1 //===- MachineScheduler.cpp - Machine Instruction Scheduler ---------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // MachineScheduler schedules machine instructions after phi elimination. It
11 // preserves LiveIntervals so it can be invoked before register allocation.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "misched"
16
17 #include "llvm/CodeGen/MachineScheduler.h"
18 #include "llvm/ADT/OwningPtr.h"
19 #include "llvm/ADT/PriorityQueue.h"
20 #include "llvm/Analysis/AliasAnalysis.h"
21 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
22 #include "llvm/CodeGen/MachineDominators.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineRegisterInfo.h"
25 #include "llvm/CodeGen/Passes.h"
26 #include "llvm/CodeGen/RegisterClassInfo.h"
27 #include "llvm/CodeGen/ScheduleDFS.h"
28 #include "llvm/CodeGen/ScheduleHazardRecognizer.h"
29 #include "llvm/Support/CommandLine.h"
30 #include "llvm/Support/Debug.h"
31 #include "llvm/Support/ErrorHandling.h"
32 #include "llvm/Support/GraphWriter.h"
33 #include "llvm/Support/raw_ostream.h"
34 #include "llvm/Target/TargetInstrInfo.h"
35 #include <queue>
36
37 using namespace llvm;
38
39 namespace llvm {
40 cl::opt<bool> ForceTopDown("misched-topdown", cl::Hidden,
41 cl::desc("Force top-down list scheduling"));
42 cl::opt<bool> ForceBottomUp("misched-bottomup", cl::Hidden,
43 cl::desc("Force bottom-up list scheduling"));
44 }
45
46 #ifndef NDEBUG
47 static cl::opt<bool> ViewMISchedDAGs("view-misched-dags", cl::Hidden,
48 cl::desc("Pop up a window to show MISched dags after they are processed"));
49
50 static cl::opt<unsigned> MISchedCutoff("misched-cutoff", cl::Hidden,
51 cl::desc("Stop scheduling after N instructions"), cl::init(~0U));
52 #else
53 static bool ViewMISchedDAGs = false;
54 #endif // NDEBUG
55
56 static cl::opt<bool> EnableLoadCluster("misched-cluster", cl::Hidden,
57 cl::desc("Enable load clustering."), cl::init(true));
58
59 // Experimental heuristics
60 static cl::opt<bool> EnableMacroFusion("misched-fusion", cl::Hidden,
61 cl::desc("Enable scheduling for macro fusion."), cl::init(true));
62
63 static cl::opt<bool> VerifyScheduling("verify-misched", cl::Hidden,
64 cl::desc("Verify machine instrs before and after machine scheduling"));
65
66 // DAG subtrees must have at least this many nodes.
67 static const unsigned MinSubtreeSize = 8;
68
69 //===----------------------------------------------------------------------===//
70 // Machine Instruction Scheduling Pass and Registry
71 //===----------------------------------------------------------------------===//
72
MachineSchedContext()73 MachineSchedContext::MachineSchedContext():
74 MF(0), MLI(0), MDT(0), PassConfig(0), AA(0), LIS(0) {
75 RegClassInfo = new RegisterClassInfo();
76 }
77
~MachineSchedContext()78 MachineSchedContext::~MachineSchedContext() {
79 delete RegClassInfo;
80 }
81
82 namespace {
83 /// MachineScheduler runs after coalescing and before register allocation.
84 class MachineScheduler : public MachineSchedContext,
85 public MachineFunctionPass {
86 public:
87 MachineScheduler();
88
89 virtual void getAnalysisUsage(AnalysisUsage &AU) const;
90
releaseMemory()91 virtual void releaseMemory() {}
92
93 virtual bool runOnMachineFunction(MachineFunction&);
94
95 virtual void print(raw_ostream &O, const Module* = 0) const;
96
97 static char ID; // Class identification, replacement for typeinfo
98 };
99 } // namespace
100
101 char MachineScheduler::ID = 0;
102
103 char &llvm::MachineSchedulerID = MachineScheduler::ID;
104
105 INITIALIZE_PASS_BEGIN(MachineScheduler, "misched",
106 "Machine Instruction Scheduler", false, false)
INITIALIZE_AG_DEPENDENCY(AliasAnalysis)107 INITIALIZE_AG_DEPENDENCY(AliasAnalysis)
108 INITIALIZE_PASS_DEPENDENCY(SlotIndexes)
109 INITIALIZE_PASS_DEPENDENCY(LiveIntervals)
110 INITIALIZE_PASS_END(MachineScheduler, "misched",
111 "Machine Instruction Scheduler", false, false)
112
113 MachineScheduler::MachineScheduler()
114 : MachineFunctionPass(ID) {
115 initializeMachineSchedulerPass(*PassRegistry::getPassRegistry());
116 }
117
getAnalysisUsage(AnalysisUsage & AU) const118 void MachineScheduler::getAnalysisUsage(AnalysisUsage &AU) const {
119 AU.setPreservesCFG();
120 AU.addRequiredID(MachineDominatorsID);
121 AU.addRequired<MachineLoopInfo>();
122 AU.addRequired<AliasAnalysis>();
123 AU.addRequired<TargetPassConfig>();
124 AU.addRequired<SlotIndexes>();
125 AU.addPreserved<SlotIndexes>();
126 AU.addRequired<LiveIntervals>();
127 AU.addPreserved<LiveIntervals>();
128 MachineFunctionPass::getAnalysisUsage(AU);
129 }
130
131 MachinePassRegistry MachineSchedRegistry::Registry;
132
133 /// A dummy default scheduler factory indicates whether the scheduler
134 /// is overridden on the command line.
useDefaultMachineSched(MachineSchedContext * C)135 static ScheduleDAGInstrs *useDefaultMachineSched(MachineSchedContext *C) {
136 return 0;
137 }
138
139 /// MachineSchedOpt allows command line selection of the scheduler.
140 static cl::opt<MachineSchedRegistry::ScheduleDAGCtor, false,
141 RegisterPassParser<MachineSchedRegistry> >
142 MachineSchedOpt("misched",
143 cl::init(&useDefaultMachineSched), cl::Hidden,
144 cl::desc("Machine instruction scheduler to use"));
145
146 static MachineSchedRegistry
147 DefaultSchedRegistry("default", "Use the target's default scheduler choice.",
148 useDefaultMachineSched);
149
150 /// Forward declare the standard machine scheduler. This will be used as the
151 /// default scheduler if the target does not set a default.
152 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C);
153
154
155 /// Decrement this iterator until reaching the top or a non-debug instr.
156 static MachineBasicBlock::iterator
priorNonDebug(MachineBasicBlock::iterator I,MachineBasicBlock::iterator Beg)157 priorNonDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator Beg) {
158 assert(I != Beg && "reached the top of the region, cannot decrement");
159 while (--I != Beg) {
160 if (!I->isDebugValue())
161 break;
162 }
163 return I;
164 }
165
166 /// If this iterator is a debug value, increment until reaching the End or a
167 /// non-debug instruction.
168 static MachineBasicBlock::iterator
nextIfDebug(MachineBasicBlock::iterator I,MachineBasicBlock::iterator End)169 nextIfDebug(MachineBasicBlock::iterator I, MachineBasicBlock::iterator End) {
170 for(; I != End; ++I) {
171 if (!I->isDebugValue())
172 break;
173 }
174 return I;
175 }
176
177 /// Top-level MachineScheduler pass driver.
178 ///
179 /// Visit blocks in function order. Divide each block into scheduling regions
180 /// and visit them bottom-up. Visiting regions bottom-up is not required, but is
181 /// consistent with the DAG builder, which traverses the interior of the
182 /// scheduling regions bottom-up.
183 ///
184 /// This design avoids exposing scheduling boundaries to the DAG builder,
185 /// simplifying the DAG builder's support for "special" target instructions.
186 /// At the same time the design allows target schedulers to operate across
187 /// scheduling boundaries, for example to bundle the boudary instructions
188 /// without reordering them. This creates complexity, because the target
189 /// scheduler must update the RegionBegin and RegionEnd positions cached by
190 /// ScheduleDAGInstrs whenever adding or removing instructions. A much simpler
191 /// design would be to split blocks at scheduling boundaries, but LLVM has a
192 /// general bias against block splitting purely for implementation simplicity.
runOnMachineFunction(MachineFunction & mf)193 bool MachineScheduler::runOnMachineFunction(MachineFunction &mf) {
194 DEBUG(dbgs() << "Before MISsched:\n"; mf.print(dbgs()));
195
196 // Initialize the context of the pass.
197 MF = &mf;
198 MLI = &getAnalysis<MachineLoopInfo>();
199 MDT = &getAnalysis<MachineDominatorTree>();
200 PassConfig = &getAnalysis<TargetPassConfig>();
201 AA = &getAnalysis<AliasAnalysis>();
202
203 LIS = &getAnalysis<LiveIntervals>();
204 const TargetInstrInfo *TII = MF->getTarget().getInstrInfo();
205
206 if (VerifyScheduling) {
207 DEBUG(LIS->dump());
208 MF->verify(this, "Before machine scheduling.");
209 }
210 RegClassInfo->runOnMachineFunction(*MF);
211
212 // Select the scheduler, or set the default.
213 MachineSchedRegistry::ScheduleDAGCtor Ctor = MachineSchedOpt;
214 if (Ctor == useDefaultMachineSched) {
215 // Get the default scheduler set by the target.
216 Ctor = MachineSchedRegistry::getDefault();
217 if (!Ctor) {
218 Ctor = createConvergingSched;
219 MachineSchedRegistry::setDefault(Ctor);
220 }
221 }
222 // Instantiate the selected scheduler.
223 OwningPtr<ScheduleDAGInstrs> Scheduler(Ctor(this));
224
225 // Visit all machine basic blocks.
226 //
227 // TODO: Visit blocks in global postorder or postorder within the bottom-up
228 // loop tree. Then we can optionally compute global RegPressure.
229 for (MachineFunction::iterator MBB = MF->begin(), MBBEnd = MF->end();
230 MBB != MBBEnd; ++MBB) {
231
232 Scheduler->startBlock(MBB);
233
234 // Break the block into scheduling regions [I, RegionEnd), and schedule each
235 // region as soon as it is discovered. RegionEnd points the scheduling
236 // boundary at the bottom of the region. The DAG does not include RegionEnd,
237 // but the region does (i.e. the next RegionEnd is above the previous
238 // RegionBegin). If the current block has no terminator then RegionEnd ==
239 // MBB->end() for the bottom region.
240 //
241 // The Scheduler may insert instructions during either schedule() or
242 // exitRegion(), even for empty regions. So the local iterators 'I' and
243 // 'RegionEnd' are invalid across these calls.
244 unsigned RemainingInstrs = MBB->size();
245 for(MachineBasicBlock::iterator RegionEnd = MBB->end();
246 RegionEnd != MBB->begin(); RegionEnd = Scheduler->begin()) {
247
248 // Avoid decrementing RegionEnd for blocks with no terminator.
249 if (RegionEnd != MBB->end()
250 || TII->isSchedulingBoundary(llvm::prior(RegionEnd), MBB, *MF)) {
251 --RegionEnd;
252 // Count the boundary instruction.
253 --RemainingInstrs;
254 }
255
256 // The next region starts above the previous region. Look backward in the
257 // instruction stream until we find the nearest boundary.
258 MachineBasicBlock::iterator I = RegionEnd;
259 for(;I != MBB->begin(); --I, --RemainingInstrs) {
260 if (TII->isSchedulingBoundary(llvm::prior(I), MBB, *MF))
261 break;
262 }
263 // Notify the scheduler of the region, even if we may skip scheduling
264 // it. Perhaps it still needs to be bundled.
265 Scheduler->enterRegion(MBB, I, RegionEnd, RemainingInstrs);
266
267 // Skip empty scheduling regions (0 or 1 schedulable instructions).
268 if (I == RegionEnd || I == llvm::prior(RegionEnd)) {
269 // Close the current region. Bundle the terminator if needed.
270 // This invalidates 'RegionEnd' and 'I'.
271 Scheduler->exitRegion();
272 continue;
273 }
274 DEBUG(dbgs() << "********** MI Scheduling **********\n");
275 DEBUG(dbgs() << MF->getName()
276 << ":BB#" << MBB->getNumber() << " " << MBB->getName()
277 << "\n From: " << *I << " To: ";
278 if (RegionEnd != MBB->end()) dbgs() << *RegionEnd;
279 else dbgs() << "End";
280 dbgs() << " Remaining: " << RemainingInstrs << "\n");
281
282 // Schedule a region: possibly reorder instructions.
283 // This invalidates 'RegionEnd' and 'I'.
284 Scheduler->schedule();
285
286 // Close the current region.
287 Scheduler->exitRegion();
288
289 // Scheduling has invalidated the current iterator 'I'. Ask the
290 // scheduler for the top of it's scheduled region.
291 RegionEnd = Scheduler->begin();
292 }
293 assert(RemainingInstrs == 0 && "Instruction count mismatch!");
294 Scheduler->finishBlock();
295 }
296 Scheduler->finalizeSchedule();
297 DEBUG(LIS->dump());
298 if (VerifyScheduling)
299 MF->verify(this, "After machine scheduling.");
300 return true;
301 }
302
print(raw_ostream & O,const Module * m) const303 void MachineScheduler::print(raw_ostream &O, const Module* m) const {
304 // unimplemented
305 }
306
307 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump()308 void ReadyQueue::dump() {
309 dbgs() << Name << ": ";
310 for (unsigned i = 0, e = Queue.size(); i < e; ++i)
311 dbgs() << Queue[i]->NodeNum << " ";
312 dbgs() << "\n";
313 }
314 #endif
315
316 //===----------------------------------------------------------------------===//
317 // ScheduleDAGMI - Base class for MachineInstr scheduling with LiveIntervals
318 // preservation.
319 //===----------------------------------------------------------------------===//
320
~ScheduleDAGMI()321 ScheduleDAGMI::~ScheduleDAGMI() {
322 delete DFSResult;
323 DeleteContainerPointers(Mutations);
324 delete SchedImpl;
325 }
326
canAddEdge(SUnit * SuccSU,SUnit * PredSU)327 bool ScheduleDAGMI::canAddEdge(SUnit *SuccSU, SUnit *PredSU) {
328 return SuccSU == &ExitSU || !Topo.IsReachable(PredSU, SuccSU);
329 }
330
addEdge(SUnit * SuccSU,const SDep & PredDep)331 bool ScheduleDAGMI::addEdge(SUnit *SuccSU, const SDep &PredDep) {
332 if (SuccSU != &ExitSU) {
333 // Do not use WillCreateCycle, it assumes SD scheduling.
334 // If Pred is reachable from Succ, then the edge creates a cycle.
335 if (Topo.IsReachable(PredDep.getSUnit(), SuccSU))
336 return false;
337 Topo.AddPred(SuccSU, PredDep.getSUnit());
338 }
339 SuccSU->addPred(PredDep, /*Required=*/!PredDep.isArtificial());
340 // Return true regardless of whether a new edge needed to be inserted.
341 return true;
342 }
343
344 /// ReleaseSucc - Decrement the NumPredsLeft count of a successor. When
345 /// NumPredsLeft reaches zero, release the successor node.
346 ///
347 /// FIXME: Adjust SuccSU height based on MinLatency.
releaseSucc(SUnit * SU,SDep * SuccEdge)348 void ScheduleDAGMI::releaseSucc(SUnit *SU, SDep *SuccEdge) {
349 SUnit *SuccSU = SuccEdge->getSUnit();
350
351 if (SuccEdge->isWeak()) {
352 --SuccSU->WeakPredsLeft;
353 if (SuccEdge->isCluster())
354 NextClusterSucc = SuccSU;
355 return;
356 }
357 #ifndef NDEBUG
358 if (SuccSU->NumPredsLeft == 0) {
359 dbgs() << "*** Scheduling failed! ***\n";
360 SuccSU->dump(this);
361 dbgs() << " has been released too many times!\n";
362 llvm_unreachable(0);
363 }
364 #endif
365 --SuccSU->NumPredsLeft;
366 if (SuccSU->NumPredsLeft == 0 && SuccSU != &ExitSU)
367 SchedImpl->releaseTopNode(SuccSU);
368 }
369
370 /// releaseSuccessors - Call releaseSucc on each of SU's successors.
releaseSuccessors(SUnit * SU)371 void ScheduleDAGMI::releaseSuccessors(SUnit *SU) {
372 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
373 I != E; ++I) {
374 releaseSucc(SU, &*I);
375 }
376 }
377
378 /// ReleasePred - Decrement the NumSuccsLeft count of a predecessor. When
379 /// NumSuccsLeft reaches zero, release the predecessor node.
