1 //===---------- SplitKit.cpp - Toolkit for splitting live ranges ----------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the SplitAnalysis class as well as mutator functions for
11 // live range splitting.
12 //
13 //===----------------------------------------------------------------------===//
14
15 #define DEBUG_TYPE "regalloc"
16 #include "SplitKit.h"
17 #include "llvm/ADT/Statistic.h"
18 #include "llvm/CodeGen/LiveIntervalAnalysis.h"
19 #include "llvm/CodeGen/LiveRangeEdit.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstrBuilder.h"
22 #include "llvm/CodeGen/MachineLoopInfo.h"
23 #include "llvm/CodeGen/MachineRegisterInfo.h"
24 #include "llvm/CodeGen/VirtRegMap.h"
25 #include "llvm/Support/Debug.h"
26 #include "llvm/Support/raw_ostream.h"
27 #include "llvm/Target/TargetInstrInfo.h"
28 #include "llvm/Target/TargetMachine.h"
29
30 using namespace llvm;
31
32 STATISTIC(NumFinished, "Number of splits finished");
33 STATISTIC(NumSimple, "Number of splits that were simple");
34 STATISTIC(NumCopies, "Number of copies inserted for splitting");
35 STATISTIC(NumRemats, "Number of rematerialized defs for splitting");
36 STATISTIC(NumRepairs, "Number of invalid live ranges repaired");
37
38 //===----------------------------------------------------------------------===//
39 // Split Analysis
40 //===----------------------------------------------------------------------===//
41
SplitAnalysis(const VirtRegMap & vrm,const LiveIntervals & lis,const MachineLoopInfo & mli)42 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm,
43 const LiveIntervals &lis,
44 const MachineLoopInfo &mli)
45 : MF(vrm.getMachineFunction()),
46 VRM(vrm),
47 LIS(lis),
48 Loops(mli),
49 TII(*MF.getTarget().getInstrInfo()),
50 CurLI(0),
51 LastSplitPoint(MF.getNumBlockIDs()) {}
52
clear()53 void SplitAnalysis::clear() {
54 UseSlots.clear();
55 UseBlocks.clear();
56 ThroughBlocks.clear();
57 CurLI = 0;
58 DidRepairRange = false;
59 }
60
computeLastSplitPoint(unsigned Num)61 SlotIndex SplitAnalysis::computeLastSplitPoint(unsigned Num) {
62 const MachineBasicBlock *MBB = MF.getBlockNumbered(Num);
63 const MachineBasicBlock *LPad = MBB->getLandingPadSuccessor();
64 std::pair<SlotIndex, SlotIndex> &LSP = LastSplitPoint[Num];
65 SlotIndex MBBEnd = LIS.getMBBEndIdx(MBB);
66
67 // Compute split points on the first call. The pair is independent of the
68 // current live interval.
69 if (!LSP.first.isValid()) {
70 MachineBasicBlock::const_iterator FirstTerm = MBB->getFirstTerminator();
71 if (FirstTerm == MBB->end())
72 LSP.first = MBBEnd;
73 else
74 LSP.first = LIS.getInstructionIndex(FirstTerm);
75
76 // If there is a landing pad successor, also find the call instruction.
77 if (!LPad)
78 return LSP.first;
79 // There may not be a call instruction (?) in which case we ignore LPad.
80 LSP.second = LSP.first;
81 for (MachineBasicBlock::const_iterator I = MBB->end(), E = MBB->begin();
82 I != E;) {
83 --I;
84 if (I->isCall()) {
85 LSP.second = LIS.getInstructionIndex(I);
86 break;
87 }
88 }
89 }
90
91 // If CurLI is live into a landing pad successor, move the last split point
92 // back to the call that may throw.
93 if (!LPad || !LSP.second || !LIS.isLiveInToMBB(*CurLI, LPad))
94 return LSP.first;
95
96 // Find the value leaving MBB.
97 const VNInfo *VNI = CurLI->getVNInfoBefore(MBBEnd);
98 if (!VNI)
99 return LSP.first;
100
101 // If the value leaving MBB was defined after the call in MBB, it can't
102 // really be live-in to the landing pad. This can happen if the landing pad
103 // has a PHI, and this register is undef on the exceptional edge.
104 // <rdar://problem/10664933>
105 if (!SlotIndex::isEarlierInstr(VNI->def, LSP.second) && VNI->def < MBBEnd)
106 return LSP.first;
107
108 // Value is properly live-in to the landing pad.
109 // Only allow splits before the call.
110 return LSP.second;
111 }
112
113 MachineBasicBlock::iterator
getLastSplitPointIter(MachineBasicBlock * MBB)114 SplitAnalysis::getLastSplitPointIter(MachineBasicBlock *MBB) {
115 SlotIndex LSP = getLastSplitPoint(MBB->getNumber());
116 if (LSP == LIS.getMBBEndIdx(MBB))
117 return MBB->end();
118 return LIS.getInstructionFromIndex(LSP);
119 }
120
121 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
analyzeUses()122 void SplitAnalysis::analyzeUses() {
123 assert(UseSlots.empty() && "Call clear first");
124
125 // First get all the defs from the interval values. This provides the correct
126 // slots for early clobbers.
127 for (LiveInterval::const_vni_iterator I = CurLI->vni_begin(),
128 E = CurLI->vni_end(); I != E; ++I)
129 if (!(*I)->isPHIDef() && !(*I)->isUnused())
130 UseSlots.push_back((*I)->def);
131
132 // Get use slots form the use-def chain.
133 const MachineRegisterInfo &MRI = MF.getRegInfo();
134 for (MachineRegisterInfo::use_nodbg_iterator
135 I = MRI.use_nodbg_begin(CurLI->reg), E = MRI.use_nodbg_end(); I != E;
136 ++I)
137 if (!I.getOperand().isUndef())
138 UseSlots.push_back(LIS.getInstructionIndex(&*I).getRegSlot());
139
140 array_pod_sort(UseSlots.begin(), UseSlots.end());
141
142 // Remove duplicates, keeping the smaller slot for each instruction.
143 // That is what we want for early clobbers.
144 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
145 SlotIndex::isSameInstr),
146 UseSlots.end());
147
148 // Compute per-live block info.
149 if (!calcLiveBlockInfo()) {
150 // FIXME: calcLiveBlockInfo found inconsistencies in the live range.
151 // I am looking at you, RegisterCoalescer!
