• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2012 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "large_object_space.h"
18 
19 #include "base/logging.h"
20 #include "base/stl_util.h"
21 #include "UniquePtr.h"
22 #include "image.h"
23 #include "os.h"
24 #include "thread.h"
25 #include "utils.h"
26 
27 namespace art {
28 namespace gc {
29 namespace space {
30 
SwapBitmaps()31 void LargeObjectSpace::SwapBitmaps() {
32   live_objects_.swap(mark_objects_);
33   // Swap names to get more descriptive diagnostics.
34   std::string temp_name = live_objects_->GetName();
35   live_objects_->SetName(mark_objects_->GetName());
36   mark_objects_->SetName(temp_name);
37 }
38 
LargeObjectSpace(const std::string & name)39 LargeObjectSpace::LargeObjectSpace(const std::string& name)
40     : DiscontinuousSpace(name, kGcRetentionPolicyAlwaysCollect),
41       num_bytes_allocated_(0), num_objects_allocated_(0), total_bytes_allocated_(0),
42       total_objects_allocated_(0) {
43 }
44 
45 
CopyLiveToMarked()46 void LargeObjectSpace::CopyLiveToMarked() {
47   mark_objects_->CopyFrom(*live_objects_.get());
48 }
49 
LargeObjectMapSpace(const std::string & name)50 LargeObjectMapSpace::LargeObjectMapSpace(const std::string& name)
51     : LargeObjectSpace(name),
52       lock_("large object map space lock", kAllocSpaceLock) {}
53 
Create(const std::string & name)54 LargeObjectMapSpace* LargeObjectMapSpace::Create(const std::string& name) {
55   return new LargeObjectMapSpace(name);
56 }
57 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated)58 mirror::Object* LargeObjectMapSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
59   MemMap* mem_map = MemMap::MapAnonymous("large object space allocation", NULL, num_bytes,
60                                          PROT_READ | PROT_WRITE);
61   if (mem_map == NULL) {
62     return NULL;
63   }
64   MutexLock mu(self, lock_);
65   mirror::Object* obj = reinterpret_cast<mirror::Object*>(mem_map->Begin());
66   large_objects_.push_back(obj);
67   mem_maps_.Put(obj, mem_map);
68   size_t allocation_size = mem_map->Size();
69   DCHECK(bytes_allocated != NULL);
70   *bytes_allocated = allocation_size;
71   num_bytes_allocated_ += allocation_size;
72   total_bytes_allocated_ += allocation_size;
73   ++num_objects_allocated_;
74   ++total_objects_allocated_;
75   return obj;
76 }
77 
Free(Thread * self,mirror::Object * ptr)78 size_t LargeObjectMapSpace::Free(Thread* self, mirror::Object* ptr) {
79   MutexLock mu(self, lock_);
80   MemMaps::iterator found = mem_maps_.find(ptr);
81   CHECK(found != mem_maps_.end()) << "Attempted to free large object which was not live";
82   DCHECK_GE(num_bytes_allocated_, found->second->Size());
83   size_t allocation_size = found->second->Size();
84   num_bytes_allocated_ -= allocation_size;
85   --num_objects_allocated_;
86   delete found->second;
87   mem_maps_.erase(found);
88   return allocation_size;
89 }
90 
AllocationSize(const mirror::Object * obj)91 size_t LargeObjectMapSpace::AllocationSize(const mirror::Object* obj) {
92   MutexLock mu(Thread::Current(), lock_);
93   MemMaps::iterator found = mem_maps_.find(const_cast<mirror::Object*>(obj));
94   CHECK(found != mem_maps_.end()) << "Attempted to get size of a large object which is not live";
95   return found->second->Size();
96 }
97 
FreeList(Thread * self,size_t num_ptrs,mirror::Object ** ptrs)98 size_t LargeObjectSpace::FreeList(Thread* self, size_t num_ptrs, mirror::Object** ptrs) {
99   size_t total = 0;
100   for (size_t i = 0; i < num_ptrs; ++i) {
101     if (kDebugSpaces) {
102       CHECK(Contains(ptrs[i]));
103     }
104     total += Free(self, ptrs[i]);
105   }
106   return total;
107 }
108 
Walk(DlMallocSpace::WalkCallback callback,void * arg)109 void LargeObjectMapSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
110   MutexLock mu(Thread::Current(), lock_);
111   for (MemMaps::iterator it = mem_maps_.begin(); it != mem_maps_.end(); ++it) {
112     MemMap* mem_map = it->second;
113     callback(mem_map->Begin(), mem_map->End(), mem_map->Size(), arg);
114     callback(NULL, NULL, 0, arg);
115   }
116 }
117 
Contains(const mirror::Object * obj) const118 bool LargeObjectMapSpace::Contains(const mirror::Object* obj) const {
119   Thread* self = Thread::Current();
120   if (lock_.IsExclusiveHeld(self)) {
121     // We hold lock_ so do the check.