380 ///
381 /// FIXME: Adjust PredSU height based on MinLatency.
releasePred(SUnit * SU,SDep * PredEdge)382 void ScheduleDAGMI::releasePred(SUnit *SU, SDep *PredEdge) {
383 SUnit *PredSU = PredEdge->getSUnit();
384
385 if (PredEdge->isWeak()) {
386 --PredSU->WeakSuccsLeft;
387 if (PredEdge->isCluster())
388 NextClusterPred = PredSU;
389 return;
390 }
391 #ifndef NDEBUG
392 if (PredSU->NumSuccsLeft == 0) {
393 dbgs() << "*** Scheduling failed! ***\n";
394 PredSU->dump(this);
395 dbgs() << " has been released too many times!\n";
396 llvm_unreachable(0);
397 }
398 #endif
399 --PredSU->NumSuccsLeft;
400 if (PredSU->NumSuccsLeft == 0 && PredSU != &EntrySU)
401 SchedImpl->releaseBottomNode(PredSU);
402 }
403
404 /// releasePredecessors - Call releasePred on each of SU's predecessors.
releasePredecessors(SUnit * SU)405 void ScheduleDAGMI::releasePredecessors(SUnit *SU) {
406 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
407 I != E; ++I) {
408 releasePred(SU, &*I);
409 }
410 }
411
412 /// This is normally called from the main scheduler loop but may also be invoked
413 /// by the scheduling strategy to perform additional code motion.
moveInstruction(MachineInstr * MI,MachineBasicBlock::iterator InsertPos)414 void ScheduleDAGMI::moveInstruction(MachineInstr *MI,
415 MachineBasicBlock::iterator InsertPos) {
416 // Advance RegionBegin if the first instruction moves down.
417 if (&*RegionBegin == MI)
418 ++RegionBegin;
419
420 // Update the instruction stream.
421 BB->splice(InsertPos, BB, MI);
422
423 // Update LiveIntervals
424 LIS->handleMove(MI, /*UpdateFlags=*/true);
425
426 // Recede RegionBegin if an instruction moves above the first.
427 if (RegionBegin == InsertPos)
428 RegionBegin = MI;
429 }
430
checkSchedLimit()431 bool ScheduleDAGMI::checkSchedLimit() {
432 #ifndef NDEBUG
433 if (NumInstrsScheduled == MISchedCutoff && MISchedCutoff != ~0U) {
434 CurrentTop = CurrentBottom;
435 return false;
436 }
437 ++NumInstrsScheduled;
438 #endif
439 return true;
440 }
441
442 /// enterRegion - Called back from MachineScheduler::runOnMachineFunction after
443 /// crossing a scheduling boundary. [begin, end) includes all instructions in
444 /// the region, including the boundary itself and single-instruction regions
445 /// that don't get scheduled.
enterRegion(MachineBasicBlock * bb,MachineBasicBlock::iterator begin,MachineBasicBlock::iterator end,unsigned endcount)446 void ScheduleDAGMI::enterRegion(MachineBasicBlock *bb,
447 MachineBasicBlock::iterator begin,
448 MachineBasicBlock::iterator end,
449 unsigned endcount)
450 {
451 ScheduleDAGInstrs::enterRegion(bb, begin, end, endcount);
452
453 // For convenience remember the end of the liveness region.
454 LiveRegionEnd =
455 (RegionEnd == bb->end()) ? RegionEnd : llvm::next(RegionEnd);
456 }
457
458 // Setup the register pressure trackers for the top scheduled top and bottom
459 // scheduled regions.
initRegPressure()460 void ScheduleDAGMI::initRegPressure() {
461 TopRPTracker.init(&MF, RegClassInfo, LIS, BB, RegionBegin);
462 BotRPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd);
463
464 // Close the RPTracker to finalize live ins.
465 RPTracker.closeRegion();
466
467 DEBUG(RPTracker.dump());
468
469 // Initialize the live ins and live outs.
470 TopRPTracker.addLiveRegs(RPTracker.getPressure().LiveInRegs);
471 BotRPTracker.addLiveRegs(RPTracker.getPressure().LiveOutRegs);
472
473 // Close one end of the tracker so we can call
474 // getMaxUpward/DownwardPressureDelta before advancing across any
475 // instructions. This converts currently live regs into live ins/outs.
476 TopRPTracker.closeTop();
477 BotRPTracker.closeBottom();
478
479 BotRPTracker.initLiveThru(RPTracker);
480 if (!BotRPTracker.getLiveThru().empty()) {
481 TopRPTracker.initLiveThru(BotRPTracker.getLiveThru());
482 DEBUG(dbgs() << "Live Thru: ";
483 dumpRegSetPressure(BotRPTracker.getLiveThru(), TRI));
484 };
485
486 // Account for liveness generated by the region boundary.
487 if (LiveRegionEnd != RegionEnd)
488 BotRPTracker.recede();
489
490 assert(BotRPTracker.getPos() == RegionEnd && "Can't find the region bottom");
491
492 // Cache the list of excess pressure sets in this region. This will also track
493 // the max pressure in the scheduled code for these sets.
494 RegionCriticalPSets.clear();
495 const std::vector<unsigned> &RegionPressure =
496 RPTracker.getPressure().MaxSetPressure;
497 for (unsigned i = 0, e = RegionPressure.size(); i < e; ++i) {
498 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
499 if (RegionPressure[i] > Limit) {
500 DEBUG(dbgs() << TRI->getRegPressureSetName(i)
501 << " Limit " << Limit
502 << " Actual " << RegionPressure[i] << "\n");
503 RegionCriticalPSets.push_back(PressureElement(i, 0));
504 }
505 }
506 DEBUG(dbgs() << "Excess PSets: ";
507 for (unsigned i = 0, e = RegionCriticalPSets.size(); i != e; ++i)
508 dbgs() << TRI->getRegPressureSetName(
509 RegionCriticalPSets[i].PSetID) << " ";
510 dbgs() << "\n");
511 }
512
513 // FIXME: When the pressure tracker deals in pressure differences then we won't
514 // iterate over all RegionCriticalPSets[i].
515 void ScheduleDAGMI::
updateScheduledPressure(const std::vector<unsigned> & NewMaxPressure)516 updateScheduledPressure(const std::vector<unsigned> &NewMaxPressure) {
517 for (unsigned i = 0, e = RegionCriticalPSets.size(); i < e; ++i) {
518 unsigned ID = RegionCriticalPSets[i].PSetID;
519 int &MaxUnits = RegionCriticalPSets[i].UnitIncrease;
520 if ((int)NewMaxPressure[ID] > MaxUnits)
521 MaxUnits = NewMaxPressure[ID];
522 }
523 DEBUG(
524 for (unsigned i = 0, e = NewMaxPressure.size(); i < e; ++i) {
525 unsigned Limit = RegClassInfo->getRegPressureSetLimit(i);
526 if (NewMaxPressure[i] > Limit ) {
527 dbgs() << " " << TRI->getRegPressureSetName(i) << ": "
528 << NewMaxPressure[i] << " > " << Limit << "\n";
529 }
530 });
531 }
532
533 /// schedule - Called back from MachineScheduler::runOnMachineFunction
534 /// after setting up the current scheduling region. [RegionBegin, RegionEnd)
535 /// only includes instructions that have DAG nodes, not scheduling boundaries.
536 ///
537 /// This is a skeletal driver, with all the functionality pushed into helpers,
538 /// so that it can be easilly extended by experimental schedulers. Generally,
539 /// implementing MachineSchedStrategy should be sufficient to implement a new
540 /// scheduling algorithm. However, if a scheduler further subclasses
541 /// ScheduleDAGMI then it will want to override this virtual method in order to
542 /// update any specialized state.
schedule()543 void ScheduleDAGMI::schedule() {
544 buildDAGWithRegPressure();
545
546 Topo.InitDAGTopologicalSorting();
547
548 postprocessDAG();
549
550 SmallVector<SUnit*, 8> TopRoots, BotRoots;
551 findRootsAndBiasEdges(TopRoots, BotRoots);
552
553 // Initialize the strategy before modifying the DAG.
554 // This may initialize a DFSResult to be used for queue priority.
555 SchedImpl->initialize(this);
556
557 DEBUG(for (unsigned su = 0, e = SUnits.size(); su != e; ++su)
558 SUnits[su].dumpAll(this));
559 if (ViewMISchedDAGs) viewGraph();
560
561 // Initialize ready queues now that the DAG and priority data are finalized.
562 initQueues(TopRoots, BotRoots);
563
564 bool IsTopNode = false;
565 while (SUnit *SU = SchedImpl->pickNode(IsTopNode)) {
566 assert(!SU->isScheduled && "Node already scheduled");
567 if (!checkSchedLimit())
568 break;
569
570 scheduleMI(SU, IsTopNode);
571
572 updateQueues(SU, IsTopNode);
573 }
574 assert(CurrentTop == CurrentBottom && "Nonempty unscheduled zone.");
575
576 placeDebugValues();
577
578 DEBUG({
579 unsigned BBNum = begin()->getParent()->getNumber();
580 dbgs() << "*** Final schedule for BB#" << BBNum << " ***\n";
581 dumpSchedule();
582 dbgs() << '\n';
583 });
584 }
585
586 /// Build the DAG and setup three register pressure trackers.
buildDAGWithRegPressure()587 void ScheduleDAGMI::buildDAGWithRegPressure() {
588 // Initialize the register pressure tracker used by buildSchedGraph.
589 RPTracker.init(&MF, RegClassInfo, LIS, BB, LiveRegionEnd,
590 /*TrackUntiedDefs=*/true);
591
592 // Account for liveness generate by the region boundary.
593 if (LiveRegionEnd != RegionEnd)
594 RPTracker.recede();
595
596 // Build the DAG, and compute current register pressure.
597 buildSchedGraph(AA, &RPTracker);
598
599 // Initialize top/bottom trackers after computing region pressure.
600 initRegPressure();
601 }
602
603 /// Apply each ScheduleDAGMutation step in order.
postprocessDAG()604 void ScheduleDAGMI::postprocessDAG() {
605 for (unsigned i = 0, e = Mutations.size(); i < e; ++i) {
606 Mutations[i]->apply(this);
607 }
608 }
609
computeDFSResult()610 void ScheduleDAGMI::computeDFSResult() {
611 if (!DFSResult)
612 DFSResult = new SchedDFSResult(/*BottomU*/true, MinSubtreeSize);
613 DFSResult->clear();
614 ScheduledTrees.clear();
615 DFSResult->resize(SUnits.size());
616 DFSResult->compute(SUnits);
617 ScheduledTrees.resize(DFSResult->getNumSubtrees());
618 }
619
findRootsAndBiasEdges(SmallVectorImpl<SUnit * > & TopRoots,SmallVectorImpl<SUnit * > & BotRoots)620 void ScheduleDAGMI::findRootsAndBiasEdges(SmallVectorImpl<SUnit*> &TopRoots,
621 SmallVectorImpl<SUnit*> &BotRoots) {
622 for (std::vector<SUnit>::iterator
623 I = SUnits.begin(), E = SUnits.end(); I != E; ++I) {
624 SUnit *SU = &(*I);
625 assert(!SU->isBoundaryNode() && "Boundary node should not be in SUnits");
626
627 // Order predecessors so DFSResult follows the critical path.
628 SU->biasCriticalPath();
629
630 // A SUnit is ready to top schedule if it has no predecessors.
631 if (!I->NumPredsLeft)
632 TopRoots.push_back(SU);
633 // A SUnit is ready to bottom schedule if it has no successors.
634 if (!I->NumSuccsLeft)
635 BotRoots.push_back(SU);
636 }
637 ExitSU.biasCriticalPath();
638 }
639
640 /// Identify DAG roots and setup scheduler queues.
initQueues(ArrayRef<SUnit * > TopRoots,ArrayRef<SUnit * > BotRoots)641 void ScheduleDAGMI::initQueues(ArrayRef<SUnit*> TopRoots,
642 ArrayRef<SUnit*> BotRoots) {
643 NextClusterSucc = NULL;
644 NextClusterPred = NULL;
645
646 // Release all DAG roots for scheduling, not including EntrySU/ExitSU.
647 //
648 // Nodes with unreleased weak edges can still be roots.
649 // Release top roots in forward order.
650 for (SmallVectorImpl<SUnit*>::const_iterator
651 I = TopRoots.begin(), E = TopRoots.end(); I != E; ++I) {
652 SchedImpl->releaseTopNode(*I);
653 }
654 // Release bottom roots in reverse order so the higher priority nodes appear
655 // first. This is more natural and slightly more efficient.
656 for (SmallVectorImpl<SUnit*>::const_reverse_iterator
657 I = BotRoots.rbegin(), E = BotRoots.rend(); I != E; ++I) {
658 SchedImpl->releaseBottomNode(*I);
659 }
660
661 releaseSuccessors(&EntrySU);
662 releasePredecessors(&ExitSU);
663
664 SchedImpl->registerRoots();
665
666 // Advance past initial DebugValues.
667 assert(TopRPTracker.getPos() == RegionBegin && "bad initial Top tracker");
668 CurrentTop = nextIfDebug(RegionBegin, RegionEnd);
669 TopRPTracker.setPos(CurrentTop);
670
671 CurrentBottom = RegionEnd;
672 }
673
674 /// Move an instruction and update register pressure.
scheduleMI(SUnit * SU,bool IsTopNode)675 void ScheduleDAGMI::scheduleMI(SUnit *SU, bool IsTopNode) {
676 // Move the instruction to its new location in the instruction stream.
677 MachineInstr *MI = SU->getInstr();
678
679 if (IsTopNode) {
680 assert(SU->isTopReady() && "node still has unscheduled dependencies");
681 if (&*CurrentTop == MI)
682 CurrentTop = nextIfDebug(++CurrentTop, CurrentBottom);
683 else {
684 moveInstruction(MI, CurrentTop);
685 TopRPTracker.setPos(MI);
686 }
687
688 // Update top scheduled pressure.
689 TopRPTracker.advance();
690 assert(TopRPTracker.getPos() == CurrentTop && "out of sync");
691 updateScheduledPressure(TopRPTracker.getPressure().MaxSetPressure);
692 }
693 else {
694 assert(SU->isBottomReady() && "node still has unscheduled dependencies");
695 MachineBasicBlock::iterator priorII =
696 priorNonDebug(CurrentBottom, CurrentTop);
697 if (&*priorII == MI)
698 CurrentBottom = priorII;
699 else {
700 if (&*CurrentTop == MI) {
701 CurrentTop = nextIfDebug(++CurrentTop, priorII);
702 TopRPTracker.setPos(CurrentTop);
703 }
704 moveInstruction(MI, CurrentBottom);
705 CurrentBottom = MI;
706 }
707 // Update bottom scheduled pressure.
708 BotRPTracker.recede();
709 assert(BotRPTracker.getPos() == CurrentBottom && "out of sync");
710 updateScheduledPressure(BotRPTracker.getPressure().MaxSetPressure);
711 }
712 }
713
714 /// Update scheduler queues after scheduling an instruction.
updateQueues(SUnit * SU,bool IsTopNode)715 void ScheduleDAGMI::updateQueues(SUnit *SU, bool IsTopNode) {
716 // Release dependent instructions for scheduling.
717 if (IsTopNode)
718 releaseSuccessors(SU);
719 else
720 releasePredecessors(SU);
721
722 SU->isScheduled = true;
723
724 if (DFSResult) {
725 unsigned SubtreeID = DFSResult->getSubtreeID(SU);
726 if (!ScheduledTrees.test(SubtreeID)) {
727 ScheduledTrees.set(SubtreeID);
728 DFSResult->scheduleTree(SubtreeID);
729 SchedImpl->scheduleTree(SubtreeID);
730 }
731 }
732
733 // Notify the scheduling strategy after updating the DAG.
