1 /*
2 * Copyright (C) 2012 The Android Open Source Project
3 *
4 * Licensed under the Apache License, Version 2.0 (the "License");
5 * you may not use this file except in compliance with the License.
6 * You may obtain a copy of the License at
7 *
8 * http://www.apache.org/licenses/LICENSE-2.0
9 *
10 * Unless required by applicable law or agreed to in writing, software
11 * distributed under the License is distributed on an "AS IS" BASIS,
12 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 * See the License for the specific language governing permissions and
14 * limitations under the License.
15 */
16
17 #include "large_object_space.h"
18
19 #include "base/logging.h"
20 #include "base/stl_util.h"
21 #include "UniquePtr.h"
22 #include "image.h"
23 #include "os.h"
24 #include "thread.h"
25 #include "utils.h"
26
27 namespace art {
28 namespace gc {
29 namespace space {
30
SwapBitmaps()31 void LargeObjectSpace::SwapBitmaps() {
32 live_objects_.swap(mark_objects_);
33 // Swap names to get more descriptive diagnostics.
34 std::string temp_name = live_objects_->GetName();
35 live_objects_->SetName(mark_objects_->GetName());
36 mark_objects_->SetName(temp_name);
37 }
38
LargeObjectSpace(const std::string & name)39 LargeObjectSpace::LargeObjectSpace(const std::string& name)
40 : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
41 num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
42 total_objects_allocated_(0) {
43 }
44
45
CopyLiveToMarked()46 void LargeObjectSpace::CopyLiveToMarked() {
47 mark_objects_->CopyFrom(*live_objects_.get());
48 }
49
LargeObjectMapSpace(const std::string & name)50 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
51 : LargeObjectSpace(name),
52 lock_("large object map space lock", kAllocSpaceLock) {}
53
Create(const std::string & name)54 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
55 return new LargeObjectMapSpace(name);
56 }
57
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated)58 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
59 MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes,
60 PROT_READ | PROT_WRITE);
61 if (mem_map == NULL) {
62 return NULL;
63 }
64 MutexLock mu(self, lock_);
65 mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
66 large_objects_.push_back(obj);
67 mem_maps_.Put(obj, mem_map);
68 size_t allocation_size = mem_map->Size();
69 DCHECK(bytes_allocated != NULL);
70 *bytes_allocated = allocation_size;
71 num_bytes_allocated_ += allocation_size;
72 total_bytes_allocated_ += allocation_size;
73 ++num_objects_allocated_;
74 ++total_objects_allocated_;
75 return obj;
76 }
77
Free(Thread * self,mirror::Object * ptr)78 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
79 MutexLock mu(self, lock_);
80 MemMaps::iterator found = mem_maps_.find(ptr);
81 CHECK(found != mem_maps_.end()) << "Attempted to free large object which was not live";
82 DCHECK_GE(num_bytes_allocated_, found->second->Size());
83 size_t allocation_size = found->second->Size();
84 num_bytes_allocated_ -= allocation_size;
85 --num_objects_allocated_;
86 delete found->second;
87 mem_maps_.erase(found);
88 return allocation_size;
89 }
90
AllocationSize(const mirror::Object * obj)91 size_t LargeObjectMapSpace::AllocationSize(const mirror::Object* obj) {
92 MutexLock mu(Thread::Current(), lock_);
93 MemMaps::iterator found = mem_maps_.find(const_cast<mirror::Object*>(obj));
94 CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live";
95 return found->second->Size();
96 }
97
FreeList(Thread * self,size_t num_ptrs,mirror::Object ** ptrs)98 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
99 size_t total = 0;
100 for (size_t i = 0; i < num_ptrs; ++i) {
101 if (kDebugSpaces) {
102 CHECK(Contains(ptrs[i]));
103 }
104 total += Free(self, ptrs[i]);
105 }
106 return total;
107 }
108
Walk(DlMallocSpace::WalkCallback callback,void * arg)109 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
110 MutexLock mu(Thread::Current(), lock_);
111 for (MemMaps::iterator it = mem_maps_.begin(); it != mem_maps_.end(); ++it) {
112 MemMap* mem_map = it->second;
113 callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
114 callback(NULL, NULL, 0, arg);
115 }
116 }
117
Contains(const mirror::Object * obj) const118 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
119 Thread* self = Thread::Current();
120 if (lock_.IsExclusiveHeld(self)) {
121 // We hold lock_ so do the check.