152 DidRepairRange = true;
153 ++NumRepairs;
154 DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n");
155 const_cast<LiveIntervals&>(LIS)
156 .shrinkToUses(const_cast<LiveInterval*>(CurLI));
157 UseBlocks.clear();
158 ThroughBlocks.clear();
159 bool fixed = calcLiveBlockInfo();
160 (void)fixed;
161 assert(fixed && "Couldn't fix broken live interval");
162 }
163
164 DEBUG(dbgs() << "Analyze counted "
165 << UseSlots.size() << " instrs in "
166 << UseBlocks.size() << " blocks, through "
167 << NumThroughBlocks << " blocks.\n");
168 }
169
170 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
171 /// where CurLI is live.
calcLiveBlockInfo()172 bool SplitAnalysis::calcLiveBlockInfo() {
173 ThroughBlocks.resize(MF.getNumBlockIDs());
174 NumThroughBlocks = NumGapBlocks = 0;
175 if (CurLI->empty())
176 return true;
177
178 LiveInterval::const_iterator LVI = CurLI->begin();
179 LiveInterval::const_iterator LVE = CurLI->end();
180
181 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
182 UseI = UseSlots.begin();
183 UseE = UseSlots.end();
184
185 // Loop over basic blocks where CurLI is live.
186 MachineFunction::iterator MFI = LIS.getMBBFromIndex(LVI->start);
187 for (;;) {
188 BlockInfo BI;
189 BI.MBB = MFI;
190 SlotIndex Start, Stop;
191 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
192
193 // If the block contains no uses, the range must be live through. At one
194 // point, RegisterCoalescer could create dangling ranges that ended
195 // mid-block.
196 if (UseI == UseE || *UseI >= Stop) {
197 ++NumThroughBlocks;
198 ThroughBlocks.set(BI.MBB->getNumber());
199 // The range shouldn't end mid-block if there are no uses. This shouldn't
200 // happen.
201 if (LVI->end < Stop)
202 return false;
203 } else {
204 // This block has uses. Find the first and last uses in the block.
205 BI.FirstInstr = *UseI;
206 assert(BI.FirstInstr >= Start);
207 do ++UseI;
208 while (UseI != UseE && *UseI < Stop);
209 BI.LastInstr = UseI[-1];
210 assert(BI.LastInstr < Stop);
211
212 // LVI is the first live segment overlapping MBB.
213 BI.LiveIn = LVI->start <= Start;
214
215 // When not live in, the first use should be a def.
216 if (!BI.LiveIn) {
217 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
218 assert(LVI->start == BI.FirstInstr && "First instr should be a def");
219 BI.FirstDef = BI.FirstInstr;
220 }
221
222 // Look for gaps in the live range.
223 BI.LiveOut = true;
224 while (LVI->end < Stop) {
225 SlotIndex LastStop = LVI->end;
226 if (++LVI == LVE || LVI->start >= Stop) {
227 BI.LiveOut = false;
228 BI.LastInstr = LastStop;
229 break;
230 }
231
232 if (LastStop < LVI->start) {
233 // There is a gap in the live range. Create duplicate entries for the
234 // live-in snippet and the live-out snippet.
235 ++NumGapBlocks;
236
237 // Push the Live-in part.
238 BI.LiveOut = false;
239 UseBlocks.push_back(BI);
240 UseBlocks.back().LastInstr = LastStop;
241
242 // Set up BI for the live-out part.
243 BI.LiveIn = false;
244 BI.LiveOut = true;
245 BI.FirstInstr = BI.FirstDef = LVI->start;
246 }
247
248 // A LiveRange that starts in the middle of the block must be a def.
249 assert(LVI->start == LVI->valno->def && "Dangling LiveRange start");
250 if (!BI.FirstDef)
251 BI.FirstDef = LVI->start;
252 }
253
254 UseBlocks.push_back(BI);
255
256 // LVI is now at LVE or LVI->end >= Stop.
257 if (LVI == LVE)
258 break;
259 }
260
261 // Live segment ends exactly at Stop. Move to the next segment.
262 if (LVI->end == Stop && ++LVI == LVE)
263 break;
264
265 // Pick the next basic block.
266 if (LVI->start < Stop)
267 ++MFI;
268 else
269 MFI = LIS.getMBBFromIndex(LVI->start);
270 }
271
272 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
273 return true;
274 }
275
countLiveBlocks(const LiveInterval * cli) const276 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
277 if (cli->empty())
278 return 0;
279 LiveInterval *li = const_cast<LiveInterval*>(cli);
280 LiveInterval::iterator LVI = li->begin();
281 LiveInterval::iterator LVE = li->end();
282 unsigned Count = 0;
283
284 // Loop over basic blocks where li is live.
285 MachineFunction::const_iterator MFI = LIS.getMBBFromIndex(LVI->start);
286 SlotIndex Stop = LIS.getMBBEndIdx(MFI);
287 for (;;) {
288 ++Count;
289 LVI = li->advanceTo(LVI, Stop);
290 if (LVI == LVE)
291 return Count;
292 do {
293 ++MFI;
294 Stop = LIS.getMBBEndIdx(MFI);
295 } while (Stop <= LVI->start);
296 }
297 }
298
isOriginalEndpoint(SlotIndex Idx) const299 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
300 unsigned OrigReg = VRM.getOriginal(CurLI->reg);
301 const LiveInterval &Orig = LIS.getInterval(OrigReg);
302 assert(!Orig.empty() && "Splitting empty interval?");
303 LiveInterval::const_iterator I = Orig.find(Idx);
304
305 // Range containing Idx should begin at Idx.
306 if (I != Orig.end() && I->start <= Idx)
307 return I->start == Idx;
308
309 // Range does not contain Idx, previous must end at Idx.
310 return I != Orig.begin() && (--I)->end == Idx;
311 }
312
analyze(const LiveInterval * li)313 void SplitAnalysis::analyze(const LiveInterval *li) {
314 clear();
315 CurLI = li;
316 analyzeUses();
317 }
318
319
320 //===----------------------------------------------------------------------===//
321 // Split Editor
322 //===----------------------------------------------------------------------===//
323
324 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
SplitEditor(SplitAnalysis & sa,LiveIntervals & lis,VirtRegMap & vrm,MachineDominatorTree & mdt,MachineBlockFrequencyInfo & mbfi)325 SplitEditor::SplitEditor(SplitAnalysis &sa,
326 LiveIntervals &lis,
327 VirtRegMap &vrm,
328 MachineDominatorTree &mdt,
329 MachineBlockFrequencyInfo &mbfi)
330 : SA(sa), LIS(lis), VRM(vrm),
331 MRI(vrm.getMachineFunction().getRegInfo()),
332 MDT(mdt),
333 TII(*vrm.getMachineFunction().getTarget().getInstrInfo()),
334 TRI(*vrm.getMachineFunction().getTarget().getRegisterInfo()),
335 MBFI(mbfi),
336 Edit(0),
337 OpenIdx(0),
338 SpillMode(SM_Partition),
339 RegAssign(Allocator)
340 {}
341
reset(LiveRangeEdit & LRE,ComplementSpillMode SM)342 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
343 Edit = &LRE;
344 SpillMode = SM;
345 OpenIdx = 0;
346 RegAssign.clear();
347 Values.clear();
348
349 // Reset the LiveRangeCalc instances needed for this spill mode.
