<AliasAnalysis>();
115 Indexes = &getAnalysis<SlotIndexes>();
116 DomTree = &getAnalysis<MachineDominatorTree>();
117 if (!LRCalc)
118 LRCalc = new LiveRangeCalc();
119
120 // Allocate space for all virtual registers.
121 VirtRegIntervals.resize(MRI->getNumVirtRegs());
122
123 computeVirtRegs();
124 computeRegMasks();
125 computeLiveInRegUnits();
126
127 if (EnablePrecomputePhysRegs) {
128 // For stress testing, precompute live ranges of all physical register
129 // units, including reserved registers.
130 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
131 getRegUnit(i);
132 }
133 DEBUG(dump());
134 return true;
135 }
136
137 /// print - Implement the dump method.
print(raw_ostream & OS,const Module *) const138 void LiveIntervals::print(raw_ostream &OS, const Module* ) const {
139 OS << "********** INTERVALS **********\n";
140
141 // Dump the regunits.
142 for (unsigned i = 0, e = RegUnitIntervals.size(); i != e; ++i)
143 if (LiveInterval *LI = RegUnitIntervals[i])
144 OS << PrintRegUnit(i, TRI) << " = " << *LI << '\n';
145
146 // Dump the virtregs.
147 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
148 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
149 if (hasInterval(Reg))
150 OS << PrintReg(Reg) << " = " << getInterval(Reg) << '\n';
151 }
152
153 OS << "RegMasks:";
154 for (unsigned i = 0, e = RegMaskSlots.size(); i != e; ++i)
155 OS << ' ' << RegMaskSlots[i];
156 OS << '\n';
157
158 printInstrs(OS);
159 }
160
printInstrs(raw_ostream & OS) const161 void LiveIntervals::printInstrs(raw_ostream &OS) const {
162 OS << "********** MACHINEINSTRS **********\n";
163 MF->print(OS, Indexes);
164 }
165
166 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpInstrs() const167 void LiveIntervals::dumpInstrs() const {
168 printInstrs(dbgs());
169 }
170 #endif
171
createInterval(unsigned reg)172 LiveInterval* LiveIntervals::createInterval(unsigned reg) {
173 float Weight = TargetRegisterInfo::isPhysicalRegister(reg) ? HUGE_VALF : 0.0F;
174 return new LiveInterval(reg, Weight);
175 }
176
177
178 /// computeVirtRegInterval - Compute the live interval of a virtual register,
179 /// based on defs and uses.
computeVirtRegInterval(LiveInterval * LI)180 void LiveIntervals::computeVirtRegInterval(LiveInterval *LI) {
181 assert(LRCalc && "LRCalc not initialized.");
182 assert(LI->empty() && "Should only compute empty intervals.");
183 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
184 LRCalc->createDeadDefs(LI);
185 LRCalc->extendToUses(LI);
186 }
187
computeVirtRegs()188 void LiveIntervals::computeVirtRegs() {
189 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
190 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
191 if (MRI->reg_nodbg_empty(Reg))
192 continue;
193 LiveInterval *LI = createInterval(Reg);
194 VirtRegIntervals[Reg] = LI;
195 computeVirtRegInterval(LI);
196 }
197 }
198
computeRegMasks()199 void LiveIntervals::computeRegMasks() {
200 RegMaskBlocks.resize(MF->getNumBlockIDs());
201
202 // Find all instructions with regmask operands.
203 for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
204 MBBI != E; ++MBBI) {
205 MachineBasicBlock *MBB = MBBI;
206 std::pair<unsigned, unsigned> &RMB = RegMaskBlocks[MBB->getNumber()];
207 RMB.first = RegMaskSlots.size();
208 for (MachineBasicBlock::iterator MI = MBB->begin(), ME = MBB->end();
209 MI != ME; ++MI)
210 for (MIOperands MO(MI); MO.isValid(); ++MO) {
211 if (!MO->isRegMask())
212 continue;
213 RegMaskSlots.push_back(Indexes->getInstructionIndex(MI).getRegSlot());
214 RegMaskBits.push_back(MO->getRegMask());
215 }
216 // Compute the number of register mask instructions in this block.
217 RMB.second = RegMaskSlots.size() - RMB.first;
218 }
219 }
220
221 //===----------------------------------------------------------------------===//
222 // Register Unit Liveness
223 //===----------------------------------------------------------------------===//
224 //
225 // Fixed interference typically comes from ABI boundaries: Function arguments
226 // and return values are passed in fixed registers, and so are exception
227 // pointers entering landing pads. Certain instructions require values to be
228 // present in specific registers. That is also represented through fixed
229 // interference.
230 //
231
232 /// computeRegUnitInterval - Compute the live interval of a register unit, based
233 /// on the uses and defs of aliasing registers. The interval should be empty,
234 /// or contain only dead phi-defs from ABI blocks.
computeRegUnitInterval(LiveInterval * LI)235 void LiveIntervals::computeRegUnitInterval(LiveInterval *LI) {
236 unsigned Unit = LI->reg;
237
238 assert(LRCalc && "LRCalc not initialized.");
239 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
240
241 // The physregs aliasing Unit are the roots and their super-registers.
242 // Create all values as dead defs before extending to uses. Note that roots
243 // may share super-registers. That's OK because createDeadDefs() is
244 // idempotent. It is very rare for a register unit to have multiple roots, so
245 // uniquing super-registers is probably not worthwhile.
246 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
247 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
248 Supers.isValid(); ++Supers) {
249 if (!MRI->reg_empty(*Supers))
250 LRCalc->createDeadDefs(LI, *Supers);
251 }
252 }
253
254 // Now extend LI to reach all uses.
255 // Ignore uses of reserved registers. We only track defs of those.
