1/* 2 * Copyright (C) 2013 Google Inc. All rights reserved. 3 * 4 * Redistribution and use in source and binary forms, with or without 5 * modification, are permitted provided that the following conditions are 6 * met: 7 * 8 * * Redistributions of source code must retain the above copyright 9 * notice, this list of conditions and the following disclaimer. 10 * * Redistributions in binary form must reproduce the above 11 * copyright notice, this list of conditions and the following disclaimer 12 * in the documentation and/or other materials provided with the 13 * distribution. 14 * * Neither the name of Google Inc. nor the names of its 15 * contributors may be used to endorse or promote products derived from 16 * this software without specific prior written permission. 17 * 18 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS 19 * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT 20 * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR 21 * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT 22 * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 23 * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 24 * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, 25 * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY 26 * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT 27 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 28 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 29 */ 30 31WebInspector.Geometry = {}; 32 33/** 34 * @type {number} 35 */ 36WebInspector.Geometry._Eps = 1e-5; 37 38/** 39 * @constructor 40 * @param {number} x 41 * @param {number} y 42 * @param {number} z 43 */ 44WebInspector.Geometry.Vector = function(x, y, z) 45{ 46 this.x = x; 47 this.y = y; 48 this.z = z; 49} 50 51WebInspector.Geometry.Vector.prototype = { 52 /** 53 * @return {number} 54 */ 55 length: function() 56 { 57 return Math.sqrt(this.x * this.x + this.y * this.y + this.z * this.z); 58 }, 59 60 normalize: function() 61 { 62 var length = this.length(); 63 if (length <= WebInspector.Geometry._Eps) 64 return; 65 66 this.x /= length; 67 this.y /= length; 68 this.z /= length; 69 } 70} 71 72/** 73 * @constructor 74 * @param {number} alpha 75 * @param {number} beta 76 * @param {number} gamma 77 */ 78WebInspector.Geometry.EulerAngles = function(alpha, beta, gamma) 79{ 80 this.alpha = alpha; 81 this.beta = beta; 82 this.gamma = gamma; 83} 84 85/** 86 * @param {!CSSMatrix} rotationMatrix 87 * @return {!WebInspector.Geometry.EulerAngles} 88 */ 89WebInspector.Geometry.EulerAngles.fromRotationMatrix = function(rotationMatrix) 90{ 91 var beta = Math.atan2(rotationMatrix.m23, rotationMatrix.m33); 92 var gamma = Math.atan2(-rotationMatrix.m13, Math.sqrt(rotationMatrix.m11 * rotationMatrix.m11 + rotationMatrix.m12 * rotationMatrix.m12)); 93 var alpha = Math.atan2(rotationMatrix.m12, rotationMatrix.m11); 94 return new WebInspector.Geometry.EulerAngles(WebInspector.Geometry.radToDeg(alpha), WebInspector.Geometry.radToDeg(beta), WebInspector.Geometry.radToDeg(gamma)); 95} 96 97/** 98 * @param {!WebInspector.Geometry.Vector} u 99 * @param {!WebInspector.Geometry.Vector} v 100 * @return {number} 101 */ 102WebInspector.Geometry.scalarProduct = function(u, v) 103{ 104 return u.x * v.x + u.y * v.y + u.z * v.z; 105} 106 107/** 108 * @param {!WebInspector.Geometry.Vector} u 109 * @param {!WebInspector.Geometry.Vector} v 110 * @return {!WebInspector.Geometry.Vector} 111 */ 112WebInspector.Geometry.crossProduct = function(u, v) 113{ 114 var x = u.y * v.z - u.z * v.y; 115 var y = u.z * v.x - u.x * v.z; 116 var z = u.x * v.y - u.y * v.x; 117 return new WebInspector.Geometry.Vector(x, y, z); 118} 119 120/** 121 * @param {!WebInspector.Geometry.Vector} u 122 * @param {!WebInspector.Geometry.Vector} v 123 * @return {number} 124 */ 125WebInspector.Geometry.calculateAngle = function(u, v) 126{ 127 var uLength = u.length(); 128 var vLength = v.length(); 129 if (uLength <= WebInspector.Geometry._Eps || vLength <= WebInspector.Geometry._Eps) 130 return 0; 131 var cos = WebInspector.Geometry.scalarProduct(u, v) / uLength / vLength; 132 if (Math.abs(cos) > 1) 133 return 0; 134 return WebInspector.Geometry.radToDeg(Math.acos(cos)); 135} 136 137/** 138 * @param {number} rad 139 * @return {number} 140 */ 141WebInspector.Geometry.radToDeg = function(rad) 142{ 143 return rad * 180 / Math.PI; 144} 145 146