350 LRCalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
351 &LIS.getVNInfoAllocator());
352 if (SpillMode)
353 LRCalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
354 &LIS.getVNInfoAllocator());
355
356 // We don't need an AliasAnalysis since we will only be performing
357 // cheap-as-a-copy remats anyway.
358 Edit->anyRematerializable(0);
359 }
360
361 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
dump() const362 void SplitEditor::dump() const {
363 if (RegAssign.empty()) {
364 dbgs() << " empty\n";
365 return;
366 }
367
368 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
369 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
370 dbgs() << '\n';
371 }
372 #endif
373
defValue(unsigned RegIdx,const VNInfo * ParentVNI,SlotIndex Idx)374 VNInfo *SplitEditor::defValue(unsigned RegIdx,
375 const VNInfo *ParentVNI,
376 SlotIndex Idx) {
377 assert(ParentVNI && "Mapping NULL value");
378 assert(Idx.isValid() && "Invalid SlotIndex");
379 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
380 LiveInterval *LI = Edit->get(RegIdx);
381
382 // Create a new value.
383 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
384
385 // Use insert for lookup, so we can add missing values with a second lookup.
386 std::pair<ValueMap::iterator, bool> InsP =
387 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id),
388 ValueForcePair(VNI, false)));
389
390 // This was the first time (RegIdx, ParentVNI) was mapped.
391 // Keep it as a simple def without any liveness.
392 if (InsP.second)
393 return VNI;
394
395 // If the previous value was a simple mapping, add liveness for it now.
396 if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
397 SlotIndex Def = OldVNI->def;
398 LI->addRange(LiveRange(Def, Def.getDeadSlot(), OldVNI));
399 // No longer a simple mapping. Switch to a complex, non-forced mapping.
400 InsP.first->second = ValueForcePair();
401 }
402
403 // This is a complex mapping, add liveness for VNI
404 SlotIndex Def = VNI->def;
405 LI->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
406
407 return VNI;
408 }
409
forceRecompute(unsigned RegIdx,const VNInfo * ParentVNI)410 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo *ParentVNI) {
411 assert(ParentVNI && "Mapping NULL value");
412 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI->id)];
413 VNInfo *VNI = VFP.getPointer();
414
415 // ParentVNI was either unmapped or already complex mapped. Either way, just
416 // set the force bit.
417 if (!VNI) {
418 VFP.setInt(true);
419 return;
420 }
421
422 // This was previously a single mapping. Make sure the old def is represented
423 // by a trivial live range.
424 SlotIndex Def = VNI->def;
425 Edit->get(RegIdx)->addRange(LiveRange(Def, Def.getDeadSlot(), VNI));
426 // Mark as complex mapped, forced.
427 VFP = ValueForcePair(0, true);
428 }
429
defFromParent(unsigned RegIdx,VNInfo * ParentVNI,SlotIndex UseIdx,MachineBasicBlock & MBB,MachineBasicBlock::iterator I)430 VNInfo *SplitEditor::defFromParent(unsigned RegIdx,
431 VNInfo *ParentVNI,
432 SlotIndex UseIdx,
433 MachineBasicBlock &MBB,
434 MachineBasicBlock::iterator I) {
435 MachineInstr *CopyMI = 0;
436 SlotIndex Def;
437 LiveInterval *LI = Edit->get(RegIdx);
438
439 // We may be trying to avoid interference that ends at a deleted instruction,
440 // so always begin RegIdx 0 early and all others late.
441 bool Late = RegIdx != 0;
442
443 // Attempt cheap-as-a-copy rematerialization.
444 LiveRangeEdit::Remat RM(ParentVNI);
445 if (Edit->canRematerializeAt(RM, UseIdx, true)) {
446 Def = Edit->rematerializeAt(MBB, I, LI->reg, RM, TRI, Late);
447 ++NumRemats;
448 } else {
449 // Can't remat, just insert a copy from parent.
450 CopyMI = BuildMI(MBB, I, DebugLoc(), TII.get(TargetOpcode::COPY), LI->reg)
451 .addReg(Edit->getReg());
452 Def = LIS.getSlotIndexes()->insertMachineInstrInMaps(CopyMI, Late)
453 .getRegSlot();
454 ++NumCopies;
455 }
456
457 // Define the value in Reg.
458 return defValue(RegIdx, ParentVNI, Def);
459 }
460
461 /// Create a new virtual register and live interval.
openIntv()462 unsigned SplitEditor::openIntv() {
463 // Create the complement as index 0.
464 if (Edit->empty())
465 Edit->create();
466
467 // Create the open interval.
468 OpenIdx = Edit->size();
469 Edit->create();
470 return OpenIdx;
471 }
472
selectIntv(unsigned Idx)473 void SplitEditor::selectIntv(unsigned Idx) {
474 assert(Idx != 0 && "Cannot select the complement interval");
475 assert(Idx < Edit->size() && "Can only select previously opened interval");
476 DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n');
477 OpenIdx = Idx;
478 }
479
enterIntvBefore(SlotIndex Idx)480 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
481 assert(OpenIdx && "openIntv not called before enterIntvBefore");
482 DEBUG(dbgs() << " enterIntvBefore " << Idx);
483 Idx = Idx.getBaseIndex();
484 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
485 if (!ParentVNI) {
486 DEBUG(dbgs() << ": not live\n");
487 return Idx;
488 }
489 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
490 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
491 assert(MI && "enterIntvBefore called with invalid index");
492
493 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
494 return VNI->def;
495 }
496
enterIntvAfter(SlotIndex Idx)497 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
498 assert(OpenIdx && "openIntv not called before enterIntvAfter");
499 DEBUG(dbgs() << " enterIntvAfter " << Idx);
500 Idx = Idx.getBoundaryIndex();
501 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
502 if (!ParentVNI) {
503 DEBUG(dbgs() << ": not live\n");
504 return Idx;
505 }
506 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
507 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
508 assert(MI && "enterIntvAfter called with invalid index");
509
510 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
511 llvm::next(MachineBasicBlock::iterator(MI)));
512 return VNI->def;
513 }
514
enterIntvAtEnd(MachineBasicBlock & MBB)515 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
516 assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
517 SlotIndex End = LIS.getMBBEndIdx(&MBB);
518 SlotIndex Last = End.getPrevSlot();
519 DEBUG(dbgs() << " enterIntvAtEnd BB#" << MBB.getNumber() << ", " << Last);
520 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
521 if (!ParentVNI) {
522 DEBUG(dbgs() << ": not live\n");
523 return End;
524 }
525 DEBUG(dbgs() << ": valno " << ParentVNI->id);
526 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
527 SA.getLastSplitPointIter(&MBB));
528 RegAssign.insert(VNI->def, End, OpenIdx);
529 DEBUG(dump());
530 return VNI->def;
531 }
532
533 /// useIntv - indicate that all instructions in MBB should use OpenLI.