256 for (MCRegUnitRootIterator Roots(Unit, TRI); Roots.isValid(); ++Roots) {
257 for (MCSuperRegIterator Supers(*Roots, TRI, /*IncludeSelf=*/true);
258 Supers.isValid(); ++Supers) {
259 unsigned Reg = *Supers;
260 if (!MRI->isReserved(Reg) && !MRI->reg_empty(Reg))
261 LRCalc->extendToUses(LI, Reg);
262 }
263 }
264 }
265
266
267 /// computeLiveInRegUnits - Precompute the live ranges of any register units
268 /// that are live-in to an ABI block somewhere. Register values can appear
269 /// without a corresponding def when entering the entry block or a landing pad.
270 ///
computeLiveInRegUnits()271 void LiveIntervals::computeLiveInRegUnits() {
272 RegUnitIntervals.resize(TRI->getNumRegUnits());
273 DEBUG(dbgs() << "Computing live-in reg-units in ABI blocks.\n");
274
275 // Keep track of the intervals allocated.
276 SmallVector<LiveInterval*, 8> NewIntvs;
277
278 // Check all basic blocks for live-ins.
279 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
280 MFI != MFE; ++MFI) {
281 const MachineBasicBlock *MBB = MFI;
282
283 // We only care about ABI blocks: Entry + landing pads.
284 if ((MFI != MF->begin() && !MBB->isLandingPad()) || MBB->livein_empty())
285 continue;
286
287 // Create phi-defs at Begin for all live-in registers.
288 SlotIndex Begin = Indexes->getMBBStartIdx(MBB);
289 DEBUG(dbgs() << Begin << "\tBB#" << MBB->getNumber());
290 for (MachineBasicBlock::livein_iterator LII = MBB->livein_begin(),
291 LIE = MBB->livein_end(); LII != LIE; ++LII) {
292 for (MCRegUnitIterator Units(*LII, TRI); Units.isValid(); ++Units) {
293 unsigned Unit = *Units;
294 LiveInterval *Intv = RegUnitIntervals[Unit];
295 if (!Intv) {
296 Intv = RegUnitIntervals[Unit] = new LiveInterval(Unit, HUGE_VALF);
297 NewIntvs.push_back(Intv);
298 }
299 VNInfo *VNI = Intv->createDeadDef(Begin, getVNInfoAllocator());
300 (void)VNI;
301 DEBUG(dbgs() << ' ' << PrintRegUnit(Unit, TRI) << '#' << VNI->id);
302 }
303 }
304 DEBUG(dbgs() << '\n');
305 }
306 DEBUG(dbgs() << "Created " << NewIntvs.size() << " new intervals.\n");
307
308 // Compute the 'normal' part of the intervals.
309 for (unsigned i = 0, e = NewIntvs.size(); i != e; ++i)
310 computeRegUnitInterval(NewIntvs[i]);
311 }
312
313
314 /// shrinkToUses - After removing some uses of a register, shrink its live
315 /// range to just the remaining uses. This method does not compute reaching
316 /// defs for new uses, and it doesn't remove dead defs.
shrinkToUses(LiveInterval * li,SmallVectorImpl<MachineInstr * > * dead)317 bool LiveIntervals::shrinkToUses(LiveInterval *li,
318 SmallVectorImpl<MachineInstr*> *dead) {
319 DEBUG(dbgs() << "Shrink: " << *li << '\n');
320 assert(TargetRegisterInfo::isVirtualRegister(li->reg)
321 && "Can only shrink virtual registers");
322 // Find all the values used, including PHI kills.
323 SmallVector<std::pair<SlotIndex, VNInfo*>, 16> WorkList;
324
325 // Blocks that have already been added to WorkList as live-out.
326 SmallPtrSet<MachineBasicBlock*, 16> LiveOut;
327
328 // Visit all instructions reading li->reg.
329 for (MachineRegisterInfo::reg_iterator I = MRI->reg_begin(li->reg);
330 MachineInstr *UseMI = I.skipInstruction();) {
331 if (UseMI->isDebugValue() || !UseMI->readsVirtualRegister(li->reg))
332 continue;
333 SlotIndex Idx = getInstructionIndex(UseMI).getRegSlot();
334 LiveRangeQuery LRQ(*li, Idx);
335 VNInfo *VNI = LRQ.valueIn();
336 if (!VNI) {
337 // This shouldn't happen: readsVirtualRegister returns true, but there is
338 // no live value. It is likely caused by a target getting <undef> flags
339 // wrong.
340 DEBUG(dbgs() << Idx << '\t' << *UseMI
341 << "Warning: Instr claims to read non-existent value in "
342 << *li << '\n');
343 continue;
344 }
345 // Special case: An early-clobber tied operand reads and writes the
346 // register one slot early.
347 if (VNInfo *DefVNI = LRQ.valueDefined())
348 Idx = DefVNI->def;
349
350 WorkList.push_back(std::make_pair(Idx, VNI));
351 }
352
353 // Create a new live interval with only minimal live segments per def.
354 LiveInterval NewLI(li->reg, 0);
355 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
356 I != E; ++I) {
357 VNInfo *VNI = *I;
358 if (VNI->isUnused())
359 continue;
360 NewLI.addRange(LiveRange(VNI->def, VNI->def.getDeadSlot(), VNI));
361 }
362
363 // Keep track of the PHIs that are in use.
364 SmallPtrSet<VNInfo*, 8> UsedPHIs;
365
366 // Extend intervals to reach all uses in WorkList.
367 while (!WorkList.empty()) {
368 SlotIndex Idx = WorkList.back().first;
369 VNInfo *VNI = WorkList.back().second;
370 WorkList.pop_back();
371 const MachineBasicBlock *MBB = getMBBFromIndex(Idx.getPrevSlot());
372 SlotIndex BlockStart = getMBBStartIdx(MBB);
373
374 // Extend the live range for VNI to be live at Idx.
375 if (VNInfo *ExtVNI = NewLI.extendInBlock(BlockStart, Idx)) {
376 (void)ExtVNI;
377 assert(ExtVNI == VNI && "Unexpected existing value number");
378 // Is this a PHIDef we haven't seen before?
