1 //===-- MachineBlockPlacement.cpp - Basic Block Code Layout optimization --===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements basic block placement transformations using the CFG
11 // structure and branch probability estimates.
12 //
13 // The pass strives to preserve the structure of the CFG (that is, retain
14 // a topological ordering of basic blocks) in the absence of a *strong* signal
15 // to the contrary from probabilities. However, within the CFG structure, it
16 // attempts to choose an ordering which favors placing more likely sequences of
17 // blocks adjacent to each other.
18 //
19 // The algorithm works from the inner-most loop within a function outward, and
20 // at each stage walks through the basic blocks, trying to coalesce them into
21 // sequential chains where allowed by the CFG (or demanded by heavy
22 // probabilities). Finally, it walks the blocks in topological order, and the
23 // first time it reaches a chain of basic blocks, it schedules them in the
24 // function in-order.
25 //
26 //===----------------------------------------------------------------------===//
27
28 #define DEBUG_TYPE "block-placement2"
29 #include "llvm/CodeGen/Passes.h"
30 #include "llvm/ADT/DenseMap.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/Statistic.h"
34 #include "llvm/CodeGen/MachineBasicBlock.h"
35 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
36 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
37 #include "llvm/CodeGen/MachineFunction.h"
38 #include "llvm/CodeGen/MachineFunctionPass.h"
39 #include "llvm/CodeGen/MachineLoopInfo.h"
40 #include "llvm/CodeGen/MachineModuleInfo.h"
41 #include "llvm/Support/Allocator.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Target/TargetInstrInfo.h"
45 #include "llvm/Target/TargetLowering.h"
46 #include <algorithm>
47 using namespace llvm;
48
49 STATISTIC(NumCondBranches, "Number of conditional branches");
50 STATISTIC(NumUncondBranches, "Number of uncondittional branches");
51 STATISTIC(CondBranchTakenFreq,
52 "Potential frequency of taking conditional branches");
53 STATISTIC(UncondBranchTakenFreq,
54 "Potential frequency of taking unconditional branches");
55
56 static cl::opt<unsigned> AlignAllBlock("align-all-blocks",
57 cl::desc("Force the alignment of all "
58 "blocks in the function."),
59 cl::init(0), cl::Hidden);
60
61 namespace {
62 class BlockChain;
63 /// \brief Type for our function-wide basic block -> block chain mapping.
64 typedef DenseMap<MachineBasicBlock *, BlockChain *> BlockToChainMapType;
65 }
66
67 namespace {
68 /// \brief A chain of blocks which will be laid out contiguously.
69 ///
70 /// This is the datastructure representing a chain of consecutive blocks that
71 /// are profitable to layout together in order to maximize fallthrough
72 /// probabilities and code locality. We also can use a block chain to represent
73 /// a sequence of basic blocks which have some external (correctness)
74 /// requirement for sequential layout.
75 ///
76 /// Chains can be built around a single basic block and can be merged to grow
77 /// them. They participate in a block-to-chain mapping, which is updated
78 /// automatically as chains are merged together.
79 class BlockChain {
80 /// \brief The sequence of blocks belonging to this chain.
81 ///
82 /// This is the sequence of blocks for a particular chain. These will be laid
83 /// out in-order within the function.
84 SmallVector<MachineBasicBlock *, 4> Blocks;
85
86 /// \brief A handle to the function-wide basic block to block chain mapping.
87 ///
88 /// This is retained in each block chain to simplify the computation of child
89 /// block chains for SCC-formation and iteration. We store the edges to child
90 /// basic blocks, and map them back to their associated chains using this
91 /// structure.
92 BlockToChainMapType &BlockToChain;
93
94 public:
95 /// \brief Construct a new BlockChain.
96 ///
97 /// This builds a new block chain representing a single basic block in the
98 /// function. It also registers itself as the chain that block participates
99 /// in with the BlockToChain mapping.
BlockChain(BlockToChainMapType & BlockToChain,MachineBasicBlock * BB)100 BlockChain(BlockToChainMapType &BlockToChain, MachineBasicBlock *BB)
101 : Blocks(1, BB), BlockToChain(BlockToChain), LoopPredecessors(0) {
102 assert(BB && "Cannot create a chain with a null basic block");
103 BlockToChain[BB] = this;
104 }
105
106 /// \brief Iterator over blocks within the chain.
107 typedef SmallVectorImpl<MachineBasicBlock *>::iterator iterator;
108
109 /// \brief Beginning of blocks within the chain.
begin()110 iterator begin() { return Blocks.begin(); }
111
112 /// \brief End of blocks within the chain.
end()113 iterator end() { return Blocks.end(); }
114
115 /// \brief Merge a block chain into this one.
116 ///
117 /// This routine merges a block chain into this one. It takes care of forming
118 /// a contiguous sequence of basic blocks, updating the edge list, and
119 /// updating the block -> chain mapping. It does not free or tear down the
120 /// old chain, but the old chain's block list is no longer valid.
merge(MachineBasicBlock * BB,BlockChain * Chain)121 void merge(MachineBasicBlock *BB, BlockChain *Chain) {
122 assert(BB);
123 assert(!Blocks.empty());
124
125 // Fast path in case we don't have a chain already.
126 if (!Chain) {
127 assert(!BlockToChain[BB]);
128 Blocks.push_back(BB);
129 BlockToChain[BB] = this;
130 return;
131 }
132
133 assert(BB == *Chain->begin());
134 assert(Chain->begin() != Chain->end());
135
136 // Update the incoming blocks to point to this chain, and add them to the
137 // chain structure.
138 for (BlockChain::iterator BI = Chain->begin(), BE = Chain->end();
139 BI != BE; ++BI) {
140 Blocks.push_back(*BI);
141 assert(BlockToChain[*BI] == Chain && "Incoming blocks not in chain");
142 BlockToChain[*BI] = this;
143 }
144 }
145
146 #ifndef NDEBUG
147 /// \brief Dump the blocks in this chain.
dump()148 void dump() LLVM_ATTRIBUTE_USED {
149 for (iterator I = begin(), E = end(); I != E; ++I)
150 (*I)->dump();
151 }
152 #endif // NDEBUG
153
154 /// \brief Count of predecessors within the loop currently being processed.
155 ///
156 /// This count is updated at each loop we process to represent the number of
157 /// in-loop predecessors of this chain.
158 unsigned LoopPredecessors;
159 };
160 }
161
162 namespace {
163 class MachineBlockPlacement : public MachineFunctionPass {
164 /// \brief A typedef for a block filter set.
165 typedef SmallPtrSet<MachineBasicBlock *, 16> BlockFilterSet;
166
167 /// \brief A handle to the branch probability pass.
168 const MachineBranchProbabilityInfo *MBPI;
169
170 /// \brief A handle to the function-wide block frequency pass.
171 const MachineBlockFrequencyInfo *MBFI;
172
173 /// \brief A handle to the loop info.