useIntv(const MachineBasicBlock & MBB)534 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
535 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
536 }
537
useIntv(SlotIndex Start,SlotIndex End)538 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
539 assert(OpenIdx && "openIntv not called before useIntv");
540 DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):");
541 RegAssign.insert(Start, End, OpenIdx);
542 DEBUG(dump());
543 }
544
leaveIntvAfter(SlotIndex Idx)545 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
546 assert(OpenIdx && "openIntv not called before leaveIntvAfter");
547 DEBUG(dbgs() << " leaveIntvAfter " << Idx);
548
549 // The interval must be live beyond the instruction at Idx.
550 SlotIndex Boundary = Idx.getBoundaryIndex();
551 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
552 if (!ParentVNI) {
553 DEBUG(dbgs() << ": not live\n");
554 return Boundary.getNextSlot();
555 }
556 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
557 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
558 assert(MI && "No instruction at index");
559
560 // In spill mode, make live ranges as short as possible by inserting the copy
561 // before MI. This is only possible if that instruction doesn't redefine the
562 // value. The inserted COPY is not a kill, and we don't need to recompute
563 // the source live range. The spiller also won't try to hoist this copy.
564 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
565 MI->readsVirtualRegister(Edit->getReg())) {
566 forceRecompute(0, ParentVNI);
567 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
568 return Idx;
569 }
570
571 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
572 llvm::next(MachineBasicBlock::iterator(MI)));
573 return VNI->def;
574 }
575
leaveIntvBefore(SlotIndex Idx)576 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
577 assert(OpenIdx && "openIntv not called before leaveIntvBefore");
578 DEBUG(dbgs() << " leaveIntvBefore " << Idx);
579
580 // The interval must be live into the instruction at Idx.
581 Idx = Idx.getBaseIndex();
582 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
583 if (!ParentVNI) {
584 DEBUG(dbgs() << ": not live\n");
585 return Idx.getNextSlot();
586 }
587 DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
588
589 MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
590 assert(MI && "No instruction at index");
591 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
592 return VNI->def;
593 }
594
leaveIntvAtTop(MachineBasicBlock & MBB)595 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
596 assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
597 SlotIndex Start = LIS.getMBBStartIdx(&MBB);
598 DEBUG(dbgs() << " leaveIntvAtTop BB#" << MBB.getNumber() << ", " << Start);
599
600 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
601 if (!ParentVNI) {
602 DEBUG(dbgs() << ": not live\n");
603 return Start;
604 }
605
606 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB,
607 MBB.SkipPHIsAndLabels(MBB.begin()));
608 RegAssign.insert(Start, VNI->def, OpenIdx);
609 DEBUG(dump());
610 return VNI->def;
611 }
612
overlapIntv(SlotIndex Start,SlotIndex End)613 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
614 assert(OpenIdx && "openIntv not called before overlapIntv");
615 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
616 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
617 "Parent changes value in extended range");
618 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
619 "Range cannot span basic blocks");
620
621 // The complement interval will be extended as needed by LRCalc.extend().
622 if (ParentVNI)
623 forceRecompute(0, ParentVNI);
624 DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):");
625 RegAssign.insert(Start, End, OpenIdx);
626 DEBUG(dump());
627 }
628
629 //===----------------------------------------------------------------------===//
630 // Spill modes
631 //===----------------------------------------------------------------------===//
632
removeBackCopies(SmallVectorImpl<VNInfo * > & Copies)633 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
634 LiveInterval *LI = Edit->get(0);
635 DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
636 RegAssignMap::iterator AssignI;
637 AssignI.setMap(RegAssign);
638
639 for (unsigned i = 0, e = Copies.size(); i != e; ++i) {
640 VNInfo *VNI = Copies[i];
641 SlotIndex Def = VNI->def;
642 MachineInstr *MI = LIS.getInstructionFromIndex(Def);
643 assert(MI && "No instruction for back-copy");
644
645 MachineBasicBlock *MBB = MI->getParent();
646 MachineBasicBlock::iterator MBBI(MI);
647 bool AtBegin;
648 do AtBegin = MBBI == MBB->begin();
649 while (!AtBegin && (--MBBI)->isDebugValue());
650
651 DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
652 LI->removeValNo(VNI);
653 LIS.RemoveMachineInstrFromMaps(MI);
654 MI->eraseFromParent();
655
656 // Adjust RegAssign if a register assignment is killed at VNI->def. We
657 // want to avoid calculating the live range of the source register if
658 // possible.
659 AssignI.find(Def.getPrevSlot());
660 if (!AssignI.valid() || AssignI.start() >= Def)
661 continue;
662 // If MI doesn't kill the assigned register, just leave it.
663 if (AssignI.stop() != Def)
664 continue;
665 unsigned RegIdx = AssignI.value();
666 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) {
667 DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx << '\n');
668 forceRecompute(RegIdx, Edit->getParent().getVNInfoAt(Def));
669 } else {
670 SlotIndex Kill = LIS.getInstructionIndex(MBBI).getRegSlot();
671 DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI);
672 AssignI.setStop(Kill);
673 }
674 }
675 }
676
677 MachineBasicBlock*
findShallowDominator(MachineBasicBlock * MBB,MachineBasicBlock * DefMBB)678 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
679 MachineBasicBlock *DefMBB) {
680 if (MBB == DefMBB)
681 return MBB;
682 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
683
684 const MachineLoopInfo &Loops = SA.Loops;
685 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
686 MachineDomTreeNode *DefDomNode = MDT[DefMBB];
687
688 // Best candidate so far.
689 MachineBasicBlock *BestMBB = MBB;
690 unsigned BestDepth = UINT_MAX;
691
692 for (;;) {
693 const MachineLoop *Loop = Loops.getLoopFor(MBB);
694
695 // MBB isn't in a loop, it doesn't get any better. All dominators have a
696 // higher frequency by definition.
697 if (!Loop) {
698 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
699 << MBB->getNumber() << " at depth 0\n");
700 return MBB;
701 }
702
703 // We'll never be able to exit the DefLoop.
704 if (Loop == DefLoop) {
705 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
706 << MBB->getNumber() << " in the same loop\n");
707 return MBB;
708 }
709
710 // Least busy dominator seen so far.