122 return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
123 } else {
124 MutexLock mu(self, lock_);
125 return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
126 }
127 }
128
Create(const std::string & name,byte * requested_begin,size_t size)129 FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) {
130 CHECK_EQ(size % kAlignment, 0U);
131 MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
132 PROT_READ | PROT_WRITE);
133 CHECK(mem_map != NULL) << "Failed to allocate large object space mem map";
134 return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
135 }
136
FreeListSpace(const std::string & name,MemMap * mem_map,byte * begin,byte * end)137 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end)
138 : LargeObjectSpace(name),
139 begin_(begin),
140 end_(end),
141 mem_map_(mem_map),
142 lock_("free list space lock", kAllocSpaceLock) {
143 free_end_ = end - begin;
144 }
145
~FreeListSpace()146 FreeListSpace::~FreeListSpace() {}
147
Walk(DlMallocSpace::WalkCallback callback,void * arg)148 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
149 MutexLock mu(Thread::Current(), lock_);
150 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
151 AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
152 while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
153 cur_header = cur_header->GetNextNonFree();
154 size_t alloc_size = cur_header->AllocationSize();
155 byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
156 byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
157 callback(byte_start, byte_end, alloc_size, arg);
158 callback(NULL, NULL, 0, arg);
159 cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
160 }
161 }
162
RemoveFreePrev(AllocationHeader * header)163 void FreeListSpace::RemoveFreePrev(AllocationHeader* header) {
164 CHECK(!header->IsFree());
165 CHECK_GT(header->GetPrevFree(), size_t(0));
166 FreeBlocks::iterator found = free_blocks_.lower_bound(header);
167 CHECK(found != free_blocks_.end());
168 CHECK_EQ(*found, header);
169 free_blocks_.erase(found);
170 }
171
GetAllocationHeader(const mirror::Object * obj)172 FreeListSpace::AllocationHeader* FreeListSpace::GetAllocationHeader(const mirror::Object* obj) {
173 DCHECK(Contains(obj));
174 return reinterpret_cast<AllocationHeader*>(reinterpret_cast<uintptr_t>(obj) -
175 sizeof(AllocationHeader));
176 }
177
GetNextNonFree()178 FreeListSpace::AllocationHeader* FreeListSpace::AllocationHeader::GetNextNonFree() {
179 // We know that there has to be at least one object after us or else we would have
180 // coalesced with the free end region. May be worth investigating a better way to do this
181 // as it may be expensive for large allocations.
182 for (uintptr_t pos = reinterpret_cast<uintptr_t>(this);; pos += kAlignment) {
183 AllocationHeader* cur = reinterpret_cast<AllocationHeader*>(pos);
184 if (!cur->IsFree()) return cur;
185 }
186 }
187
Free(Thread * self,mirror::Object * obj)188 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
189 MutexLock mu(self, lock_);
190 DCHECK(Contains(obj));
191 AllocationHeader* header = GetAllocationHeader(obj);
192 CHECK(IsAligned<kAlignment>(header));
193 size_t allocation_size = header->AllocationSize();
194 DCHECK_GT(allocation_size, size_t(0));
195 DCHECK(IsAligned<kAlignment>(allocation_size));
196 // Look at the next chunk.
197 AllocationHeader* next_header = header->GetNextAllocationHeader();
198 // Calculate the start of the end free block.
199 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
200 size_t header_prev_free = header->GetPrevFree();
201 size_t new_free_size = allocation_size;
202 if (header_prev_free) {
203 new_free_size += header_prev_free;
204 RemoveFreePrev(header);
205 }
206 if (reinterpret_cast<uintptr_t>(next_header) >= free_end_start) {
207 // Easy case, the next chunk is the end free region.
208 CHECK_EQ(reinterpret_cast<uintptr_t>(next_header), free_end_start);
209 free_end_ += new_free_size;
210 } else {
211 AllocationHeader* new_free_header;
212 DCHECK(IsAligned<kAlignment>(next_header));
213 if (next_header->IsFree()) {
214 // Find the next chunk by reading each page until we hit one with non-zero chunk.