734 SchedImpl->schedNode(SU, IsTopNode);
735 }
736
737 /// Reinsert any remaining debug_values, just like the PostRA scheduler.
placeDebugValues()738 void ScheduleDAGMI::placeDebugValues() {
739 // If first instruction was a DBG_VALUE then put it back.
740 if (FirstDbgValue) {
741 BB->splice(RegionBegin, BB, FirstDbgValue);
742 RegionBegin = FirstDbgValue;
743 }
744
745 for (std::vector<std::pair<MachineInstr *, MachineInstr *> >::iterator
746 DI = DbgValues.end(), DE = DbgValues.begin(); DI != DE; --DI) {
747 std::pair<MachineInstr *, MachineInstr *> P = *prior(DI);
748 MachineInstr *DbgValue = P.first;
749 MachineBasicBlock::iterator OrigPrevMI = P.second;
750 if (&*RegionBegin == DbgValue)
751 ++RegionBegin;
752 BB->splice(++OrigPrevMI, BB, DbgValue);
753 if (OrigPrevMI == llvm::prior(RegionEnd))
754 RegionEnd = DbgValue;
755 }
756 DbgValues.clear();
757 FirstDbgValue = NULL;
758 }
759
760 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dumpSchedule() const761 void ScheduleDAGMI::dumpSchedule() const {
762 for (MachineBasicBlock::iterator MI = begin(), ME = end(); MI != ME; ++MI) {
763 if (SUnit *SU = getSUnit(&(*MI)))
764 SU->dump(this);
765 else
766 dbgs() << "Missing SUnit\n";
767 }
768 }
769 #endif
770
771 //===----------------------------------------------------------------------===//
772 // LoadClusterMutation - DAG post-processing to cluster loads.
773 //===----------------------------------------------------------------------===//
774
775 namespace {
776 /// \brief Post-process the DAG to create cluster edges between neighboring
777 /// loads.
778 class LoadClusterMutation : public ScheduleDAGMutation {
779 struct LoadInfo {
780 SUnit *SU;
781 unsigned BaseReg;
782 unsigned Offset;
LoadInfo__anon58dd20f40211::LoadClusterMutation::LoadInfo783 LoadInfo(SUnit *su, unsigned reg, unsigned ofs)
784 : SU(su), BaseReg(reg), Offset(ofs) {}
785 };
786 static bool LoadInfoLess(const LoadClusterMutation::LoadInfo &LHS,
787 const LoadClusterMutation::LoadInfo &RHS);
788
789 const TargetInstrInfo *TII;
790 const TargetRegisterInfo *TRI;
791 public:
LoadClusterMutation(const TargetInstrInfo * tii,const TargetRegisterInfo * tri)792 LoadClusterMutation(const TargetInstrInfo *tii,
793 const TargetRegisterInfo *tri)
794 : TII(tii), TRI(tri) {}
795
796 virtual void apply(ScheduleDAGMI *DAG);
797 protected:
798 void clusterNeighboringLoads(ArrayRef<SUnit*> Loads, ScheduleDAGMI *DAG);
799 };
800 } // anonymous
801
LoadInfoLess(const LoadClusterMutation::LoadInfo & LHS,const LoadClusterMutation::LoadInfo & RHS)802 bool LoadClusterMutation::LoadInfoLess(
803 const LoadClusterMutation::LoadInfo &LHS,
804 const LoadClusterMutation::LoadInfo &RHS) {
805 if (LHS.BaseReg != RHS.BaseReg)
806 return LHS.BaseReg < RHS.BaseReg;
807 return LHS.Offset < RHS.Offset;
808 }
809
clusterNeighboringLoads(ArrayRef<SUnit * > Loads,ScheduleDAGMI * DAG)810 void LoadClusterMutation::clusterNeighboringLoads(ArrayRef<SUnit*> Loads,
811 ScheduleDAGMI *DAG) {
812 SmallVector<LoadClusterMutation::LoadInfo,32> LoadRecords;
813 for (unsigned Idx = 0, End = Loads.size(); Idx != End; ++Idx) {
814 SUnit *SU = Loads[Idx];
815 unsigned BaseReg;
816 unsigned Offset;
817 if (TII->getLdStBaseRegImmOfs(SU->getInstr(), BaseReg, Offset, TRI))
818 LoadRecords.push_back(LoadInfo(SU, BaseReg, Offset));
819 }
820 if (LoadRecords.size() < 2)
821 return;
822 std::sort(LoadRecords.begin(), LoadRecords.end(), LoadInfoLess);
823 unsigned ClusterLength = 1;
824 for (unsigned Idx = 0, End = LoadRecords.size(); Idx < (End - 1); ++Idx) {
825 if (LoadRecords[Idx].BaseReg != LoadRecords[Idx+1].BaseReg) {
826 ClusterLength = 1;
827 continue;
828 }
829
830 SUnit *SUa = LoadRecords[Idx].SU;
831 SUnit *SUb = LoadRecords[Idx+1].SU;
832 if (TII->shouldClusterLoads(SUa->getInstr(), SUb->getInstr(), ClusterLength)
833 && DAG->addEdge(SUb, SDep(SUa, SDep::Cluster))) {
834
835 DEBUG(dbgs() << "Cluster loads SU(" << SUa->NodeNum << ") - SU("
836 << SUb->NodeNum << ")\n");
837 // Copy successor edges from SUa to SUb. Interleaving computation
838 // dependent on SUa can prevent load combining due to register reuse.
839 // Predecessor edges do not need to be copied from SUb to SUa since nearby
840 // loads should have effectively the same inputs.
841 for (SUnit::const_succ_iterator
842 SI = SUa->Succs.begin(), SE = SUa->Succs.end(); SI != SE; ++SI) {
843 if (SI->getSUnit() == SUb)
844 continue;
845 DEBUG(dbgs() << " Copy Succ SU(" << SI->getSUnit()->NodeNum << ")\n");
846 DAG->addEdge(SI->getSUnit(), SDep(SUb, SDep::Artificial));
847 }
848 ++ClusterLength;
849 }
850 else
851 ClusterLength = 1;
852 }
853 }
854
855 /// \brief Callback from DAG postProcessing to create cluster edges for loads.
apply(ScheduleDAGMI * DAG)856 void LoadClusterMutation::apply(ScheduleDAGMI *DAG) {
857 // Map DAG NodeNum to store chain ID.
858 DenseMap<unsigned, unsigned> StoreChainIDs;
859 // Map each store chain to a set of dependent loads.
860 SmallVector<SmallVector<SUnit*,4>, 32> StoreChainDependents;
861 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
862 SUnit *SU = &DAG->SUnits[Idx];
863 if (!SU->getInstr()->mayLoad())
864 continue;
865 unsigned ChainPredID = DAG->SUnits.size();
866 for (SUnit::const_pred_iterator
867 PI = SU->Preds.begin(), PE = SU->Preds.end(); PI != PE; ++PI) {
868 if (PI->isCtrl()) {
869 ChainPredID = PI->getSUnit()->NodeNum;
870 break;
871 }
872 }
873 // Check if this chain-like pred has been seen
874 // before. ChainPredID==MaxNodeID for loads at the top of the schedule.
875 unsigned NumChains = StoreChainDependents.size();
876 std::pair<DenseMap<unsigned, unsigned>::iterator, bool> Result =
877 StoreChainIDs.insert(std::make_pair(ChainPredID, NumChains));
878 if (Result.second)
879 StoreChainDependents.resize(NumChains + 1);
880 StoreChainDependents[Result.first->second].push_back(SU);
881 }
882 // Iterate over the store chains.
883 for (unsigned Idx = 0, End = StoreChainDependents.size(); Idx != End; ++Idx)
884 clusterNeighboringLoads(StoreChainDependents[Idx], DAG);
885 }
886
887 //===----------------------------------------------------------------------===//
888 // MacroFusion - DAG post-processing to encourage fusion of macro ops.
889 //===----------------------------------------------------------------------===//
890
891 namespace {
892 /// \brief Post-process the DAG to create cluster edges between instructions
893 /// that may be fused by the processor into a single operation.
894 class MacroFusion : public ScheduleDAGMutation {
895 const TargetInstrInfo *TII;
896 public:
MacroFusion(const TargetInstrInfo * tii)897 MacroFusion(const TargetInstrInfo *tii): TII(tii) {}
898
899 virtual void apply(ScheduleDAGMI *DAG);
900 };
901 } // anonymous
902
903 /// \brief Callback from DAG postProcessing to create cluster edges to encourage
904 /// fused operations.
apply(ScheduleDAGMI * DAG)905 void MacroFusion::apply(ScheduleDAGMI *DAG) {
906 // For now, assume targets can only fuse with the branch.
907 MachineInstr *Branch = DAG->ExitSU.getInstr();
908 if (!Branch)
909 return;
910
911 for (unsigned Idx = DAG->SUnits.size(); Idx > 0;) {
912 SUnit *SU = &DAG->SUnits[--Idx];
913 if (!TII->shouldScheduleAdjacent(SU->getInstr(), Branch))
914 continue;
915
916 // Create a single weak edge from SU to ExitSU. The only effect is to cause
917 // bottom-up scheduling to heavily prioritize the clustered SU. There is no
918 // need to copy predecessor edges from ExitSU to SU, since top-down
919 // scheduling cannot prioritize ExitSU anyway. To defer top-down scheduling
920 // of SU, we could create an artificial edge from the deepest root, but it
921 // hasn't been needed yet.
922 bool Success = DAG->addEdge(&DAG->ExitSU, SDep(SU, SDep::Cluster));
923 (void)Success;
924 assert(Success && "No DAG nodes should be reachable from ExitSU");
925
926 DEBUG(dbgs() << "Macro Fuse SU(" << SU->NodeNum << ")\n");
927 break;
928 }
929 }
930
931 //===----------------------------------------------------------------------===//
932 // CopyConstrain - DAG post-processing to encourage copy elimination.
933 //===----------------------------------------------------------------------===//
934
935 namespace {
936 /// \brief Post-process the DAG to create weak edges from all uses of a copy to
937 /// the one use that defines the copy's source vreg, most likely an induction
938 /// variable increment.
939 class CopyConstrain : public ScheduleDAGMutation {
940 // Transient state.
941 SlotIndex RegionBeginIdx;
942 // RegionEndIdx is the slot index of the last non-debug instruction in the
943 // scheduling region. So we may have RegionBeginIdx == RegionEndIdx.
944 SlotIndex RegionEndIdx;
945 public:
CopyConstrain(const TargetInstrInfo *,const TargetRegisterInfo *)946 CopyConstrain(const TargetInstrInfo *, const TargetRegisterInfo *) {}
947
948 virtual void apply(ScheduleDAGMI *DAG);
949
950 protected:
951 void constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG);
952 };
953 } // anonymous
954
955 /// constrainLocalCopy handles two possibilities:
956 /// 1) Local src:
957 /// I0: = dst
958 /// I1: src = ...
959 /// I2: = dst
960 /// I3: dst = src (copy)
961 /// (create pred->succ edges I0->I1, I2->I1)
962 ///
963 /// 2) Local copy:
964 /// I0: dst = src (copy)
965 /// I1: = dst
966 /// I2: src = ...
967 /// I3: = dst
968 /// (create pred->succ edges I1->I2, I3->I2)
969 ///
970 /// Although the MachineScheduler is currently constrained to single blocks,
971 /// this algorithm should handle extended blocks. An EBB is a set of
972 /// contiguously numbered blocks such that the previous block in the EBB is
973 /// always the single predecessor.
constrainLocalCopy(SUnit * CopySU,ScheduleDAGMI * DAG)974 void CopyConstrain::constrainLocalCopy(SUnit *CopySU, ScheduleDAGMI *DAG) {
975 LiveIntervals *LIS = DAG->getLIS();
976 MachineInstr *Copy = CopySU->getInstr();
977
978 // Check for pure vreg copies.
979 unsigned SrcReg = Copy->getOperand(1).getReg();
980 if (!TargetRegisterInfo::isVirtualRegister(SrcReg))
981 return;
982
983 unsigned DstReg = Copy->getOperand(0).getReg();
984 if (!TargetRegisterInfo::isVirtualRegister(DstReg))
985 return;
986
987 // Check if either the dest or source is local. If it's live across a back
988 // edge, it's not local. Note that if both vregs are live across the back
989 // edge, we cannot successfully contrain the copy without cyclic scheduling.
990 unsigned LocalReg = DstReg;
991 unsigned GlobalReg = SrcReg;
992 LiveInterval *LocalLI = &LIS->getInterval(LocalReg);
993 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx)) {
994 LocalReg = SrcReg;
995 GlobalReg = DstReg;
996 LocalLI = &LIS->getInterval(LocalReg);
997 if (!LocalLI->isLocal(RegionBeginIdx, RegionEndIdx))
998 return;
999 }
1000 LiveInterval *GlobalLI = &LIS->getInterval(GlobalReg);
1001
1002 // Find the global segment after the start of the local LI.
1003 LiveInterval::iterator GlobalSegment = GlobalLI->find(LocalLI->beginIndex());
1004 // If GlobalLI does not overlap LocalLI->start, then a copy directly feeds a
1005 // local live range. We could create edges from other global uses to the local
1006 // start, but the coalescer should have already eliminated these cases, so
1007 // don't bother dealing with it.
1008 if (GlobalSegment == GlobalLI->end())
1009 return;
1010
1011 // If GlobalSegment is killed at the LocalLI->start, the call to find()
1012 // returned the next global segment. But if GlobalSegment overlaps with
1013 // LocalLI->start, then advance to the next segement. If a hole in GlobalLI
1014 // exists in LocalLI's vicinity, GlobalSegment will be the end of the hole.
1015 if (GlobalSegment->contains(LocalLI->beginIndex()))
1016 ++GlobalSegment;
1017
1018 if (GlobalSegment == GlobalLI->end())
1019 return;
1020
1021 // Check if GlobalLI contains a hole in the vicinity of LocalLI.
1022 if (GlobalSegment != GlobalLI->begin()) {
1023 // Two address defs have no hole.
1024 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->end,
1025 GlobalSegment->start)) {
1026 return;
1027 }
1028 // If the prior global segment may be defined by the same two-address
1029 // instruction that also defines LocalLI, then can't make a hole here.
1030 if (SlotIndex::isSameInstr(llvm::prior(GlobalSegment)->start,
1031 LocalLI->beginIndex())) {
1032 return;
1033 }
1034 // If GlobalLI has a prior segment, it must be live into the EBB. Otherwise
1035 // it would be a disconnected component in the live range.
1036 assert(llvm::prior(GlobalSegment)->start < LocalLI->beginIndex() &&
1037 "Disconnected LRG within the scheduling region.");
1038 }
1039 MachineInstr *GlobalDef = LIS->getInstructionFromIndex(GlobalSegment->start);
1040 if (!GlobalDef)
1041 return;
1042
1043 SUnit *GlobalSU = DAG->getSUnit(GlobalDef);
1044 if (!GlobalSU)
1045 return;
1046
1047 // GlobalDef is the bottom of the GlobalLI hole. Open the hole by
1048 // constraining the uses of the last local def to precede GlobalDef.
1049 SmallVector<SUnit*,8> LocalUses;
1050 const VNInfo *LastLocalVN = LocalLI->getVNInfoBefore(LocalLI->endIndex());
1051 MachineInstr *LastLocalDef = LIS->getInstructionFromIndex(LastLocalVN->def);
1052 SUnit *LastLocalSU = DAG->getSUnit(LastLocalDef);
1053 for (SUnit::const_succ_iterator
1054 I = LastLocalSU->Succs.begin(), E = LastLocalSU->Succs.end();
1055 I != E; ++I) {
1056 if (I->getKind() != SDep::Data || I->getReg() != LocalReg)
1057 continue;
1058 if (I->getSUnit() == GlobalSU)
1059 continue;
1060 if (!DAG->canAddEdge(GlobalSU, I->getSUnit()))
1061 return;
1062 LocalUses.push_back(I->getSUnit());
1063 }
1064 // Open the top of the GlobalLI hole by constraining any earlier global uses
1065 // to precede the start of LocalLI.