711 unsigned Depth = Loop->getLoopDepth();
712 if (Depth < BestDepth) {
713 BestMBB = MBB;
714 BestDepth = Depth;
715 DEBUG(dbgs() << "Def in BB#" << DefMBB->getNumber() << " dominates BB#"
716 << MBB->getNumber() << " at depth " << Depth << '\n');
717 }
718
719 // Leave loop by going to the immediate dominator of the loop header.
720 // This is a bigger stride than simply walking up the dominator tree.
721 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
722
723 // Too far up the dominator tree?
724 if (!IDom || !MDT.dominates(DefDomNode, IDom))
725 return BestMBB;
726
727 MBB = IDom->getBlock();
728 }
729 }
730
hoistCopiesForSize()731 void SplitEditor::hoistCopiesForSize() {
732 // Get the complement interval, always RegIdx 0.
733 LiveInterval *LI = Edit->get(0);
734 LiveInterval *Parent = &Edit->getParent();
735
736 // Track the nearest common dominator for all back-copies for each ParentVNI,
737 // indexed by ParentVNI->id.
738 typedef std::pair<MachineBasicBlock*, SlotIndex> DomPair;
739 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
740
741 // Find the nearest common dominator for parent values with multiple
742 // back-copies. If a single back-copy dominates, put it in DomPair.second.
743 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
744 VI != VE; ++VI) {
745 VNInfo *VNI = *VI;
746 if (VNI->isUnused())
747 continue;
748 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
749 assert(ParentVNI && "Parent not live at complement def");
750
751 // Don't hoist remats. The complement is probably going to disappear
752 // completely anyway.
753 if (Edit->didRematerialize(ParentVNI))
754 continue;
755
756 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
757 DomPair &Dom = NearestDom[ParentVNI->id];
758
759 // Keep directly defined parent values. This is either a PHI or an
760 // instruction in the complement range. All other copies of ParentVNI
761 // should be eliminated.
762 if (VNI->def == ParentVNI->def) {
763 DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
764 Dom = DomPair(ValMBB, VNI->def);
765 continue;
766 }
767 // Skip the singly mapped values. There is nothing to gain from hoisting a
768 // single back-copy.
769 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
770 DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
771 continue;
772 }
773
774 if (!Dom.first) {
775 // First time we see ParentVNI. VNI dominates itself.
776 Dom = DomPair(ValMBB, VNI->def);
777 } else if (Dom.first == ValMBB) {
778 // Two defs in the same block. Pick the earlier def.
779 if (!Dom.second.isValid() || VNI->def < Dom.second)
780 Dom.second = VNI->def;
781 } else {
782 // Different basic blocks. Check if one dominates.
783 MachineBasicBlock *Near =
784 MDT.findNearestCommonDominator(Dom.first, ValMBB);
785 if (Near == ValMBB)
786 // Def ValMBB dominates.
787 Dom = DomPair(ValMBB, VNI->def);
788 else if (Near != Dom.first)
789 // None dominate. Hoist to common dominator, need new def.
790 Dom = DomPair(Near, SlotIndex());
791 }
792
793 DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' << VNI->def
794 << " for parent " << ParentVNI->id << '@' << ParentVNI->def
795 << " hoist to BB#" << Dom.first->getNumber() << ' '
796 << Dom.second << '\n');
797 }
798
799 // Insert the hoisted copies.
800 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
801 DomPair &Dom = NearestDom[i];
802 if (!Dom.first || Dom.second.isValid())
803 continue;
804 // This value needs a hoisted copy inserted at the end of Dom.first.
805 VNInfo *ParentVNI = Parent->getValNumInfo(i);
806 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
807 // Get a less loopy dominator than Dom.first.
808 Dom.first = findShallowDominator(Dom.first, DefMBB);
809 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot();
810 Dom.second =
811 defFromParent(0, ParentVNI, Last, *Dom.first,
812 SA.getLastSplitPointIter(Dom.first))->def;
813 }
814
815 // Remove redundant back-copies that are now known to be dominated by another
816 // def with the same value.
817 SmallVector<VNInfo*, 8> BackCopies;
818 for (LiveInterval::vni_iterator VI = LI->vni_begin(), VE = LI->vni_end();
819 VI != VE; ++VI) {
820 VNInfo *VNI = *VI;
821 if (VNI->isUnused())
822 continue;
823 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
824 const DomPair &Dom = NearestDom[ParentVNI->id];
825 if (!Dom.first || Dom.second == VNI->def)
826 continue;
827 BackCopies.push_back(VNI);
828 forceRecompute(0, ParentVNI);
829 }
830 removeBackCopies(BackCopies);
831 }
832
833
834 /// transferValues - Transfer all possible values to the new live ranges.
835 /// Values that were rematerialized are left alone, they need LRCalc.extend().
transferValues()836 bool SplitEditor::transferValues() {
837 bool Skipped = false;
838 RegAssignMap::const_iterator AssignI = RegAssign.begin();
839 for (LiveInterval::const_iterator ParentI = Edit->getParent().begin(),
840 ParentE = Edit->getParent().end(); ParentI != ParentE; ++ParentI) {
841 DEBUG(dbgs() << " blit " << *ParentI << ':');
842 VNInfo *ParentVNI = ParentI->valno;
843 // RegAssign has holes where RegIdx 0 should be used.
844 SlotIndex Start = ParentI->start;
845 AssignI.advanceTo(Start);
846 do {
847 unsigned RegIdx;
848 SlotIndex End = ParentI->end;
849 if (!AssignI.valid()) {
850 RegIdx = 0;
851 } else if (AssignI.start() <= Start) {
852 RegIdx = AssignI.value();
853 if (AssignI.stop() < End) {
854 End = AssignI.stop();
855 ++AssignI;
856 }
857 } else {
858 RegIdx = 0;
859 End = std::min(End, AssignI.start());
860 }
861
862 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
863 DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx);
864 LiveInterval *LI = Edit->get(RegIdx);
865
866 // Check for a simply defined value that can be blitted directly.
867 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
868 if (VNInfo *VNI = VFP.getPointer()) {
869 DEBUG(dbgs() << ':' << VNI->id);
870 LI->addRange(LiveRange(Start, End, VNI));
871 Start = End;
872 continue;
873 }
874
875 // Skip values with forced recomputation.
876 if (VFP.getInt()) {
877 DEBUG(dbgs() << "(recalc)");
878 Skipped = true;
879 Start = End;
880 continue;
881 }
882
883 LiveRangeCalc &LRC = getLRCalc(RegIdx);
884
885 // This value has multiple defs in RegIdx, but it wasn't rematerialized,
886 // so the live range is accurate. Add live-in blocks in [Start;End) to the
887 // LiveInBlocks.