379 if (!VNI->isPHIDef() || VNI->def != BlockStart || !UsedPHIs.insert(VNI))
380 continue;
381 // The PHI is live, make sure the predecessors are live-out.
382 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
383 PE = MBB->pred_end(); PI != PE; ++PI) {
384 if (!LiveOut.insert(*PI))
385 continue;
386 SlotIndex Stop = getMBBEndIdx(*PI);
387 // A predecessor is not required to have a live-out value for a PHI.
388 if (VNInfo *PVNI = li->getVNInfoBefore(Stop))
389 WorkList.push_back(std::make_pair(Stop, PVNI));
390 }
391 continue;
392 }
393
394 // VNI is live-in to MBB.
395 DEBUG(dbgs() << " live-in at " << BlockStart << '\n');
396 NewLI.addRange(LiveRange(BlockStart, Idx, VNI));
397
398 // Make sure VNI is live-out from the predecessors.
399 for (MachineBasicBlock::const_pred_iterator PI = MBB->pred_begin(),
400 PE = MBB->pred_end(); PI != PE; ++PI) {
401 if (!LiveOut.insert(*PI))
402 continue;
403 SlotIndex Stop = getMBBEndIdx(*PI);
404 assert(li->getVNInfoBefore(Stop) == VNI &&
405 "Wrong value out of predecessor");
406 WorkList.push_back(std::make_pair(Stop, VNI));
407 }
408 }
409
410 // Handle dead values.
411 bool CanSeparate = false;
412 for (LiveInterval::vni_iterator I = li->vni_begin(), E = li->vni_end();
413 I != E; ++I) {
414 VNInfo *VNI = *I;
415 if (VNI->isUnused())
416 continue;
417 LiveInterval::iterator LII = NewLI.FindLiveRangeContaining(VNI->def);
418 assert(LII != NewLI.end() && "Missing live range for PHI");
419 if (LII->end != VNI->def.getDeadSlot())
420 continue;
421 if (VNI->isPHIDef()) {
422 // This is a dead PHI. Remove it.
423 VNI->markUnused();
424 NewLI.removeRange(*LII);
425 DEBUG(dbgs() << "Dead PHI at " << VNI->def << " may separate interval\n");
426 CanSeparate = true;
427 } else {
428 // This is a dead def. Make sure the instruction knows.
429 MachineInstr *MI = getInstructionFromIndex(VNI->def);
430 assert(MI && "No instruction defining live value");
431 MI->addRegisterDead(li->reg, TRI);
432 if (dead && MI->allDefsAreDead()) {
433 DEBUG(dbgs() << "All defs dead: " << VNI->def << '\t' << *MI);
434 dead->push_back(MI);
435 }
436 }
437 }
438
439 // Move the trimmed ranges back.
440 li->ranges.swap(NewLI.ranges);
441 DEBUG(dbgs() << "Shrunk: " << *li << '\n');
442 return CanSeparate;
443 }
444
extendToIndices(LiveInterval * LI,ArrayRef<SlotIndex> Indices)445 void LiveIntervals::extendToIndices(LiveInterval *LI,
446 ArrayRef<SlotIndex> Indices) {
447 assert(LRCalc && "LRCalc not initialized.");
448 LRCalc->reset(MF, getSlotIndexes(), DomTree, &getVNInfoAllocator());
449 for (unsigned i = 0, e = Indices.size(); i != e; ++i)
450 LRCalc->extend(LI, Indices[i]);
451 }
452
pruneValue(LiveInterval * LI,SlotIndex Kill,SmallVectorImpl<SlotIndex> * EndPoints)453 void LiveIntervals::pruneValue(LiveInterval *LI, SlotIndex Kill,
454 SmallVectorImpl<SlotIndex> *EndPoints) {
455 LiveRangeQuery LRQ(*LI, Kill);
456 VNInfo *VNI = LRQ.valueOut();
457 if (!VNI)
458 return;
459
460 MachineBasicBlock *KillMBB = Indexes->getMBBFromIndex(Kill);
461 SlotIndex MBBStart, MBBEnd;
462 tie(MBBStart, MBBEnd) = Indexes->getMBBRange(KillMBB);
463
464 // If VNI isn't live out from KillMBB, the value is trivially pruned.
465 if (LRQ.endPoint() < MBBEnd) {
466 LI->removeRange(Kill, LRQ.endPoint());
467 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
468 return;
469 }
470
471 // VNI is live out of KillMBB.
472 LI->removeRange(Kill, MBBEnd);
473 if (EndPoints) EndPoints->push_back(MBBEnd);
474
475 // Find all blocks that are reachable from KillMBB without leaving VNI's live
476 // range. It is possible that KillMBB itself is reachable, so start a DFS
477 // from each successor.
478 typedef SmallPtrSet<MachineBasicBlock*, 9> VisitedTy;
479 VisitedTy Visited;
480 for (MachineBasicBlock::succ_iterator
481 SuccI = KillMBB->succ_begin(), SuccE = KillMBB->succ_end();
482 SuccI != SuccE; ++SuccI) {
483 for (df_ext_iterator<MachineBasicBlock*, VisitedTy>
484 I = df_ext_begin(*SuccI, Visited), E = df_ext_end(*SuccI, Visited);
485 I != E;) {
486 MachineBasicBlock *MBB = *I;
487
488 // Check if VNI is live in to MBB.
489 tie(MBBStart, MBBEnd) = Indexes->getMBBRange(MBB);
490 LiveRangeQuery LRQ(*LI, MBBStart);
491 if (LRQ.valueIn() != VNI) {
492 // This block isn't part of the VNI live range. Prune the search.
493 I.skipChildren();
494 continue;
495 }
496
497 // Prune the search if VNI is killed in MBB.
498 if (LRQ.endPoint() < MBBEnd) {
499 LI->removeRange(MBBStart, LRQ.endPoint());
500 if (EndPoints) EndPoints->push_back(LRQ.endPoint());
501 I.skipChildren();
502 continue;
503 }
504
505 // VNI is live through MBB.