174 const MachineLoopInfo *MLI;
175
176 /// \brief A handle to the target's instruction info.
177 const TargetInstrInfo *TII;
178
179 /// \brief A handle to the target's lowering info.
180 const TargetLoweringBase *TLI;
181
182 /// \brief Allocator and owner of BlockChain structures.
183 ///
184 /// We build BlockChains lazily while processing the loop structure of
185 /// a function. To reduce malloc traffic, we allocate them using this
186 /// slab-like allocator, and destroy them after the pass completes. An
187 /// important guarantee is that this allocator produces stable pointers to
188 /// the chains.
189 SpecificBumpPtrAllocator<BlockChain> ChainAllocator;
190
191 /// \brief Function wide BasicBlock to BlockChain mapping.
192 ///
193 /// This mapping allows efficiently moving from any given basic block to the
194 /// BlockChain it participates in, if any. We use it to, among other things,
195 /// allow implicitly defining edges between chains as the existing edges
196 /// between basic blocks.
197 DenseMap<MachineBasicBlock *, BlockChain *> BlockToChain;
198
199 void markChainSuccessors(BlockChain &Chain,
200 MachineBasicBlock *LoopHeaderBB,
201 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
202 const BlockFilterSet *BlockFilter = 0);
203 MachineBasicBlock *selectBestSuccessor(MachineBasicBlock *BB,
204 BlockChain &Chain,
205 const BlockFilterSet *BlockFilter);
206 MachineBasicBlock *selectBestCandidateBlock(
207 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
208 const BlockFilterSet *BlockFilter);
209 MachineBasicBlock *getFirstUnplacedBlock(
210 MachineFunction &F,
211 const BlockChain &PlacedChain,
212 MachineFunction::iterator &PrevUnplacedBlockIt,
213 const BlockFilterSet *BlockFilter);
214 void buildChain(MachineBasicBlock *BB, BlockChain &Chain,
215 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
216 const BlockFilterSet *BlockFilter = 0);
217 MachineBasicBlock *findBestLoopTop(MachineLoop &L,
218 const BlockFilterSet &LoopBlockSet);
219 MachineBasicBlock *findBestLoopExit(MachineFunction &F,
220 MachineLoop &L,
221 const BlockFilterSet &LoopBlockSet);
222 void buildLoopChains(MachineFunction &F, MachineLoop &L);
223 void rotateLoop(BlockChain &LoopChain, MachineBasicBlock *ExitingBB,
224 const BlockFilterSet &LoopBlockSet);
225 void buildCFGChains(MachineFunction &F);
226
227 public:
228 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacement()229 MachineBlockPlacement() : MachineFunctionPass(ID) {
230 initializeMachineBlockPlacementPass(*PassRegistry::getPassRegistry());
231 }
232
233 bool runOnMachineFunction(MachineFunction &F);
234
getAnalysisUsage(AnalysisUsage & AU) const235 void getAnalysisUsage(AnalysisUsage &AU) const {
236 AU.addRequired<MachineBranchProbabilityInfo>();
237 AU.addRequired<MachineBlockFrequencyInfo>();
238 AU.addRequired<MachineLoopInfo>();
239 MachineFunctionPass::getAnalysisUsage(AU);
240 }
241 };
242 }
243
244 char MachineBlockPlacement::ID = 0;
245 char &llvm::MachineBlockPlacementID = MachineBlockPlacement::ID;
246 INITIALIZE_PASS_BEGIN(MachineBlockPlacement, "block-placement2",
247 "Branch Probability Basic Block Placement", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)248 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
249 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
250 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
251 INITIALIZE_PASS_END(MachineBlockPlacement, "block-placement2",
252 "Branch Probability Basic Block Placement", false, false)
253
254 #ifndef NDEBUG
255 /// \brief Helper to print the name of a MBB.
256 ///
257 /// Only used by debug logging.
258 static std::string getBlockName(MachineBasicBlock *BB) {
259 std::string Result;
260 raw_string_ostream OS(Result);
261 OS << "BB#" << BB->getNumber()
262 << " (derived from LLVM BB '" << BB->getName() << "')";
263 OS.flush();
264 return Result;
265 }
266
267 /// \brief Helper to print the number of a MBB.
268 ///
269 /// Only used by debug logging.
getBlockNum(MachineBasicBlock * BB)270 static std::string getBlockNum(MachineBasicBlock *BB) {
271 std::string Result;
272 raw_string_ostream OS(Result);
273 OS << "BB#" << BB->getNumber();
274 OS.flush();
275 return Result;
276 }
277 #endif
278
279 /// \brief Mark a chain's successors as having one fewer preds.
280 ///
281 /// When a chain is being merged into the "placed" chain, this routine will
282 /// quickly walk the successors of each block in the chain and mark them as
283 /// having one fewer active predecessor. It also adds any successors of this
284 /// chain which reach the zero-predecessor state to the worklist passed in.
markChainSuccessors(BlockChain & Chain,MachineBasicBlock * LoopHeaderBB,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)285 void MachineBlockPlacement::markChainSuccessors(
286 BlockChain &Chain,
287 MachineBasicBlock *LoopHeaderBB,
288 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
289 const BlockFilterSet *BlockFilter) {
290 // Walk all the blocks in this chain, marking their successors as having
291 // a predecessor placed.
292 for (BlockChain::iterator CBI = Chain.begin(), CBE = Chain.end();
293 CBI != CBE; ++CBI) {
294 // Add any successors for which this is the only un-placed in-loop
295 // predecessor to the worklist as a viable candidate for CFG-neutral
296 // placement. No subsequent placement of this block will violate the CFG
297 // shape, so we get to use heuristics to choose a favorable placement.
298 for (MachineBasicBlock::succ_iterator SI = (*CBI)->succ_begin(),
299 SE = (*CBI)->succ_end();
300 SI != SE; ++SI) {
301 if (BlockFilter && !BlockFilter->count(*SI))
302 continue;
303 BlockChain &SuccChain = *BlockToChain[*SI];
304 // Disregard edges within a fixed chain, or edges to the loop header.
305 if (&Chain == &SuccChain || *SI == LoopHeaderBB)
306 continue;
307
308 // This is a cross-chain edge that is within the loop, so decrement the
309 // loop predecessor count of the destination chain.
310 if (SuccChain.LoopPredecessors > 0 && --SuccChain.LoopPredecessors == 0)
311 BlockWorkList.push_back(*SuccChain.begin());
312 }
313 }
314 }
315
316 /// \brief Select the best successor for a block.
317 ///
318 /// This looks across all successors of a particular block and attempts to
319 /// select the "best" one to be the layout successor. It only considers direct
320 /// successors which also pass the block filter. It will attempt to avoid
321 /// breaking CFG structure, but cave and break such structures in the case of
322 /// very hot successor edges.