888 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start);
889 SlotIndex BlockStart, BlockEnd;
890 tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(MBB);
891
892 // The first block may be live-in, or it may have its own def.
893 if (Start != BlockStart) {
894 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
895 assert(VNI && "Missing def for complex mapped value");
896 DEBUG(dbgs() << ':' << VNI->id << "*BB#" << MBB->getNumber());
897 // MBB has its own def. Is it also live-out?
898 if (BlockEnd <= End)
899 LRC.setLiveOutValue(MBB, VNI);
900
901 // Skip to the next block for live-in.
902 ++MBB;
903 BlockStart = BlockEnd;
904 }
905
906 // Handle the live-in blocks covered by [Start;End).
907 assert(Start <= BlockStart && "Expected live-in block");
908 while (BlockStart < End) {
909 DEBUG(dbgs() << ">BB#" << MBB->getNumber());
910 BlockEnd = LIS.getMBBEndIdx(MBB);
911 if (BlockStart == ParentVNI->def) {
912 // This block has the def of a parent PHI, so it isn't live-in.
913 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
914 VNInfo *VNI = LI->extendInBlock(BlockStart, std::min(BlockEnd, End));
915 assert(VNI && "Missing def for complex mapped parent PHI");
916 if (End >= BlockEnd)
917 LRC.setLiveOutValue(MBB, VNI); // Live-out as well.
918 } else {
919 // This block needs a live-in value. The last block covered may not
920 // be live-out.
921 if (End < BlockEnd)
922 LRC.addLiveInBlock(LI, MDT[MBB], End);
923 else {
924 // Live-through, and we don't know the value.
925 LRC.addLiveInBlock(LI, MDT[MBB]);
926 LRC.setLiveOutValue(MBB, 0);
927 }
928 }
929 BlockStart = BlockEnd;
930 ++MBB;
931 }
932 Start = End;
933 } while (Start != ParentI->end);
934 DEBUG(dbgs() << '\n');
935 }
936
937 LRCalc[0].calculateValues();
938 if (SpillMode)
939 LRCalc[1].calculateValues();
940
941 return Skipped;
942 }
943
extendPHIKillRanges()944 void SplitEditor::extendPHIKillRanges() {
945 // Extend live ranges to be live-out for successor PHI values.
946 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
947 E = Edit->getParent().vni_end(); I != E; ++I) {
948 const VNInfo *PHIVNI = *I;
949 if (PHIVNI->isUnused() || !PHIVNI->isPHIDef())
950 continue;
951 unsigned RegIdx = RegAssign.lookup(PHIVNI->def);
952 LiveInterval *LI = Edit->get(RegIdx);
953 LiveRangeCalc &LRC = getLRCalc(RegIdx);
954 MachineBasicBlock *MBB = LIS.getMBBFromIndex(PHIVNI->def);
955 for (MachineBasicBlock::pred_iterator PI = MBB->pred_begin(),
956 PE = MBB->pred_end(); PI != PE; ++PI) {
957 SlotIndex End = LIS.getMBBEndIdx(*PI);
958 SlotIndex LastUse = End.getPrevSlot();
959 // The predecessor may not have a live-out value. That is OK, like an
960 // undef PHI operand.
961 if (Edit->getParent().liveAt(LastUse)) {
962 assert(RegAssign.lookup(LastUse) == RegIdx &&
963 "Different register assignment in phi predecessor");
964 LRC.extend(LI, End);
965 }
966 }
967 }
968 }
969
970 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
rewriteAssigned(bool ExtendRanges)971 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
972 for (MachineRegisterInfo::reg_iterator RI = MRI.reg_begin(Edit->getReg()),
973 RE = MRI.reg_end(); RI != RE;) {
974 MachineOperand &MO = RI.getOperand();
975 MachineInstr *MI = MO.getParent();
976 ++RI;
977 // LiveDebugVariables should have handled all DBG_VALUE instructions.
978 if (MI->isDebugValue()) {
979 DEBUG(dbgs() << "Zapping " << *MI);
980 MO.setReg(0);
981 continue;
982 }
983
984 // <undef> operands don't really read the register, so it doesn't matter
985 // which register we choose. When the use operand is tied to a def, we must
986 // use the same register as the def, so just do that always.
987 SlotIndex Idx = LIS.getInstructionIndex(MI);
988 if (MO.isDef() || MO.isUndef())
989 Idx = Idx.getRegSlot(MO.isEarlyClobber());
990
991 // Rewrite to the mapped register at Idx.
992 unsigned RegIdx = RegAssign.lookup(Idx);
993 LiveInterval *LI = Edit->get(RegIdx);
994 MO.setReg(LI->reg);
995 DEBUG(dbgs() << " rewr BB#" << MI->getParent()->getNumber() << '\t'
996 << Idx << ':' << RegIdx << '\t' << *MI);
997
998 // Extend liveness to Idx if the instruction reads reg.
999 if (!ExtendRanges || MO.isUndef())
1000 continue;
1001
1002 // Skip instructions that don't read Reg.
1003 if (MO.isDef()) {
1004 if (!MO.getSubReg() && !MO.isEarlyClobber())
1005 continue;
1006 // We may wan't to extend a live range for a partial redef, or for a use
1007 // tied to an early clobber.
1008 Idx = Idx.getPrevSlot();
1009 if (!Edit->getParent().liveAt(Idx))
1010 continue;
1011 } else
1012 Idx = Idx.getRegSlot(true);
1013
1014 getLRCalc(RegIdx).extend(LI, Idx.getNextSlot());
1015 }
1016 }
1017
deleteRematVictims()1018 void SplitEditor::deleteRematVictims() {
1019 SmallVector<MachineInstr*, 8> Dead;
1020 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I){
1021 LiveInterval *LI = *I;
1022 for (LiveInterval::const_iterator LII = LI->begin(), LIE = LI->end();
1023 LII != LIE; ++LII) {
1024 // Dead defs end at the dead slot.
1025 if (LII->end != LII->valno->def.getDeadSlot())
1026 continue;
1027 MachineInstr *MI = LIS.getInstructionFromIndex(LII->valno->def);
1028 assert(MI && "Missing instruction for dead def");
1029 MI->addRegisterDead(LI->reg, &TRI);
1030
1031 if (!MI->allDefsAreDead())
1032 continue;
1033
1034 DEBUG(dbgs() << "All defs dead: " << *MI);
1035 Dead.push_back(MI);
1036 }
1037 }
1038
1039 if (Dead.empty())
1040 return;
1041
1042 Edit->eliminateDeadDefs(Dead);
1043 }
1044
finish(SmallVectorImpl<unsigned> * LRMap)1045 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1046 ++NumFinished;
1047
1048 // At this point, the live intervals in Edit contain VNInfos corresponding to
1049 // the inserted copies.
