1 //===-- MachineVerifier.cpp - Machine Code Verifier -----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // Pass to verify generated machine code. The following is checked:
11 //
12 // Operand counts: All explicit operands must be present.
13 //
14 // Register classes: All physical and virtual register operands must be
15 // compatible with the register class required by the instruction descriptor.
16 //
17 // Register live intervals: Registers must be defined only once, and must be
18 // defined before use.
19 //
20 // The machine code verifier is enabled from LLVMTargetMachine.cpp with the
21 // command-line option -verify-machineinstrs, or by defining the environment
22 // variable LLVM_VERIFY_MACHINEINSTRS to the name of a file that will receive
23 // the verifier errors.
24 //===----------------------------------------------------------------------===//
25
26 #include "llvm/CodeGen/Passes.h"
27 #include "llvm/ADT/DenseSet.h"
28 #include "llvm/ADT/DepthFirstIterator.h"
29 #include "llvm/ADT/SetOperations.h"
30 #include "llvm/ADT/SmallVector.h"
31 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
32 #include "llvm/CodeGen/LiveStackAnalysis.h"
33 #include "llvm/CodeGen/LiveVariables.h"
34 #include "llvm/CodeGen/MachineFrameInfo.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstrBundle.h"
37 #include "llvm/CodeGen/MachineMemOperand.h"
38 #include "llvm/CodeGen/MachineRegisterInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/InlineAsm.h"
41 #include "llvm/IR/Instructions.h"
42 #include "llvm/MC/MCAsmInfo.h"
43 #include "llvm/Support/Debug.h"
44 #include "llvm/Support/ErrorHandling.h"
45 #include "llvm/Support/raw_ostream.h"
46 #include "llvm/Target/TargetInstrInfo.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetRegisterInfo.h"
49 using namespace llvm;
50
51 namespace {
52 struct MachineVerifier {
53
MachineVerifier__anone6e39e310111::MachineVerifier54 MachineVerifier(Pass *pass, const char *b) :
55 PASS(pass),
56 Banner(b),
57 OutFileName(getenv("LLVM_VERIFY_MACHINEINSTRS"))
58 {}
59
60 bool runOnMachineFunction(MachineFunction &MF);
61
62 Pass *const PASS;
63 const char *Banner;
64 const char *const OutFileName;
65 raw_ostream *OS;
66 const MachineFunction *MF;
67 const TargetMachine *TM;
68 const TargetInstrInfo *TII;
69 const TargetRegisterInfo *TRI;
70 const MachineRegisterInfo *MRI;
71
72 unsigned foundErrors;
73
74 typedef SmallVector<unsigned, 16> RegVector;
75 typedef SmallVector<const uint32_t*, 4> RegMaskVector;
76 typedef DenseSet<unsigned> RegSet;
77 typedef DenseMap<unsigned, const MachineInstr*> RegMap;
78 typedef SmallPtrSet<const MachineBasicBlock*, 8> BlockSet;
79
80 const MachineInstr *FirstTerminator;
81 BlockSet FunctionBlocks;
82
83 BitVector regsReserved;
84 RegSet regsLive;
85 RegVector regsDefined, regsDead, regsKilled;
86 RegMaskVector regMasks;
87 RegSet regsLiveInButUnused;
88
89 SlotIndex lastIndex;
90
91 // Add Reg and any sub-registers to RV
addRegWithSubRegs__anone6e39e310111::MachineVerifier92 void addRegWithSubRegs(RegVector &RV, unsigned Reg) {
93 RV.push_back(Reg);
94 if (TargetRegisterInfo::isPhysicalRegister(Reg))
95 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs)
96 RV.push_back(*SubRegs);
97 }
98
99 struct BBInfo {
100 // Is this MBB reachable from the MF entry point?
101 bool reachable;
102
103 // Vregs that must be live in because they are used without being
104 // defined. Map value is the user.
105 RegMap vregsLiveIn;
106
107 // Regs killed in MBB. They may be defined again, and will then be in both
108 // regsKilled and regsLiveOut.
109 RegSet regsKilled;
110
111 // Regs defined in MBB and live out. Note that vregs passing through may
112 // be live out without being mentioned here.
113 RegSet regsLiveOut;
114
115 // Vregs that pass through MBB untouched. This set is disjoint from
116 // regsKilled and regsLiveOut.
117 RegSet vregsPassed;
118
119 // Vregs that must pass through MBB because they are needed by a successor
120 // block. This set is disjoint from regsLiveOut.
121 RegSet vregsRequired;
122
123 // Set versions of block's predecessor and successor lists.
124 BlockSet Preds, Succs;
125
BBInfo__anone6e39e310111::MachineVerifier::BBInfo126 BBInfo() : reachable(false) {}
127
128 // Add register to vregsPassed if it belongs there. Return true if
129 // anything changed.
addPassed__anone6e39e310111::MachineVerifier::BBInfo130 bool addPassed(unsigned Reg) {
131 if (!TargetRegisterInfo::isVirtualRegister(Reg))
132 return false;
133 if (regsKilled.count(Reg) || regsLiveOut.count(Reg))
134 return false;
135 return vregsPassed.insert(Reg).second;
136 }
137
138 // Same for a full set.
addPassed__anone6e39e310111::MachineVerifier::BBInfo139 bool addPassed(const RegSet &RS) {
140 bool changed = false;
141 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
142 if (addPassed(*I))
143 changed = true;
144 return changed;
145 }
146
147 // Add register to vregsRequired if it belongs there. Return true if
148 // anything changed.
addRequired__anone6e39e310111::MachineVerifier::BBInfo149 bool addRequired(unsigned Reg) {
150 if (!TargetRegisterInfo::isVirtualRegister(Reg))
151 return false;
152 if (regsLiveOut.count(Reg))
153 return false;
154 return vregsRequired.insert(Reg).second;
155 }
156
157 // Same for a full set.
addRequired__anone6e39e310111::MachineVerifier::BBInfo158 bool addRequired(const RegSet &RS) {
159 bool changed = false;
160 for (RegSet::const_iterator I = RS.begin(), E = RS.end(); I != E; ++I)
161 if (addRequired(*I))
162 changed = true;
163 return changed;
164 }
165
166 // Same for a full map.
addRequired__anone6e39e310111::MachineVerifier::BBInfo167 bool addRequired(const RegMap &RM) {
168 bool changed = false;
169 for (RegMap::const_iterator I = RM.begin(), E = RM.end(); I != E; ++I)
170 if (addRequired(I->first))
171 changed = true;
172 return changed;
173 }
174
175 // Live-out registers are either in regsLiveOut or vregsPassed.
isLiveOut__anone6e39e310111::MachineVerifier::BBInfo176 bool isLiveOut(unsigned Reg) const {
177 return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
178 }
179 };
180
181 // Extra register info per MBB.