323 ///
324 /// \returns The best successor block found, or null if none are viable.
selectBestSuccessor(MachineBasicBlock * BB,BlockChain & Chain,const BlockFilterSet * BlockFilter)325 MachineBasicBlock *MachineBlockPlacement::selectBestSuccessor(
326 MachineBasicBlock *BB, BlockChain &Chain,
327 const BlockFilterSet *BlockFilter) {
328 const BranchProbability HotProb(4, 5); // 80%
329
330 MachineBasicBlock *BestSucc = 0;
331 // FIXME: Due to the performance of the probability and weight routines in
332 // the MBPI analysis, we manually compute probabilities using the edge
333 // weights. This is suboptimal as it means that the somewhat subtle
334 // definition of edge weight semantics is encoded here as well. We should
335 // improve the MBPI interface to efficiently support query patterns such as
336 // this.
337 uint32_t BestWeight = 0;
338 uint32_t WeightScale = 0;
339 uint32_t SumWeight = MBPI->getSumForBlock(BB, WeightScale);
340 DEBUG(dbgs() << "Attempting merge from: " << getBlockName(BB) << "\n");
341 for (MachineBasicBlock::succ_iterator SI = BB->succ_begin(),
342 SE = BB->succ_end();
343 SI != SE; ++SI) {
344 if (BlockFilter && !BlockFilter->count(*SI))
345 continue;
346 BlockChain &SuccChain = *BlockToChain[*SI];
347 if (&SuccChain == &Chain) {
348 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Already merged!\n");
349 continue;
350 }
351 if (*SI != *SuccChain.begin()) {
352 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> Mid chain!\n");
353 continue;
354 }
355
356 uint32_t SuccWeight = MBPI->getEdgeWeight(BB, *SI);
357 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
358
359 // Only consider successors which are either "hot", or wouldn't violate
360 // any CFG constraints.
361 if (SuccChain.LoopPredecessors != 0) {
362 if (SuccProb < HotProb) {
363 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> CFG conflict\n");
364 continue;
365 }
366
367 // Make sure that a hot successor doesn't have a globally more important
368 // predecessor.
369 BlockFrequency CandidateEdgeFreq
370 = MBFI->getBlockFreq(BB) * SuccProb * HotProb.getCompl();
371 bool BadCFGConflict = false;
372 for (MachineBasicBlock::pred_iterator PI = (*SI)->pred_begin(),
373 PE = (*SI)->pred_end();
374 PI != PE; ++PI) {
375 if (*PI == *SI || (BlockFilter && !BlockFilter->count(*PI)) ||
376 BlockToChain[*PI] == &Chain)
377 continue;
378 BlockFrequency PredEdgeFreq
379 = MBFI->getBlockFreq(*PI) * MBPI->getEdgeProbability(*PI, *SI);
380 if (PredEdgeFreq >= CandidateEdgeFreq) {
381 BadCFGConflict = true;
382 break;
383 }
384 }
385 if (BadCFGConflict) {
386 DEBUG(dbgs() << " " << getBlockName(*SI)
387 << " -> non-cold CFG conflict\n");
388 continue;
389 }
390 }
391
392 DEBUG(dbgs() << " " << getBlockName(*SI) << " -> " << SuccProb
393 << " (prob)"
394 << (SuccChain.LoopPredecessors != 0 ? " (CFG break)" : "")
395 << "\n");
396 if (BestSucc && BestWeight >= SuccWeight)
397 continue;
398 BestSucc = *SI;
399 BestWeight = SuccWeight;
400 }
401 return BestSucc;
402 }
403
404 namespace {
405 /// \brief Predicate struct to detect blocks already placed.
406 class IsBlockPlaced {
407 const BlockChain &PlacedChain;
408 const BlockToChainMapType &BlockToChain;
409
410 public:
IsBlockPlaced(const BlockChain & PlacedChain,const BlockToChainMapType & BlockToChain)411 IsBlockPlaced(const BlockChain &PlacedChain,
412 const BlockToChainMapType &BlockToChain)
413 : PlacedChain(PlacedChain), BlockToChain(BlockToChain) {}
414
operator ()(MachineBasicBlock * BB) const415 bool operator()(MachineBasicBlock *BB) const {
416 return BlockToChain.lookup(BB) == &PlacedChain;
417 }
418 };
419 }
420
421 /// \brief Select the best block from a worklist.
422 ///
423 /// This looks through the provided worklist as a list of candidate basic
424 /// blocks and select the most profitable one to place. The definition of
425 /// profitable only really makes sense in the context of a loop. This returns
426 /// the most frequently visited block in the worklist, which in the case of
427 /// a loop, is the one most desirable to be physically close to the rest of the
428 /// loop body in order to improve icache behavior.
429 ///
430 /// \returns The best block found, or null if none are viable.
selectBestCandidateBlock(BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & WorkList,const BlockFilterSet * BlockFilter)431 MachineBasicBlock *MachineBlockPlacement::selectBestCandidateBlock(
432 BlockChain &Chain, SmallVectorImpl<MachineBasicBlock *> &WorkList,
433 const BlockFilterSet *BlockFilter) {
434 // Once we need to walk the worklist looking for a candidate, cleanup the
435 // worklist of already placed entries.
436 // FIXME: If this shows up on profiles, it could be folded (at the cost of
437 // some code complexity) into the loop below.
438 WorkList.erase(std::remove_if(WorkList.begin(), WorkList.end(),
439 IsBlockPlaced(Chain, BlockToChain)),
440 WorkList.end());
441
442 MachineBasicBlock *BestBlock = 0;
443 BlockFrequency BestFreq;
444 for (SmallVectorImpl<MachineBasicBlock *>::iterator WBI = WorkList.begin(),
445 WBE = WorkList.end();
446 WBI != WBE; ++WBI) {
447 BlockChain &SuccChain = *BlockToChain[*WBI];
448 if (&SuccChain == &Chain) {
449 DEBUG(dbgs() << " " << getBlockName(*WBI)
450 << " -> Already merged!\n");
451 continue;
452 }
453 assert(SuccChain.LoopPredecessors == 0 && "Found CFG-violating block");
454
455 BlockFrequency CandidateFreq = MBFI->getBlockFreq(*WBI);
456 DEBUG(dbgs() << " " << getBlockName(*WBI) << " -> " << CandidateFreq
457 << " (freq)\n");
458 if (BestBlock && BestFreq >= CandidateFreq)
459 continue;
460 BestBlock = *WBI;
461 BestFreq = CandidateFreq;
462 }
463 return BestBlock;
464 }
465
466 /// \brief Retrieve the first unplaced basic block.
467 ///
468 /// This routine is called when we are unable to use the CFG to walk through
469 /// all of the basic blocks and form a chain due to unnatural loops in the CFG.