1050
1051 // Add the original defs from the parent interval.
1052 for (LiveInterval::const_vni_iterator I = Edit->getParent().vni_begin(),
1053 E = Edit->getParent().vni_end(); I != E; ++I) {
1054 const VNInfo *ParentVNI = *I;
1055 if (ParentVNI->isUnused())
1056 continue;
1057 unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1058 defValue(RegIdx, ParentVNI, ParentVNI->def);
1059
1060 // Force rematted values to be recomputed everywhere.
1061 // The new live ranges may be truncated.
1062 if (Edit->didRematerialize(ParentVNI))
1063 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1064 forceRecompute(i, ParentVNI);
1065 }
1066
1067 // Hoist back-copies to the complement interval when in spill mode.
1068 switch (SpillMode) {
1069 case SM_Partition:
1070 // Leave all back-copies as is.
1071 break;
1072 case SM_Size:
1073 hoistCopiesForSize();
1074 break;
1075 case SM_Speed:
1076 llvm_unreachable("Spill mode 'speed' not implemented yet");
1077 }
1078
1079 // Transfer the simply mapped values, check if any are skipped.
1080 bool Skipped = transferValues();
1081 if (Skipped)
1082 extendPHIKillRanges();
1083 else
1084 ++NumSimple;
1085
1086 // Rewrite virtual registers, possibly extending ranges.
1087 rewriteAssigned(Skipped);
1088
1089 // Delete defs that were rematted everywhere.
1090 if (Skipped)
1091 deleteRematVictims();
1092
1093 // Get rid of unused values and set phi-kill flags.
1094 for (LiveRangeEdit::iterator I = Edit->begin(), E = Edit->end(); I != E; ++I)
1095 (*I)->RenumberValues(LIS);
1096
1097 // Provide a reverse mapping from original indices to Edit ranges.
1098 if (LRMap) {
1099 LRMap->clear();
1100 for (unsigned i = 0, e = Edit->size(); i != e; ++i)
1101 LRMap->push_back(i);
1102 }
1103
1104 // Now check if any registers were separated into multiple components.
1105 ConnectedVNInfoEqClasses ConEQ(LIS);
1106 for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1107 // Don't use iterators, they are invalidated by create() below.
1108 LiveInterval *li = Edit->get(i);
1109 unsigned NumComp = ConEQ.Classify(li);
1110 if (NumComp <= 1)
1111 continue;
1112 DEBUG(dbgs() << " " << NumComp << " components: " << *li << '\n');
1113 SmallVector<LiveInterval*, 8> dups;
1114 dups.push_back(li);
1115 for (unsigned j = 1; j != NumComp; ++j)
1116 dups.push_back(&Edit->create());
1117 ConEQ.Distribute(&dups[0], MRI);
1118 // The new intervals all map back to i.
1119 if (LRMap)
1120 LRMap->resize(Edit->size(), i);
1121 }
1122
1123 // Calculate spill weight and allocation hints for new intervals.
1124 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), SA.Loops, MBFI);
1125
1126 assert(!LRMap || LRMap->size() == Edit->size());
1127 }
1128
1129
1130 //===----------------------------------------------------------------------===//
1131 // Single Block Splitting
1132 //===----------------------------------------------------------------------===//
1133
shouldSplitSingleBlock(const BlockInfo & BI,bool SingleInstrs) const1134 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1135 bool SingleInstrs) const {
1136 // Always split for multiple instructions.
1137 if (!BI.isOneInstr())
1138 return true;
1139 // Don't split for single instructions unless explicitly requested.
1140 if (!SingleInstrs)
1141 return false;
1142 // Splitting a live-through range always makes progress.
1143 if (BI.LiveIn && BI.LiveOut)
1144 return true;
1145 // No point in isolating a copy. It has no register class constraints.
1146 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike())
1147 return false;
1148 // Finally, don't isolate an end point that was created by earlier splits.
1149 return isOriginalEndpoint(BI.FirstInstr);
1150 }
1151
splitSingleBlock(const SplitAnalysis::BlockInfo & BI)1152 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1153 openIntv();
1154 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB->getNumber());
1155 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1156 LastSplitPoint));
1157 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1158 useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1159 } else {
1160 // The last use is after the last valid split point.
1161 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1162 useIntv(SegStart, SegStop);
1163 overlapIntv(SegStop, BI.LastInstr);
1164 }
1165 }
1166
1167
1168 //===----------------------------------------------------------------------===//
1169 // Global Live Range Splitting Support
1170 //===----------------------------------------------------------------------===//
1171
1172 // These methods support a method of global live range splitting that uses a
1173 // global algorithm to decide intervals for CFG edges. They will insert split
1174 // points and color intervals in basic blocks while avoiding interference.
1175 //
1176 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1177 // are on the stack.
1178
splitLiveThroughBlock(unsigned MBBNum,unsigned IntvIn,SlotIndex LeaveBefore,unsigned IntvOut,SlotIndex EnterAfter)1179 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1180 unsigned IntvIn, SlotIndex LeaveBefore,
1181 unsigned IntvOut, SlotIndex EnterAfter){
1182 SlotIndex Start, Stop;
1183 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1184
1185 DEBUG(dbgs() << "BB#" << MBBNum << " [" << Start << ';' << Stop
1186 << ") intf " << LeaveBefore << '-' << EnterAfter
1187 << ", live-through " << IntvIn << " -> " << IntvOut);
1188
1189 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1190
1191 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1192 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1193 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1194
1195 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1196
1197 if (!IntvOut) {
1198 DEBUG(dbgs() << ", spill on entry.\n");
1199 //
1200 // <<<<<<<<< Possible LeaveBefore interference.
1201 // |-----------| Live through.
1202 // -____________ Spill on entry.
1203 //
1204 selectIntv(IntvIn);
1205 SlotIndex Idx = leaveIntvAtTop(*MBB);
1206 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1207 (void)Idx;
1208 return;
1209 }
1210
1211 if (!IntvIn) {
1212 DEBUG(dbgs() << ", reload on exit.\n");
1213 //
1214 // >>>>>>> Possible EnterAfter interference.
1215 // |-----------| Live through.
1216 // ___________-- Reload on exit.
1217 //
1218 selectIntv(IntvOut);
1219 SlotIndex Idx = enterIntvAtEnd(*MBB);
1220 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1221 (void)Idx;
1222 return;
1223 }
1224
1225 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1226 DEBUG(dbgs() << ", straight through.\n");
1227 //
1228 // |-----------| Live through.
1229 // ------------- Straight through, same intv, no interference.
1230 //
1231 selectIntv(IntvOut);
1232 useIntv(Start, Stop);
1233 return;
1234 }
1235
1236 // We cannot legally insert splits after LSP.