1066 SmallVector<SUnit*,8> GlobalUses;
1067 MachineInstr *FirstLocalDef =
1068 LIS->getInstructionFromIndex(LocalLI->beginIndex());
1069 SUnit *FirstLocalSU = DAG->getSUnit(FirstLocalDef);
1070 for (SUnit::const_pred_iterator
1071 I = GlobalSU->Preds.begin(), E = GlobalSU->Preds.end(); I != E; ++I) {
1072 if (I->getKind() != SDep::Anti || I->getReg() != GlobalReg)
1073 continue;
1074 if (I->getSUnit() == FirstLocalSU)
1075 continue;
1076 if (!DAG->canAddEdge(FirstLocalSU, I->getSUnit()))
1077 return;
1078 GlobalUses.push_back(I->getSUnit());
1079 }
1080 DEBUG(dbgs() << "Constraining copy SU(" << CopySU->NodeNum << ")\n");
1081 // Add the weak edges.
1082 for (SmallVectorImpl<SUnit*>::const_iterator
1083 I = LocalUses.begin(), E = LocalUses.end(); I != E; ++I) {
1084 DEBUG(dbgs() << " Local use SU(" << (*I)->NodeNum << ") -> SU("
1085 << GlobalSU->NodeNum << ")\n");
1086 DAG->addEdge(GlobalSU, SDep(*I, SDep::Weak));
1087 }
1088 for (SmallVectorImpl<SUnit*>::const_iterator
1089 I = GlobalUses.begin(), E = GlobalUses.end(); I != E; ++I) {
1090 DEBUG(dbgs() << " Global use SU(" << (*I)->NodeNum << ") -> SU("
1091 << FirstLocalSU->NodeNum << ")\n");
1092 DAG->addEdge(FirstLocalSU, SDep(*I, SDep::Weak));
1093 }
1094 }
1095
1096 /// \brief Callback from DAG postProcessing to create weak edges to encourage
1097 /// copy elimination.
apply(ScheduleDAGMI * DAG)1098 void CopyConstrain::apply(ScheduleDAGMI *DAG) {
1099 MachineBasicBlock::iterator FirstPos = nextIfDebug(DAG->begin(), DAG->end());
1100 if (FirstPos == DAG->end())
1101 return;
1102 RegionBeginIdx = DAG->getLIS()->getInstructionIndex(&*FirstPos);
1103 RegionEndIdx = DAG->getLIS()->getInstructionIndex(
1104 &*priorNonDebug(DAG->end(), DAG->begin()));
1105
1106 for (unsigned Idx = 0, End = DAG->SUnits.size(); Idx != End; ++Idx) {
1107 SUnit *SU = &DAG->SUnits[Idx];
1108 if (!SU->getInstr()->isCopy())
1109 continue;
1110
1111 constrainLocalCopy(SU, DAG);
1112 }
1113 }
1114
1115 //===----------------------------------------------------------------------===//
1116 // ConvergingScheduler - Implementation of the generic MachineSchedStrategy.
1117 //===----------------------------------------------------------------------===//
1118
1119 namespace {
1120 /// ConvergingScheduler shrinks the unscheduled zone using heuristics to balance
1121 /// the schedule.
1122 class ConvergingScheduler : public MachineSchedStrategy {
1123 public:
1124 /// Represent the type of SchedCandidate found within a single queue.
1125 /// pickNodeBidirectional depends on these listed by decreasing priority.
1126 enum CandReason {
1127 NoCand, PhysRegCopy, RegExcess, RegCritical, Cluster, Weak, RegMax,
1128 ResourceReduce, ResourceDemand, BotHeightReduce, BotPathReduce,
1129 TopDepthReduce, TopPathReduce, NextDefUse, NodeOrder};
1130
1131 #ifndef NDEBUG
1132 static const char *getReasonStr(ConvergingScheduler::CandReason Reason);
1133 #endif
1134
1135 /// Policy for scheduling the next instruction in the candidate's zone.
1136 struct CandPolicy {
1137 bool ReduceLatency;
1138 unsigned ReduceResIdx;
1139 unsigned DemandResIdx;
1140
CandPolicy__anon58dd20f40511::ConvergingScheduler::CandPolicy1141 CandPolicy(): ReduceLatency(false), ReduceResIdx(0), DemandResIdx(0) {}
1142 };
1143
1144 /// Status of an instruction's critical resource consumption.
1145 struct SchedResourceDelta {
1146 // Count critical resources in the scheduled region required by SU.
1147 unsigned CritResources;
1148
1149 // Count critical resources from another region consumed by SU.
1150 unsigned DemandedResources;
1151
SchedResourceDelta__anon58dd20f40511::ConvergingScheduler::SchedResourceDelta1152 SchedResourceDelta(): CritResources(0), DemandedResources(0) {}
1153
operator ==__anon58dd20f40511::ConvergingScheduler::SchedResourceDelta1154 bool operator==(const SchedResourceDelta &RHS) const {
1155 return CritResources == RHS.CritResources
1156 && DemandedResources == RHS.DemandedResources;
1157 }
operator !=__anon58dd20f40511::ConvergingScheduler::SchedResourceDelta1158 bool operator!=(const SchedResourceDelta &RHS) const {
1159 return !operator==(RHS);
1160 }
1161 };
1162
1163 /// Store the state used by ConvergingScheduler heuristics, required for the
1164 /// lifetime of one invocation of pickNode().
1165 struct SchedCandidate {
1166 CandPolicy Policy;
1167
1168 // The best SUnit candidate.
1169 SUnit *SU;
1170
1171 // The reason for this candidate.
1172 CandReason Reason;
1173
1174 // Set of reasons that apply to multiple candidates.
1175 uint32_t RepeatReasonSet;
1176
1177 // Register pressure values for the best candidate.
1178 RegPressureDelta RPDelta;
1179
1180 // Critical resource consumption of the best candidate.
1181 SchedResourceDelta ResDelta;
1182
SchedCandidate__anon58dd20f40511::ConvergingScheduler::SchedCandidate1183 SchedCandidate(const CandPolicy &policy)
1184 : Policy(policy), SU(NULL), Reason(NoCand), RepeatReasonSet(0) {}
1185
isValid__anon58dd20f40511::ConvergingScheduler::SchedCandidate1186 bool isValid() const { return SU; }
1187
1188 // Copy the status of another candidate without changing policy.
setBest__anon58dd20f40511::ConvergingScheduler::SchedCandidate1189 void setBest(SchedCandidate &Best) {
1190 assert(Best.Reason != NoCand && "uninitialized Sched candidate");
1191 SU = Best.SU;
1192 Reason = Best.Reason;
1193 RPDelta = Best.RPDelta;
1194 ResDelta = Best.ResDelta;
1195 }
1196
isRepeat__anon58dd20f40511::ConvergingScheduler::SchedCandidate1197 bool isRepeat(CandReason R) { return RepeatReasonSet & (1 << R); }
setRepeat__anon58dd20f40511::ConvergingScheduler::SchedCandidate1198 void setRepeat(CandReason R) { RepeatReasonSet |= (1 << R); }
1199
1200 void initResourceDelta(const ScheduleDAGMI *DAG,
1201 const TargetSchedModel *SchedModel);
1202 };
1203
1204 /// Summarize the unscheduled region.
1205 struct SchedRemainder {
1206 // Critical path through the DAG in expected latency.
1207 unsigned CriticalPath;
1208
1209 // Scaled count of micro-ops left to schedule.
1210 unsigned RemIssueCount;
1211
1212 // Unscheduled resources
1213 SmallVector<unsigned, 16> RemainingCounts;
1214
reset__anon58dd20f40511::ConvergingScheduler::SchedRemainder1215 void reset() {
1216 CriticalPath = 0;
1217 RemIssueCount = 0;
1218 RemainingCounts.clear();
1219 }
1220
SchedRemainder__anon58dd20f40511::ConvergingScheduler::SchedRemainder1221 SchedRemainder() { reset(); }
1222
1223 void init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel);
1224 };
1225
1226 /// Each Scheduling boundary is associated with ready queues. It tracks the
1227 /// current cycle in the direction of movement, and maintains the state
1228 /// of "hazards" and other interlocks at the current cycle.
1229 struct SchedBoundary {
1230 ScheduleDAGMI *DAG;
1231 const TargetSchedModel *SchedModel;
1232 SchedRemainder *Rem;
1233
1234 ReadyQueue Available;
1235 ReadyQueue Pending;
1236 bool CheckPending;
1237
1238 // For heuristics, keep a list of the nodes that immediately depend on the
1239 // most recently scheduled node.
1240 SmallPtrSet<const SUnit*, 8> NextSUs;
1241
1242 ScheduleHazardRecognizer *HazardRec;
1243
1244 /// Number of cycles it takes to issue the instructions scheduled in this
1245 /// zone. It is defined as: scheduled-micro-ops / issue-width + stalls.
1246 /// See getStalls().
1247 unsigned CurrCycle;
1248
1249 /// Micro-ops issued in the current cycle
1250 unsigned CurrMOps;
1251
1252 /// MinReadyCycle - Cycle of the soonest available instruction.
1253 unsigned MinReadyCycle;
1254
1255 // The expected latency of the critical path in this scheduled zone.
1256 unsigned ExpectedLatency;
1257
1258 // The latency of dependence chains leading into this zone.
1259 // For each node scheduled bottom-up: DLat = max DLat, N.Depth.
1260 // For each cycle scheduled: DLat -= 1.
1261 unsigned DependentLatency;
1262
1263 /// Count the scheduled (issued) micro-ops that can be retired by
1264 /// time=CurrCycle assuming the first scheduled instr is retired at time=0.
1265 unsigned RetiredMOps;
1266
1267 // Count scheduled resources that have been executed. Resources are
1268 // considered executed if they become ready in the time that it takes to
1269 // saturate any resource including the one in question. Counts are scaled
1270 // for direct comparison with other resources. Counts can be compared with
1271 // MOps * getMicroOpFactor and Latency * getLatencyFactor.
1272 SmallVector<unsigned, 16> ExecutedResCounts;
1273
1274 /// Cache the max count for a single resource.
1275 unsigned MaxExecutedResCount;
1276
1277 // Cache the critical resources ID in this scheduled zone.
1278 unsigned ZoneCritResIdx;
1279
1280 // Is the scheduled region resource limited vs. latency limited.
1281 bool IsResourceLimited;
1282
1283 #ifndef NDEBUG
1284 // Remember the greatest operand latency as an upper bound on the number of
1285 // times we should retry the pending queue because of a hazard.
1286 unsigned MaxObservedLatency;
1287 #endif
1288
reset__anon58dd20f40511::ConvergingScheduler::SchedBoundary1289 void reset() {
1290 // A new HazardRec is created for each DAG and owned by SchedBoundary.
1291 delete HazardRec;
1292
1293 Available.clear();
1294 Pending.clear();
1295 CheckPending = false;
1296 NextSUs.clear();
1297 HazardRec = 0;
1298 CurrCycle = 0;
1299 CurrMOps = 0;
1300 MinReadyCycle = UINT_MAX;
1301 ExpectedLatency = 0;
1302 DependentLatency = 0;
1303 RetiredMOps = 0;
1304 MaxExecutedResCount = 0;
1305 ZoneCritResIdx = 0;
1306 IsResourceLimited = false;
1307 #ifndef NDEBUG
1308 MaxObservedLatency = 0;
1309 #endif
1310 // Reserve a zero-count for invalid CritResIdx.
1311 ExecutedResCounts.resize(1);
1312 assert(!ExecutedResCounts[0] && "nonzero count for bad resource");
1313 }
1314
1315 /// Pending queues extend the ready queues with the same ID and the
1316 /// PendingFlag set.
SchedBoundary__anon58dd20f40511::ConvergingScheduler::SchedBoundary1317 SchedBoundary(unsigned ID, const Twine &Name):
1318 DAG(0), SchedModel(0), Rem(0), Available(ID, Name+".A"),
1319 Pending(ID << ConvergingScheduler::LogMaxQID, Name+".P"),
1320 HazardRec(0) {
1321 reset();
1322 }
1323
~SchedBoundary__anon58dd20f40511::ConvergingScheduler::SchedBoundary1324 ~SchedBoundary() { delete HazardRec; }
1325
1326 void init(ScheduleDAGMI *dag, const TargetSchedModel *smodel,
1327 SchedRemainder *rem);
1328
isTop__anon58dd20f40511::ConvergingScheduler::SchedBoundary1329 bool isTop() const {
1330 return Available.getID() == ConvergingScheduler::TopQID;
1331 }
1332
1333 #ifndef NDEBUG
getResourceName__anon58dd20f40511::ConvergingScheduler::SchedBoundary1334 const char *getResourceName(unsigned PIdx) {
1335 if (!PIdx)
1336 return "MOps";
1337 return SchedModel->getProcResource(PIdx)->Name;
1338 }
1339 #endif
1340
1341 /// Get the number of latency cycles "covered" by the scheduled
1342 /// instructions. This is the larger of the critical path within the zone
1343 /// and the number of cycles required to issue the instructions.
getScheduledLatency__anon58dd20f40511::ConvergingScheduler::SchedBoundary1344 unsigned getScheduledLatency() const {
1345 return std::max(ExpectedLatency, CurrCycle);
1346 }
1347
getUnscheduledLatency__anon58dd20f40511::ConvergingScheduler::SchedBoundary1348 unsigned getUnscheduledLatency(SUnit *SU) const {
1349 return isTop() ? SU->getHeight() : SU->getDepth();
1350 }
1351
getResourceCount__anon58dd20f40511::ConvergingScheduler::SchedBoundary1352 unsigned getResourceCount(unsigned ResIdx) const {
1353 return ExecutedResCounts[ResIdx];
1354 }
1355
1356 /// Get the scaled count of scheduled micro-ops and resources, including
1357 /// executed resources.
getCriticalCount__anon58dd20f40511::ConvergingScheduler::SchedBoundary1358 unsigned getCriticalCount() const {
1359 if (!ZoneCritResIdx)
1360 return RetiredMOps * SchedModel->getMicroOpFactor();
1361 return getResourceCount(ZoneCritResIdx);
1362 }
1363
1364 /// Get a scaled count for the minimum execution time of the scheduled
1365 /// micro-ops that are ready to execute by getExecutedCount. Notice the
1366 /// feedback loop.
getExecutedCount__anon58dd20f40511::ConvergingScheduler::SchedBoundary1367 unsigned getExecutedCount() const {
1368 return std::max(CurrCycle * SchedModel->getLatencyFactor(),
1369 MaxExecutedResCount);
1370 }
1371
1372 bool checkHazard(SUnit *SU);
1373
1374 unsigned findMaxLatency(ArrayRef<SUnit*> ReadySUs);
1375
1376 unsigned getOtherResourceCount(unsigned &OtherCritIdx);
1377
1378 void setPolicy(CandPolicy &Policy, SchedBoundary &OtherZone);
1379
1380 void releaseNode(SUnit *SU, unsigned ReadyCycle);
1381
1382 void bumpCycle(unsigned NextCycle);
1383
1384 void incExecutedResources(unsigned PIdx, unsigned Count);
1385
1386 unsigned countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle);
1387
1388 void bumpNode(SUnit *SU);
1389
1390 void releasePending();
1391
1392 void removeReady(SUnit *SU);
1393
1394 SUnit *pickOnlyChoice();
1395
1396 #ifndef NDEBUG
1397 void dumpScheduledState();
1398 #endif
1399 };
1400
1401 private:
1402 ScheduleDAGMI *DAG;
1403 const TargetSchedModel *SchedModel;
1404 const TargetRegisterInfo *TRI;
1405
1406 // State of the top and bottom scheduled instruction boundaries.