182 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
183
isReserved__anone6e39e310111::MachineVerifier184 bool isReserved(unsigned Reg) {
185 return Reg < regsReserved.size() && regsReserved.test(Reg);
186 }
187
isAllocatable__anone6e39e310111::MachineVerifier188 bool isAllocatable(unsigned Reg) {
189 return Reg < TRI->getNumRegs() && MRI->isAllocatable(Reg);
190 }
191
192 // Analysis information if available
193 LiveVariables *LiveVars;
194 LiveIntervals *LiveInts;
195 LiveStacks *LiveStks;
196 SlotIndexes *Indexes;
197
198 void visitMachineFunctionBefore();
199 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
200 void visitMachineBundleBefore(const MachineInstr *MI);
201 void visitMachineInstrBefore(const MachineInstr *MI);
202 void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
203 void visitMachineInstrAfter(const MachineInstr *MI);
204 void visitMachineBundleAfter(const MachineInstr *MI);
205 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
206 void visitMachineFunctionAfter();
207
208 void report(const char *msg, const MachineFunction *MF);
209 void report(const char *msg, const MachineBasicBlock *MBB);
210 void report(const char *msg, const MachineInstr *MI);
211 void report(const char *msg, const MachineOperand *MO, unsigned MONum);
212 void report(const char *msg, const MachineFunction *MF,
213 const LiveInterval &LI);
214 void report(const char *msg, const MachineBasicBlock *MBB,
215 const LiveInterval &LI);
216
217 void verifyInlineAsm(const MachineInstr *MI);
218
219 void checkLiveness(const MachineOperand *MO, unsigned MONum);
220 void markReachable(const MachineBasicBlock *MBB);
221 void calcRegsPassed();
222 void checkPHIOps(const MachineBasicBlock *MBB);
223
224 void calcRegsRequired();
225 void verifyLiveVariables();
226 void verifyLiveIntervals();
227 void verifyLiveInterval(const LiveInterval&);
228 void verifyLiveIntervalValue(const LiveInterval&, VNInfo*);
229 void verifyLiveIntervalSegment(const LiveInterval&,
230 LiveInterval::const_iterator);
231
232 void verifyStackFrame();
233 };
234
235 struct MachineVerifierPass : public MachineFunctionPass {
236 static char ID; // Pass ID, replacement for typeid
237 const char *const Banner;
238
MachineVerifierPass__anone6e39e310111::MachineVerifierPass239 MachineVerifierPass(const char *b = 0)
240 : MachineFunctionPass(ID), Banner(b) {
241 initializeMachineVerifierPassPass(*PassRegistry::getPassRegistry());
242 }
243
getAnalysisUsage__anone6e39e310111::MachineVerifierPass244 void getAnalysisUsage(AnalysisUsage &AU) const {
245 AU.setPreservesAll();
246 MachineFunctionPass::getAnalysisUsage(AU);
247 }
248
runOnMachineFunction__anone6e39e310111::MachineVerifierPass249 bool runOnMachineFunction(MachineFunction &MF) {
250 MF.verify(this, Banner);
251 return false;
252 }
253 };
254
255 }
256
257 char MachineVerifierPass::ID = 0;
258 INITIALIZE_PASS(MachineVerifierPass, "machineverifier",
259 "Verify generated machine code", false, false)
260
createMachineVerifierPass(const char * Banner)261 FunctionPass *llvm::createMachineVerifierPass(const char *Banner) {
262 return new MachineVerifierPass(Banner);
263 }
264
verify(Pass * p,const char * Banner) const265 void MachineFunction::verify(Pass *p, const char *Banner) const {
266 MachineVerifier(p, Banner)
267 .runOnMachineFunction(const_cast<MachineFunction&>(*this));
268 }
269
runOnMachineFunction(MachineFunction & MF)270 bool MachineVerifier::runOnMachineFunction(MachineFunction &MF) {
271 raw_ostream *OutFile = 0;
272 if (OutFileName) {
273 std::string ErrorInfo;
274 OutFile = new raw_fd_ostream(OutFileName, ErrorInfo, sys::fs::F_Append);
275 if (!ErrorInfo.empty()) {
276 errs() << "Error opening '" << OutFileName << "': " << ErrorInfo << '\n';
277 exit(1);
278 }
279
280 OS = OutFile;
281 } else {
282 OS = &errs();
283 }
284
285 foundErrors = 0;
286
287 this->MF = &MF;
288 TM = &MF.getTarget();
289 TII = TM->getInstrInfo();
290 TRI = TM->getRegisterInfo();
291 MRI = &MF.getRegInfo();
292
293 LiveVars = NULL;
294 LiveInts = NULL;
295 LiveStks = NULL;
296 Indexes = NULL;
297 if (PASS) {
298 LiveInts = PASS->getAnalysisIfAvailable<LiveIntervals>();
299 // We don't want to verify LiveVariables if LiveIntervals is available.
300 if (!LiveInts)
301 LiveVars = PASS->getAnalysisIfAvailable<LiveVariables>();
302 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
303 Indexes = PASS->getAnalysisIfAvailable<SlotIndexes>();
304 }
305
306 visitMachineFunctionBefore();
307 for (MachineFunction::const_iterator MFI = MF.begin(), MFE = MF.end();
308 MFI!=MFE; ++MFI) {
309 visitMachineBasicBlockBefore(MFI);
310 // Keep track of the current bundle header.
311 const MachineInstr *CurBundle = 0;
312 // Do we expect the next instruction to be part of the same bundle?
313 bool InBundle = false;
314
315 for (MachineBasicBlock::const_instr_iterator MBBI = MFI->instr_begin(),
316 MBBE = MFI->instr_end(); MBBI != MBBE; ++MBBI) {
317 if (MBBI->getParent() != MFI) {
318 report("Bad instruction parent pointer", MFI);
319 *OS << "Instruction: " << *MBBI;
320 continue;
321 }
322
323 // Check for consistent bundle flags.
324 if (InBundle && !MBBI->isBundledWithPred())
325 report("Missing BundledPred flag, "
326 "BundledSucc was set on predecessor", MBBI);
327 if (!InBundle && MBBI->isBundledWithPred())
328 report("BundledPred flag is set, "
329 "but BundledSucc not set on predecessor", MBBI);
330
331 // Is this a bundle header?
332 if (!MBBI->isInsideBundle()) {
333 if (CurBundle)
334 visitMachineBundleAfter(CurBundle);
335 CurBundle = MBBI;
336 visitMachineBundleBefore(CurBundle);
337 } else if (!CurBundle)
338 report("No bundle header", MBBI);
339 visitMachineInstrBefore(MBBI);
340 for (unsigned I = 0, E = MBBI->getNumOperands(); I != E; ++I)
341 visitMachineOperand(&MBBI->getOperand(I), I);
342 visitMachineInstrAfter(MBBI);
343
344 // Was this the last bundled instruction?
345 InBundle = MBBI->isBundledWithSucc();
346 }
347 if (CurBundle)
348 visitMachineBundleAfter(CurBundle);
349 if (InBundle)
350 report("BundledSucc flag set on last instruction in block", &MFI->back());
351 visitMachineBasicBlockAfter(MFI);
352 }
353 visitMachineFunctionAfter();
354
355 if (OutFile)
356 delete OutFile;
357 else if (foundErrors)
358 report_fatal_error("Found "+Twine(foundErrors)+" machine code errors.");
359
360 // Clean up.
361 regsLive.clear();
362 regsDefined.clear();
363 regsDead.clear();
364 regsKilled.clear();
365 regMasks.clear();
366 regsLiveInButUnused.clear();
367 MBBInfoMap.clear();
368
369 return false; // no changes
370 }
371
report(const char * msg,const MachineFunction * MF)372 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
373 assert(MF);
374 *OS << '\n';
375 if (!foundErrors++) {
376 if (Banner)
377 *OS << "# " << Banner << '\n';
378 MF->print(*OS, Indexes);
379 }
380 *OS << "*** Bad machine code: " << msg << " ***\n"
381 << "- function: " << MF->getName() << "\n";
382 }
383
report(const char * msg,const MachineBasicBlock * MBB)384 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
385 assert(MBB);
386 report(msg, MBB->getParent());
387 *OS << "- basic block: BB#" << MBB->getNumber()
388 << ' ' << MBB->getName()
389 << " (" << (const void*)MBB << ')';
390 if (Indexes)
391 *OS << " [" << Indexes->getMBBStartIdx(MBB)
392 << ';' << Indexes->getMBBEndIdx(MBB) << ')';
393 *OS << '\n';
394 }
395
report(const char * msg,const MachineInstr * MI)396 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
397 assert(MI);
398 report(msg, MI->getParent());
399 *OS << "- instruction: ";
400 if (Indexes && Indexes->hasIndex(MI))
401 *OS << Indexes->getInstructionIndex(MI) << '\t';
402 MI->print(*OS, TM);
403 }
404
report(const char * msg,const MachineOperand * MO,unsigned MONum)405 void MachineVerifier::report(const char *msg,
406 const MachineOperand *MO, unsigned MONum) {
407 assert(MO);
408 report(msg, MO->getParent());
409 *OS << "- operand " << MONum << ": ";
410 MO->print(*OS, TM);
411 *OS << "\n";
412 }
413
report(const char * msg,const MachineFunction * MF,const LiveInterval & LI)414 void MachineVerifier::report(const char *msg, const MachineFunction *MF,
415 const LiveInterval &LI) {
416 report(msg, MF);
417 *OS << "- interval: ";
418 if (TargetRegisterInfo::isVirtualRegister(LI.reg))
419 *OS << PrintReg(LI.reg, TRI);
420 else
421 *OS << PrintRegUnit(LI.reg, TRI);
422 *OS << ' ' << LI << '\n';
423 }
424
report(const char * msg,const MachineBasicBlock * MBB,const LiveInterval & LI)425 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB,
426 const LiveInterval &LI) {
427 report(msg, MBB);
428 *OS << "- interval: ";
429 if (TargetRegisterInfo::isVirtualRegister(LI.reg))
430 *OS << PrintReg(LI.reg, TRI);
431 else
432 *OS << PrintRegUnit(LI.reg, TRI);
433 *OS << ' ' << LI << '\n';
434 }
435
markReachable(const MachineBasicBlock * MBB)436 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
437 BBInfo &MInfo = MBBInfoMap[MBB];
438 if (!MInfo.reachable) {
439 MInfo.reachable = true;
440 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
441 SuE = MBB->succ_end(); SuI != SuE; ++SuI)
442 markReachable(*SuI);
443 }
444 }
445
visitMachineFunctionBefore()446 void MachineVerifier::visitMachineFunctionBefore() {
447 lastIndex = SlotIndex();
448 regsReserved = MRI->getReservedRegs();
449
450 // A sub-register of a reserved register is also reserved
451 for (int Reg = regsReserved.find_first(); Reg>=0;
452 Reg = regsReserved.find_next(Reg)) {
453 for (MCSubRegIterator SubRegs(Reg, TRI); SubRegs.isValid(); ++SubRegs) {
454 // FIXME: This should probably be:
455 // assert(regsReserved.test(*SubRegs) && "Non-reserved sub-register");
456 regsReserved.set(*SubRegs);
457 }
458 }
459
460 markReachable(&MF->front());
461
462 // Build a set of the basic blocks in the function.