1237 SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1238 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1239
1240 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1241 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1242 DEBUG(dbgs() << ", switch avoiding interference.\n");
1243 //
1244 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference.
1245 // |-----------| Live through.
1246 // ------======= Switch intervals between interference.
1247 //
1248 selectIntv(IntvOut);
1249 SlotIndex Idx;
1250 if (LeaveBefore && LeaveBefore < LSP) {
1251 Idx = enterIntvBefore(LeaveBefore);
1252 useIntv(Idx, Stop);
1253 } else {
1254 Idx = enterIntvAtEnd(*MBB);
1255 }
1256 selectIntv(IntvIn);
1257 useIntv(Start, Idx);
1258 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1259 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1260 return;
1261 }
1262
1263 DEBUG(dbgs() << ", create local intv for interference.\n");
1264 //
1265 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference.
1266 // |-----------| Live through.
1267 // ==---------== Switch intervals before/after interference.
1268 //
1269 assert(LeaveBefore <= EnterAfter && "Missed case");
1270
1271 selectIntv(IntvOut);
1272 SlotIndex Idx = enterIntvAfter(EnterAfter);
1273 useIntv(Idx, Stop);
1274 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1275
1276 selectIntv(IntvIn);
1277 Idx = leaveIntvBefore(LeaveBefore);
1278 useIntv(Start, Idx);
1279 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1280 }
1281
1282
splitRegInBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvIn,SlotIndex LeaveBefore)1283 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1284 unsigned IntvIn, SlotIndex LeaveBefore) {
1285 SlotIndex Start, Stop;
1286 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1287
1288 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1289 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1290 << ", reg-in " << IntvIn << ", leave before " << LeaveBefore
1291 << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1292
1293 assert(IntvIn && "Must have register in");
1294 assert(BI.LiveIn && "Must be live-in");
1295 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1296
1297 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1298 DEBUG(dbgs() << " before interference.\n");
1299 //
1300 // <<< Interference after kill.
1301 // |---o---x | Killed in block.
1302 // ========= Use IntvIn everywhere.
1303 //
1304 selectIntv(IntvIn);
1305 useIntv(Start, BI.LastInstr);
1306 return;
1307 }
1308
1309 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1310
1311 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1312 //
1313 // <<< Possible interference after last use.
1314 // |---o---o---| Live-out on stack.
1315 // =========____ Leave IntvIn after last use.
1316 //
1317 // < Interference after last use.
1318 // |---o---o--o| Live-out on stack, late last use.
1319 // ============ Copy to stack after LSP, overlap IntvIn.
1320 // \_____ Stack interval is live-out.
1321 //
1322 if (BI.LastInstr < LSP) {
1323 DEBUG(dbgs() << ", spill after last use before interference.\n");
1324 selectIntv(IntvIn);
1325 SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1326 useIntv(Start, Idx);
1327 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1328 } else {
1329 DEBUG(dbgs() << ", spill before last split point.\n");
1330 selectIntv(IntvIn);
1331 SlotIndex Idx = leaveIntvBefore(LSP);
1332 overlapIntv(Idx, BI.LastInstr);
1333 useIntv(Start, Idx);
1334 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1335 }
1336 return;
1337 }
1338
1339 // The interference is overlapping somewhere we wanted to use IntvIn. That
1340 // means we need to create a local interval that can be allocated a
1341 // different register.
1342 unsigned LocalIntv = openIntv();
1343 (void)LocalIntv;
1344 DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1345
1346 if (!BI.LiveOut || BI.LastInstr < LSP) {
1347 //
1348 // <<<<<<< Interference overlapping uses.
1349 // |---o---o---| Live-out on stack.
1350 // =====----____ Leave IntvIn before interference, then spill.
1351 //
1352 SlotIndex To = leaveIntvAfter(BI.LastInstr);
1353 SlotIndex From = enterIntvBefore(LeaveBefore);
1354 useIntv(From, To);
1355 selectIntv(IntvIn);
1356 useIntv(Start, From);
1357 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1358 return;
1359 }
1360
1361 // <<<<<<< Interference overlapping uses.
1362 // |---o---o--o| Live-out on stack, late last use.
1363 // =====------- Copy to stack before LSP, overlap LocalIntv.
1364 // \_____ Stack interval is live-out.
1365 //
1366 SlotIndex To = leaveIntvBefore(LSP);
1367 overlapIntv(To, BI.LastInstr);
1368 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1369 useIntv(From, To);
1370 selectIntv(IntvIn);
1371 useIntv(Start, From);
1372 assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1373 }
1374
splitRegOutBlock(const SplitAnalysis::BlockInfo & BI,unsigned IntvOut,SlotIndex EnterAfter)1375 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1376 unsigned IntvOut, SlotIndex EnterAfter) {
1377 SlotIndex Start, Stop;
1378 tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1379
1380 DEBUG(dbgs() << "BB#" << BI.MBB->getNumber() << " [" << Start << ';' << Stop
1381 << "), uses " << BI.FirstInstr << '-' << BI.LastInstr
1382 << ", reg-out " << IntvOut << ", enter after " << EnterAfter
1383 << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1384
1385 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB->getNumber());
1386
1387 assert(IntvOut && "Must have register out");
1388 assert(BI.LiveOut && "Must be live-out");
1389 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1390
1391 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1392 DEBUG(dbgs() << " after interference.\n");
1393 //
1394 // >>>> Interference before def.
1395 // | o---o---| Defined in block.
1396 // ========= Use IntvOut everywhere.
1397 //
1398 selectIntv(IntvOut);
1399 useIntv(BI.FirstInstr, Stop);
1400 return;
1401 }
1402
1403 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1404 DEBUG(dbgs() << ", reload after interference.\n");
1405 //
1406 // >>>> Interference before def.
1407 // |---o---o---| Live-through, stack-in.
1408 // ____========= Enter IntvOut before first use.
1409 //
1410 selectIntv(IntvOut);
1411 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1412 useIntv(Idx, Stop);
1413 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1414 return;
1415 }
1416
1417 // The interference is overlapping somewhere we wanted to use IntvOut. That
1418 // means we need to create a local interval that can be allocated a
1419 // different register.
1420 DEBUG(dbgs() << ", interference overlaps uses.\n");
1421 //
1422 // >>>>>>> Interference overlapping uses.
1423 // |---o---o---| Live-through, stack-in.
1424 // ____---====== Create local interval for interference range.
1425 //
1426 selectIntv(IntvOut);
1427 SlotIndex Idx = enterIntvAfter(EnterAfter);
1428 useIntv(Idx, Stop);
1429 assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1430
1431 openIntv();
1432 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1433 useIntv(From, Idx);
1434 }
1435