• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 //
31 // Abstract interface for objects solving linear systems of various
32 // kinds.
33 
34 #ifndef CERES_INTERNAL_LINEAR_SOLVER_H_
35 #define CERES_INTERNAL_LINEAR_SOLVER_H_
36 
37 #include <cstddef>
38 #include <map>
39 #include <string>
40 #include <vector>
41 #include "ceres/block_sparse_matrix.h"
42 #include "ceres/casts.h"
43 #include "ceres/compressed_row_sparse_matrix.h"
44 #include "ceres/dense_sparse_matrix.h"
45 #include "ceres/execution_summary.h"
46 #include "ceres/triplet_sparse_matrix.h"
47 #include "ceres/types.h"
48 #include "glog/logging.h"
49 
50 namespace ceres {
51 namespace internal {
52 
53 class LinearOperator;
54 
55 // Abstract base class for objects that implement algorithms for
56 // solving linear systems
57 //
58 //   Ax = b
59 //
60 // It is expected that a single instance of a LinearSolver object
61 // maybe used multiple times for solving multiple linear systems with
62 // the same sparsity structure. This allows them to cache and reuse
63 // information across solves. This means that calling Solve on the
64 // same LinearSolver instance with two different linear systems will
65 // result in undefined behaviour.
66 //
67 // Subclasses of LinearSolver use two structs to configure themselves.
68 // The Options struct configures the LinearSolver object for its
69 // lifetime. The PerSolveOptions struct is used to specify options for
70 // a particular Solve call.
71 class LinearSolver {
72  public:
73   struct Options {
OptionsOptions74     Options()
75         : type(SPARSE_NORMAL_CHOLESKY),
76           preconditioner_type(JACOBI),
77           dense_linear_algebra_library_type(EIGEN),
78           sparse_linear_algebra_library_type(SUITE_SPARSE),
79           use_postordering(false),
80           min_num_iterations(1),
81           max_num_iterations(1),
82           num_threads(1),
83           residual_reset_period(10),
84           row_block_size(Eigen::Dynamic),
85           e_block_size(Eigen::Dynamic),
86           f_block_size(Eigen::Dynamic) {
87     }
88 
89     LinearSolverType type;
90 
91     PreconditionerType preconditioner_type;
92 
93     DenseLinearAlgebraLibraryType dense_linear_algebra_library_type;
94     SparseLinearAlgebraLibraryType sparse_linear_algebra_library_type;
95 
96     // See solver.h for information about this flag.
97     bool use_postordering;
98 
99     // Number of internal iterations that the solver uses. This
100     // parameter only makes sense for iterative solvers like CG.
101     int min_num_iterations;
102     int max_num_iterations;
103 
104     // If possible, how many threads can the solver use.
105     int num_threads;
106 
107     // Hints about the order in which the parameter blocks should be
108     // eliminated by the linear solver.
109     //
110     // For example if elimination_groups is a vector of size k, then
111     // the linear solver is informed that it should eliminate the
112     // parameter blocks 0 ... elimination_groups[0] - 1 first, and
113     // then elimination_groups[0] ... elimination_groups[1] - 1 and so
114     // on. Within each elimination group, the linear solver is free to
115     // choose how the parameter blocks are ordered. Different linear
116     // solvers have differing requirements on elimination_groups.
117     //
118     // The most common use is for Schur type solvers, where there
119     // should be at least two elimination groups and the first
120     // elimination group must form an independent set in the normal
121     // equations. The first elimination group corresponds to the
122     // num_eliminate_blocks in the Schur type solvers.
123     vector<int> elimination_groups;
124 
125     // Iterative solvers, e.g. Preconditioned Conjugate Gradients
126     // maintain a cheap estimate of the residual which may become
127     // inaccurate over time. Thus for non-zero values of this
128     // parameter, the solver can be told to recalculate the value of
129     // the residual using a |b - Ax| evaluation.
130     int residual_reset_period;
131 
132     // If the block sizes in a BlockSparseMatrix are fixed, then in
133     // some cases the Schur complement based solvers can detect and
134     // specialize on them.
135     //
136     // It is expected that these parameters are set programmatically
137     // rather than manually.
138     //
139     // Please see schur_complement_solver.h and schur_eliminator.h for
140     // more details.
141     int row_block_size;
142     int e_block_size;
143     int f_block_size;
144   };
145 
146   // Options for the Solve method.
147   struct PerSolveOptions {
PerSolveOptionsPerSolveOptions148     PerSolveOptions()
149         : D(NULL),
150           preconditioner(NULL),
151           r_tolerance(0.0),
152           q_tolerance(0.0) {
153     }
154 
155     // This option only makes sense for unsymmetric linear solvers
156     // that can solve rectangular linear systems.
157     //
158     // Given a matrix A, an optional diagonal matrix D as a vector,
159     // and a vector b, the linear solver will solve for
160     //
161     //   | A | x = | b |
162     //   | D |     | 0 |
163     //
164     // If D is null, then it is treated as zero, and the solver returns
165     // the solution to
166     //
167     //   A x = b
168     //
169     // In either case, x is the vector that solves the following
170     // optimization problem.
171     //
172     //   arg min_x ||Ax - b||^2 + ||Dx||^2
173     //
174     // Here A is a matrix of size m x n, with full column rank. If A
175     // does not have full column rank, the results returned by the
176     // solver cannot be relied on. D, if it is not null is an array of
177     // size n.  b is an array of size m and x is an array of size n.
178     double * D;
179 
180     // This option only makes sense for iterative solvers.
181     //
182     // In general the performance of an iterative linear solver
183     // depends on the condition number of the matrix A. For example
184     // the convergence rate of the conjugate gradients algorithm
185     // is proportional to the square root of the condition number.