463 FunctionBlocks.clear();
464 for (MachineFunction::const_iterator
465 I = MF->begin(), E = MF->end(); I != E; ++I) {
466 FunctionBlocks.insert(I);
467 BBInfo &MInfo = MBBInfoMap[I];
468
469 MInfo.Preds.insert(I->pred_begin(), I->pred_end());
470 if (MInfo.Preds.size() != I->pred_size())
471 report("MBB has duplicate entries in its predecessor list.", I);
472
473 MInfo.Succs.insert(I->succ_begin(), I->succ_end());
474 if (MInfo.Succs.size() != I->succ_size())
475 report("MBB has duplicate entries in its successor list.", I);
476 }
477
478 // Check that the register use lists are sane.
479 MRI->verifyUseLists();
480
481 verifyStackFrame();
482 }
483
484 // Does iterator point to a and b as the first two elements?
matchPair(MachineBasicBlock::const_succ_iterator i,const MachineBasicBlock * a,const MachineBasicBlock * b)485 static bool matchPair(MachineBasicBlock::const_succ_iterator i,
486 const MachineBasicBlock *a, const MachineBasicBlock *b) {
487 if (*i == a)
488 return *++i == b;
489 if (*i == b)
490 return *++i == a;
491 return false;
492 }
493
494 void
visitMachineBasicBlockBefore(const MachineBasicBlock * MBB)495 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
496 FirstTerminator = 0;
497
498 if (MRI->isSSA()) {
499 // If this block has allocatable physical registers live-in, check that
500 // it is an entry block or landing pad.
501 for (MachineBasicBlock::livein_iterator LI = MBB->livein_begin(),
502 LE = MBB->livein_end();
503 LI != LE; ++LI) {
504 unsigned reg = *LI;
505 if (isAllocatable(reg) && !MBB->isLandingPad() &&
506 MBB != MBB->getParent()->begin()) {
507 report("MBB has allocable live-in, but isn't entry or landing-pad.", MBB);
508 }
509 }
510 }
511
512 // Count the number of landing pad successors.
513 SmallPtrSet<MachineBasicBlock*, 4> LandingPadSuccs;
514 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
515 E = MBB->succ_end(); I != E; ++I) {
516 if ((*I)->isLandingPad())
517 LandingPadSuccs.insert(*I);
518 if (!FunctionBlocks.count(*I))
519 report("MBB has successor that isn't part of the function.", MBB);
520 if (!MBBInfoMap[*I].Preds.count(MBB)) {
521 report("Inconsistent CFG", MBB);
522 *OS << "MBB is not in the predecessor list of the successor BB#"
523 << (*I)->getNumber() << ".\n";
524 }
525 }
526
527 // Check the predecessor list.
528 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
529 E = MBB->pred_end(); I != E; ++I) {
530 if (!FunctionBlocks.count(*I))
531 report("MBB has predecessor that isn't part of the function.", MBB);
532 if (!MBBInfoMap[*I].Succs.count(MBB)) {
533 report("Inconsistent CFG", MBB);
534 *OS << "MBB is not in the successor list of the predecessor BB#"
535 << (*I)->getNumber() << ".\n";
536 }
537 }
538
539 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
540 const BasicBlock *BB = MBB->getBasicBlock();
541 if (LandingPadSuccs.size() > 1 &&
542 !(AsmInfo &&
543 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
544 BB && isa<SwitchInst>(BB->getTerminator())))
545 report("MBB has more than one landing pad successor", MBB);
546
547 // Call AnalyzeBranch. If it succeeds, there several more conditions to check.
548 MachineBasicBlock *TBB = 0, *FBB = 0;
549 SmallVector<MachineOperand, 4> Cond;
550 if (!TII->AnalyzeBranch(*const_cast<MachineBasicBlock *>(MBB),
551 TBB, FBB, Cond)) {
552 // Ok, AnalyzeBranch thinks it knows what's going on with this block. Let's
553 // check whether its answers match up with reality.
554 if (!TBB && !FBB) {
555 // Block falls through to its successor.
556 MachineFunction::const_iterator MBBI = MBB;
557 ++MBBI;
558 if (MBBI == MF->end()) {
559 // It's possible that the block legitimately ends with a noreturn
560 // call or an unreachable, in which case it won't actually fall
561 // out the bottom of the function.
562 } else if (MBB->succ_size() == LandingPadSuccs.size()) {
563 // It's possible that the block legitimately ends with a noreturn
564 // call or an unreachable, in which case it won't actuall fall
565 // out of the block.
566 } else if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
567 report("MBB exits via unconditional fall-through but doesn't have "
568 "exactly one CFG successor!", MBB);
569 } else if (!MBB->isSuccessor(MBBI)) {
570 report("MBB exits via unconditional fall-through but its successor "
571 "differs from its CFG successor!", MBB);
572 }
573 if (!MBB->empty() && getBundleStart(&MBB->back())->isBarrier() &&
574 !TII->isPredicated(getBundleStart(&MBB->back()))) {
575 report("MBB exits via unconditional fall-through but ends with a "
576 "barrier instruction!", MBB);
577 }
578 if (!Cond.empty()) {
579 report("MBB exits via unconditional fall-through but has a condition!",
580 MBB);
581 }
582 } else if (TBB && !FBB && Cond.empty()) {
583 // Block unconditionally branches somewhere.
584 if (MBB->succ_size() != 1+LandingPadSuccs.size()) {
585 report("MBB exits via unconditional branch but doesn't have "
586 "exactly one CFG successor!", MBB);
587 } else if (!MBB->isSuccessor(TBB)) {
588 report("MBB exits via unconditional branch but the CFG "
589 "successor doesn't match the actual successor!", MBB);
590 }
591 if (MBB->empty()) {
592 report("MBB exits via unconditional branch but doesn't contain "
593 "any instructions!", MBB);
594 } else if (!getBundleStart(&MBB->back())->isBarrier()) {
595 report("MBB exits via unconditional branch but doesn't end with a "
596 "barrier instruction!", MBB);
597 } else if (!getBundleStart(&MBB->back())->isTerminator()) {
598 report("MBB exits via unconditional branch but the branch isn't a "
599 "terminator instruction!", MBB);
600 }
601 } else if (TBB && !FBB && !Cond.empty()) {
602 // Block conditionally branches somewhere, otherwise falls through.
603 MachineFunction::const_iterator MBBI = MBB;
604 ++MBBI;
605 if (MBBI == MF->end()) {
606 report("MBB conditionally falls through out of function!", MBB);
607 } else if (MBB->succ_size() == 1) {
608 // A conditional branch with only one successor is weird, but allowed.
609 if (&*MBBI != TBB)
610 report("MBB exits via conditional branch/fall-through but only has "
611 "one CFG successor!", MBB);
612 else if (TBB != *MBB->succ_begin())
613 report("MBB exits via conditional branch/fall-through but the CFG "
614 "successor don't match the actual successor!", MBB);
615 } else if (MBB->succ_size() != 2) {
616 report("MBB exits via conditional branch/fall-through but doesn't have "
617 "exactly two CFG successors!", MBB);
618 } else if (!matchPair(MBB->succ_begin(), TBB, MBBI)) {
619 report("MBB exits via conditional branch/fall-through but the CFG "
620 "successors don't match the actual successors!", MBB);
621 }
622 if (MBB->empty()) {
623 report("MBB exits via conditional branch/fall-through but doesn't "
624 "contain any instructions!", MBB);
625 } else if (getBundleStart(&MBB->back())->isBarrier()) {
626 report("MBB exits via conditional branch/fall-through but ends with a "
627 "barrier instruction!", MBB);
628 } else if (!getBundleStart(&MBB->back())->isTerminator()) {
629 report("MBB exits via conditional branch/fall-through but the branch "
630 "isn't a terminator instruction!", MBB);
631 }
632 } else if (TBB && FBB) {
633 // Block conditionally branches somewhere, otherwise branches
634 // somewhere else.
635 if (MBB->succ_size() == 1) {
636 // A conditional branch with only one successor is weird, but allowed.