470 /// We walk through the function's blocks in order, starting from the
471 /// LastUnplacedBlockIt. We update this iterator on each call to avoid
472 /// re-scanning the entire sequence on repeated calls to this routine.
getFirstUnplacedBlock(MachineFunction & F,const BlockChain & PlacedChain,MachineFunction::iterator & PrevUnplacedBlockIt,const BlockFilterSet * BlockFilter)473 MachineBasicBlock *MachineBlockPlacement::getFirstUnplacedBlock(
474 MachineFunction &F, const BlockChain &PlacedChain,
475 MachineFunction::iterator &PrevUnplacedBlockIt,
476 const BlockFilterSet *BlockFilter) {
477 for (MachineFunction::iterator I = PrevUnplacedBlockIt, E = F.end(); I != E;
478 ++I) {
479 if (BlockFilter && !BlockFilter->count(I))
480 continue;
481 if (BlockToChain[I] != &PlacedChain) {
482 PrevUnplacedBlockIt = I;
483 // Now select the head of the chain to which the unplaced block belongs
484 // as the block to place. This will force the entire chain to be placed,
485 // and satisfies the requirements of merging chains.
486 return *BlockToChain[I]->begin();
487 }
488 }
489 return 0;
490 }
491
buildChain(MachineBasicBlock * BB,BlockChain & Chain,SmallVectorImpl<MachineBasicBlock * > & BlockWorkList,const BlockFilterSet * BlockFilter)492 void MachineBlockPlacement::buildChain(
493 MachineBasicBlock *BB,
494 BlockChain &Chain,
495 SmallVectorImpl<MachineBasicBlock *> &BlockWorkList,
496 const BlockFilterSet *BlockFilter) {
497 assert(BB);
498 assert(BlockToChain[BB] == &Chain);
499 MachineFunction &F = *BB->getParent();
500 MachineFunction::iterator PrevUnplacedBlockIt = F.begin();
501
502 MachineBasicBlock *LoopHeaderBB = BB;
503 markChainSuccessors(Chain, LoopHeaderBB, BlockWorkList, BlockFilter);
504 BB = *llvm::prior(Chain.end());
505 for (;;) {
506 assert(BB);
507 assert(BlockToChain[BB] == &Chain);
508 assert(*llvm::prior(Chain.end()) == BB);
509
510 // Look for the best viable successor if there is one to place immediately
511 // after this block.
512 MachineBasicBlock *BestSucc = selectBestSuccessor(BB, Chain, BlockFilter);
513
514 // If an immediate successor isn't available, look for the best viable
515 // block among those we've identified as not violating the loop's CFG at
516 // this point. This won't be a fallthrough, but it will increase locality.
517 if (!BestSucc)
518 BestSucc = selectBestCandidateBlock(Chain, BlockWorkList, BlockFilter);
519
520 if (!BestSucc) {
521 BestSucc = getFirstUnplacedBlock(F, Chain, PrevUnplacedBlockIt,
522 BlockFilter);
523 if (!BestSucc)
524 break;
525
526 DEBUG(dbgs() << "Unnatural loop CFG detected, forcibly merging the "
527 "layout successor until the CFG reduces\n");
528 }
529
530 // Place this block, updating the datastructures to reflect its placement.
531 BlockChain &SuccChain = *BlockToChain[BestSucc];
532 // Zero out LoopPredecessors for the successor we're about to merge in case
533 // we selected a successor that didn't fit naturally into the CFG.
534 SuccChain.LoopPredecessors = 0;
535 DEBUG(dbgs() << "Merging from " << getBlockNum(BB)
536 << " to " << getBlockNum(BestSucc) << "\n");
537 markChainSuccessors(SuccChain, LoopHeaderBB, BlockWorkList, BlockFilter);
538 Chain.merge(BestSucc, &SuccChain);
539 BB = *llvm::prior(Chain.end());
540 }
541
542 DEBUG(dbgs() << "Finished forming chain for header block "
543 << getBlockNum(*Chain.begin()) << "\n");
544 }
545
546 /// \brief Find the best loop top block for layout.
547 ///
548 /// Look for a block which is strictly better than the loop header for laying
549 /// out at the top of the loop. This looks for one and only one pattern:
550 /// a latch block with no conditional exit. This block will cause a conditional
551 /// jump around it or will be the bottom of the loop if we lay it out in place,
552 /// but if it it doesn't end up at the bottom of the loop for any reason,
553 /// rotation alone won't fix it. Because such a block will always result in an
554 /// unconditional jump (for the backedge) rotating it in front of the loop
555 /// header is always profitable.
556 MachineBasicBlock *
findBestLoopTop(MachineLoop & L,const BlockFilterSet & LoopBlockSet)557 MachineBlockPlacement::findBestLoopTop(MachineLoop &L,
558 const BlockFilterSet &LoopBlockSet) {
559 // Check that the header hasn't been fused with a preheader block due to
560 // crazy branches. If it has, we need to start with the header at the top to
561 // prevent pulling the preheader into the loop body.
562 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
563 if (!LoopBlockSet.count(*HeaderChain.begin()))
564 return L.getHeader();
565
566 DEBUG(dbgs() << "Finding best loop top for: "
567 << getBlockName(L.getHeader()) << "\n");
568
569 BlockFrequency BestPredFreq;
570 MachineBasicBlock *BestPred = 0;
571 for (MachineBasicBlock::pred_iterator PI = L.getHeader()->pred_begin(),
572 PE = L.getHeader()->pred_end();
573 PI != PE; ++PI) {
574 MachineBasicBlock *Pred = *PI;
575 if (!LoopBlockSet.count(Pred))
576 continue;
577 DEBUG(dbgs() << " header pred: " << getBlockName(Pred) << ", "
578 << Pred->succ_size() << " successors, "
579 << MBFI->getBlockFreq(Pred) << " freq\n");
580 if (Pred->succ_size() > 1)
581 continue;
582
583 BlockFrequency PredFreq = MBFI->getBlockFreq(Pred);
584 if (!BestPred || PredFreq > BestPredFreq ||
585 (!(PredFreq < BestPredFreq) &&
586 Pred->isLayoutSuccessor(L.getHeader()))) {
587 BestPred = Pred;
588 BestPredFreq = PredFreq;
589 }
590 }
591
592 // If no direct predecessor is fine, just use the loop header.
593 if (!BestPred)
594 return L.getHeader();
595
596 // Walk backwards through any straight line of predecessors.
597 while (BestPred->pred_size() == 1 &&
598 (*BestPred->pred_begin())->succ_size() == 1 &&
599 *BestPred->pred_begin() != L.getHeader())
600 BestPred = *BestPred->pred_begin();
601
602 DEBUG(dbgs() << " final top: " << getBlockName(BestPred) << "\n");
603 return BestPred;
604 }
605
606
607 /// \brief Find the best loop exiting block for layout.
608 ///
609 /// This routine implements the logic to analyze the loop looking for the best
610 /// block to layout at the top of the loop. Typically this is done to maximize
611 /// fallthrough opportunities.