1407 SchedRemainder Rem;
1408 SchedBoundary Top;
1409 SchedBoundary Bot;
1410
1411 public:
1412 /// SUnit::NodeQueueId: 0 (none), 1 (top), 2 (bot), 3 (both)
1413 enum {
1414 TopQID = 1,
1415 BotQID = 2,
1416 LogMaxQID = 2
1417 };
1418
ConvergingScheduler()1419 ConvergingScheduler():
1420 DAG(0), SchedModel(0), TRI(0), Top(TopQID, "TopQ"), Bot(BotQID, "BotQ") {}
1421
1422 virtual void initialize(ScheduleDAGMI *dag);
1423
1424 virtual SUnit *pickNode(bool &IsTopNode);
1425
1426 virtual void schedNode(SUnit *SU, bool IsTopNode);
1427
1428 virtual void releaseTopNode(SUnit *SU);
1429
1430 virtual void releaseBottomNode(SUnit *SU);
1431
1432 virtual void registerRoots();
1433
1434 protected:
1435 void tryCandidate(SchedCandidate &Cand,
1436 SchedCandidate &TryCand,
1437 SchedBoundary &Zone,
1438 const RegPressureTracker &RPTracker,
1439 RegPressureTracker &TempTracker);
1440
1441 SUnit *pickNodeBidirectional(bool &IsTopNode);
1442
1443 void pickNodeFromQueue(SchedBoundary &Zone,
1444 const RegPressureTracker &RPTracker,
1445 SchedCandidate &Candidate);
1446
1447 void reschedulePhysRegCopies(SUnit *SU, bool isTop);
1448
1449 #ifndef NDEBUG
1450 void traceCandidate(const SchedCandidate &Cand);
1451 #endif
1452 };
1453 } // namespace
1454
1455 void ConvergingScheduler::SchedRemainder::
init(ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1456 init(ScheduleDAGMI *DAG, const TargetSchedModel *SchedModel) {
1457 reset();
1458 if (!SchedModel->hasInstrSchedModel())
1459 return;
1460 RemainingCounts.resize(SchedModel->getNumProcResourceKinds());
1461 for (std::vector<SUnit>::iterator
1462 I = DAG->SUnits.begin(), E = DAG->SUnits.end(); I != E; ++I) {
1463 const MCSchedClassDesc *SC = DAG->getSchedClass(&*I);
1464 RemIssueCount += SchedModel->getNumMicroOps(I->getInstr(), SC)
1465 * SchedModel->getMicroOpFactor();
1466 for (TargetSchedModel::ProcResIter
1467 PI = SchedModel->getWriteProcResBegin(SC),
1468 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1469 unsigned PIdx = PI->ProcResourceIdx;
1470 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1471 RemainingCounts[PIdx] += (Factor * PI->Cycles);
1472 }
1473 }
1474 }
1475
1476 void ConvergingScheduler::SchedBoundary::
init(ScheduleDAGMI * dag,const TargetSchedModel * smodel,SchedRemainder * rem)1477 init(ScheduleDAGMI *dag, const TargetSchedModel *smodel, SchedRemainder *rem) {
1478 reset();
1479 DAG = dag;
1480 SchedModel = smodel;
1481 Rem = rem;
1482 if (SchedModel->hasInstrSchedModel())
1483 ExecutedResCounts.resize(SchedModel->getNumProcResourceKinds());
1484 }
1485
initialize(ScheduleDAGMI * dag)1486 void ConvergingScheduler::initialize(ScheduleDAGMI *dag) {
1487 DAG = dag;
1488 SchedModel = DAG->getSchedModel();
1489 TRI = DAG->TRI;
1490
1491 Rem.init(DAG, SchedModel);
1492 Top.init(DAG, SchedModel, &Rem);
1493 Bot.init(DAG, SchedModel, &Rem);
1494
1495 // Initialize resource counts.
1496
1497 // Initialize the HazardRecognizers. If itineraries don't exist, are empty, or
1498 // are disabled, then these HazardRecs will be disabled.
1499 const InstrItineraryData *Itin = SchedModel->getInstrItineraries();
1500 const TargetMachine &TM = DAG->MF.getTarget();
1501 Top.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1502 Bot.HazardRec = TM.getInstrInfo()->CreateTargetMIHazardRecognizer(Itin, DAG);
1503
1504 assert((!ForceTopDown || !ForceBottomUp) &&
1505 "-misched-topdown incompatible with -misched-bottomup");
1506 }
1507
releaseTopNode(SUnit * SU)1508 void ConvergingScheduler::releaseTopNode(SUnit *SU) {
1509 if (SU->isScheduled)
1510 return;
1511
1512 for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
1513 I != E; ++I) {
1514 if (I->isWeak())
1515 continue;
1516 unsigned PredReadyCycle = I->getSUnit()->TopReadyCycle;
1517 unsigned Latency = I->getLatency();
1518 #ifndef NDEBUG
1519 Top.MaxObservedLatency = std::max(Latency, Top.MaxObservedLatency);
1520 #endif
1521 if (SU->TopReadyCycle < PredReadyCycle + Latency)
1522 SU->TopReadyCycle = PredReadyCycle + Latency;
1523 }
1524 Top.releaseNode(SU, SU->TopReadyCycle);
1525 }
1526
releaseBottomNode(SUnit * SU)1527 void ConvergingScheduler::releaseBottomNode(SUnit *SU) {
1528 if (SU->isScheduled)
1529 return;
1530
1531 assert(SU->getInstr() && "Scheduled SUnit must have instr");
1532
1533 for (SUnit::succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
1534 I != E; ++I) {
1535 if (I->isWeak())
1536 continue;
1537 unsigned SuccReadyCycle = I->getSUnit()->BotReadyCycle;
1538 unsigned Latency = I->getLatency();
1539 #ifndef NDEBUG
1540 Bot.MaxObservedLatency = std::max(Latency, Bot.MaxObservedLatency);
1541 #endif
1542 if (SU->BotReadyCycle < SuccReadyCycle + Latency)
1543 SU->BotReadyCycle = SuccReadyCycle + Latency;
1544 }
1545 Bot.releaseNode(SU, SU->BotReadyCycle);
1546 }
1547
registerRoots()1548 void ConvergingScheduler::registerRoots() {
1549 Rem.CriticalPath = DAG->ExitSU.getDepth();
1550 // Some roots may not feed into ExitSU. Check all of them in case.
1551 for (std::vector<SUnit*>::const_iterator
1552 I = Bot.Available.begin(), E = Bot.Available.end(); I != E; ++I) {
1553 if ((*I)->getDepth() > Rem.CriticalPath)
1554 Rem.CriticalPath = (*I)->getDepth();
1555 }
1556 DEBUG(dbgs() << "Critical Path: " << Rem.CriticalPath << '\n');
1557 }
1558
1559 /// Does this SU have a hazard within the current instruction group.
1560 ///
1561 /// The scheduler supports two modes of hazard recognition. The first is the
1562 /// ScheduleHazardRecognizer API. It is a fully general hazard recognizer that
1563 /// supports highly complicated in-order reservation tables
1564 /// (ScoreboardHazardRecognizer) and arbitraty target-specific logic.
1565 ///
1566 /// The second is a streamlined mechanism that checks for hazards based on
1567 /// simple counters that the scheduler itself maintains. It explicitly checks
1568 /// for instruction dispatch limitations, including the number of micro-ops that
1569 /// can dispatch per cycle.
1570 ///
1571 /// TODO: Also check whether the SU must start a new group.
checkHazard(SUnit * SU)1572 bool ConvergingScheduler::SchedBoundary::checkHazard(SUnit *SU) {
1573 if (HazardRec->isEnabled())
1574 return HazardRec->getHazardType(SU) != ScheduleHazardRecognizer::NoHazard;
1575
1576 unsigned uops = SchedModel->getNumMicroOps(SU->getInstr());
1577 if ((CurrMOps > 0) && (CurrMOps + uops > SchedModel->getIssueWidth())) {
1578 DEBUG(dbgs() << " SU(" << SU->NodeNum << ") uops="
1579 << SchedModel->getNumMicroOps(SU->getInstr()) << '\n');
1580 return true;
1581 }
1582 return false;
1583 }
1584
1585 // Find the unscheduled node in ReadySUs with the highest latency.
1586 unsigned ConvergingScheduler::SchedBoundary::
findMaxLatency(ArrayRef<SUnit * > ReadySUs)1587 findMaxLatency(ArrayRef<SUnit*> ReadySUs) {
1588 SUnit *LateSU = 0;
1589 unsigned RemLatency = 0;
1590 for (ArrayRef<SUnit*>::iterator I = ReadySUs.begin(), E = ReadySUs.end();
1591 I != E; ++I) {
1592 unsigned L = getUnscheduledLatency(*I);
1593 if (L > RemLatency) {
1594 RemLatency = L;
1595 LateSU = *I;
1596 }
1597 }
1598 if (LateSU) {
1599 DEBUG(dbgs() << Available.getName() << " RemLatency SU("
1600 << LateSU->NodeNum << ") " << RemLatency << "c\n");
1601 }
1602 return RemLatency;
1603 }
1604
1605 // Count resources in this zone and the remaining unscheduled
1606 // instruction. Return the max count, scaled. Set OtherCritIdx to the critical
1607 // resource index, or zero if the zone is issue limited.
1608 unsigned ConvergingScheduler::SchedBoundary::
getOtherResourceCount(unsigned & OtherCritIdx)1609 getOtherResourceCount(unsigned &OtherCritIdx) {
1610 OtherCritIdx = 0;
1611 if (!SchedModel->hasInstrSchedModel())
1612 return 0;
1613
1614 unsigned OtherCritCount = Rem->RemIssueCount
1615 + (RetiredMOps * SchedModel->getMicroOpFactor());
1616 DEBUG(dbgs() << " " << Available.getName() << " + Remain MOps: "
1617 << OtherCritCount / SchedModel->getMicroOpFactor() << '\n');
1618 for (unsigned PIdx = 1, PEnd = SchedModel->getNumProcResourceKinds();
1619 PIdx != PEnd; ++PIdx) {
1620 unsigned OtherCount = getResourceCount(PIdx) + Rem->RemainingCounts[PIdx];
1621 if (OtherCount > OtherCritCount) {
1622 OtherCritCount = OtherCount;
1623 OtherCritIdx = PIdx;
1624 }
1625 }
1626 if (OtherCritIdx) {
1627 DEBUG(dbgs() << " " << Available.getName() << " + Remain CritRes: "
1628 << OtherCritCount / SchedModel->getResourceFactor(OtherCritIdx)
1629 << " " << getResourceName(OtherCritIdx) << "\n");
1630 }
1631 return OtherCritCount;
1632 }
1633
1634 /// Set the CandPolicy for this zone given the current resources and latencies
1635 /// inside and outside the zone.
setPolicy(CandPolicy & Policy,SchedBoundary & OtherZone)1636 void ConvergingScheduler::SchedBoundary::setPolicy(CandPolicy &Policy,
1637 SchedBoundary &OtherZone) {
1638 // Now that potential stalls have been considered, apply preemptive heuristics
1639 // based on the the total latency and resources inside and outside this
1640 // zone.
1641
1642 // Compute remaining latency. We need this both to determine whether the
1643 // overall schedule has become latency-limited and whether the instructions
1644 // outside this zone are resource or latency limited.
1645 //
1646 // The "dependent" latency is updated incrementally during scheduling as the
1647 // max height/depth of scheduled nodes minus the cycles since it was
1648 // scheduled:
1649 // DLat = max (N.depth - (CurrCycle - N.ReadyCycle) for N in Zone
1650 //
1651 // The "independent" latency is the max ready queue depth:
1652 // ILat = max N.depth for N in Available|Pending
1653 //
1654 // RemainingLatency is the greater of independent and dependent latency.
1655 unsigned RemLatency = DependentLatency;
1656 RemLatency = std::max(RemLatency, findMaxLatency(Available.elements()));
1657 RemLatency = std::max(RemLatency, findMaxLatency(Pending.elements()));
1658
1659 // Compute the critical resource outside the zone.
1660 unsigned OtherCritIdx;
1661 unsigned OtherCount = OtherZone.getOtherResourceCount(OtherCritIdx);
1662
1663 bool OtherResLimited = false;
1664 if (SchedModel->hasInstrSchedModel()) {
1665 unsigned LFactor = SchedModel->getLatencyFactor();
1666 OtherResLimited = (int)(OtherCount - (RemLatency * LFactor)) > (int)LFactor;
1667 }
1668 if (!OtherResLimited && (RemLatency + CurrCycle > Rem->CriticalPath)) {
1669 Policy.ReduceLatency |= true;
1670 DEBUG(dbgs() << " " << Available.getName() << " RemainingLatency "
1671 << RemLatency << " + " << CurrCycle << "c > CritPath "
1672 << Rem->CriticalPath << "\n");
1673 }
1674 // If the same resource is limiting inside and outside the zone, do nothing.
1675 if (ZoneCritResIdx == OtherCritIdx)
1676 return;
1677
1678 DEBUG(
1679 if (IsResourceLimited) {
1680 dbgs() << " " << Available.getName() << " ResourceLimited: "
1681 << getResourceName(ZoneCritResIdx) << "\n";
1682 }
1683 if (OtherResLimited)
1684 dbgs() << " RemainingLimit: " << getResourceName(OtherCritIdx) << "\n";
1685 if (!IsResourceLimited && !OtherResLimited)
1686 dbgs() << " Latency limited both directions.\n");
1687
1688 if (IsResourceLimited && !Policy.ReduceResIdx)
1689 Policy.ReduceResIdx = ZoneCritResIdx;
1690
1691 if (OtherResLimited)
1692 Policy.DemandResIdx = OtherCritIdx;
1693 }
1694
releaseNode(SUnit * SU,unsigned ReadyCycle)1695 void ConvergingScheduler::SchedBoundary::releaseNode(SUnit *SU,
1696 unsigned ReadyCycle) {
1697 if (ReadyCycle < MinReadyCycle)
1698 MinReadyCycle = ReadyCycle;
1699
1700 // Check for interlocks first. For the purpose of other heuristics, an
1701 // instruction that cannot issue appears as if it's not in the ReadyQueue.
1702 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1703 if ((!IsBuffered && ReadyCycle > CurrCycle) || checkHazard(SU))
1704 Pending.push(SU);
1705 else
1706 Available.push(SU);
1707
1708 // Record this node as an immediate dependent of the scheduled node.
1709 NextSUs.insert(SU);
1710 }
1711
1712 /// Move the boundary of scheduled code by one cycle.
bumpCycle(unsigned NextCycle)1713 void ConvergingScheduler::SchedBoundary::bumpCycle(unsigned NextCycle) {
1714 if (SchedModel->getMicroOpBufferSize() == 0) {
1715 assert(MinReadyCycle < UINT_MAX && "MinReadyCycle uninitialized");
1716 if (MinReadyCycle > NextCycle)
1717 NextCycle = MinReadyCycle;
1718 }
1719 // Update the current micro-ops, which will issue in the next cycle.
1720 unsigned DecMOps = SchedModel->getIssueWidth() * (NextCycle - CurrCycle);
1721 CurrMOps = (CurrMOps <= DecMOps) ? 0 : CurrMOps - DecMOps;
1722
1723 // Decrement DependentLatency based on the next cycle.
1724 if ((NextCycle - CurrCycle) > DependentLatency)
1725 DependentLatency = 0;
1726 else
1727 DependentLatency -= (NextCycle - CurrCycle);
1728
1729 if (!HazardRec->isEnabled()) {
1730 // Bypass HazardRec virtual calls.
1731 CurrCycle = NextCycle;
1732 }
1733 else {
1734 // Bypass getHazardType calls in case of long latency.
1735 for (; CurrCycle != NextCycle; ++CurrCycle) {
1736 if (isTop())
1737 HazardRec->AdvanceCycle();
1738 else
1739 HazardRec->RecedeCycle();
1740 }
1741 }
1742 CheckPending = true;
1743 unsigned LFactor = SchedModel->getLatencyFactor();
1744 IsResourceLimited =
1745 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1746 > (int)LFactor;
1747
1748 DEBUG(dbgs() << "Cycle: " << CurrCycle << ' ' << Available.getName() << '\n');
1749 }
1750
incExecutedResources(unsigned PIdx,unsigned Count)1751 void ConvergingScheduler::SchedBoundary::incExecutedResources(unsigned PIdx,
1752 unsigned Count) {
1753 ExecutedResCounts[PIdx] += Count;
1754 if (ExecutedResCounts[PIdx] > MaxExecutedResCount)
1755 MaxExecutedResCount = ExecutedResCounts[PIdx];
1756 }
1757
1758 /// Add the given processor resource to this scheduled zone.
1759 ///
1760 /// \param Cycles indicates the number of consecutive (non-pipelined) cycles
1761 /// during which this resource is consumed.