506 LI->removeRange(MBBStart, MBBEnd);
507 if (EndPoints) EndPoints->push_back(MBBEnd);
508 ++I;
509 }
510 }
511 }
512
513 //===----------------------------------------------------------------------===//
514 // Register allocator hooks.
515 //
516
addKillFlags(const VirtRegMap * VRM)517 void LiveIntervals::addKillFlags(const VirtRegMap *VRM) {
518 // Keep track of regunit ranges.
519 SmallVector<std::pair<LiveInterval*, LiveInterval::iterator>, 8> RU;
520
521 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
522 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
523 if (MRI->reg_nodbg_empty(Reg))
524 continue;
525 LiveInterval *LI = &getInterval(Reg);
526 if (LI->empty())
527 continue;
528
529 // Find the regunit intervals for the assigned register. They may overlap
530 // the virtual register live range, cancelling any kills.
531 RU.clear();
532 for (MCRegUnitIterator Units(VRM->getPhys(Reg), TRI); Units.isValid();
533 ++Units) {
534 LiveInterval *RUInt = &getRegUnit(*Units);
535 if (RUInt->empty())
536 continue;
537 RU.push_back(std::make_pair(RUInt, RUInt->find(LI->begin()->end)));
538 }
539
540 // Every instruction that kills Reg corresponds to a live range end point.
541 for (LiveInterval::iterator RI = LI->begin(), RE = LI->end(); RI != RE;
542 ++RI) {
543 // A block index indicates an MBB edge.
544 if (RI->end.isBlock())
545 continue;
546 MachineInstr *MI = getInstructionFromIndex(RI->end);
547 if (!MI)
548 continue;
549
550 // Check if any of the reguints are live beyond the end of RI. That could
551 // happen when a physreg is defined as a copy of a virtreg:
552 //
553 // %EAX = COPY %vreg5
554 // FOO %vreg5 <--- MI, cancel kill because %EAX is live.
555 // BAR %EAX<kill>
556 //
557 // There should be no kill flag on FOO when %vreg5 is rewritten as %EAX.
558 bool CancelKill = false;
559 for (unsigned u = 0, e = RU.size(); u != e; ++u) {
560 LiveInterval *RInt = RU[u].first;
561 LiveInterval::iterator &I = RU[u].second;
562 if (I == RInt->end())
563 continue;
564 I = RInt->advanceTo(I, RI->end);
565 if (I == RInt->end() || I->start >= RI->end)
566 continue;
567 // I is overlapping RI.
568 CancelKill = true;
569 break;
570 }
571 if (CancelKill)
572 MI->clearRegisterKills(Reg, NULL);
573 else
574 MI->addRegisterKilled(Reg, NULL);
575 }
576 }
577 }
578
579 MachineBasicBlock*
intervalIsInOneMBB(const LiveInterval & LI) const580 LiveIntervals::intervalIsInOneMBB(const LiveInterval &LI) const {
581 // A local live range must be fully contained inside the block, meaning it is
582 // defined and killed at instructions, not at block boundaries. It is not
583 // live in or or out of any block.
584 //
585 // It is technically possible to have a PHI-defined live range identical to a
586 // single block, but we are going to return false in that case.
587
588 SlotIndex Start = LI.beginIndex();
589 if (Start.isBlock())
590 return NULL;
591
592 SlotIndex Stop = LI.endIndex();
593 if (Stop.isBlock())
594 return NULL;
595
596 // getMBBFromIndex doesn't need to search the MBB table when both indexes
597 // belong to proper instructions.
598 MachineBasicBlock *MBB1 = Indexes->getMBBFromIndex(Start);
599 MachineBasicBlock *MBB2 = Indexes->getMBBFromIndex(Stop);
600 return MBB1 == MBB2 ? MBB1 : NULL;
601 }
602
603 bool
hasPHIKill(const LiveInterval & LI,const VNInfo * VNI) const604 LiveIntervals::hasPHIKill(const LiveInterval &LI, const VNInfo *VNI) const {
605 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
606 I != E; ++I) {
607 const VNInfo *PHI = *I;
608 if (PHI->isUnused() || !PHI->isPHIDef())
609 continue;
610 const MachineBasicBlock *PHIMBB = getMBBFromIndex(PHI->def);
611 // Conservatively return true instead of scanning huge predecessor lists.
612 if (PHIMBB->pred_size() > 100)
613 return true;
614 for (MachineBasicBlock::const_pred_iterator
615 PI = PHIMBB->pred_begin(), PE = PHIMBB->pred_end(); PI != PE; ++PI)
616 if (VNI == LI.getVNInfoBefore(Indexes->getMBBEndIdx(*PI)))
617 return true;
618 }
619 return false;
620 }
621
622 float
getSpillWeight(bool isDef,bool isUse,BlockFrequency freq)623 LiveIntervals::getSpillWeight(bool isDef, bool isUse, BlockFrequency freq) {
624 const float Scale = 1.0f / BlockFrequency::getEntryFrequency();
625 return (isDef + isUse) * (freq.getFrequency() * Scale);
626 }
627
addLiveRangeToEndOfBlock(unsigned reg,MachineInstr * startInst)628 LiveRange LiveIntervals::addLiveRangeToEndOfBlock(unsigned reg,
629 MachineInstr* startInst) {
630 LiveInterval& Interval = getOrCreateInterval(reg);
631 VNInfo* VN = Interval.getNextValue(
632 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
633 getVNInfoAllocator());
634 LiveRange LR(
635 SlotIndex(getInstructionIndex(startInst).getRegSlot()),
636 getMBBEndIdx(startInst->getParent()), VN);
637 Interval.addRange(LR);
638
639 return LR;
640 }
641
642
643 //===----------------------------------------------------------------------===//
644 // Register mask functions
645 //===----------------------------------------------------------------------===//
646
checkRegMaskInterference(LiveInterval & LI,BitVector & UsableRegs)647 bool LiveIntervals::checkRegMaskInterference(LiveInterval &LI,
648 BitVector &UsableRegs) {
649 if (LI.empty())
650 return false;
651 LiveInterval::iterator LiveI = LI.begin(), LiveE = LI.end();
652
653 // Use a smaller arrays for local live ranges.