612 MachineBasicBlock *
findBestLoopExit(MachineFunction & F,MachineLoop & L,const BlockFilterSet & LoopBlockSet)613 MachineBlockPlacement::findBestLoopExit(MachineFunction &F,
614 MachineLoop &L,
615 const BlockFilterSet &LoopBlockSet) {
616 // We don't want to layout the loop linearly in all cases. If the loop header
617 // is just a normal basic block in the loop, we want to look for what block
618 // within the loop is the best one to layout at the top. However, if the loop
619 // header has be pre-merged into a chain due to predecessors not having
620 // analyzable branches, *and* the predecessor it is merged with is *not* part
621 // of the loop, rotating the header into the middle of the loop will create
622 // a non-contiguous range of blocks which is Very Bad. So start with the
623 // header and only rotate if safe.
624 BlockChain &HeaderChain = *BlockToChain[L.getHeader()];
625 if (!LoopBlockSet.count(*HeaderChain.begin()))
626 return 0;
627
628 BlockFrequency BestExitEdgeFreq;
629 unsigned BestExitLoopDepth = 0;
630 MachineBasicBlock *ExitingBB = 0;
631 // If there are exits to outer loops, loop rotation can severely limit
632 // fallthrough opportunites unless it selects such an exit. Keep a set of
633 // blocks where rotating to exit with that block will reach an outer loop.
634 SmallPtrSet<MachineBasicBlock *, 4> BlocksExitingToOuterLoop;
635
636 DEBUG(dbgs() << "Finding best loop exit for: "
637 << getBlockName(L.getHeader()) << "\n");
638 for (MachineLoop::block_iterator I = L.block_begin(),
639 E = L.block_end();
640 I != E; ++I) {
641 BlockChain &Chain = *BlockToChain[*I];
642 // Ensure that this block is at the end of a chain; otherwise it could be
643 // mid-way through an inner loop or a successor of an analyzable branch.
644 if (*I != *llvm::prior(Chain.end()))
645 continue;
646
647 // Now walk the successors. We need to establish whether this has a viable
648 // exiting successor and whether it has a viable non-exiting successor.
649 // We store the old exiting state and restore it if a viable looping
650 // successor isn't found.
651 MachineBasicBlock *OldExitingBB = ExitingBB;
652 BlockFrequency OldBestExitEdgeFreq = BestExitEdgeFreq;
653 bool HasLoopingSucc = false;
654 // FIXME: Due to the performance of the probability and weight routines in
655 // the MBPI analysis, we use the internal weights and manually compute the
656 // probabilities to avoid quadratic behavior.
657 uint32_t WeightScale = 0;
658 uint32_t SumWeight = MBPI->getSumForBlock(*I, WeightScale);
659 for (MachineBasicBlock::succ_iterator SI = (*I)->succ_begin(),
660 SE = (*I)->succ_end();
661 SI != SE; ++SI) {
662 if ((*SI)->isLandingPad())
663 continue;
664 if (*SI == *I)
665 continue;
666 BlockChain &SuccChain = *BlockToChain[*SI];
667 // Don't split chains, either this chain or the successor's chain.
668 if (&Chain == &SuccChain) {
669 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
670 << getBlockName(*SI) << " (chain conflict)\n");
671 continue;
672 }
673
674 uint32_t SuccWeight = MBPI->getEdgeWeight(*I, *SI);
675 if (LoopBlockSet.count(*SI)) {
676 DEBUG(dbgs() << " looping: " << getBlockName(*I) << " -> "
677 << getBlockName(*SI) << " (" << SuccWeight << ")\n");
678 HasLoopingSucc = true;
679 continue;
680 }
681
682 unsigned SuccLoopDepth = 0;
683 if (MachineLoop *ExitLoop = MLI->getLoopFor(*SI)) {
684 SuccLoopDepth = ExitLoop->getLoopDepth();
685 if (ExitLoop->contains(&L))
686 BlocksExitingToOuterLoop.insert(*I);
687 }
688
689 BranchProbability SuccProb(SuccWeight / WeightScale, SumWeight);
690 BlockFrequency ExitEdgeFreq = MBFI->getBlockFreq(*I) * SuccProb;
691 DEBUG(dbgs() << " exiting: " << getBlockName(*I) << " -> "
692 << getBlockName(*SI) << " [L:" << SuccLoopDepth
693 << "] (" << ExitEdgeFreq << ")\n");
694 // Note that we slightly bias this toward an existing layout successor to
695 // retain incoming order in the absence of better information.
696 // FIXME: Should we bias this more strongly? It's pretty weak.
697 if (!ExitingBB || BestExitLoopDepth < SuccLoopDepth ||
698 ExitEdgeFreq > BestExitEdgeFreq ||
699 ((*I)->isLayoutSuccessor(*SI) &&
700 !(ExitEdgeFreq < BestExitEdgeFreq))) {
701 BestExitEdgeFreq = ExitEdgeFreq;
702 ExitingBB = *I;
703 }
704 }
705
706 // Restore the old exiting state, no viable looping successor was found.
707 if (!HasLoopingSucc) {
708 ExitingBB = OldExitingBB;
709 BestExitEdgeFreq = OldBestExitEdgeFreq;
710 continue;
711 }
712 }
713 // Without a candidate exiting block or with only a single block in the
714 // loop, just use the loop header to layout the loop.
715 if (!ExitingBB || L.getNumBlocks() == 1)
716 return 0;
717
718 // Also, if we have exit blocks which lead to outer loops but didn't select
719 // one of them as the exiting block we are rotating toward, disable loop
720 // rotation altogether.
721 if (!BlocksExitingToOuterLoop.empty() &&
722 !BlocksExitingToOuterLoop.count(ExitingBB))
723 return 0;
724
725 DEBUG(dbgs() << " Best exiting block: " << getBlockName(ExitingBB) << "\n");
726 return ExitingBB;
727 }
728
729 /// \brief Attempt to rotate an exiting block to the bottom of the loop.
730 ///
731 /// Once we have built a chain, try to rotate it to line up the hot exit block
732 /// with fallthrough out of the loop if doing so doesn't introduce unnecessary
733 /// branches. For example, if the loop has fallthrough into its header and out
734 /// of its bottom already, don't rotate it.
rotateLoop(BlockChain & LoopChain,MachineBasicBlock * ExitingBB,const BlockFilterSet & LoopBlockSet)735 void MachineBlockPlacement::rotateLoop(BlockChain &LoopChain,
736 MachineBasicBlock *ExitingBB,
737 const BlockFilterSet &LoopBlockSet) {
738 if (!ExitingBB)
739 return;
740
741 MachineBasicBlock *Top = *LoopChain.begin();
742 bool ViableTopFallthrough = false;
743 for (MachineBasicBlock::pred_iterator PI = Top->pred_begin(),
744 PE = Top->pred_end();
745 PI != PE; ++PI) {
746 BlockChain *PredChain = BlockToChain[*PI];
747 if (!LoopBlockSet.count(*PI) &&
748 (!PredChain || *PI == *llvm::prior(PredChain->end()))) {
749 ViableTopFallthrough = true;
750 break;
751 }
752 }
753
754 // If the header has viable fallthrough, check whether the current loop
755 // bottom is a viable exiting block. If so, bail out as rotating will
756 // introduce an unnecessary branch.