1762 ///
1763 /// \return the next cycle at which the instruction may execute without
1764 /// oversubscribing resources.
1765 unsigned ConvergingScheduler::SchedBoundary::
countResource(unsigned PIdx,unsigned Cycles,unsigned ReadyCycle)1766 countResource(unsigned PIdx, unsigned Cycles, unsigned ReadyCycle) {
1767 unsigned Factor = SchedModel->getResourceFactor(PIdx);
1768 unsigned Count = Factor * Cycles;
1769 DEBUG(dbgs() << " " << getResourceName(PIdx)
1770 << " +" << Cycles << "x" << Factor << "u\n");
1771
1772 // Update Executed resources counts.
1773 incExecutedResources(PIdx, Count);
1774 assert(Rem->RemainingCounts[PIdx] >= Count && "resource double counted");
1775 Rem->RemainingCounts[PIdx] -= Count;
1776
1777 // Check if this resource exceeds the current critical resource. If so, it
1778 // becomes the critical resource.
1779 if (ZoneCritResIdx != PIdx && (getResourceCount(PIdx) > getCriticalCount())) {
1780 ZoneCritResIdx = PIdx;
1781 DEBUG(dbgs() << " *** Critical resource "
1782 << getResourceName(PIdx) << ": "
1783 << getResourceCount(PIdx) / SchedModel->getLatencyFactor() << "c\n");
1784 }
1785 // TODO: We don't yet model reserved resources. It's not hard though.
1786 return CurrCycle;
1787 }
1788
1789 /// Move the boundary of scheduled code by one SUnit.
bumpNode(SUnit * SU)1790 void ConvergingScheduler::SchedBoundary::bumpNode(SUnit *SU) {
1791 // Update the reservation table.
1792 if (HazardRec->isEnabled()) {
1793 if (!isTop() && SU->isCall) {
1794 // Calls are scheduled with their preceding instructions. For bottom-up
1795 // scheduling, clear the pipeline state before emitting.
1796 HazardRec->Reset();
1797 }
1798 HazardRec->EmitInstruction(SU);
1799 }
1800 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1801 unsigned IncMOps = SchedModel->getNumMicroOps(SU->getInstr());
1802 CurrMOps += IncMOps;
1803 // checkHazard prevents scheduling multiple instructions per cycle that exceed
1804 // issue width. However, we commonly reach the maximum. In this case
1805 // opportunistically bump the cycle to avoid uselessly checking everything in
1806 // the readyQ. Furthermore, a single instruction may produce more than one
1807 // cycle's worth of micro-ops.
1808 //
1809 // TODO: Also check if this SU must end a dispatch group.
1810 unsigned NextCycle = CurrCycle;
1811 if (CurrMOps >= SchedModel->getIssueWidth()) {
1812 ++NextCycle;
1813 DEBUG(dbgs() << " *** Max MOps " << CurrMOps
1814 << " at cycle " << CurrCycle << '\n');
1815 }
1816 unsigned ReadyCycle = (isTop() ? SU->TopReadyCycle : SU->BotReadyCycle);
1817 DEBUG(dbgs() << " Ready @" << ReadyCycle << "c\n");
1818
1819 switch (SchedModel->getMicroOpBufferSize()) {
1820 case 0:
1821 assert(ReadyCycle <= CurrCycle && "Broken PendingQueue");
1822 break;
1823 case 1:
1824 if (ReadyCycle > NextCycle) {
1825 NextCycle = ReadyCycle;
1826 DEBUG(dbgs() << " *** Stall until: " << ReadyCycle << "\n");
1827 }
1828 break;
1829 default:
1830 // We don't currently model the OOO reorder buffer, so consider all
1831 // scheduled MOps to be "retired".
1832 break;
1833 }
1834 RetiredMOps += IncMOps;
1835
1836 // Update resource counts and critical resource.
1837 if (SchedModel->hasInstrSchedModel()) {
1838 unsigned DecRemIssue = IncMOps * SchedModel->getMicroOpFactor();
1839 assert(Rem->RemIssueCount >= DecRemIssue && "MOps double counted");
1840 Rem->RemIssueCount -= DecRemIssue;
1841 if (ZoneCritResIdx) {
1842 // Scale scheduled micro-ops for comparing with the critical resource.
1843 unsigned ScaledMOps =
1844 RetiredMOps * SchedModel->getMicroOpFactor();
1845
1846 // If scaled micro-ops are now more than the previous critical resource by
1847 // a full cycle, then micro-ops issue becomes critical.
1848 if ((int)(ScaledMOps - getResourceCount(ZoneCritResIdx))
1849 >= (int)SchedModel->getLatencyFactor()) {
1850 ZoneCritResIdx = 0;
1851 DEBUG(dbgs() << " *** Critical resource NumMicroOps: "
1852 << ScaledMOps / SchedModel->getLatencyFactor() << "c\n");
1853 }
1854 }
1855 for (TargetSchedModel::ProcResIter
1856 PI = SchedModel->getWriteProcResBegin(SC),
1857 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1858 unsigned RCycle =
1859 countResource(PI->ProcResourceIdx, PI->Cycles, ReadyCycle);
1860 if (RCycle > NextCycle)
1861 NextCycle = RCycle;
1862 }
1863 }
1864 // Update ExpectedLatency and DependentLatency.
1865 unsigned &TopLatency = isTop() ? ExpectedLatency : DependentLatency;
1866 unsigned &BotLatency = isTop() ? DependentLatency : ExpectedLatency;
1867 if (SU->getDepth() > TopLatency) {
1868 TopLatency = SU->getDepth();
1869 DEBUG(dbgs() << " " << Available.getName()
1870 << " TopLatency SU(" << SU->NodeNum << ") " << TopLatency << "c\n");
1871 }
1872 if (SU->getHeight() > BotLatency) {
1873 BotLatency = SU->getHeight();
1874 DEBUG(dbgs() << " " << Available.getName()
1875 << " BotLatency SU(" << SU->NodeNum << ") " << BotLatency << "c\n");
1876 }
1877 // If we stall for any reason, bump the cycle.
1878 if (NextCycle > CurrCycle) {
1879 bumpCycle(NextCycle);
1880 }
1881 else {
1882 // After updating ZoneCritResIdx and ExpectedLatency, check if we're
1883 // resource limited. If a stall occured, bumpCycle does this.
1884 unsigned LFactor = SchedModel->getLatencyFactor();
1885 IsResourceLimited =
1886 (int)(getCriticalCount() - (getScheduledLatency() * LFactor))
1887 > (int)LFactor;
1888 }
1889 DEBUG(dumpScheduledState());
1890 }
1891
1892 /// Release pending ready nodes in to the available queue. This makes them
1893 /// visible to heuristics.
releasePending()1894 void ConvergingScheduler::SchedBoundary::releasePending() {
1895 // If the available queue is empty, it is safe to reset MinReadyCycle.
1896 if (Available.empty())
1897 MinReadyCycle = UINT_MAX;
1898
1899 // Check to see if any of the pending instructions are ready to issue. If
1900 // so, add them to the available queue.
1901 bool IsBuffered = SchedModel->getMicroOpBufferSize() != 0;
1902 for (unsigned i = 0, e = Pending.size(); i != e; ++i) {
1903 SUnit *SU = *(Pending.begin()+i);
1904 unsigned ReadyCycle = isTop() ? SU->TopReadyCycle : SU->BotReadyCycle;
1905
1906 if (ReadyCycle < MinReadyCycle)
1907 MinReadyCycle = ReadyCycle;
1908
1909 if (!IsBuffered && ReadyCycle > CurrCycle)
1910 continue;
1911
1912 if (checkHazard(SU))
1913 continue;
1914
1915 Available.push(SU);
1916 Pending.remove(Pending.begin()+i);
1917 --i; --e;
1918 }
1919 DEBUG(if (!Pending.empty()) Pending.dump());
1920 CheckPending = false;
1921 }
1922
1923 /// Remove SU from the ready set for this boundary.
removeReady(SUnit * SU)1924 void ConvergingScheduler::SchedBoundary::removeReady(SUnit *SU) {
1925 if (Available.isInQueue(SU))
1926 Available.remove(Available.find(SU));
1927 else {
1928 assert(Pending.isInQueue(SU) && "bad ready count");
1929 Pending.remove(Pending.find(SU));
1930 }
1931 }
1932
1933 /// If this queue only has one ready candidate, return it. As a side effect,
1934 /// defer any nodes that now hit a hazard, and advance the cycle until at least
1935 /// one node is ready. If multiple instructions are ready, return NULL.
pickOnlyChoice()1936 SUnit *ConvergingScheduler::SchedBoundary::pickOnlyChoice() {
1937 if (CheckPending)
1938 releasePending();
1939
1940 if (CurrMOps > 0) {
1941 // Defer any ready instrs that now have a hazard.
1942 for (ReadyQueue::iterator I = Available.begin(); I != Available.end();) {
1943 if (checkHazard(*I)) {
1944 Pending.push(*I);
1945 I = Available.remove(I);
1946 continue;
1947 }
1948 ++I;
1949 }
1950 }
1951 for (unsigned i = 0; Available.empty(); ++i) {
1952 assert(i <= (HazardRec->getMaxLookAhead() + MaxObservedLatency) &&
1953 "permanent hazard"); (void)i;
1954 bumpCycle(CurrCycle + 1);
1955 releasePending();
1956 }
1957 if (Available.size() == 1)
1958 return *Available.begin();
1959 return NULL;
1960 }
1961
1962 #ifndef NDEBUG
1963 // This is useful information to dump after bumpNode.
1964 // Note that the Queue contents are more useful before pickNodeFromQueue.
dumpScheduledState()1965 void ConvergingScheduler::SchedBoundary::dumpScheduledState() {
1966 unsigned ResFactor;
1967 unsigned ResCount;
1968 if (ZoneCritResIdx) {
1969 ResFactor = SchedModel->getResourceFactor(ZoneCritResIdx);
1970 ResCount = getResourceCount(ZoneCritResIdx);
1971 }
1972 else {
1973 ResFactor = SchedModel->getMicroOpFactor();
1974 ResCount = RetiredMOps * SchedModel->getMicroOpFactor();
1975 }
1976 unsigned LFactor = SchedModel->getLatencyFactor();
1977 dbgs() << Available.getName() << " @" << CurrCycle << "c\n"
1978 << " Retired: " << RetiredMOps;
1979 dbgs() << "\n Executed: " << getExecutedCount() / LFactor << "c";
1980 dbgs() << "\n Critical: " << ResCount / LFactor << "c, "
1981 << ResCount / ResFactor << " " << getResourceName(ZoneCritResIdx)
1982 << "\n ExpectedLatency: " << ExpectedLatency << "c\n"
1983 << (IsResourceLimited ? " - Resource" : " - Latency")
1984 << " limited.\n";
1985 }
1986 #endif
1987
1988 void ConvergingScheduler::SchedCandidate::
initResourceDelta(const ScheduleDAGMI * DAG,const TargetSchedModel * SchedModel)1989 initResourceDelta(const ScheduleDAGMI *DAG,
1990 const TargetSchedModel *SchedModel) {
1991 if (!Policy.ReduceResIdx && !Policy.DemandResIdx)
1992 return;
1993
1994 const MCSchedClassDesc *SC = DAG->getSchedClass(SU);
1995 for (TargetSchedModel::ProcResIter
1996 PI = SchedModel->getWriteProcResBegin(SC),
1997 PE = SchedModel->getWriteProcResEnd(SC); PI != PE; ++PI) {
1998 if (PI->ProcResourceIdx == Policy.ReduceResIdx)
1999 ResDelta.CritResources += PI->Cycles;
2000 if (PI->ProcResourceIdx == Policy.DemandResIdx)
2001 ResDelta.DemandedResources += PI->Cycles;
2002 }
2003 }
2004
2005
2006 /// Return true if this heuristic determines order.
tryLess(int TryVal,int CandVal,ConvergingScheduler::SchedCandidate & TryCand,ConvergingScheduler::SchedCandidate & Cand,ConvergingScheduler::CandReason Reason)2007 static bool tryLess(int TryVal, int CandVal,
2008 ConvergingScheduler::SchedCandidate &TryCand,
2009 ConvergingScheduler::SchedCandidate &Cand,
2010 ConvergingScheduler::CandReason Reason) {
2011 if (TryVal < CandVal) {
2012 TryCand.Reason = Reason;
2013 return true;
2014 }
2015 if (TryVal > CandVal) {
2016 if (Cand.Reason > Reason)
2017 Cand.Reason = Reason;
2018 return true;
2019 }
2020 Cand.setRepeat(Reason);
2021 return false;
2022 }
2023
tryGreater(int TryVal,int CandVal,ConvergingScheduler::SchedCandidate & TryCand,ConvergingScheduler::SchedCandidate & Cand,ConvergingScheduler::CandReason Reason)2024 static bool tryGreater(int TryVal, int CandVal,
2025 ConvergingScheduler::SchedCandidate &TryCand,
2026 ConvergingScheduler::SchedCandidate &Cand,
2027 ConvergingScheduler::CandReason Reason) {
2028 if (TryVal > CandVal) {
2029 TryCand.Reason = Reason;
2030 return true;
2031 }
2032 if (TryVal < CandVal) {
2033 if (Cand.Reason > Reason)
2034 Cand.Reason = Reason;
2035 return true;
2036 }
2037 Cand.setRepeat(Reason);
2038 return false;
2039 }
2040
tryPressure(const PressureElement & TryP,const PressureElement & CandP,ConvergingScheduler::SchedCandidate & TryCand,ConvergingScheduler::SchedCandidate & Cand,ConvergingScheduler::CandReason Reason)2041 static bool tryPressure(const PressureElement &TryP,
2042 const PressureElement &CandP,
2043 ConvergingScheduler::SchedCandidate &TryCand,
2044 ConvergingScheduler::SchedCandidate &Cand,
2045 ConvergingScheduler::CandReason Reason) {
2046 // If both candidates affect the same set, go with the smallest increase.
2047 if (TryP.PSetID == CandP.PSetID) {
2048 return tryLess(TryP.UnitIncrease, CandP.UnitIncrease, TryCand, Cand,
2049 Reason);
2050 }
2051 // If one candidate decreases and the other increases, go with it.
2052 if (tryLess(TryP.UnitIncrease < 0, CandP.UnitIncrease < 0, TryCand, Cand,
2053 Reason)) {
2054 return true;
2055 }
2056 // If TryP has lower Rank, it has a higher priority.
2057 int TryRank = TryP.PSetRank();
2058 int CandRank = CandP.PSetRank();
2059 // If the candidates are decreasing pressure, reverse priority.
2060 if (TryP.UnitIncrease < 0)
2061 std::swap(TryRank, CandRank);
2062 return tryGreater(TryRank, CandRank, TryCand, Cand, Reason);
2063 }
2064
getWeakLeft(const SUnit * SU,bool isTop)2065 static unsigned getWeakLeft(const SUnit *SU, bool isTop) {
2066 return (isTop) ? SU->WeakPredsLeft : SU->WeakSuccsLeft;
2067 }
2068
2069 /// Minimize physical register live ranges. Regalloc wants them adjacent to
2070 /// their physreg def/use.
2071 ///
2072 /// FIXME: This is an unnecessary check on the critical path. Most are root/leaf
2073 /// copies which can be prescheduled. The rest (e.g. x86 MUL) could be bundled
2074 /// with the operation that produces or consumes the physreg. We'll do this when
2075 /// regalloc has support for parallel copies.
biasPhysRegCopy(const SUnit * SU,bool isTop)2076 static int biasPhysRegCopy(const SUnit *SU, bool isTop) {
2077 const MachineInstr *MI = SU->getInstr();
2078 if (!MI->isCopy())
2079 return 0;
2080
2081 unsigned ScheduledOper = isTop ? 1 : 0;
2082 unsigned UnscheduledOper = isTop ? 0 : 1;
2083 // If we have already scheduled the physreg produce/consumer, immediately
2084 // schedule the copy.
2085 if (TargetRegisterInfo::isPhysicalRegister(
2086 MI->getOperand(ScheduledOper).getReg()))
2087 return 1;
2088 // If the physreg is at the boundary, defer it. Otherwise schedule it
2089 // immediately to free the dependent. We can hoist the copy later.