654 ArrayRef<SlotIndex> Slots;
655 ArrayRef<const uint32_t*> Bits;
656 if (MachineBasicBlock *MBB = intervalIsInOneMBB(LI)) {
657 Slots = getRegMaskSlotsInBlock(MBB->getNumber());
658 Bits = getRegMaskBitsInBlock(MBB->getNumber());
659 } else {
660 Slots = getRegMaskSlots();
661 Bits = getRegMaskBits();
662 }
663
664 // We are going to enumerate all the register mask slots contained in LI.
665 // Start with a binary search of RegMaskSlots to find a starting point.
666 ArrayRef<SlotIndex>::iterator SlotI =
667 std::lower_bound(Slots.begin(), Slots.end(), LiveI->start);
668 ArrayRef<SlotIndex>::iterator SlotE = Slots.end();
669
670 // No slots in range, LI begins after the last call.
671 if (SlotI == SlotE)
672 return false;
673
674 bool Found = false;
675 for (;;) {
676 assert(*SlotI >= LiveI->start);
677 // Loop over all slots overlapping this segment.
678 while (*SlotI < LiveI->end) {
679 // *SlotI overlaps LI. Collect mask bits.
680 if (!Found) {
681 // This is the first overlap. Initialize UsableRegs to all ones.
682 UsableRegs.clear();
683 UsableRegs.resize(TRI->getNumRegs(), true);
684 Found = true;
685 }
686 // Remove usable registers clobbered by this mask.
687 UsableRegs.clearBitsNotInMask(Bits[SlotI-Slots.begin()]);
688 if (++SlotI == SlotE)
689 return Found;
690 }
691 // *SlotI is beyond the current LI segment.
692 LiveI = LI.advanceTo(LiveI, *SlotI);
693 if (LiveI == LiveE)
694 return Found;
695 // Advance SlotI until it overlaps.
696 while (*SlotI < LiveI->start)
697 if (++SlotI == SlotE)
698 return Found;
699 }
700 }
701
702 //===----------------------------------------------------------------------===//
703 // IntervalUpdate class.
704 //===----------------------------------------------------------------------===//
705
706 // HMEditor is a toolkit used by handleMove to trim or extend live intervals.
707 class LiveIntervals::HMEditor {
708 private:
709 LiveIntervals& LIS;
710 const MachineRegisterInfo& MRI;
711 const TargetRegisterInfo& TRI;
712 SlotIndex OldIdx;
713 SlotIndex NewIdx;
714 SmallPtrSet<LiveInterval*, 8> Updated;
715 bool UpdateFlags;
716
717 public:
HMEditor(LiveIntervals & LIS,const MachineRegisterInfo & MRI,const TargetRegisterInfo & TRI,SlotIndex OldIdx,SlotIndex NewIdx,bool UpdateFlags)718 HMEditor(LiveIntervals& LIS, const MachineRegisterInfo& MRI,
719 const TargetRegisterInfo& TRI,
720 SlotIndex OldIdx, SlotIndex NewIdx, bool UpdateFlags)
721 : LIS(LIS), MRI(MRI), TRI(TRI), OldIdx(OldIdx), NewIdx(NewIdx),
722 UpdateFlags(UpdateFlags) {}
723
724 // FIXME: UpdateFlags is a workaround that creates live intervals for all
725 // physregs, even those that aren't needed for regalloc, in order to update
726 // kill flags. This is wasteful. Eventually, LiveVariables will strip all kill
727 // flags, and postRA passes will use a live register utility instead.
getRegUnitLI(unsigned Unit)728 LiveInterval *getRegUnitLI(unsigned Unit) {
729 if (UpdateFlags)
730 return &LIS.getRegUnit(Unit);
731 return LIS.getCachedRegUnit(Unit);
732 }
733
734 /// Update all live ranges touched by MI, assuming a move from OldIdx to
735 /// NewIdx.
updateAllRanges(MachineInstr * MI)736 void updateAllRanges(MachineInstr *MI) {
737 DEBUG(dbgs() << "handleMove " << OldIdx << " -> " << NewIdx << ": " << *MI);
738 bool hasRegMask = false;
739 for (MIOperands MO(MI); MO.isValid(); ++MO) {
740 if (MO->isRegMask())
741 hasRegMask = true;
742 if (!MO->isReg())
743 continue;
744 // Aggressively clear all kill flags.
745 // They are reinserted by VirtRegRewriter.
746 if (MO->isUse())
747 MO->setIsKill(false);
748
749 unsigned Reg = MO->getReg();
750 if (!Reg)
751 continue;
752 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
753 updateRange(LIS.getInterval(Reg));
754 continue;
755 }
756
757 // For physregs, only update the regunits that actually have a
758 // precomputed live range.
759 for (MCRegUnitIterator Units(Reg, &TRI); Units.isValid(); ++Units)
760 if (LiveInterval *LI = getRegUnitLI(*Units))
761 updateRange(*LI);
762 }
763 if (hasRegMask)
764 updateRegMaskSlots();
765 }
766
767 private:
768 /// Update a single live range, assuming an instruction has been moved from
769 /// OldIdx to NewIdx.
updateRange(LiveInterval & LI)770 void updateRange(LiveInterval &LI) {
771 if (!Updated.insert(&LI))
772 return;
773 DEBUG({
774 dbgs() << " ";
775 if (TargetRegisterInfo::isVirtualRegister(LI.reg))
776 dbgs() << PrintReg(LI.reg);
777 else
778 dbgs() << PrintRegUnit(LI.reg, &TRI);
779 dbgs() << ":\t" << LI << '\n';
780 });
781 if (SlotIndex::isEarlierInstr(OldIdx, NewIdx))
782 handleMoveDown(LI);
783 else
784 handleMoveUp(LI);
785 DEBUG(dbgs() << " -->\t" << LI << '\n');
786 LI.verify();
787 }
788
789 /// Update LI to reflect an instruction has been moved downwards from OldIdx
790 /// to NewIdx.