637 if (FBB != TBB)
638 report("MBB exits via conditional branch/branch through but only has "
639 "one CFG successor!", MBB);
640 else if (TBB != *MBB->succ_begin())
641 report("MBB exits via conditional branch/branch through but the CFG "
642 "successor don't match the actual successor!", MBB);
643 } else if (MBB->succ_size() != 2) {
644 report("MBB exits via conditional branch/branch but doesn't have "
645 "exactly two CFG successors!", MBB);
646 } else if (!matchPair(MBB->succ_begin(), TBB, FBB)) {
647 report("MBB exits via conditional branch/branch but the CFG "
648 "successors don't match the actual successors!", MBB);
649 }
650 if (MBB->empty()) {
651 report("MBB exits via conditional branch/branch but doesn't "
652 "contain any instructions!", MBB);
653 } else if (!getBundleStart(&MBB->back())->isBarrier()) {
654 report("MBB exits via conditional branch/branch but doesn't end with a "
655 "barrier instruction!", MBB);
656 } else if (!getBundleStart(&MBB->back())->isTerminator()) {
657 report("MBB exits via conditional branch/branch but the branch "
658 "isn't a terminator instruction!", MBB);
659 }
660 if (Cond.empty()) {
661 report("MBB exits via conditinal branch/branch but there's no "
662 "condition!", MBB);
663 }
664 } else {
665 report("AnalyzeBranch returned invalid data!", MBB);
666 }
667 }
668
669 regsLive.clear();
670 for (MachineBasicBlock::livein_iterator I = MBB->livein_begin(),
671 E = MBB->livein_end(); I != E; ++I) {
672 if (!TargetRegisterInfo::isPhysicalRegister(*I)) {
673 report("MBB live-in list contains non-physical register", MBB);
674 continue;
675 }
676 for (MCSubRegIterator SubRegs(*I, TRI, /*IncludeSelf=*/true);
677 SubRegs.isValid(); ++SubRegs)
678 regsLive.insert(*SubRegs);
679 }
680 regsLiveInButUnused = regsLive;
681
682 const MachineFrameInfo *MFI = MF->getFrameInfo();
683 assert(MFI && "Function has no frame info");
684 BitVector PR = MFI->getPristineRegs(MBB);
685 for (int I = PR.find_first(); I>0; I = PR.find_next(I)) {
686 for (MCSubRegIterator SubRegs(I, TRI, /*IncludeSelf=*/true);
687 SubRegs.isValid(); ++SubRegs)
688 regsLive.insert(*SubRegs);
689 }
690
691 regsKilled.clear();
692 regsDefined.clear();
693
694 if (Indexes)
695 lastIndex = Indexes->getMBBStartIdx(MBB);
696 }
697
698 // This function gets called for all bundle headers, including normal
699 // stand-alone unbundled instructions.
visitMachineBundleBefore(const MachineInstr * MI)700 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
701 if (Indexes && Indexes->hasIndex(MI)) {
702 SlotIndex idx = Indexes->getInstructionIndex(MI);
703 if (!(idx > lastIndex)) {
704 report("Instruction index out of order", MI);
705 *OS << "Last instruction was at " << lastIndex << '\n';
706 }
707 lastIndex = idx;
708 }
709
710 // Ensure non-terminators don't follow terminators.
711 // Ignore predicated terminators formed by if conversion.
712 // FIXME: If conversion shouldn't need to violate this rule.
713 if (MI->isTerminator() && !TII->isPredicated(MI)) {
714 if (!FirstTerminator)
715 FirstTerminator = MI;
716 } else if (FirstTerminator) {
717 report("Non-terminator instruction after the first terminator", MI);
718 *OS << "First terminator was:\t" << *FirstTerminator;
719 }
720 }
721
722 // The operands on an INLINEASM instruction must follow a template.
723 // Verify that the flag operands make sense.
verifyInlineAsm(const MachineInstr * MI)724 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
725 // The first two operands on INLINEASM are the asm string and global flags.
726 if (MI->getNumOperands() < 2) {
727 report("Too few operands on inline asm", MI);
728 return;
729 }
730 if (!MI->getOperand(0).isSymbol())
731 report("Asm string must be an external symbol", MI);
732 if (!MI->getOperand(1).isImm())
733 report("Asm flags must be an immediate", MI);
734 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
735 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16.
736 if (!isUInt<5>(MI->getOperand(1).getImm()))
737 report("Unknown asm flags", &MI->getOperand(1), 1);
738
739 assert(InlineAsm::MIOp_FirstOperand == 2 && "Asm format changed");
740
741 unsigned OpNo = InlineAsm::MIOp_FirstOperand;
742 unsigned NumOps;
743 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
744 const MachineOperand &MO = MI->getOperand(OpNo);
745 // There may be implicit ops after the fixed operands.
746 if (!MO.isImm())
747 break;
748 NumOps = 1 + InlineAsm::getNumOperandRegisters(MO.getImm());
749 }
750
751 if (OpNo > MI->getNumOperands())
752 report("Missing operands in last group", MI);
753
754 // An optional MDNode follows the groups.
755 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
756 ++OpNo;
757
758 // All trailing operands must be implicit registers.
759 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
760 const MachineOperand &MO = MI->getOperand(OpNo);
761 if (!MO.isReg() || !MO.isImplicit())
762 report("Expected implicit register after groups", &MO, OpNo);
763 }
764 }
765
visitMachineInstrBefore(const MachineInstr * MI)766 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
767 const MCInstrDesc &MCID = MI->getDesc();
768 if (MI->getNumOperands() < MCID.getNumOperands()) {
769 report("Too few operands", MI);
770 *OS << MCID.getNumOperands() << " operands expected, but "
771 << MI->getNumExplicitOperands() << " given.\n";
772 }
773
774 // Check the tied operands.
775 if (MI->isInlineAsm())
776 verifyInlineAsm(MI);
777
778 // Check the MachineMemOperands for basic consistency.
779 for (MachineInstr::mmo_iterator I = MI->memoperands_begin(),
780 E = MI->memoperands_end(); I != E; ++I) {
781 if ((*I)->isLoad() && !MI->mayLoad())
782 report("Missing mayLoad flag", MI);
783 if ((*I)->isStore() && !MI->mayStore())
784 report("Missing mayStore flag", MI);
785 }
786
787 // Debug values must not have a slot index.
788 // Other instructions must have one, unless they are inside a bundle.
789 if (LiveInts) {
790 bool mapped = !LiveInts->isNotInMIMap(MI);
791 if (MI->isDebugValue()) {
792 if (mapped)
793 report("Debug instruction has a slot index", MI);
794 } else if (MI->isInsideBundle()) {
795 if (mapped)
796 report("Instruction inside bundle has a slot index", MI);
797 } else {
798 if (!mapped)
799 report("Missing slot index", MI);
800 }
801 }
802
803 StringRef ErrorInfo;
804 if (!TII->verifyInstruction(MI, ErrorInfo))
805 report(ErrorInfo.data(), MI);
806 }
807
808 void
visitMachineOperand(const MachineOperand * MO,unsigned MONum)809 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
810 const MachineInstr *MI = MO->getParent();
811 const MCInstrDesc &MCID = MI->getDesc();
812
813 // The first MCID.NumDefs operands must be explicit register defines
814 if (MONum < MCID.getNumDefs()) {
815 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
816 if (!MO->isReg())
817 report("Explicit definition must be a register", MO, MONum);
818 else if (!MO->isDef() && !MCOI.isOptionalDef())
819 report("Explicit definition marked as use", MO, MONum);
820 else if (MO->isImplicit())
821 report("Explicit definition marked as implicit", MO, MONum);
822 } else if (MONum < MCID.getNumOperands()) {
823 const MCOperandInfo &MCOI = MCID.OpInfo[MONum];
824 // Don't check if it's the last operand in a variadic instruction. See,
825 // e.g., LDM_RET in the arm back end.
826 if (MO->isReg() &&
827 !(MI->isVariadic() && MONum == MCID.getNumOperands()-1)) {
828 if (MO->isDef() && !MCOI.isOptionalDef())
829 report("Explicit operand marked as def", MO, MONum);
830 if (MO->isImplicit())
831 report("Explicit operand marked as implicit", MO, MONum);
832 }
833
834 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
835 if (TiedTo != -1) {
836 if (!MO->isReg())
837 report("Tied use must be a register", MO, MONum);
838 else if (!MO->isTied())
839 report("Operand should be tied", MO, MONum);
840 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
841 report("Tied def doesn't match MCInstrDesc", MO, MONum);
842 } else if (MO->isReg() && MO->isTied())
843 report("Explicit operand should not be tied", MO, MONum);
844 } else {
845 // ARM adds %reg0 operands to indicate predicates. We'll allow that.
846 if (MO->isReg() && !MO->isImplicit() && !MI->isVariadic() && MO->getReg())
847 report("Extra explicit operand on non-variadic instruction", MO, MONum);
848 }
849
850 switch (MO->getType()) {
851 case MachineOperand::MO_Register: {
852 const unsigned Reg = MO->getReg();
853 if (!Reg)
854 return;
855 if (MRI->tracksLiveness() && !MI->isDebugValue())
856 checkLiveness(MO, MONum);
857
858 // Verify the consistency of tied operands.
859 if (MO->isTied()) {
860 unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
861 const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
862 if (!OtherMO.isReg())
863 report("Must be tied to a register", MO, MONum);
864 if (!OtherMO.isTied())
865 report("Missing tie flags on tied operand", MO, MONum);
866 if (MI->findTiedOperandIdx(OtherIdx) != MONum)
867 report("Inconsistent tie links", MO, MONum);
868 if (MONum < MCID.getNumDefs()) {
869 if (OtherIdx < MCID.getNumOperands()) {
870 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
871 report("Explicit def tied to explicit use without tie constraint",
872 MO, MONum);
873 } else {
874 if (!OtherMO.isImplicit())
875 report("Explicit def should be tied to implicit use", MO, MONum);
876 }
877 }
878 }
879
880 // Verify two-address constraints after leaving SSA form.