2090 bool AtBoundary = isTop ? !SU->NumSuccsLeft : !SU->NumPredsLeft;
2091 if (TargetRegisterInfo::isPhysicalRegister(
2092 MI->getOperand(UnscheduledOper).getReg()))
2093 return AtBoundary ? -1 : 1;
2094 return 0;
2095 }
2096
2097 /// Apply a set of heursitics to a new candidate. Heuristics are currently
2098 /// hierarchical. This may be more efficient than a graduated cost model because
2099 /// we don't need to evaluate all aspects of the model for each node in the
2100 /// queue. But it's really done to make the heuristics easier to debug and
2101 /// statistically analyze.
2102 ///
2103 /// \param Cand provides the policy and current best candidate.
2104 /// \param TryCand refers to the next SUnit candidate, otherwise uninitialized.
2105 /// \param Zone describes the scheduled zone that we are extending.
2106 /// \param RPTracker describes reg pressure within the scheduled zone.
2107 /// \param TempTracker is a scratch pressure tracker to reuse in queries.
tryCandidate(SchedCandidate & Cand,SchedCandidate & TryCand,SchedBoundary & Zone,const RegPressureTracker & RPTracker,RegPressureTracker & TempTracker)2108 void ConvergingScheduler::tryCandidate(SchedCandidate &Cand,
2109 SchedCandidate &TryCand,
2110 SchedBoundary &Zone,
2111 const RegPressureTracker &RPTracker,
2112 RegPressureTracker &TempTracker) {
2113
2114 // Always initialize TryCand's RPDelta.
2115 TempTracker.getMaxPressureDelta(TryCand.SU->getInstr(), TryCand.RPDelta,
2116 DAG->getRegionCriticalPSets(),
2117 DAG->getRegPressure().MaxSetPressure);
2118
2119 // Initialize the candidate if needed.
2120 if (!Cand.isValid()) {
2121 TryCand.Reason = NodeOrder;
2122 return;
2123 }
2124
2125 if (tryGreater(biasPhysRegCopy(TryCand.SU, Zone.isTop()),
2126 biasPhysRegCopy(Cand.SU, Zone.isTop()),
2127 TryCand, Cand, PhysRegCopy))
2128 return;
2129
2130 // Avoid exceeding the target's limit. If signed PSetID is negative, it is
2131 // invalid; convert it to INT_MAX to give it lowest priority.
2132 if (tryPressure(TryCand.RPDelta.Excess, Cand.RPDelta.Excess, TryCand, Cand,
2133 RegExcess))
2134 return;
2135
2136 // Avoid increasing the max critical pressure in the scheduled region.
2137 if (tryPressure(TryCand.RPDelta.CriticalMax, Cand.RPDelta.CriticalMax,
2138 TryCand, Cand, RegCritical))
2139 return;
2140
2141 // Keep clustered nodes together to encourage downstream peephole
2142 // optimizations which may reduce resource requirements.
2143 //
2144 // This is a best effort to set things up for a post-RA pass. Optimizations
2145 // like generating loads of multiple registers should ideally be done within
2146 // the scheduler pass by combining the loads during DAG postprocessing.
2147 const SUnit *NextClusterSU =
2148 Zone.isTop() ? DAG->getNextClusterSucc() : DAG->getNextClusterPred();
2149 if (tryGreater(TryCand.SU == NextClusterSU, Cand.SU == NextClusterSU,
2150 TryCand, Cand, Cluster))
2151 return;
2152
2153 // Weak edges are for clustering and other constraints.
2154 if (tryLess(getWeakLeft(TryCand.SU, Zone.isTop()),
2155 getWeakLeft(Cand.SU, Zone.isTop()),
2156 TryCand, Cand, Weak)) {
2157 return;
2158 }
2159 // Avoid increasing the max pressure of the entire region.
2160 if (tryPressure(TryCand.RPDelta.CurrentMax, Cand.RPDelta.CurrentMax,
2161 TryCand, Cand, RegMax))
2162 return;
2163
2164 // Avoid critical resource consumption and balance the schedule.
2165 TryCand.initResourceDelta(DAG, SchedModel);
2166 if (tryLess(TryCand.ResDelta.CritResources, Cand.ResDelta.CritResources,
2167 TryCand, Cand, ResourceReduce))
2168 return;
2169 if (tryGreater(TryCand.ResDelta.DemandedResources,
2170 Cand.ResDelta.DemandedResources,
2171 TryCand, Cand, ResourceDemand))
2172 return;
2173
2174 // Avoid serializing long latency dependence chains.
2175 if (Cand.Policy.ReduceLatency) {
2176 if (Zone.isTop()) {
2177 if (Cand.SU->getDepth() > Zone.getScheduledLatency()) {
2178 if (tryLess(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2179 TryCand, Cand, TopDepthReduce))
2180 return;
2181 }
2182 if (tryGreater(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2183 TryCand, Cand, TopPathReduce))
2184 return;
2185 }
2186 else {
2187 if (Cand.SU->getHeight() > Zone.getScheduledLatency()) {
2188 if (tryLess(TryCand.SU->getHeight(), Cand.SU->getHeight(),
2189 TryCand, Cand, BotHeightReduce))
2190 return;
2191 }
2192 if (tryGreater(TryCand.SU->getDepth(), Cand.SU->getDepth(),
2193 TryCand, Cand, BotPathReduce))
2194 return;
2195 }
2196 }
2197
2198 // Prefer immediate defs/users of the last scheduled instruction. This is a
2199 // local pressure avoidance strategy that also makes the machine code
2200 // readable.
2201 if (tryGreater(Zone.NextSUs.count(TryCand.SU), Zone.NextSUs.count(Cand.SU),
2202 TryCand, Cand, NextDefUse))
2203 return;
2204
2205 // Fall through to original instruction order.
2206 if ((Zone.isTop() && TryCand.SU->NodeNum < Cand.SU->NodeNum)
2207 || (!Zone.isTop() && TryCand.SU->NodeNum > Cand.SU->NodeNum)) {
2208 TryCand.Reason = NodeOrder;
2209 }
2210 }
2211
2212 #ifndef NDEBUG
getReasonStr(ConvergingScheduler::CandReason Reason)2213 const char *ConvergingScheduler::getReasonStr(
2214 ConvergingScheduler::CandReason Reason) {
2215 switch (Reason) {
2216 case NoCand: return "NOCAND ";
2217 case PhysRegCopy: return "PREG-COPY";
2218 case RegExcess: return "REG-EXCESS";
2219 case RegCritical: return "REG-CRIT ";
2220 case Cluster: return "CLUSTER ";
2221 case Weak: return "WEAK ";
2222 case RegMax: return "REG-MAX ";
2223 case ResourceReduce: return "RES-REDUCE";
2224 case ResourceDemand: return "RES-DEMAND";
2225 case TopDepthReduce: return "TOP-DEPTH ";
2226 case TopPathReduce: return "TOP-PATH ";
2227 case BotHeightReduce:return "BOT-HEIGHT";
2228 case BotPathReduce: return "BOT-PATH ";
2229 case NextDefUse: return "DEF-USE ";
2230 case NodeOrder: return "ORDER ";
2231 };
2232 llvm_unreachable("Unknown reason!");
2233 }
2234
traceCandidate(const SchedCandidate & Cand)2235 void ConvergingScheduler::traceCandidate(const SchedCandidate &Cand) {
2236 PressureElement P;
2237 unsigned ResIdx = 0;
2238 unsigned Latency = 0;
2239 switch (Cand.Reason) {
2240 default:
2241 break;
2242 case RegExcess:
2243 P = Cand.RPDelta.Excess;
2244 break;
2245 case RegCritical:
2246 P = Cand.RPDelta.CriticalMax;
2247 break;
2248 case RegMax:
2249 P = Cand.RPDelta.CurrentMax;
2250 break;
2251 case ResourceReduce:
2252 ResIdx = Cand.Policy.ReduceResIdx;
2253 break;
2254 case ResourceDemand:
2255 ResIdx = Cand.Policy.DemandResIdx;
2256 break;
2257 case TopDepthReduce:
2258 Latency = Cand.SU->getDepth();
2259 break;
2260 case TopPathReduce:
2261 Latency = Cand.SU->getHeight();
2262 break;
2263 case BotHeightReduce:
2264 Latency = Cand.SU->getHeight();
2265 break;
2266 case BotPathReduce:
2267 Latency = Cand.SU->getDepth();
2268 break;
2269 }
2270 dbgs() << " SU(" << Cand.SU->NodeNum << ") " << getReasonStr(Cand.Reason);
2271 if (P.isValid())
2272 dbgs() << " " << TRI->getRegPressureSetName(P.PSetID)
2273 << ":" << P.UnitIncrease << " ";
2274 else
2275 dbgs() << " ";
2276 if (ResIdx)
2277 dbgs() << " " << SchedModel->getProcResource(ResIdx)->Name << " ";
2278 else
2279 dbgs() << " ";
2280 if (Latency)
2281 dbgs() << " " << Latency << " cycles ";
2282 else
2283 dbgs() << " ";
2284 dbgs() << '\n';
2285 }
2286 #endif
2287
2288 /// Pick the best candidate from the top queue.
2289 ///
2290 /// TODO: getMaxPressureDelta results can be mostly cached for each SUnit during
2291 /// DAG building. To adjust for the current scheduling location we need to
2292 /// maintain the number of vreg uses remaining to be top-scheduled.
pickNodeFromQueue(SchedBoundary & Zone,const RegPressureTracker & RPTracker,SchedCandidate & Cand)2293 void ConvergingScheduler::pickNodeFromQueue(SchedBoundary &Zone,
2294 const RegPressureTracker &RPTracker,
2295 SchedCandidate &Cand) {
2296 ReadyQueue &Q = Zone.Available;
2297
2298 DEBUG(Q.dump());
2299
2300 // getMaxPressureDelta temporarily modifies the tracker.
2301 RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
2302
2303 for (ReadyQueue::iterator I = Q.begin(), E = Q.end(); I != E; ++I) {
2304
2305 SchedCandidate TryCand(Cand.Policy);
2306 TryCand.SU = *I;
2307 tryCandidate(Cand, TryCand, Zone, RPTracker, TempTracker);
2308 if (TryCand.Reason != NoCand) {
2309 // Initialize resource delta if needed in case future heuristics query it.
2310 if (TryCand.ResDelta == SchedResourceDelta())
2311 TryCand.initResourceDelta(DAG, SchedModel);
2312 Cand.setBest(TryCand);
2313 DEBUG(traceCandidate(Cand));
2314 }
2315 }
2316 }
2317
tracePick(const ConvergingScheduler::SchedCandidate & Cand,bool IsTop)2318 static void tracePick(const ConvergingScheduler::SchedCandidate &Cand,
2319 bool IsTop) {
2320 DEBUG(dbgs() << "Pick " << (IsTop ? "Top " : "Bot ")
2321 << ConvergingScheduler::getReasonStr(Cand.Reason) << '\n');
2322 }
2323
2324 /// Pick the best candidate node from either the top or bottom queue.
pickNodeBidirectional(bool & IsTopNode)2325 SUnit *ConvergingScheduler::pickNodeBidirectional(bool &IsTopNode) {
2326 // Schedule as far as possible in the direction of no choice. This is most
2327 // efficient, but also provides the best heuristics for CriticalPSets.
2328 if (SUnit *SU = Bot.pickOnlyChoice()) {
2329 IsTopNode = false;
2330 DEBUG(dbgs() << "Pick Bot NOCAND\n");
2331 return SU;
2332 }
2333 if (SUnit *SU = Top.pickOnlyChoice()) {
2334 IsTopNode = true;
2335 DEBUG(dbgs() << "Pick Top NOCAND\n");
2336 return SU;
2337 }
2338 CandPolicy NoPolicy;
2339 SchedCandidate BotCand(NoPolicy);
2340 SchedCandidate TopCand(NoPolicy);
2341 Bot.setPolicy(BotCand.Policy, Top);
2342 Top.setPolicy(TopCand.Policy, Bot);
2343
2344 // Prefer bottom scheduling when heuristics are silent.
2345 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2346 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2347
2348 // If either Q has a single candidate that provides the least increase in
2349 // Excess pressure, we can immediately schedule from that Q.
2350 //
2351 // RegionCriticalPSets summarizes the pressure within the scheduled region and
2352 // affects picking from either Q. If scheduling in one direction must
2353 // increase pressure for one of the excess PSets, then schedule in that
2354 // direction first to provide more freedom in the other direction.
2355 if ((BotCand.Reason == RegExcess && !BotCand.isRepeat(RegExcess))
2356 || (BotCand.Reason == RegCritical
2357 && !BotCand.isRepeat(RegCritical)))
2358 {
2359 IsTopNode = false;
2360 tracePick(BotCand, IsTopNode);
2361 return BotCand.SU;
2362 }
2363 // Check if the top Q has a better candidate.
2364 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2365 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2366
2367 // Choose the queue with the most important (lowest enum) reason.
2368 if (TopCand.Reason < BotCand.Reason) {
2369 IsTopNode = true;
2370 tracePick(TopCand, IsTopNode);
2371 return TopCand.SU;
2372 }
2373 // Otherwise prefer the bottom candidate, in node order if all else failed.
2374 IsTopNode = false;
2375 tracePick(BotCand, IsTopNode);
2376 return BotCand.SU;
2377 }
2378
2379 /// Pick the best node to balance the schedule. Implements MachineSchedStrategy.
pickNode(bool & IsTopNode)2380 SUnit *ConvergingScheduler::pickNode(bool &IsTopNode) {
2381 if (DAG->top() == DAG->bottom()) {
2382 assert(Top.Available.empty() && Top.Pending.empty() &&
2383 Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
2384 return NULL;
2385 }
2386 SUnit *SU;
2387 do {
2388 if (ForceTopDown) {
2389 SU = Top.pickOnlyChoice();
2390 if (!SU) {
2391 CandPolicy NoPolicy;
2392 SchedCandidate TopCand(NoPolicy);
2393 pickNodeFromQueue(Top, DAG->getTopRPTracker(), TopCand);
2394 assert(TopCand.Reason != NoCand && "failed to find the first candidate");
2395 SU = TopCand.SU;
2396 }
2397 IsTopNode = true;
2398 }
2399 else if (ForceBottomUp) {
2400 SU = Bot.pickOnlyChoice();
2401 if (!SU) {
2402 CandPolicy NoPolicy;
2403 SchedCandidate BotCand(NoPolicy);
2404 pickNodeFromQueue(Bot, DAG->getBotRPTracker(), BotCand);
2405 assert(BotCand.Reason != NoCand && "failed to find the first candidate");
2406 SU = BotCand.SU;
2407 }
2408 IsTopNode = false;
2409 }
2410 else {
2411 SU = pickNodeBidirectional(IsTopNode);
2412 }
2413 } while (SU->isScheduled);
2414
2415 if (SU->isTopReady())
2416 Top.removeReady(SU);
2417 if (SU->isBottomReady())
2418 Bot.removeReady(SU);
2419
2420 DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
2421 return SU;
2422 }
2423
reschedulePhysRegCopies(SUnit * SU,bool isTop)2424 void ConvergingScheduler::reschedulePhysRegCopies(SUnit *SU, bool isTop) {
2425
2426 MachineBasicBlock::iterator InsertPos = SU->getInstr();
2427 if (!isTop)
2428 ++InsertPos;
2429 SmallVectorImpl<SDep> &Deps = isTop ? SU->Preds : SU->Succs;
2430
2431 // Find already scheduled copies with a single physreg dependence and move
2432 // them just above the scheduled instruction.
2433 for (SmallVectorImpl<SDep>::iterator I = Deps.begin(), E = Deps.end();
2434 I != E; ++I) {
2435 if (I->getKind() != SDep::Data || !TRI->isPhysicalRegister(I->getReg()))
2436 continue;
2437 SUnit *DepSU = I->getSUnit();
2438 if (isTop ? DepSU->Succs.size() > 1 : DepSU->Preds.size() > 1)
2439 continue;
2440 MachineInstr *Copy = DepSU->getInstr();
2441 if (!Copy->isCopy())
2442 continue;
2443 DEBUG(dbgs() << " Rescheduling physreg copy ";
2444 I->getSUnit()->dump(DAG));
2445 DAG->moveInstruction(Copy, InsertPos);
2446 }
2447 }
2448
2449 /// Update the scheduler's state after scheduling a node. This is the same node
2450 /// that was just returned by pickNode(). However, ScheduleDAGMI needs to update
2451 /// it's state based on the current cycle before MachineSchedStrategy does.