757 if (ViableTopFallthrough) {
758 MachineBasicBlock *Bottom = *llvm::prior(LoopChain.end());
759 for (MachineBasicBlock::succ_iterator SI = Bottom->succ_begin(),
760 SE = Bottom->succ_end();
761 SI != SE; ++SI) {
762 BlockChain *SuccChain = BlockToChain[*SI];
763 if (!LoopBlockSet.count(*SI) &&
764 (!SuccChain || *SI == *SuccChain->begin()))
765 return;
766 }
767 }
768
769 BlockChain::iterator ExitIt = std::find(LoopChain.begin(), LoopChain.end(),
770 ExitingBB);
771 if (ExitIt == LoopChain.end())
772 return;
773
774 std::rotate(LoopChain.begin(), llvm::next(ExitIt), LoopChain.end());
775 }
776
777 /// \brief Forms basic block chains from the natural loop structures.
778 ///
779 /// These chains are designed to preserve the existing *structure* of the code
780 /// as much as possible. We can then stitch the chains together in a way which
781 /// both preserves the topological structure and minimizes taken conditional
782 /// branches.
buildLoopChains(MachineFunction & F,MachineLoop & L)783 void MachineBlockPlacement::buildLoopChains(MachineFunction &F,
784 MachineLoop &L) {
785 // First recurse through any nested loops, building chains for those inner
786 // loops.
787 for (MachineLoop::iterator LI = L.begin(), LE = L.end(); LI != LE; ++LI)
788 buildLoopChains(F, **LI);
789
790 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
791 BlockFilterSet LoopBlockSet(L.block_begin(), L.block_end());
792
793 // First check to see if there is an obviously preferable top block for the
794 // loop. This will default to the header, but may end up as one of the
795 // predecessors to the header if there is one which will result in strictly
796 // fewer branches in the loop body.
797 MachineBasicBlock *LoopTop = findBestLoopTop(L, LoopBlockSet);
798
799 // If we selected just the header for the loop top, look for a potentially
800 // profitable exit block in the event that rotating the loop can eliminate
801 // branches by placing an exit edge at the bottom.
802 MachineBasicBlock *ExitingBB = 0;
803 if (LoopTop == L.getHeader())
804 ExitingBB = findBestLoopExit(F, L, LoopBlockSet);
805
806 BlockChain &LoopChain = *BlockToChain[LoopTop];
807
808 // FIXME: This is a really lame way of walking the chains in the loop: we
809 // walk the blocks, and use a set to prevent visiting a particular chain
810 // twice.
811 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
812 assert(LoopChain.LoopPredecessors == 0);
813 UpdatedPreds.insert(&LoopChain);
814 for (MachineLoop::block_iterator BI = L.block_begin(),
815 BE = L.block_end();
816 BI != BE; ++BI) {
817 BlockChain &Chain = *BlockToChain[*BI];
818 if (!UpdatedPreds.insert(&Chain))
819 continue;
820
821 assert(Chain.LoopPredecessors == 0);
822 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
823 BCI != BCE; ++BCI) {
824 assert(BlockToChain[*BCI] == &Chain);
825 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
826 PE = (*BCI)->pred_end();
827 PI != PE; ++PI) {
828 if (BlockToChain[*PI] == &Chain || !LoopBlockSet.count(*PI))
829 continue;
830 ++Chain.LoopPredecessors;
831 }
832 }
833
834 if (Chain.LoopPredecessors == 0)
835 BlockWorkList.push_back(*Chain.begin());
836 }
837
838 buildChain(LoopTop, LoopChain, BlockWorkList, &LoopBlockSet);
839 rotateLoop(LoopChain, ExitingBB, LoopBlockSet);
840
841 DEBUG({
842 // Crash at the end so we get all of the debugging output first.
843 bool BadLoop = false;
844 if (LoopChain.LoopPredecessors) {
845 BadLoop = true;
846 dbgs() << "Loop chain contains a block without its preds placed!\n"
847 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
848 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n";
849 }
850 for (BlockChain::iterator BCI = LoopChain.begin(), BCE = LoopChain.end();
851 BCI != BCE; ++BCI) {
852 dbgs() << " ... " << getBlockName(*BCI) << "\n";
853 if (!LoopBlockSet.erase(*BCI)) {
854 // We don't mark the loop as bad here because there are real situations
855 // where this can occur. For example, with an unanalyzable fallthrough
856 // from a loop block to a non-loop block or vice versa.
857 dbgs() << "Loop chain contains a block not contained by the loop!\n"
858 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
859 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
860 << " Bad block: " << getBlockName(*BCI) << "\n";
861 }
862 }
863
864 if (!LoopBlockSet.empty()) {
865 BadLoop = true;
866 for (BlockFilterSet::iterator LBI = LoopBlockSet.begin(),
867 LBE = LoopBlockSet.end();
868 LBI != LBE; ++LBI)
869 dbgs() << "Loop contains blocks never placed into a chain!\n"
870 << " Loop header: " << getBlockName(*L.block_begin()) << "\n"
871 << " Chain header: " << getBlockName(*LoopChain.begin()) << "\n"
872 << " Bad block: " << getBlockName(*LBI) << "\n";
873 }
874 assert(!BadLoop && "Detected problems with the placement of this loop.");
875 });
876 }
877
buildCFGChains(MachineFunction & F)878 void MachineBlockPlacement::buildCFGChains(MachineFunction &F) {
879 // Ensure that every BB in the function has an associated chain to simplify
880 // the assumptions of the remaining algorithm.
881 SmallVector<MachineOperand, 4> Cond; // For AnalyzeBranch.
882 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
883 MachineBasicBlock *BB = FI;
884 BlockChain *Chain
885 = new (ChainAllocator.Allocate()) BlockChain(BlockToChain, BB);
886 // Also, merge any blocks which we cannot reason about and must preserve
887 // the exact fallthrough behavior for.
888 for (;;) {
889 Cond.clear();
890 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
891 if (!TII->AnalyzeBranch(*BB, TBB, FBB, Cond) || !FI->canFallThrough())
892 break;
893
894 MachineFunction::iterator NextFI(llvm::next(FI));
895 MachineBasicBlock *NextBB = NextFI;
896 // Ensure that the layout successor is a viable block, as we know that
897 // fallthrough is a possibility.