881 unsigned DefIdx;
882 if (!MRI->isSSA() && MO->isUse() &&
883 MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
884 Reg != MI->getOperand(DefIdx).getReg())
885 report("Two-address instruction operands must be identical", MO, MONum);
886
887 // Check register classes.
888 if (MONum < MCID.getNumOperands() && !MO->isImplicit()) {
889 unsigned SubIdx = MO->getSubReg();
890
891 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
892 if (SubIdx) {
893 report("Illegal subregister index for physical register", MO, MONum);
894 return;
895 }
896 if (const TargetRegisterClass *DRC =
897 TII->getRegClass(MCID, MONum, TRI, *MF)) {
898 if (!DRC->contains(Reg)) {
899 report("Illegal physical register for instruction", MO, MONum);
900 *OS << TRI->getName(Reg) << " is not a "
901 << DRC->getName() << " register.\n";
902 }
903 }
904 } else {
905 // Virtual register.
906 const TargetRegisterClass *RC = MRI->getRegClass(Reg);
907 if (SubIdx) {
908 const TargetRegisterClass *SRC =
909 TRI->getSubClassWithSubReg(RC, SubIdx);
910 if (!SRC) {
911 report("Invalid subregister index for virtual register", MO, MONum);
912 *OS << "Register class " << RC->getName()
913 << " does not support subreg index " << SubIdx << "\n";
914 return;
915 }
916 if (RC != SRC) {
917 report("Invalid register class for subregister index", MO, MONum);
918 *OS << "Register class " << RC->getName()
919 << " does not fully support subreg index " << SubIdx << "\n";
920 return;
921 }
922 }
923 if (const TargetRegisterClass *DRC =
924 TII->getRegClass(MCID, MONum, TRI, *MF)) {
925 if (SubIdx) {
926 const TargetRegisterClass *SuperRC =
927 TRI->getLargestLegalSuperClass(RC);
928 if (!SuperRC) {
929 report("No largest legal super class exists.", MO, MONum);
930 return;
931 }
932 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
933 if (!DRC) {
934 report("No matching super-reg register class.", MO, MONum);
935 return;
936 }
937 }
938 if (!RC->hasSuperClassEq(DRC)) {
939 report("Illegal virtual register for instruction", MO, MONum);
940 *OS << "Expected a " << DRC->getName() << " register, but got a "
941 << RC->getName() << " register\n";
942 }
943 }
944 }
945 }
946 break;
947 }
948
949 case MachineOperand::MO_RegisterMask:
950 regMasks.push_back(MO->getRegMask());
951 break;
952
953 case MachineOperand::MO_MachineBasicBlock:
954 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
955 report("PHI operand is not in the CFG", MO, MONum);
956 break;
957
958 case MachineOperand::MO_FrameIndex:
959 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
960 LiveInts && !LiveInts->isNotInMIMap(MI)) {
961 LiveInterval &LI = LiveStks->getInterval(MO->getIndex());
962 SlotIndex Idx = LiveInts->getInstructionIndex(MI);
963 if (MI->mayLoad() && !LI.liveAt(Idx.getRegSlot(true))) {
964 report("Instruction loads from dead spill slot", MO, MONum);
965 *OS << "Live stack: " << LI << '\n';
966 }
967 if (MI->mayStore() && !LI.liveAt(Idx.getRegSlot())) {
968 report("Instruction stores to dead spill slot", MO, MONum);
969 *OS << "Live stack: " << LI << '\n';
970 }
971 }
972 break;
973
974 default:
975 break;
976 }
977 }
978
checkLiveness(const MachineOperand * MO,unsigned MONum)979 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
980 const MachineInstr *MI = MO->getParent();
981 const unsigned Reg = MO->getReg();
982
983 // Both use and def operands can read a register.
984 if (MO->readsReg()) {
985 regsLiveInButUnused.erase(Reg);
986
987 if (MO->isKill())
988 addRegWithSubRegs(regsKilled, Reg);
989
990 // Check that LiveVars knows this kill.
991 if (LiveVars && TargetRegisterInfo::isVirtualRegister(Reg) &&
992 MO->isKill()) {
993 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
994 if (std::find(VI.Kills.begin(), VI.Kills.end(), MI) == VI.Kills.end())
995 report("Kill missing from LiveVariables", MO, MONum);
996 }
997
998 // Check LiveInts liveness and kill.
999 if (LiveInts && !LiveInts->isNotInMIMap(MI)) {
1000 SlotIndex UseIdx = LiveInts->getInstructionIndex(MI);
1001 // Check the cached regunit intervals.
1002 if (TargetRegisterInfo::isPhysicalRegister(Reg) && !isReserved(Reg)) {
1003 for (MCRegUnitIterator Units(Reg, TRI); Units.isValid(); ++Units) {
1004 if (const LiveInterval *LI = LiveInts->getCachedRegUnit(*Units)) {
1005 LiveRangeQuery LRQ(*LI, UseIdx);
1006 if (!LRQ.valueIn()) {
1007 report("No live range at use", MO, MONum);
1008 *OS << UseIdx << " is not live in " << PrintRegUnit(*Units, TRI)
1009 << ' ' << *LI << '\n';
1010 }
1011 if (MO->isKill() && !LRQ.isKill()) {
1012 report("Live range continues after kill flag", MO, MONum);
1013 *OS << PrintRegUnit(*Units, TRI) << ' ' << *LI << '\n';
1014 }
1015 }
1016 }
1017 }
1018
1019 if (TargetRegisterInfo::isVirtualRegister(Reg)) {
1020 if (LiveInts->hasInterval(Reg)) {
1021 // This is a virtual register interval.
1022 const LiveInterval &LI = LiveInts->getInterval(Reg);
1023 LiveRangeQuery LRQ(LI, UseIdx);
1024 if (!LRQ.valueIn()) {
1025 report("No live range at use", MO, MONum);
1026 *OS << UseIdx << " is not live in " << LI << '\n';
1027 }
1028 // Check for extra kill flags.
1029 // Note that we allow missing kill flags for now.
1030 if (MO->isKill() && !LRQ.isKill()) {
1031 report("Live range continues after kill flag", MO, MONum);
1032 *OS << "Live range: " << LI << '\n';
1033 }
1034 } else {
1035 report("Virtual register has no live interval", MO, MONum);
1036 }
1037 }
1038 }
1039
1040 // Use of a dead register.
1041 if (!regsLive.count(Reg)) {
1042 if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
1043 // Reserved registers may be used even when 'dead'.
1044 if (!isReserved(Reg))
1045 report("Using an undefined physical register", MO, MONum);
1046 } else if (MRI->def_empty(Reg)) {
1047 report("Reading virtual register without a def", MO, MONum);
1048 } else {
1049 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1050 // We don't know which virtual registers are live in, so only complain
1051 // if vreg was killed in this MBB. Otherwise keep track of vregs that
1052 // must be live in. PHI instructions are handled separately.
1053 if (MInfo.regsKilled.count(Reg))
1054 report("Using a killed virtual register", MO, MONum);
1055 else if (!MI->isPHI())
1056 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
1057 }
1058 }
1059 }
1060
1061 if (MO->isDef()) {
1062 // Register defined.
1063 // TODO: verify that earlyclobber ops are not used.
1064 if (MO->isDead())
1065 addRegWithSubRegs(regsDead, Reg);
1066 else
1067 addRegWithSubRegs(regsDefined, Reg);
1068
1069 // Verify SSA form.
1070 if (MRI->isSSA() && TargetRegisterInfo::isVirtualRegister(Reg) &&
1071 llvm::next(MRI->def_begin(Reg)) != MRI->def_end())
1072 report("Multiple virtual register defs in SSA form", MO, MONum);
1073
1074 // Check LiveInts for a live range, but only for virtual registers.
1075 if (LiveInts && TargetRegisterInfo::isVirtualRegister(Reg) &&
1076 !LiveInts->isNotInMIMap(MI)) {
1077 SlotIndex DefIdx = LiveInts->getInstructionIndex(MI);
1078 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
1079 if (LiveInts->hasInterval(Reg)) {
1080 const LiveInterval &LI = LiveInts->getInterval(Reg);
1081 if (const VNInfo *VNI = LI.getVNInfoAt(DefIdx)) {
1082 assert(VNI && "NULL valno is not allowed");
1083 if (VNI->def != DefIdx) {
1084 report("Inconsistent valno->def", MO, MONum);
1085 *OS << "Valno " << VNI->id << " is not defined at "
1086 << DefIdx << " in " << LI << '\n';
1087 }
1088 } else {
1089 report("No live range at def", MO, MONum);
1090 *OS << DefIdx << " is not live in " << LI << '\n';
1091 }
1092 } else {
1093 report("Virtual register has no Live interval", MO, MONum);
1094 }
1095 }
1096 }
1097 }
1098
visitMachineInstrAfter(const MachineInstr * MI)1099 void MachineVerifier::visitMachineInstrAfter(const MachineInstr *MI) {
1100 }
1101
1102 // This function gets called after visiting all instructions in a bundle. The
1103 // argument points to the bundle header.