2452 ///
2453 /// FIXME: Eventually, we may bundle physreg copies rather than rescheduling
2454 /// them here. See comments in biasPhysRegCopy.
schedNode(SUnit * SU,bool IsTopNode)2455 void ConvergingScheduler::schedNode(SUnit *SU, bool IsTopNode) {
2456 if (IsTopNode) {
2457 SU->TopReadyCycle = std::max(SU->TopReadyCycle, Top.CurrCycle);
2458 Top.bumpNode(SU);
2459 if (SU->hasPhysRegUses)
2460 reschedulePhysRegCopies(SU, true);
2461 }
2462 else {
2463 SU->BotReadyCycle = std::max(SU->BotReadyCycle, Bot.CurrCycle);
2464 Bot.bumpNode(SU);
2465 if (SU->hasPhysRegDefs)
2466 reschedulePhysRegCopies(SU, false);
2467 }
2468 }
2469
2470 /// Create the standard converging machine scheduler. This will be used as the
2471 /// default scheduler if the target does not set a default.
createConvergingSched(MachineSchedContext * C)2472 static ScheduleDAGInstrs *createConvergingSched(MachineSchedContext *C) {
2473 assert((!ForceTopDown || !ForceBottomUp) &&
2474 "-misched-topdown incompatible with -misched-bottomup");
2475 ScheduleDAGMI *DAG = new ScheduleDAGMI(C, new ConvergingScheduler());
2476 // Register DAG post-processors.
2477 //
2478 // FIXME: extend the mutation API to allow earlier mutations to instantiate
2479 // data and pass it to later mutations. Have a single mutation that gathers
2480 // the interesting nodes in one pass.
2481 DAG->addMutation(new CopyConstrain(DAG->TII, DAG->TRI));
2482 if (EnableLoadCluster)
2483 DAG->addMutation(new LoadClusterMutation(DAG->TII, DAG->TRI));
2484 if (EnableMacroFusion)
2485 DAG->addMutation(new MacroFusion(DAG->TII));
2486 return DAG;
2487 }
2488 static MachineSchedRegistry
2489 ConvergingSchedRegistry("converge", "Standard converging scheduler.",
2490 createConvergingSched);
2491
2492 //===----------------------------------------------------------------------===//
2493 // ILP Scheduler. Currently for experimental analysis of heuristics.
2494 //===----------------------------------------------------------------------===//
2495
2496 namespace {
2497 /// \brief Order nodes by the ILP metric.
2498 struct ILPOrder {
2499 const SchedDFSResult *DFSResult;
2500 const BitVector *ScheduledTrees;
2501 bool MaximizeILP;
2502
ILPOrder__anon58dd20f40711::ILPOrder2503 ILPOrder(bool MaxILP): DFSResult(0), ScheduledTrees(0), MaximizeILP(MaxILP) {}
2504
2505 /// \brief Apply a less-than relation on node priority.
2506 ///
2507 /// (Return true if A comes after B in the Q.)
operator ()__anon58dd20f40711::ILPOrder2508 bool operator()(const SUnit *A, const SUnit *B) const {
2509 unsigned SchedTreeA = DFSResult->getSubtreeID(A);
2510 unsigned SchedTreeB = DFSResult->getSubtreeID(B);
2511 if (SchedTreeA != SchedTreeB) {
2512 // Unscheduled trees have lower priority.
2513 if (ScheduledTrees->test(SchedTreeA) != ScheduledTrees->test(SchedTreeB))
2514 return ScheduledTrees->test(SchedTreeB);
2515
2516 // Trees with shallower connections have have lower priority.
2517 if (DFSResult->getSubtreeLevel(SchedTreeA)
2518 != DFSResult->getSubtreeLevel(SchedTreeB)) {
2519 return DFSResult->getSubtreeLevel(SchedTreeA)
2520 < DFSResult->getSubtreeLevel(SchedTreeB);
2521 }
2522 }
2523 if (MaximizeILP)
2524 return DFSResult->getILP(A) < DFSResult->getILP(B);
2525 else
2526 return DFSResult->getILP(A) > DFSResult->getILP(B);
2527 }
2528 };
2529
2530 /// \brief Schedule based on the ILP metric.
2531 class ILPScheduler : public MachineSchedStrategy {
2532 /// In case all subtrees are eventually connected to a common root through
2533 /// data dependence (e.g. reduction), place an upper limit on their size.
2534 ///
2535 /// FIXME: A subtree limit is generally good, but in the situation commented
2536 /// above, where multiple similar subtrees feed a common root, we should
2537 /// only split at a point where the resulting subtrees will be balanced.
2538 /// (a motivating test case must be found).
2539 static const unsigned SubtreeLimit = 16;
2540
2541 ScheduleDAGMI *DAG;
2542 ILPOrder Cmp;
2543
2544 std::vector<SUnit*> ReadyQ;
2545 public:
ILPScheduler(bool MaximizeILP)2546 ILPScheduler(bool MaximizeILP): DAG(0), Cmp(MaximizeILP) {}
2547
initialize(ScheduleDAGMI * dag)2548 virtual void initialize(ScheduleDAGMI *dag) {
2549 DAG = dag;
2550 DAG->computeDFSResult();
2551 Cmp.DFSResult = DAG->getDFSResult();
2552 Cmp.ScheduledTrees = &DAG->getScheduledTrees();
2553 ReadyQ.clear();
2554 }
2555
registerRoots()2556 virtual void registerRoots() {
2557 // Restore the heap in ReadyQ with the updated DFS results.
2558 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2559 }
2560
2561 /// Implement MachineSchedStrategy interface.
2562 /// -----------------------------------------
2563
2564 /// Callback to select the highest priority node from the ready Q.
pickNode(bool & IsTopNode)2565 virtual SUnit *pickNode(bool &IsTopNode) {
2566 if (ReadyQ.empty()) return NULL;
2567 std::pop_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2568 SUnit *SU = ReadyQ.back();
2569 ReadyQ.pop_back();
2570 IsTopNode = false;
2571 DEBUG(dbgs() << "Pick node " << "SU(" << SU->NodeNum << ") "
2572 << " ILP: " << DAG->getDFSResult()->getILP(SU)
2573 << " Tree: " << DAG->getDFSResult()->getSubtreeID(SU) << " @"
2574 << DAG->getDFSResult()->getSubtreeLevel(
2575 DAG->getDFSResult()->getSubtreeID(SU)) << '\n'
2576 << "Scheduling " << *SU->getInstr());
2577 return SU;
2578 }
2579
2580 /// \brief Scheduler callback to notify that a new subtree is scheduled.
scheduleTree(unsigned SubtreeID)2581 virtual void scheduleTree(unsigned SubtreeID) {
2582 std::make_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2583 }
2584
2585 /// Callback after a node is scheduled. Mark a newly scheduled tree, notify
2586 /// DFSResults, and resort the priority Q.
schedNode(SUnit * SU,bool IsTopNode)2587 virtual void schedNode(SUnit *SU, bool IsTopNode) {
2588 assert(!IsTopNode && "SchedDFSResult needs bottom-up");
2589 }
2590
releaseTopNode(SUnit *)2591 virtual void releaseTopNode(SUnit *) { /*only called for top roots*/ }
2592
releaseBottomNode(SUnit * SU)2593 virtual void releaseBottomNode(SUnit *SU) {
2594 ReadyQ.push_back(SU);
2595 std::push_heap(ReadyQ.begin(), ReadyQ.end(), Cmp);
2596 }
2597 };
2598 } // namespace
2599
createILPMaxScheduler(MachineSchedContext * C)2600 static ScheduleDAGInstrs *createILPMaxScheduler(MachineSchedContext *C) {
2601 return new ScheduleDAGMI(C, new ILPScheduler(true));
2602 }
createILPMinScheduler(MachineSchedContext * C)2603 static ScheduleDAGInstrs *createILPMinScheduler(MachineSchedContext *C) {
2604 return new ScheduleDAGMI(C, new ILPScheduler(false));
2605 }
2606 static MachineSchedRegistry ILPMaxRegistry(
2607 "ilpmax", "Schedule bottom-up for max ILP", createILPMaxScheduler);
2608 static MachineSchedRegistry ILPMinRegistry(
2609 "ilpmin", "Schedule bottom-up for min ILP", createILPMinScheduler);
2610
2611 //===----------------------------------------------------------------------===//
2612 // Machine Instruction Shuffler for Correctness Testing
2613 //===----------------------------------------------------------------------===//
2614
2615 #ifndef NDEBUG
2616 namespace {
2617 /// Apply a less-than relation on the node order, which corresponds to the
2618 /// instruction order prior to scheduling. IsReverse implements greater-than.
2619 template<bool IsReverse>
2620 struct SUnitOrder {
operator ()__anon58dd20f40811::SUnitOrder2621 bool operator()(SUnit *A, SUnit *B) const {
2622 if (IsReverse)
2623 return A->NodeNum > B->NodeNum;
2624 else
2625 return A->NodeNum < B->NodeNum;
2626 }
2627 };
2628
2629 /// Reorder instructions as much as possible.
2630 class InstructionShuffler : public MachineSchedStrategy {
2631 bool IsAlternating;
2632 bool IsTopDown;
2633
2634 // Using a less-than relation (SUnitOrder<false>) for the TopQ priority
2635 // gives nodes with a higher number higher priority causing the latest
2636 // instructions to be scheduled first.
2637 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<false> >
2638 TopQ;
2639 // When scheduling bottom-up, use greater-than as the queue priority.
2640 PriorityQueue<SUnit*, std::vector<SUnit*>, SUnitOrder<true> >
2641 BottomQ;
2642 public:
InstructionShuffler(bool alternate,bool topdown)2643 InstructionShuffler(bool alternate, bool topdown)
2644 : IsAlternating(alternate), IsTopDown(topdown) {}
2645
initialize(ScheduleDAGMI *)2646 virtual void initialize(ScheduleDAGMI *) {
2647 TopQ.clear();
2648 BottomQ.clear();
2649 }
2650
2651 /// Implement MachineSchedStrategy interface.
2652 /// -----------------------------------------
2653
pickNode(bool & IsTopNode)2654 virtual SUnit *pickNode(bool &IsTopNode) {
2655 SUnit *SU;
2656 if (IsTopDown) {
2657 do {
2658 if (TopQ.empty()) return NULL;
2659 SU = TopQ.top();
2660 TopQ.pop();
2661 } while (SU->isScheduled);
2662 IsTopNode = true;
2663 }
2664 else {
2665 do {
2666 if (BottomQ.empty()) return NULL;
2667 SU = BottomQ.top();
2668 BottomQ.pop();
2669 } while (SU->isScheduled);
2670 IsTopNode = false;
2671 }
2672 if (IsAlternating)
2673 IsTopDown = !IsTopDown;
2674 return SU;
2675 }
2676
schedNode(SUnit * SU,bool IsTopNode)2677 virtual void schedNode(SUnit *SU, bool IsTopNode) {}
2678
releaseTopNode(SUnit * SU)2679 virtual void releaseTopNode(SUnit *SU) {
2680 TopQ.push(SU);
2681 }
releaseBottomNode(SUnit * SU)2682 virtual void releaseBottomNode(SUnit *SU) {
2683 BottomQ.push(SU);
2684 }
2685 };
2686 } // namespace
2687
createInstructionShuffler(MachineSchedContext * C)2688 static ScheduleDAGInstrs *createInstructionShuffler(MachineSchedContext *C) {
2689 bool Alternate = !ForceTopDown && !ForceBottomUp;
2690 bool TopDown = !ForceBottomUp;
2691 assert((TopDown || !ForceTopDown) &&
2692 "-misched-topdown incompatible with -misched-bottomup");
2693 return new ScheduleDAGMI(C, new InstructionShuffler(Alternate, TopDown));
2694 }
2695 static MachineSchedRegistry ShufflerRegistry(
2696 "shuffle", "Shuffle machine instructions alternating directions",
2697 createInstructionShuffler);
2698 #endif // !NDEBUG
2699
2700 //===----------------------------------------------------------------------===//
2701 // GraphWriter support for ScheduleDAGMI.
2702 //===----------------------------------------------------------------------===//
2703
2704 #ifndef NDEBUG
2705 namespace llvm {
2706
2707 template<> struct GraphTraits<
2708 ScheduleDAGMI*> : public GraphTraits<ScheduleDAG*> {};
2709
2710 template<>
2711 struct DOTGraphTraits<ScheduleDAGMI*> : public DefaultDOTGraphTraits {
2712
DOTGraphTraitsllvm::DOTGraphTraits2713 DOTGraphTraits (bool isSimple=false) : DefaultDOTGraphTraits(isSimple) {}
2714
getGraphNamellvm::DOTGraphTraits2715 static std::string getGraphName(const ScheduleDAG *G) {
2716 return G->MF.getName();
2717 }
2718
renderGraphFromBottomUpllvm::DOTGraphTraits2719 static bool renderGraphFromBottomUp() {
2720 return true;
2721 }
2722
isNodeHiddenllvm::DOTGraphTraits2723 static bool isNodeHidden(const SUnit *Node) {
2724 return (Node->NumPreds > 10 || Node->NumSuccs > 10);
2725 }
2726
hasNodeAddressLabelllvm::DOTGraphTraits2727 static bool hasNodeAddressLabel(const SUnit *Node,
2728 const ScheduleDAG *Graph) {
2729 return false;
2730 }
2731
2732 /// If you want to override the dot attributes printed for a particular
2733 /// edge, override this method.
getEdgeAttributesllvm::DOTGraphTraits2734 static std::string getEdgeAttributes(const SUnit *Node,
2735 SUnitIterator EI,
2736 const ScheduleDAG *Graph) {
2737 if (EI.isArtificialDep())
2738 return "color=cyan,style=dashed";
2739 if (EI.isCtrlDep())
2740 return "color=blue,style=dashed";
2741 return "";
2742 }
2743
getNodeLabelllvm::DOTGraphTraits2744 static std::string getNodeLabel(const SUnit *SU, const ScheduleDAG *G) {
2745 std::string Str;
2746 raw_string_ostream SS(Str);
2747 SS << "SU(" << SU->NodeNum << ')';
2748 return SS.str();
2749 }
getNodeDescriptionllvm::DOTGraphTraits2750 static std::string getNodeDescription(const SUnit *SU, const ScheduleDAG *G) {
2751 return G->getGraphNodeLabel(SU);
2752 }
2753
getNodeAttributesllvm::DOTGraphTraits2754 static std::string getNodeAttributes(const SUnit *N,
2755 const ScheduleDAG *Graph) {
2756 std::string Str("shape=Mrecord");
2757 const SchedDFSResult *DFS =
2758 static_cast<const ScheduleDAGMI*>(Graph)->getDFSResult();
2759 if (DFS) {
2760 Str += ",style=filled,fillcolor=\"#";
2761 Str += DOT::getColorString(DFS->getSubtreeID(N));
2762 Str += '"';
2763 }
2764 return Str;
2765 }
2766 };
2767 } // namespace llvm
2768 #endif // NDEBUG
2769
2770 /// viewGraph - Pop up a ghostview window with the reachable parts of the DAG
2771 /// rendered using 'dot'.
2772 ///
viewGraph(const Twine & Name,const Twine & Title)2773 void ScheduleDAGMI::viewGraph(const Twine &Name, const Twine &Title) {
2774 #ifndef NDEBUG
2775 ViewGraph(this, Name, false, Title);
2776 #else
2777 errs() << "ScheduleDAGMI::viewGraph is only available in debug builds on "
2778 << "systems with Graphviz or gv!\n";
2779 #endif // NDEBUG
2780 }
2781
2782 /// Out-of-line implementation with no arguments is handy for gdb.
viewGraph()2783 void ScheduleDAGMI::viewGraph() {
2784 viewGraph(getDAGName(), "Scheduling-Units Graph for " + getDAGName());
2785 }
2786