791 ///
792 /// 1. Live def at OldIdx:
793 /// Move def to NewIdx, assert endpoint after NewIdx.
794 ///
795 /// 2. Live def at OldIdx, killed at NewIdx:
796 /// Change to dead def at NewIdx.
797 /// (Happens when bundling def+kill together).
798 ///
799 /// 3. Dead def at OldIdx:
800 /// Move def to NewIdx, possibly across another live value.
801 ///
802 /// 4. Def at OldIdx AND at NewIdx:
803 /// Remove live range [OldIdx;NewIdx) and value defined at OldIdx.
804 /// (Happens when bundling multiple defs together).
805 ///
806 /// 5. Value read at OldIdx, killed before NewIdx:
807 /// Extend kill to NewIdx.
808 ///
handleMoveDown(LiveInterval & LI)809 void handleMoveDown(LiveInterval &LI) {
810 // First look for a kill at OldIdx.
811 LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
812 LiveInterval::iterator E = LI.end();
813 // Is LI even live at OldIdx?
814 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
815 return;
816
817 // Handle a live-in value.
818 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
819 bool isKill = SlotIndex::isSameInstr(OldIdx, I->end);
820 // If the live-in value already extends to NewIdx, there is nothing to do.
821 if (!SlotIndex::isEarlierInstr(I->end, NewIdx))
822 return;
823 // Aggressively remove all kill flags from the old kill point.
824 // Kill flags shouldn't be used while live intervals exist, they will be
825 // reinserted by VirtRegRewriter.
826 if (MachineInstr *KillMI = LIS.getInstructionFromIndex(I->end))
827 for (MIBundleOperands MO(KillMI); MO.isValid(); ++MO)
828 if (MO->isReg() && MO->isUse())
829 MO->setIsKill(false);
830 // Adjust I->end to reach NewIdx. This may temporarily make LI invalid by
831 // overlapping ranges. Case 5 above.
832 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
833 // If this was a kill, there may also be a def. Otherwise we're done.
834 if (!isKill)
835 return;
836 ++I;
837 }
838
839 // Check for a def at OldIdx.
840 if (I == E || !SlotIndex::isSameInstr(OldIdx, I->start))
841 return;
842 // We have a def at OldIdx.
843 VNInfo *DefVNI = I->valno;
844 assert(DefVNI->def == I->start && "Inconsistent def");
845 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
846 // If the defined value extends beyond NewIdx, just move the def down.
847 // This is case 1 above.
848 if (SlotIndex::isEarlierInstr(NewIdx, I->end)) {
849 I->start = DefVNI->def;
850 return;
851 }
852 // The remaining possibilities are now:
853 // 2. Live def at OldIdx, killed at NewIdx: isSameInstr(I->end, NewIdx).
854 // 3. Dead def at OldIdx: I->end = OldIdx.getDeadSlot().
855 // In either case, it is possible that there is an existing def at NewIdx.
856 assert((I->end == OldIdx.getDeadSlot() ||
857 SlotIndex::isSameInstr(I->end, NewIdx)) &&
858 "Cannot move def below kill");
859 LiveInterval::iterator NewI = LI.advanceTo(I, NewIdx.getRegSlot());
860 if (NewI != E && SlotIndex::isSameInstr(NewI->start, NewIdx)) {
861 // There is an existing def at NewIdx, case 4 above. The def at OldIdx is
862 // coalesced into that value.
863 assert(NewI->valno != DefVNI && "Multiple defs of value?");
864 LI.removeValNo(DefVNI);
865 return;
866 }
867 // There was no existing def at NewIdx. Turn *I into a dead def at NewIdx.
868 // If the def at OldIdx was dead, we allow it to be moved across other LI
869 // values. The new range should be placed immediately before NewI, move any
870 // intermediate ranges up.
871 assert(NewI != I && "Inconsistent iterators");
872 std::copy(llvm::next(I), NewI, I);
873 *llvm::prior(NewI) = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
874 }
875
876 /// Update LI to reflect an instruction has been moved upwards from OldIdx
877 /// to NewIdx.
878 ///
879 /// 1. Live def at OldIdx:
880 /// Hoist def to NewIdx.
881 ///
882 /// 2. Dead def at OldIdx:
883 /// Hoist def+end to NewIdx, possibly move across other values.
884 ///
885 /// 3. Dead def at OldIdx AND existing def at NewIdx:
886 /// Remove value defined at OldIdx, coalescing it with existing value.
887 ///
888 /// 4. Live def at OldIdx AND existing def at NewIdx:
889 /// Remove value defined at NewIdx, hoist OldIdx def to NewIdx.
890 /// (Happens when bundling multiple defs together).
891 ///
892 /// 5. Value killed at OldIdx:
893 /// Hoist kill to NewIdx, then scan for last kill between NewIdx and
894 /// OldIdx.
895 ///
handleMoveUp(LiveInterval & LI)896 void handleMoveUp(LiveInterval &LI) {
897 // First look for a kill at OldIdx.
898 LiveInterval::iterator I = LI.find(OldIdx.getBaseIndex());
899 LiveInterval::iterator E = LI.end();
900 // Is LI even live at OldIdx?
901 if (I == E || SlotIndex::isEarlierInstr(OldIdx, I->start))
902 return;
903
904 // Handle a live-in value.
905 if (!SlotIndex::isSameInstr(I->start, OldIdx)) {
906 // If the live-in value isn't killed here, there is nothing to do.
907 if (!SlotIndex::isSameInstr(OldIdx, I->end))
908 return;
909 // Adjust I->end to end at NewIdx. If we are hoisting a kill above
910 // another use, we need to search for that use. Case 5 above.
911 I->end = NewIdx.getRegSlot(I->end.isEarlyClobber());
912 ++I;
913 // If OldIdx also defines a value, there couldn't have been another use.