1104 // Normal stand-alone instructions are also considered 'bundles', and this
1105 // function is called for all of them.
visitMachineBundleAfter(const MachineInstr * MI)1106 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
1107 BBInfo &MInfo = MBBInfoMap[MI->getParent()];
1108 set_union(MInfo.regsKilled, regsKilled);
1109 set_subtract(regsLive, regsKilled); regsKilled.clear();
1110 // Kill any masked registers.
1111 while (!regMasks.empty()) {
1112 const uint32_t *Mask = regMasks.pop_back_val();
1113 for (RegSet::iterator I = regsLive.begin(), E = regsLive.end(); I != E; ++I)
1114 if (TargetRegisterInfo::isPhysicalRegister(*I) &&
1115 MachineOperand::clobbersPhysReg(Mask, *I))
1116 regsDead.push_back(*I);
1117 }
1118 set_subtract(regsLive, regsDead); regsDead.clear();
1119 set_union(regsLive, regsDefined); regsDefined.clear();
1120 }
1121
1122 void
visitMachineBasicBlockAfter(const MachineBasicBlock * MBB)1123 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
1124 MBBInfoMap[MBB].regsLiveOut = regsLive;
1125 regsLive.clear();
1126
1127 if (Indexes) {
1128 SlotIndex stop = Indexes->getMBBEndIdx(MBB);
1129 if (!(stop > lastIndex)) {
1130 report("Block ends before last instruction index", MBB);
1131 *OS << "Block ends at " << stop
1132 << " last instruction was at " << lastIndex << '\n';
1133 }
1134 lastIndex = stop;
1135 }
1136 }
1137
1138 // Calculate the largest possible vregsPassed sets. These are the registers that
1139 // can pass through an MBB live, but may not be live every time. It is assumed
1140 // that all vregsPassed sets are empty before the call.
calcRegsPassed()1141 void MachineVerifier::calcRegsPassed() {
1142 // First push live-out regs to successors' vregsPassed. Remember the MBBs that
1143 // have any vregsPassed.
1144 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1145 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1146 MFI != MFE; ++MFI) {
1147 const MachineBasicBlock &MBB(*MFI);
1148 BBInfo &MInfo = MBBInfoMap[&MBB];
1149 if (!MInfo.reachable)
1150 continue;
1151 for (MachineBasicBlock::const_succ_iterator SuI = MBB.succ_begin(),
1152 SuE = MBB.succ_end(); SuI != SuE; ++SuI) {
1153 BBInfo &SInfo = MBBInfoMap[*SuI];
1154 if (SInfo.addPassed(MInfo.regsLiveOut))
1155 todo.insert(*SuI);
1156 }
1157 }
1158
1159 // Iteratively push vregsPassed to successors. This will converge to the same
1160 // final state regardless of DenseSet iteration order.
1161 while (!todo.empty()) {
1162 const MachineBasicBlock *MBB = *todo.begin();
1163 todo.erase(MBB);
1164 BBInfo &MInfo = MBBInfoMap[MBB];
1165 for (MachineBasicBlock::const_succ_iterator SuI = MBB->succ_begin(),
1166 SuE = MBB->succ_end(); SuI != SuE; ++SuI) {
1167 if (*SuI == MBB)
1168 continue;
1169 BBInfo &SInfo = MBBInfoMap[*SuI];
1170 if (SInfo.addPassed(MInfo.vregsPassed))
1171 todo.insert(*SuI);
1172 }
1173 }
1174 }
1175
1176 // Calculate the set of virtual registers that must be passed through each basic
1177 // block in order to satisfy the requirements of successor blocks. This is very
1178 // similar to calcRegsPassed, only backwards.
calcRegsRequired()1179 void MachineVerifier::calcRegsRequired() {
1180 // First push live-in regs to predecessors' vregsRequired.
1181 SmallPtrSet<const MachineBasicBlock*, 8> todo;
1182 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1183 MFI != MFE; ++MFI) {
1184 const MachineBasicBlock &MBB(*MFI);
1185 BBInfo &MInfo = MBBInfoMap[&MBB];
1186 for (MachineBasicBlock::const_pred_iterator PrI = MBB.pred_begin(),
1187 PrE = MBB.pred_end(); PrI != PrE; ++PrI) {
1188 BBInfo &PInfo = MBBInfoMap[*PrI];
1189 if (PInfo.addRequired(MInfo.vregsLiveIn))
1190 todo.insert(*PrI);
1191 }
1192 }
1193
1194 // Iteratively push vregsRequired to predecessors. This will converge to the
1195 // same final state regardless of DenseSet iteration order.
1196 while (!todo.empty()) {
1197 const MachineBasicBlock *MBB = *todo.begin();
1198 todo.erase(MBB);
1199 BBInfo &MInfo = MBBInfoMap[MBB];
1200 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1201 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1202 if (*PrI == MBB)
1203 continue;
1204 BBInfo &SInfo = MBBInfoMap[*PrI];
1205 if (SInfo.addRequired(MInfo.vregsRequired))
1206 todo.insert(*PrI);
1207 }
1208 }
1209 }
1210
1211 // Check PHI instructions at the beginning of MBB. It is assumed that
1212 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
checkPHIOps(const MachineBasicBlock * MBB)1213 void MachineVerifier::checkPHIOps(const MachineBasicBlock *MBB) {
1214 SmallPtrSet<const MachineBasicBlock*, 8> seen;
1215 for (MachineBasicBlock::const_iterator BBI = MBB->begin(), BBE = MBB->end();
1216 BBI != BBE && BBI->isPHI(); ++BBI) {
1217 seen.clear();
1218
1219 for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
1220 unsigned Reg = BBI->getOperand(i).getReg();
1221 const MachineBasicBlock *Pre = BBI->getOperand(i + 1).getMBB();
1222 if (!Pre->isSuccessor(MBB))
1223 continue;
1224 seen.insert(Pre);
1225 BBInfo &PrInfo = MBBInfoMap[Pre];
1226 if (PrInfo.reachable && !PrInfo.isLiveOut(Reg))
1227 report("PHI operand is not live-out from predecessor",
1228 &BBI->getOperand(i), i);
1229 }
1230
1231 // Did we see all predecessors?
1232 for (MachineBasicBlock::const_pred_iterator PrI = MBB->pred_begin(),
1233 PrE = MBB->pred_end(); PrI != PrE; ++PrI) {
1234 if (!seen.count(*PrI)) {
1235 report("Missing PHI operand", BBI);
1236 *OS << "BB#" << (*PrI)->getNumber()
1237 << " is a predecessor according to the CFG.\n";
1238 }
1239 }
1240 }
1241 }
1242
visitMachineFunctionAfter()1243 void MachineVerifier::visitMachineFunctionAfter() {
1244 calcRegsPassed();
1245
1246 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1247 MFI != MFE; ++MFI) {
1248 BBInfo &MInfo = MBBInfoMap[MFI];
1249
1250 // Skip unreachable MBBs.
1251 if (!MInfo.reachable)
1252 continue;
1253
1254 checkPHIOps(MFI);
1255 }
1256
1257 // Now check liveness info if available
1258 calcRegsRequired();
1259
1260 // Check for killed virtual registers that should be live out.
1261 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1262 MFI != MFE; ++MFI) {
1263 BBInfo &MInfo = MBBInfoMap[MFI];
1264 for (RegSet::iterator
1265 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1266 ++I)
1267 if (MInfo.regsKilled.count(*I)) {
1268 report("Virtual register killed in block, but needed live out.", MFI);
1269 *OS << "Virtual register " << PrintReg(*I)
1270 << " is used after the block.\n";
1271 }
1272 }
1273
1274 if (!MF->empty()) {
1275 BBInfo &MInfo = MBBInfoMap[&MF->front()];
1276 for (RegSet::iterator
1277 I = MInfo.vregsRequired.begin(), E = MInfo.vregsRequired.end(); I != E;
1278 ++I)
1279 report("Virtual register def doesn't dominate all uses.",
1280 MRI->getVRegDef(*I));
1281 }
1282
1283 if (LiveVars)
1284 verifyLiveVariables();
1285 if (LiveInts)
1286 verifyLiveIntervals();
1287 }
1288
verifyLiveVariables()1289 void MachineVerifier::verifyLiveVariables() {
1290 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
1291 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1292 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1293 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
1294 for (MachineFunction::const_iterator MFI = MF->begin(), MFE = MF->end();
1295 MFI != MFE; ++MFI) {
1296 BBInfo &MInfo = MBBInfoMap[MFI];
1297
1298 // Our vregsRequired should be identical to LiveVariables' AliveBlocks
1299 if (MInfo.vregsRequired.count(Reg)) {
1300 if (!VI.AliveBlocks.test(MFI->getNumber())) {
1301 report("LiveVariables: Block missing from AliveBlocks", MFI);
1302 *OS << "Virtual register " << PrintReg(Reg)
1303 << " must be live through the block.\n";
1304 }
1305 } else {
1306 if (VI.AliveBlocks.test(MFI->getNumber())) {
1307 report("LiveVariables: Block should not be in AliveBlocks", MFI);
1308 *OS << "Virtual register " << PrintReg(Reg)
1309 << " is not needed live through the block.\n";
1310 }
1311 }
1312 }
1313 }
1314 }
1315
verifyLiveIntervals()1316 void MachineVerifier::verifyLiveIntervals() {
1317 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
1318 for (unsigned i = 0, e = MRI->getNumVirtRegs(); i != e; ++i) {
1319 unsigned Reg = TargetRegisterInfo::index2VirtReg(i);
1320
1321 // Spilling and splitting may leave unused registers around. Skip them.