898 assert(NextFI != FE && "Can't fallthrough past the last block.");
899 DEBUG(dbgs() << "Pre-merging due to unanalyzable fallthrough: "
900 << getBlockName(BB) << " -> " << getBlockName(NextBB)
901 << "\n");
902 Chain->merge(NextBB, 0);
903 FI = NextFI;
904 BB = NextBB;
905 }
906 }
907
908 // Build any loop-based chains.
909 for (MachineLoopInfo::iterator LI = MLI->begin(), LE = MLI->end(); LI != LE;
910 ++LI)
911 buildLoopChains(F, **LI);
912
913 SmallVector<MachineBasicBlock *, 16> BlockWorkList;
914
915 SmallPtrSet<BlockChain *, 4> UpdatedPreds;
916 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI) {
917 MachineBasicBlock *BB = &*FI;
918 BlockChain &Chain = *BlockToChain[BB];
919 if (!UpdatedPreds.insert(&Chain))
920 continue;
921
922 assert(Chain.LoopPredecessors == 0);
923 for (BlockChain::iterator BCI = Chain.begin(), BCE = Chain.end();
924 BCI != BCE; ++BCI) {
925 assert(BlockToChain[*BCI] == &Chain);
926 for (MachineBasicBlock::pred_iterator PI = (*BCI)->pred_begin(),
927 PE = (*BCI)->pred_end();
928 PI != PE; ++PI) {
929 if (BlockToChain[*PI] == &Chain)
930 continue;
931 ++Chain.LoopPredecessors;
932 }
933 }
934
935 if (Chain.LoopPredecessors == 0)
936 BlockWorkList.push_back(*Chain.begin());
937 }
938
939 BlockChain &FunctionChain = *BlockToChain[&F.front()];
940 buildChain(&F.front(), FunctionChain, BlockWorkList);
941
942 typedef SmallPtrSet<MachineBasicBlock *, 16> FunctionBlockSetType;
943 DEBUG({
944 // Crash at the end so we get all of the debugging output first.
945 bool BadFunc = false;
946 FunctionBlockSetType FunctionBlockSet;
947 for (MachineFunction::iterator FI = F.begin(), FE = F.end(); FI != FE; ++FI)
948 FunctionBlockSet.insert(FI);
949
950 for (BlockChain::iterator BCI = FunctionChain.begin(),
951 BCE = FunctionChain.end();
952 BCI != BCE; ++BCI)
953 if (!FunctionBlockSet.erase(*BCI)) {
954 BadFunc = true;
955 dbgs() << "Function chain contains a block not in the function!\n"
956 << " Bad block: " << getBlockName(*BCI) << "\n";
957 }
958
959 if (!FunctionBlockSet.empty()) {
960 BadFunc = true;
961 for (FunctionBlockSetType::iterator FBI = FunctionBlockSet.begin(),
962 FBE = FunctionBlockSet.end();
963 FBI != FBE; ++FBI)
964 dbgs() << "Function contains blocks never placed into a chain!\n"
965 << " Bad block: " << getBlockName(*FBI) << "\n";
966 }
967 assert(!BadFunc && "Detected problems with the block placement.");
968 });
969
970 // Splice the blocks into place.
971 MachineFunction::iterator InsertPos = F.begin();
972 for (BlockChain::iterator BI = FunctionChain.begin(),
973 BE = FunctionChain.end();
974 BI != BE; ++BI) {
975 DEBUG(dbgs() << (BI == FunctionChain.begin() ? "Placing chain "
976 : " ... ")
977 << getBlockName(*BI) << "\n");
978 if (InsertPos != MachineFunction::iterator(*BI))
979 F.splice(InsertPos, *BI);
980 else
981 ++InsertPos;
982
983 // Update the terminator of the previous block.
984 if (BI == FunctionChain.begin())
985 continue;
986 MachineBasicBlock *PrevBB = llvm::prior(MachineFunction::iterator(*BI));
987
988 // FIXME: It would be awesome of updateTerminator would just return rather
989 // than assert when the branch cannot be analyzed in order to remove this
990 // boiler plate.
991 Cond.clear();
992 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
993 if (!TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
994 // The "PrevBB" is not yet updated to reflect current code layout, so,
995 // o. it may fall-through to a block without explict "goto" instruction
996 // before layout, and no longer fall-through it after layout; or
997 // o. just opposite.
998 //
999 // AnalyzeBranch() may return erroneous value for FBB when these two
1000 // situations take place. For the first scenario FBB is mistakenly set
1001 // NULL; for the 2nd scenario, the FBB, which is expected to be NULL,
1002 // is mistakenly pointing to "*BI".
1003 //
1004 bool needUpdateBr = true;
1005 if (!Cond.empty() && (!FBB || FBB == *BI)) {
1006 PrevBB->updateTerminator();
1007 needUpdateBr = false;
1008 Cond.clear();
1009 TBB = FBB = 0;
1010 if (TII->AnalyzeBranch(*PrevBB, TBB, FBB, Cond)) {
1011 // FIXME: This should never take place.
1012 TBB = FBB = 0;
1013 }
1014 }
1015
1016 // If PrevBB has a two-way branch, try to re-order the branches
1017 // such that we branch to the successor with higher weight first.
1018 if (TBB && !Cond.empty() && FBB &&
1019 MBPI->getEdgeWeight(PrevBB, FBB) > MBPI->getEdgeWeight(PrevBB, TBB) &&
1020 !TII->ReverseBranchCondition(Cond)) {
1021 DEBUG(dbgs() << "Reverse order of the two branches: "
1022 << getBlockName(PrevBB) << "\n");
1023 DEBUG(dbgs() << " Edge weight: " << MBPI->getEdgeWeight(PrevBB, FBB)
1024 << " vs " << MBPI->getEdgeWeight(PrevBB, TBB) << "\n");
1025 DebugLoc dl; // FIXME: this is nowhere
1026 TII->RemoveBranch(*PrevBB);
1027 TII->InsertBranch(*PrevBB, FBB, TBB, Cond, dl);
1028 needUpdateBr = true;
1029 }
1030 if (needUpdateBr)
1031 PrevBB->updateTerminator();
1032 }
1033 }
1034
1035 // Fixup the last block.
1036 Cond.clear();
1037 MachineBasicBlock *TBB = 0, *FBB = 0; // For AnalyzeBranch.
1038 if (!TII->AnalyzeBranch(F.back(), TBB, FBB, Cond))
1039 F.back().updateTerminator();
1040
1041 // Walk through the backedges of the function now that we have fully laid out
1042 // the basic blocks and align the destination of each backedge. We don't rely
1043 // exclusively on the loop info here so that we can align backedges in
1044 // unnatural CFGs and backedges that were introduced purely because of the
1045 // loop rotations done during this layout pass.
1046 if (F.getFunction()->getAttributes().
1047 hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize))
1048 return;
1049 unsigned Align = TLI->getPrefLoopAlignment();
1050 if (!Align)
1051 return; // Don't care about loop alignment.