914 if (I == E || !SlotIndex::isSameInstr(I->start, OldIdx)) {
915 // No def, search for the new kill.
916 // This can never be an early clobber kill since there is no def.
917 llvm::prior(I)->end = findLastUseBefore(LI.reg).getRegSlot();
918 return;
919 }
920 }
921
922 // Now deal with the def at OldIdx.
923 assert(I != E && SlotIndex::isSameInstr(I->start, OldIdx) && "No def?");
924 VNInfo *DefVNI = I->valno;
925 assert(DefVNI->def == I->start && "Inconsistent def");
926 DefVNI->def = NewIdx.getRegSlot(I->start.isEarlyClobber());
927
928 // Check for an existing def at NewIdx.
929 LiveInterval::iterator NewI = LI.find(NewIdx.getRegSlot());
930 if (SlotIndex::isSameInstr(NewI->start, NewIdx)) {
931 assert(NewI->valno != DefVNI && "Same value defined more than once?");
932 // There is an existing def at NewIdx.
933 if (I->end.isDead()) {
934 // Case 3: Remove the dead def at OldIdx.
935 LI.removeValNo(DefVNI);
936 return;
937 }
938 // Case 4: Replace def at NewIdx with live def at OldIdx.
939 I->start = DefVNI->def;
940 LI.removeValNo(NewI->valno);
941 return;
942 }
943
944 // There is no existing def at NewIdx. Hoist DefVNI.
945 if (!I->end.isDead()) {
946 // Leave the end point of a live def.
947 I->start = DefVNI->def;
948 return;
949 }
950
951 // DefVNI is a dead def. It may have been moved across other values in LI,
952 // so move I up to NewI. Slide [NewI;I) down one position.
953 std::copy_backward(NewI, I, llvm::next(I));
954 *NewI = LiveRange(DefVNI->def, NewIdx.getDeadSlot(), DefVNI);
955 }
956
updateRegMaskSlots()957 void updateRegMaskSlots() {
958 SmallVectorImpl<SlotIndex>::iterator RI =
959 std::lower_bound(LIS.RegMaskSlots.begin(), LIS.RegMaskSlots.end(),
960 OldIdx);
961 assert(RI != LIS.RegMaskSlots.end() && *RI == OldIdx.getRegSlot() &&
962 "No RegMask at OldIdx.");
963 *RI = NewIdx.getRegSlot();
964 assert((RI == LIS.RegMaskSlots.begin() ||
965 SlotIndex::isEarlierInstr(*llvm::prior(RI), *RI)) &&
966 "Cannot move regmask instruction above another call");
967 assert((llvm::next(RI) == LIS.RegMaskSlots.end() ||
968 SlotIndex::isEarlierInstr(*RI, *llvm::next(RI))) &&
969 "Cannot move regmask instruction below another call");
970 }
971
972 // Return the last use of reg between NewIdx and OldIdx.
findLastUseBefore(unsigned Reg)973 SlotIndex findLastUseBefore(unsigned Reg) {
974
975 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
976 SlotIndex LastUse = NewIdx;
977 for (MachineRegisterInfo::use_nodbg_iterator
978 UI = MRI.use_nodbg_begin(Reg),
979 UE = MRI.use_nodbg_end();
980 UI != UE; UI.skipInstruction()) {
981 const MachineInstr* MI = &*UI;
982 SlotIndex InstSlot = LIS.getSlotIndexes()->getInstructionIndex(MI);
983 if (InstSlot > LastUse && InstSlot < OldIdx)
984 LastUse = InstSlot;
985 }
986 return LastUse;
987 }
988
989 // This is a regunit interval, so scanning the use list could be very
990 // expensive. Scan upwards from OldIdx instead.
991 assert(NewIdx < OldIdx && "Expected upwards move");
992 SlotIndexes *Indexes = LIS.getSlotIndexes();
993 MachineBasicBlock *MBB = Indexes->getMBBFromIndex(NewIdx);
994
995 // OldIdx may not correspond to an instruction any longer, so set MII to
996 // point to the next instruction after OldIdx, or MBB->end().
997 MachineBasicBlock::iterator MII = MBB->end();
998 if (MachineInstr *MI = Indexes->getInstructionFromIndex(
999 Indexes->getNextNonNullIndex(OldIdx)))
1000 if (MI->getParent() == MBB)
1001 MII = MI;
1002
1003 MachineBasicBlock::iterator Begin = MBB->begin();
1004 while (MII != Begin) {
1005 if ((--MII)->isDebugValue())
1006 continue;
1007 SlotIndex Idx = Indexes->getInstructionIndex(MII);
1008
1009 // Stop searching when NewIdx is reached.
1010 if (!SlotIndex::isEarlierInstr(NewIdx, Idx))
1011 return NewIdx;
1012
1013 // Check if MII uses Reg.
1014 for (MIBundleOperands MO(MII); MO.isValid(); ++MO)
1015 if (MO->isReg() &&
1016 TargetRegisterInfo::isPhysicalRegister(MO->getReg()) &&
1017 TRI.hasRegUnit(MO->getReg(), Reg))
1018 return Idx;
1019 }
1020 // Didn't reach NewIdx. It must be the first instruction in the block.