1322 if (MRI->reg_nodbg_empty(Reg))
1323 continue;
1324
1325 if (!LiveInts->hasInterval(Reg)) {
1326 report("Missing live interval for virtual register", MF);
1327 *OS << PrintReg(Reg, TRI) << " still has defs or uses\n";
1328 continue;
1329 }
1330
1331 const LiveInterval &LI = LiveInts->getInterval(Reg);
1332 assert(Reg == LI.reg && "Invalid reg to interval mapping");
1333 verifyLiveInterval(LI);
1334 }
1335
1336 // Verify all the cached regunit intervals.
1337 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
1338 if (const LiveInterval *LI = LiveInts->getCachedRegUnit(i))
1339 verifyLiveInterval(*LI);
1340 }
1341
verifyLiveIntervalValue(const LiveInterval & LI,VNInfo * VNI)1342 void MachineVerifier::verifyLiveIntervalValue(const LiveInterval &LI,
1343 VNInfo *VNI) {
1344 if (VNI->isUnused())
1345 return;
1346
1347 const VNInfo *DefVNI = LI.getVNInfoAt(VNI->def);
1348
1349 if (!DefVNI) {
1350 report("Valno not live at def and not marked unused", MF, LI);
1351 *OS << "Valno #" << VNI->id << '\n';
1352 return;
1353 }
1354
1355 if (DefVNI != VNI) {
1356 report("Live range at def has different valno", MF, LI);
1357 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1358 << " where valno #" << DefVNI->id << " is live\n";
1359 return;
1360 }
1361
1362 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
1363 if (!MBB) {
1364 report("Invalid definition index", MF, LI);
1365 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1366 << " in " << LI << '\n';
1367 return;
1368 }
1369
1370 if (VNI->isPHIDef()) {
1371 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
1372 report("PHIDef value is not defined at MBB start", MBB, LI);
1373 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def
1374 << ", not at the beginning of BB#" << MBB->getNumber() << '\n';
1375 }
1376 return;
1377 }
1378
1379 // Non-PHI def.
1380 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
1381 if (!MI) {
1382 report("No instruction at def index", MBB, LI);
1383 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1384 return;
1385 }
1386
1387 bool hasDef = false;
1388 bool isEarlyClobber = false;
1389 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1390 if (!MOI->isReg() || !MOI->isDef())
1391 continue;
1392 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1393 if (MOI->getReg() != LI.reg)
1394 continue;
1395 } else {
1396 if (!TargetRegisterInfo::isPhysicalRegister(MOI->getReg()) ||
1397 !TRI->hasRegUnit(MOI->getReg(), LI.reg))
1398 continue;
1399 }
1400 hasDef = true;
1401 if (MOI->isEarlyClobber())
1402 isEarlyClobber = true;
1403 }
1404
1405 if (!hasDef) {
1406 report("Defining instruction does not modify register", MI);
1407 *OS << "Valno #" << VNI->id << " in " << LI << '\n';
1408 }
1409
1410 // Early clobber defs begin at USE slots, but other defs must begin at
1411 // DEF slots.
1412 if (isEarlyClobber) {
1413 if (!VNI->def.isEarlyClobber()) {
1414 report("Early clobber def must be at an early-clobber slot", MBB, LI);
1415 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1416 }
1417 } else if (!VNI->def.isRegister()) {
1418 report("Non-PHI, non-early clobber def must be at a register slot",
1419 MBB, LI);
1420 *OS << "Valno #" << VNI->id << " is defined at " << VNI->def << '\n';
1421 }
1422 }
1423
1424 void
verifyLiveIntervalSegment(const LiveInterval & LI,LiveInterval::const_iterator I)1425 MachineVerifier::verifyLiveIntervalSegment(const LiveInterval &LI,
1426 LiveInterval::const_iterator I) {
1427 const VNInfo *VNI = I->valno;
1428 assert(VNI && "Live range has no valno");
1429
1430 if (VNI->id >= LI.getNumValNums() || VNI != LI.getValNumInfo(VNI->id)) {
1431 report("Foreign valno in live range", MF, LI);
1432 *OS << *I << " has a bad valno\n";
1433 }
1434
1435 if (VNI->isUnused()) {
1436 report("Live range valno is marked unused", MF, LI);
1437 *OS << *I << '\n';
1438 }
1439
1440 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(I->start);
1441 if (!MBB) {
1442 report("Bad start of live segment, no basic block", MF, LI);
1443 *OS << *I << '\n';
1444 return;
1445 }
1446 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
1447 if (I->start != MBBStartIdx && I->start != VNI->def) {
1448 report("Live segment must begin at MBB entry or valno def", MBB, LI);
1449 *OS << *I << '\n';
1450 }
1451
1452 const MachineBasicBlock *EndMBB =
1453 LiveInts->getMBBFromIndex(I->end.getPrevSlot());
1454 if (!EndMBB) {
1455 report("Bad end of live segment, no basic block", MF, LI);
1456 *OS << *I << '\n';
1457 return;
1458 }
1459
1460 // No more checks for live-out segments.
1461 if (I->end == LiveInts->getMBBEndIdx(EndMBB))
1462 return;
1463
1464 // RegUnit intervals are allowed dead phis.
1465 if (!TargetRegisterInfo::isVirtualRegister(LI.reg) && VNI->isPHIDef() &&
1466 I->start == VNI->def && I->end == VNI->def.getDeadSlot())
1467 return;
1468
1469 // The live segment is ending inside EndMBB
1470 const MachineInstr *MI =
1471 LiveInts->getInstructionFromIndex(I->end.getPrevSlot());
1472 if (!MI) {
1473 report("Live segment doesn't end at a valid instruction", EndMBB, LI);
1474 *OS << *I << '\n';
1475 return;
1476 }
1477
1478 // The block slot must refer to a basic block boundary.
1479 if (I->end.isBlock()) {
1480 report("Live segment ends at B slot of an instruction", EndMBB, LI);
1481 *OS << *I << '\n';
1482 }
1483
1484 if (I->end.isDead()) {
1485 // Segment ends on the dead slot.
1486 // That means there must be a dead def.
1487 if (!SlotIndex::isSameInstr(I->start, I->end)) {
1488 report("Live segment ending at dead slot spans instructions", EndMBB, LI);
1489 *OS << *I << '\n';
1490 }
1491 }
1492
1493 // A live segment can only end at an early-clobber slot if it is being
1494 // redefined by an early-clobber def.
1495 if (I->end.isEarlyClobber()) {
1496 if (I+1 == LI.end() || (I+1)->start != I->end) {
1497 report("Live segment ending at early clobber slot must be "
1498 "redefined by an EC def in the same instruction", EndMBB, LI);
1499 *OS << *I << '\n';
1500 }
1501 }
1502
1503 // The following checks only apply to virtual registers. Physreg liveness
1504 // is too weird to check.
1505 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1506 // A live range can end with either a redefinition, a kill flag on a
1507 // use, or a dead flag on a def.
1508 bool hasRead = false;
1509 bool hasDeadDef = false;
1510 for (ConstMIBundleOperands MOI(MI); MOI.isValid(); ++MOI) {
1511 if (!MOI->isReg() || MOI->getReg() != LI.reg)
1512 continue;
1513 if (MOI->readsReg())
1514 hasRead = true;
1515 if (MOI->isDef() && MOI->isDead())
1516 hasDeadDef = true;
1517 }
1518
1519 if (I->end.isDead()) {
1520 if (!hasDeadDef) {
1521 report("Instruction doesn't have a dead def operand", MI);
1522 I->print(*OS);
1523 *OS << " in " << LI << '\n';
1524 }
1525 } else {
1526 if (!hasRead) {
1527 report("Instruction ending live range doesn't read the register", MI);
1528 *OS << *I << " in " << LI << '\n';
1529 }
1530 }
1531 }
1532
1533 // Now check all the basic blocks in this live segment.
1534 MachineFunction::const_iterator MFI = MBB;
1535 // Is this live range the beginning of a non-PHIDef VN?
1536 if (I->start == VNI->def && !VNI->isPHIDef()) {
1537 // Not live-in to any blocks.