186     //
187     // One particularly useful technique for improving the
188     // conditioning of a linear system is to precondition it. In its
189     // simplest form a preconditioner is a matrix M such that instead
190     // of solving Ax = b, we solve the linear system AM^{-1} y = b
191     // instead, where M is such that the condition number k(AM^{-1})
192     // is smaller than the conditioner k(A). Given the solution to
193     // this system, x = M^{-1} y. The iterative solver takes care of
194     // the mechanics of solving the preconditioned system and
195     // returning the corrected solution x. The user only needs to
196     // supply a linear operator.
197     //
198     // A null preconditioner is equivalent to an identity matrix being
199     // used a preconditioner.
200     LinearOperator* preconditioner;
201 
202 
203     // The following tolerance related options only makes sense for
204     // iterative solvers. Direct solvers ignore them.
205 
206     // Solver terminates when
207     //
208     //   |Ax - b| <= r_tolerance * |b|.
209     //
210     // This is the most commonly used termination criterion for
211     // iterative solvers.
212     double r_tolerance;
213 
214     // For PSD matrices A, let
215     //
216     //   Q(x) = x'Ax - 2b'x
217     //
218     // be the cost of the quadratic function defined by A and b. Then,
219     // the solver terminates at iteration i if
220     //
221     //   i * (Q(x_i) - Q(x_i-1)) / Q(x_i) < q_tolerance.
222     //
223     // This termination criterion is more useful when using CG to
224     // solve the Newton step. This particular convergence test comes
225     // from Stephen Nash's work on truncated Newton
226     // methods. References:
227     //
228     //   1. Stephen G. Nash & Ariela Sofer, Assessing A Search
229     //      Direction Within A Truncated Newton Method, Operation
230     //      Research Letters 9(1990) 219-221.
231     //
232     //   2. Stephen G. Nash, A Survey of Truncated Newton Methods,
233     //      Journal of Computational and Applied Mathematics,
234     //      124(1-2), 45-59, 2000.
235     //
236     double q_tolerance;
237   };
238 
239   // Summary of a call to the Solve method. We should move away from
240   // the true/false method for determining solver success. We should
241   // let the summary object do the talking.
242   struct Summary {
SummarySummary243     Summary()
244         : residual_norm(0.0),
245           num_iterations(-1),
246           termination_type(FAILURE) {
247     }
248 
249     double residual_norm;
250     int num_iterations;
251     LinearSolverTerminationType termination_type;
252   };
253 
254   virtual ~LinearSolver();
255 
256   // Solve Ax = b.
257   virtual Summary Solve(LinearOperator* A,
258                         const double* b,
259                         const PerSolveOptions& per_solve_options,
260                         double* x) = 0;
261 
262   // The following two methods return copies instead of references so
263   // that the base class implementation does not have to worry about
264   // life time issues. Further, these calls are not expected to be
265   // frequent or performance sensitive.
CallStatistics()266   virtual map<string, int> CallStatistics() const {
267     return map<string, int>();
268   }
269 
TimeStatistics()270   virtual map<string, double> TimeStatistics() const {
271     return map<string, double>();
272   }
273 
274   // Factory
275   static LinearSolver* Create(const Options& options);
276 };
277 
278 // This templated subclass of LinearSolver serves as a base class for
279 // other linear solvers that depend on the particular matrix layout of
280 // the underlying linear operator. For example some linear solvers
281 // need low level access to the TripletSparseMatrix implementing the
282 // LinearOperator interface. This class hides those implementation
283 // details behind a private virtual method, and has the Solve method
284 // perform the necessary upcasting.
285 template <typename MatrixType>
286 class TypedLinearSolver : public LinearSolver {
287  public:
~TypedLinearSolver()288   virtual ~TypedLinearSolver() {}
Solve(LinearOperator * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)289   virtual LinearSolver::Summary Solve(
290       LinearOperator* A,
291       const double* b,
292       const LinearSolver::PerSolveOptions& per_solve_options,
293       double* x) {
294     ScopedExecutionTimer total_time("LinearSolver::Solve", &execution_summary_);
295     CHECK_NOTNULL(A);
296     CHECK_NOTNULL(b);
297     CHECK_NOTNULL(x);
298     return SolveImpl(down_cast<MatrixType*>(A), b, per_solve_options, x);
299   }
300 
CallStatistics()301   virtual map<string, int> CallStatistics() const {
302     return execution_summary_.calls();
303   }
304 
TimeStatistics()305   virtual map<string, double> TimeStatistics() const {
306     return execution_summary_.times();
307   }
308 
309  private:
310   virtual LinearSolver::Summary SolveImpl(
311       MatrixType* A,
312       const double* b,
313       const LinearSolver::PerSolveOptions& per_solve_options,
314       double* x) = 0;
315 
316   ExecutionSummary execution_summary_;
317 };
318 
319 // Linear solvers that depend on acccess to the low level structure of
320 // a SparseMatrix.
321 typedef TypedLinearSolver<BlockSparseMatrix>         BlockSparseMatrixSolver;          // NOLINT
322 typedef TypedLinearSolver<CompressedRowSparseMatrix> CompressedRowSparseMatrixSolver;  // NOLINT
323 typedef TypedLinearSolver<DenseSparseMatrix>         DenseSparseMatrixSolver;          // NOLINT
324 typedef TypedLinearSolver<TripletSparseMatrix>       TripletSparseMatrixSolver;        // NOLINT
325 
326 }  // namespace internal
327 }  // namespace ceres
328 
329 #endif  // CERES_INTERNAL_LINEAR_SOLVER_H_
330