1021 return NewIdx;
1022 }
1023 };
1024
handleMove(MachineInstr * MI,bool UpdateFlags)1025 void LiveIntervals::handleMove(MachineInstr* MI, bool UpdateFlags) {
1026 assert(!MI->isBundled() && "Can't handle bundled instructions yet.");
1027 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1028 Indexes->removeMachineInstrFromMaps(MI);
1029 SlotIndex NewIndex = Indexes->insertMachineInstrInMaps(MI);
1030 assert(getMBBStartIdx(MI->getParent()) <= OldIndex &&
1031 OldIndex < getMBBEndIdx(MI->getParent()) &&
1032 "Cannot handle moves across basic block boundaries.");
1033
1034 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1035 HME.updateAllRanges(MI);
1036 }
1037
handleMoveIntoBundle(MachineInstr * MI,MachineInstr * BundleStart,bool UpdateFlags)1038 void LiveIntervals::handleMoveIntoBundle(MachineInstr* MI,
1039 MachineInstr* BundleStart,
1040 bool UpdateFlags) {
1041 SlotIndex OldIndex = Indexes->getInstructionIndex(MI);
1042 SlotIndex NewIndex = Indexes->getInstructionIndex(BundleStart);
1043 HMEditor HME(*this, *MRI, *TRI, OldIndex, NewIndex, UpdateFlags);
1044 HME.updateAllRanges(MI);
1045 }
1046
1047 void
repairIntervalsInRange(MachineBasicBlock * MBB,MachineBasicBlock::iterator Begin,MachineBasicBlock::iterator End,ArrayRef<unsigned> OrigRegs)1048 LiveIntervals::repairIntervalsInRange(MachineBasicBlock *MBB,
1049 MachineBasicBlock::iterator Begin,
1050 MachineBasicBlock::iterator End,
1051 ArrayRef<unsigned> OrigRegs) {
1052 // Find anchor points, which are at the beginning/end of blocks or at
1053 // instructions that already have indexes.
1054 while (Begin != MBB->begin() && !Indexes->hasIndex(Begin))
1055 --Begin;
1056 while (End != MBB->end() && !Indexes->hasIndex(End))
1057 ++End;
1058
1059 SlotIndex endIdx;
1060 if (End == MBB->end())
1061 endIdx = getMBBEndIdx(MBB).getPrevSlot();
1062 else
1063 endIdx = getInstructionIndex(End);
1064
1065 Indexes->repairIndexesInRange(MBB, Begin, End);
1066
1067 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1068 --I;
1069 MachineInstr *MI = I;
1070 if (MI->isDebugValue())
1071 continue;
1072 for (MachineInstr::const_mop_iterator MOI = MI->operands_begin(),
1073 MOE = MI->operands_end(); MOI != MOE; ++MOI) {
1074 if (MOI->isReg() &&
1075 TargetRegisterInfo::isVirtualRegister(MOI->getReg()) &&
1076 !hasInterval(MOI->getReg())) {
1077 LiveInterval &LI = getOrCreateInterval(MOI->getReg());
1078 computeVirtRegInterval(&LI);
1079 }
1080 }
1081 }
1082
1083 for (unsigned i = 0, e = OrigRegs.size(); i != e; ++i) {
1084 unsigned Reg = OrigRegs[i];
1085 if (!TargetRegisterInfo::isVirtualRegister(Reg))
1086 continue;
1087
1088 LiveInterval &LI = getInterval(Reg);
1089 // FIXME: Should we support undefs that gain defs?
1090 if (!LI.hasAtLeastOneValue())
1091 continue;
1092
1093 LiveInterval::iterator LII = LI.find(endIdx);
1094 SlotIndex lastUseIdx;
1095 if (LII != LI.end() && LII->start < endIdx)
1096 lastUseIdx = LII->end;
1097 else
1098 --LII;
1099
1100 for (MachineBasicBlock::iterator I = End; I != Begin;) {
1101 --I;
1102 MachineInstr *MI = I;
1103 if (MI->isDebugValue())
1104 continue;
1105
1106 SlotIndex instrIdx = getInstructionIndex(MI);
1107 bool isStartValid = getInstructionFromIndex(LII->start);
1108 bool isEndValid = getInstructionFromIndex(LII->end);
1109
1110 // FIXME: This doesn't currently handle early-clobber or multiple removed
1111 // defs inside of the region to repair.
1112 for (MachineInstr::mop_iterator OI = MI->operands_begin(),
1113 OE = MI->operands_end(); OI != OE; ++OI) {
1114 const MachineOperand &MO = *OI;
1115 if (!MO.isReg() || MO.getReg() != Reg)
1116 continue;
1117
1118 if (MO.isDef()) {
1119 if (!isStartValid) {
1120 if (LII->end.isDead()) {
1121 SlotIndex prevStart;
1122 if (LII != LI.begin())
1123 prevStart = llvm::prior(LII)->start;
1124
1125 // FIXME: This could be more efficient if there was a removeRange
1126 // method that returned an iterator.
1127 LI.removeRange(*LII, true);
1128 if (prevStart.isValid())
1129 LII = LI.find(prevStart);
1130 else
1131 LII = LI.begin();
1132 } else {
1133 LII->start = instrIdx.getRegSlot();
1134 LII->valno->def = instrIdx.getRegSlot();
1135 if (MO.getSubReg() && !MO.isUndef())
1136 lastUseIdx = instrIdx.getRegSlot();
1137 else
1138 lastUseIdx = SlotIndex();
1139 continue;
1140 }
1141 }
1142
1143 if (!lastUseIdx.isValid()) {
1144 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1145 VNInfoAllocator);
1146 LiveRange LR(instrIdx.getRegSlot(), instrIdx.getDeadSlot(), VNI);
1147 LII = LI.addRange(LR);
1148 } else if (LII->start != instrIdx.getRegSlot()) {
1149 VNInfo *VNI = LI.getNextValue(instrIdx.getRegSlot(),
1150 VNInfoAllocator);
1151 LiveRange LR(instrIdx.getRegSlot(), lastUseIdx, VNI);
1152 LII = LI.addRange(LR);
1153 }
1154
1155 if (MO.getSubReg() && !MO.isUndef())
1156 lastUseIdx = instrIdx.getRegSlot();
1157 else
1158 lastUseIdx = SlotIndex();
1159 } else if (MO.isUse()) {
1160 // FIXME: This should probably be handled outside of this branch,
1161 // either as part of the def case (for defs inside of the region) or
1162 // after the loop over the region.
1163 if (!isEndValid && !LII->end.isBlock())
1164 LII->end = instrIdx.getRegSlot();
1165 if (!lastUseIdx.isValid())
1166 lastUseIdx = instrIdx.getRegSlot();
1167 }
1168 }
1169 }
1170 }
1171 }
1172