1052 if (FunctionChain.begin() == FunctionChain.end())
1053 return; // Empty chain.
1054
1055 const BranchProbability ColdProb(1, 5); // 20%
1056 BlockFrequency EntryFreq = MBFI->getBlockFreq(F.begin());
1057 BlockFrequency WeightedEntryFreq = EntryFreq * ColdProb;
1058 for (BlockChain::iterator BI = llvm::next(FunctionChain.begin()),
1059 BE = FunctionChain.end();
1060 BI != BE; ++BI) {
1061 // Don't align non-looping basic blocks. These are unlikely to execute
1062 // enough times to matter in practice. Note that we'll still handle
1063 // unnatural CFGs inside of a natural outer loop (the common case) and
1064 // rotated loops.
1065 MachineLoop *L = MLI->getLoopFor(*BI);
1066 if (!L)
1067 continue;
1068
1069 // If the block is cold relative to the function entry don't waste space
1070 // aligning it.
1071 BlockFrequency Freq = MBFI->getBlockFreq(*BI);
1072 if (Freq < WeightedEntryFreq)
1073 continue;
1074
1075 // If the block is cold relative to its loop header, don't align it
1076 // regardless of what edges into the block exist.
1077 MachineBasicBlock *LoopHeader = L->getHeader();
1078 BlockFrequency LoopHeaderFreq = MBFI->getBlockFreq(LoopHeader);
1079 if (Freq < (LoopHeaderFreq * ColdProb))
1080 continue;
1081
1082 // Check for the existence of a non-layout predecessor which would benefit
1083 // from aligning this block.
1084 MachineBasicBlock *LayoutPred = *llvm::prior(BI);
1085
1086 // Force alignment if all the predecessors are jumps. We already checked
1087 // that the block isn't cold above.
1088 if (!LayoutPred->isSuccessor(*BI)) {
1089 (*BI)->setAlignment(Align);
1090 continue;
1091 }
1092
1093 // Align this block if the layout predecessor's edge into this block is
1094 // cold relative to the block. When this is true, other predecessors make up
1095 // all of the hot entries into the block and thus alignment is likely to be
1096 // important.
1097 BranchProbability LayoutProb = MBPI->getEdgeProbability(LayoutPred, *BI);
1098 BlockFrequency LayoutEdgeFreq = MBFI->getBlockFreq(LayoutPred) * LayoutProb;
1099 if (LayoutEdgeFreq <= (Freq * ColdProb))
1100 (*BI)->setAlignment(Align);
1101 }
1102 }
1103
runOnMachineFunction(MachineFunction & F)1104 bool MachineBlockPlacement::runOnMachineFunction(MachineFunction &F) {
1105 // Check for single-block functions and skip them.
1106 if (llvm::next(F.begin()) == F.end())
1107 return false;
1108
1109 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1110 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1111 MLI = &getAnalysis<MachineLoopInfo>();
1112 TII = F.getTarget().getInstrInfo();
1113 TLI = F.getTarget().getTargetLowering();
1114 assert(BlockToChain.empty());
1115
1116 buildCFGChains(F);
1117
1118 BlockToChain.clear();
1119 ChainAllocator.DestroyAll();
1120
1121 if (AlignAllBlock)
1122 // Align all of the blocks in the function to a specific alignment.
1123 for (MachineFunction::iterator FI = F.begin(), FE = F.end();
1124 FI != FE; ++FI)
1125 FI->setAlignment(AlignAllBlock);
1126
1127 // We always return true as we have no way to track whether the final order
1128 // differs from the original order.
1129 return true;
1130 }
1131
1132 namespace {
1133 /// \brief A pass to compute block placement statistics.
1134 ///
1135 /// A separate pass to compute interesting statistics for evaluating block
1136 /// placement. This is separate from the actual placement pass so that they can
1137 /// be computed in the absence of any placement transformations or when using
1138 /// alternative placement strategies.
1139 class MachineBlockPlacementStats : public MachineFunctionPass {
1140 /// \brief A handle to the branch probability pass.
1141 const MachineBranchProbabilityInfo *MBPI;
1142
1143 /// \brief A handle to the function-wide block frequency pass.
1144 const MachineBlockFrequencyInfo *MBFI;
1145
1146 public:
1147 static char ID; // Pass identification, replacement for typeid
MachineBlockPlacementStats()1148 MachineBlockPlacementStats() : MachineFunctionPass(ID) {
1149 initializeMachineBlockPlacementStatsPass(*PassRegistry::getPassRegistry());
1150 }
1151
1152 bool runOnMachineFunction(MachineFunction &F);
1153
getAnalysisUsage(AnalysisUsage & AU) const1154 void getAnalysisUsage(AnalysisUsage &AU) const {
1155 AU.addRequired<MachineBranchProbabilityInfo>();
1156 AU.addRequired<MachineBlockFrequencyInfo>();
1157 AU.setPreservesAll();
1158 MachineFunctionPass::getAnalysisUsage(AU);
1159 }
1160 };
1161 }
1162
1163 char MachineBlockPlacementStats::ID = 0;
1164 char &llvm::MachineBlockPlacementStatsID = MachineBlockPlacementStats::ID;
1165 INITIALIZE_PASS_BEGIN(MachineBlockPlacementStats, "block-placement-stats",
1166 "Basic Block Placement Stats", false, false)
INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)1167 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
1168 INITIALIZE_PASS_DEPENDENCY(MachineBlockFrequencyInfo)
1169 INITIALIZE_PASS_END(MachineBlockPlacementStats, "block-placement-stats",
1170 "Basic Block Placement Stats", false, false)
1171
1172 bool MachineBlockPlacementStats::runOnMachineFunction(MachineFunction &F) {
1173 // Check for single-block functions and skip them.
1174 if (llvm::next(F.begin()) == F.end())
1175 return false;
1176
1177 MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
1178 MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
1179
1180 for (MachineFunction::iterator I = F.begin(), E = F.end(); I != E; ++I) {
1181 BlockFrequency BlockFreq = MBFI->getBlockFreq(I);
1182 Statistic &NumBranches = (I->succ_size() > 1) ? NumCondBranches
1183 : NumUncondBranches;
1184 Statistic &BranchTakenFreq = (I->succ_size() > 1) ? CondBranchTakenFreq
1185 : UncondBranchTakenFreq;
1186 for (MachineBasicBlock::succ_iterator SI = I->succ_begin(),
1187 SE = I->succ_end();
1188 SI != SE; ++SI) {
1189 // Skip if this successor is a fallthrough.
1190 if (I->isLayoutSuccessor(*SI))
1191 continue;
1192
1193 BlockFrequency EdgeFreq = BlockFreq * MBPI->getEdgeProbability(I, *SI);
1194 ++NumBranches;
1195 BranchTakenFreq += EdgeFreq.getFrequency();
1196 }
1197 }
1198
1199 return false;
1200 }
1201
1202