1538 if (MBB == EndMBB)
1539 return;
1540 // Skip this block.
1541 ++MFI;
1542 }
1543 for (;;) {
1544 assert(LiveInts->isLiveInToMBB(LI, MFI));
1545 // We don't know how to track physregs into a landing pad.
1546 if (!TargetRegisterInfo::isVirtualRegister(LI.reg) &&
1547 MFI->isLandingPad()) {
1548 if (&*MFI == EndMBB)
1549 break;
1550 ++MFI;
1551 continue;
1552 }
1553
1554 // Is VNI a PHI-def in the current block?
1555 bool IsPHI = VNI->isPHIDef() &&
1556 VNI->def == LiveInts->getMBBStartIdx(MFI);
1557
1558 // Check that VNI is live-out of all predecessors.
1559 for (MachineBasicBlock::const_pred_iterator PI = MFI->pred_begin(),
1560 PE = MFI->pred_end(); PI != PE; ++PI) {
1561 SlotIndex PEnd = LiveInts->getMBBEndIdx(*PI);
1562 const VNInfo *PVNI = LI.getVNInfoBefore(PEnd);
1563
1564 // All predecessors must have a live-out value.
1565 if (!PVNI) {
1566 report("Register not marked live out of predecessor", *PI, LI);
1567 *OS << "Valno #" << VNI->id << " live into BB#" << MFI->getNumber()
1568 << '@' << LiveInts->getMBBStartIdx(MFI) << ", not live before "
1569 << PEnd << '\n';
1570 continue;
1571 }
1572
1573 // Only PHI-defs can take different predecessor values.
1574 if (!IsPHI && PVNI != VNI) {
1575 report("Different value live out of predecessor", *PI, LI);
1576 *OS << "Valno #" << PVNI->id << " live out of BB#"
1577 << (*PI)->getNumber() << '@' << PEnd
1578 << "\nValno #" << VNI->id << " live into BB#" << MFI->getNumber()
1579 << '@' << LiveInts->getMBBStartIdx(MFI) << '\n';
1580 }
1581 }
1582 if (&*MFI == EndMBB)
1583 break;
1584 ++MFI;
1585 }
1586 }
1587
verifyLiveInterval(const LiveInterval & LI)1588 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
1589 for (LiveInterval::const_vni_iterator I = LI.vni_begin(), E = LI.vni_end();
1590 I!=E; ++I)
1591 verifyLiveIntervalValue(LI, *I);
1592
1593 for (LiveInterval::const_iterator I = LI.begin(), E = LI.end(); I!=E; ++I)
1594 verifyLiveIntervalSegment(LI, I);
1595
1596 // Check the LI only has one connected component.
1597 if (TargetRegisterInfo::isVirtualRegister(LI.reg)) {
1598 ConnectedVNInfoEqClasses ConEQ(*LiveInts);
1599 unsigned NumComp = ConEQ.Classify(&LI);
1600 if (NumComp > 1) {
1601 report("Multiple connected components in live interval", MF, LI);
1602 for (unsigned comp = 0; comp != NumComp; ++comp) {
1603 *OS << comp << ": valnos";
1604 for (LiveInterval::const_vni_iterator I = LI.vni_begin(),
1605 E = LI.vni_end(); I!=E; ++I)
1606 if (comp == ConEQ.getEqClass(*I))
1607 *OS << ' ' << (*I)->id;
1608 *OS << '\n';
1609 }
1610 }
1611 }
1612 }
1613
1614 namespace {
1615 // FrameSetup and FrameDestroy can have zero adjustment, so using a single
1616 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
1617 // value is zero.
1618 // We use a bool plus an integer to capture the stack state.
1619 struct StackStateOfBB {
StackStateOfBB__anone6e39e310211::StackStateOfBB1620 StackStateOfBB() : EntryValue(0), ExitValue(0), EntryIsSetup(false),
1621 ExitIsSetup(false) { }
StackStateOfBB__anone6e39e310211::StackStateOfBB1622 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
1623 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
1624 ExitIsSetup(ExitSetup) { }
1625 // Can be negative, which means we are setting up a frame.
1626 int EntryValue;
1627 int ExitValue;
1628 bool EntryIsSetup;
1629 bool ExitIsSetup;
1630 };
1631 }
1632
1633 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
1634 /// by a FrameDestroy <n>, stack adjustments are identical on all
1635 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
verifyStackFrame()1636 void MachineVerifier::verifyStackFrame() {
1637 int FrameSetupOpcode = TII->getCallFrameSetupOpcode();
1638 int FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
1639
1640 SmallVector<StackStateOfBB, 8> SPState;
1641 SPState.resize(MF->getNumBlockIDs());
1642 SmallPtrSet<const MachineBasicBlock*, 8> Reachable;
1643
1644 // Visit the MBBs in DFS order.
1645 for (df_ext_iterator<const MachineFunction*,
1646 SmallPtrSet<const MachineBasicBlock*, 8> >
1647 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
1648 DFI != DFE; ++DFI) {
1649 const MachineBasicBlock *MBB = *DFI;
1650
1651 StackStateOfBB BBState;
1652 // Check the exit state of the DFS stack predecessor.
1653 if (DFI.getPathLength() >= 2) {
1654 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
1655 assert(Reachable.count(StackPred) &&
1656 "DFS stack predecessor is already visited.\n");
1657 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
1658 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
1659 BBState.ExitValue = BBState.EntryValue;
1660 BBState.ExitIsSetup = BBState.EntryIsSetup;
1661 }
1662
1663 // Update stack state by checking contents of MBB.
1664 for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
1665 I != E; ++I) {
1666 if (I->getOpcode() == FrameSetupOpcode) {
1667 // The first operand of a FrameOpcode should be i32.
1668 int Size = I->getOperand(0).getImm();
1669 assert(Size >= 0 &&
1670 "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1671
1672 if (BBState.ExitIsSetup)
1673 report("FrameSetup is after another FrameSetup", I);
1674 BBState.ExitValue -= Size;
1675 BBState.ExitIsSetup = true;
1676 }
1677
1678 if (I->getOpcode() == FrameDestroyOpcode) {
1679 // The first operand of a FrameOpcode should be i32.
1680 int Size = I->getOperand(0).getImm();
1681 assert(Size >= 0 &&
1682 "Value should be non-negative in FrameSetup and FrameDestroy.\n");
1683
1684 if (!BBState.ExitIsSetup)
1685 report("FrameDestroy is not after a FrameSetup", I);
1686 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
1687 BBState.ExitValue;
1688 if (BBState.ExitIsSetup && AbsSPAdj != Size) {
1689 report("FrameDestroy <n> is after FrameSetup <m>", I);
1690 *OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
1691 << AbsSPAdj << ">.\n";
1692 }
1693 BBState.ExitValue += Size;
1694 BBState.ExitIsSetup = false;
1695 }
1696 }
1697 SPState[MBB->getNumber()] = BBState;
1698
1699 // Make sure the exit state of any predecessor is consistent with the entry
1700 // state.
1701 for (MachineBasicBlock::const_pred_iterator I = MBB->pred_begin(),
1702 E = MBB->pred_end(); I != E; ++I) {
1703 if (Reachable.count(*I) &&
1704 (SPState[(*I)->getNumber()].ExitValue != BBState.EntryValue ||
1705 SPState[(*I)->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
1706 report("The exit stack state of a predecessor is inconsistent.", MBB);
1707 *OS << "Predecessor BB#" << (*I)->getNumber() << " has exit state ("
1708 << SPState[(*I)->getNumber()].ExitValue << ", "
1709 << SPState[(*I)->getNumber()].ExitIsSetup
1710 << "), while BB#" << MBB->getNumber() << " has entry state ("
1711 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
1712 }
1713 }
1714
1715 // Make sure the entry state of any successor is consistent with the exit
1716 // state.
1717 for (MachineBasicBlock::const_succ_iterator I = MBB->succ_begin(),
1718 E = MBB->succ_end(); I != E; ++I) {
1719 if (Reachable.count(*I) &&
1720 (SPState[(*I)->getNumber()].EntryValue != BBState.ExitValue ||
1721 SPState[(*I)->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
1722 report("The entry stack state of a successor is inconsistent.", MBB);
1723 *OS << "Successor BB#" << (*I)->getNumber() << " has entry state ("
1724 << SPState[(*I)->getNumber()].EntryValue << ", "
1725 << SPState[(*I)->getNumber()].EntryIsSetup
1726 << "), while BB#" << MBB->getNumber() << " has exit state ("
1727 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
1728 }
1729 }
1730
1731 // Make sure a basic block with return ends with zero stack adjustment.
1732 if (!MBB->empty() && MBB->back().isReturn()) {
1733 if (BBState.ExitIsSetup)
1734 report("A return block ends with a FrameSetup.", MBB);
1735 if (BBState.ExitValue)
1736 report("A return block ends with a nonzero stack adjustment.", MBB);
1737 }
1738 }
1739 }
1740