215 AllocationHeader* next_next_header = next_header->GetNextNonFree();
216 DCHECK(IsAligned<kAlignment>(next_next_header));
217 DCHECK(IsAligned<kAlignment>(next_next_header->AllocationSize()));
218 RemoveFreePrev(next_next_header);
219 new_free_header = next_next_header;
220 new_free_size += next_next_header->GetPrevFree();
221 } else {
222 new_free_header = next_header;
223 }
224 new_free_header->prev_free_ = new_free_size;
225 free_blocks_.insert(new_free_header);
226 }
227 --num_objects_allocated_;
228 DCHECK_LE(allocation_size, num_bytes_allocated_);
229 num_bytes_allocated_ -= allocation_size;
230 madvise(header, allocation_size, MADV_DONTNEED);
231 if (kIsDebugBuild) {
232 // Can't disallow reads since we use them to find next chunks during coalescing.
233 mprotect(header, allocation_size, PROT_READ);
234 }
235 return allocation_size;
236 }
237
Contains(const mirror::Object * obj) const238 bool FreeListSpace::Contains(const mirror::Object* obj) const {
239 return mem_map_->HasAddress(obj);
240 }
241
AllocationSize(const mirror::Object * obj)242 size_t FreeListSpace::AllocationSize(const mirror::Object* obj) {
243 AllocationHeader* header = GetAllocationHeader(obj);
244 DCHECK(Contains(obj));
245 DCHECK(!header->IsFree());
246 return header->AllocationSize();
247 }
248
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated)249 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
250 MutexLock mu(self, lock_);
251 size_t allocation_size = RoundUp(num_bytes + sizeof(AllocationHeader), kAlignment);
252 AllocationHeader temp;
253 temp.SetPrevFree(allocation_size);
254 temp.SetAllocationSize(0);
255 AllocationHeader* new_header;
256 // Find the smallest chunk at least num_bytes in size.
257 FreeBlocks::iterator found = free_blocks_.lower_bound(&temp);
258 if (found != free_blocks_.end()) {
259 AllocationHeader* header = *found;
260 free_blocks_.erase(found);
261
262 // Fit our object in the previous free header space.
263 new_header = header->GetPrevFreeAllocationHeader();
264
265 // Remove the newly allocated block from the header and update the prev_free_.
266 header->prev_free_ -= allocation_size;
267 if (header->prev_free_ > 0) {
268 // If there is remaining space, insert back into the free set.
269 free_blocks_.insert(header);
270 }
271 } else {
272 // Try to steal some memory from the free space at the end of the space.
273 if (LIKELY(free_end_ >= allocation_size)) {
274 // Fit our object at the start of the end free block.
275 new_header = reinterpret_cast<AllocationHeader*>(end_ - free_end_);
276 free_end_ -= allocation_size;
277 } else {
278 return NULL;
279 }
280 }
281
282 DCHECK(bytes_allocated != NULL);
283 *bytes_allocated = allocation_size;
284
285 // Need to do these inside of the lock.
286 ++num_objects_allocated_;
287 ++total_objects_allocated_;
288 num_bytes_allocated_ += allocation_size;
289 total_bytes_allocated_ += allocation_size;
290
291 // We always put our object at the start of the free block, there can not be another free block
292 // before it.
293 if (kIsDebugBuild) {
294 mprotect(new_header, allocation_size, PROT_READ | PROT_WRITE);
295 }
296 new_header->SetPrevFree(0);
297 new_header->SetAllocationSize(allocation_size);
298 return new_header->GetObjectAddress();
299 }
300
Dump(std::ostream & os) const301 void FreeListSpace::Dump(std::ostream& os) const {
302 MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_));
303 os << GetName() << " -"
304 << " begin: " << reinterpret_cast<void*>(Begin())
305 << " end: " << reinterpret_cast<void*>(End()) << "\n";
306 uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
307 AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
308 while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
309 byte* free_start = reinterpret_cast<byte*>(cur_header);
310 cur_header = cur_header->GetNextNonFree();
311 byte* free_end = reinterpret_cast<byte*>(cur_header);
312 if (free_start != free_end) {
313 os << "Free block at address: " << reinterpret_cast<const void*>(free_start)
314 << " of length " << free_end - free_start << " bytes\n";
315 }
316 size_t alloc_size = cur_header->AllocationSize();
317 byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
318 byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
319 os << "Large object at address: " << reinterpret_cast<const void*>(free_start)
320 << " of length " << byte_end - byte_start << " bytes\n";
321 cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
322 }
323 if (free_end_) {
324 os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
325 << " of length " << free_end_ << " bytes\n";
326 }
327 }
328
329 } // namespace space
330 } // namespace gc
331 } // namespace art
332