122     return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
123   } else {
124     MutexLock mu(self, lock_);
125     return mem_maps_.find(const_cast<mirror::Object*>(obj)) != mem_maps_.end();
126   }
127 }
128 
Create(const std::string & name,byte * requested_begin,size_t size)129 FreeListSpace* FreeListSpace::Create(const std::string& name, byte* requested_begin, size_t size) {
130   CHECK_EQ(size % kAlignment, 0U);
131   MemMap* mem_map = MemMap::MapAnonymous(name.c_str(), requested_begin, size,
132                                          PROT_READ | PROT_WRITE);
133   CHECK(mem_map != NULL) << "Failed to allocate large object space mem map";
134   return new FreeListSpace(name, mem_map, mem_map->Begin(), mem_map->End());
135 }
136 
FreeListSpace(const std::string & name,MemMap * mem_map,byte * begin,byte * end)137 FreeListSpace::FreeListSpace(const std::string& name, MemMap* mem_map, byte* begin, byte* end)
138     : LargeObjectSpace(name),
139       begin_(begin),
140       end_(end),
141       mem_map_(mem_map),
142       lock_("free list space lock", kAllocSpaceLock) {
143   free_end_ = end - begin;
144 }
145 
~FreeListSpace()146 FreeListSpace::~FreeListSpace() {}
147 
Walk(DlMallocSpace::WalkCallback callback,void * arg)148 void FreeListSpace::Walk(DlMallocSpace::WalkCallback callback, void* arg) {
149   MutexLock mu(Thread::Current(), lock_);
150   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
151   AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
152   while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
153     cur_header = cur_header->GetNextNonFree();
154     size_t alloc_size = cur_header->AllocationSize();
155     byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
156     byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
157     callback(byte_start, byte_end, alloc_size, arg);
158     callback(NULL, NULL, 0, arg);
159     cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
160   }
161 }
162 
RemoveFreePrev(AllocationHeader * header)163 void FreeListSpace::RemoveFreePrev(AllocationHeader* header) {
164   CHECK(!header->IsFree());
165   CHECK_GT(header->GetPrevFree(), size_t(0));
166   FreeBlocks::iterator found = free_blocks_.lower_bound(header);
167   CHECK(found != free_blocks_.end());
168   CHECK_EQ(*found, header);
169   free_blocks_.erase(found);
170 }
171 
GetAllocationHeader(const mirror::Object * obj)172 FreeListSpace::AllocationHeader* FreeListSpace::GetAllocationHeader(const mirror::Object* obj) {
173   DCHECK(Contains(obj));
174   return reinterpret_cast<AllocationHeader*>(reinterpret_cast<uintptr_t>(obj) -
175       sizeof(AllocationHeader));
176 }
177 
GetNextNonFree()178 FreeListSpace::AllocationHeader* FreeListSpace::AllocationHeader::GetNextNonFree() {
179   // We know that there has to be at least one object after us or else we would have
180   // coalesced with the free end region. May be worth investigating a better way to do this
181   // as it may be expensive for large allocations.
182   for (uintptr_t pos = reinterpret_cast<uintptr_t>(this);; pos += kAlignment) {
183     AllocationHeader* cur = reinterpret_cast<AllocationHeader*>(pos);
184     if (!cur->IsFree()) return cur;
185   }
186 }
187 
Free(Thread * self,mirror::Object * obj)188 size_t FreeListSpace::Free(Thread* self, mirror::Object* obj) {
189   MutexLock mu(self, lock_);
190   DCHECK(Contains(obj));
191   AllocationHeader* header = GetAllocationHeader(obj);
192   CHECK(IsAligned<kAlignment>(header));
193   size_t allocation_size = header->AllocationSize();
194   DCHECK_GT(allocation_size, size_t(0));
195   DCHECK(IsAligned<kAlignment>(allocation_size));
196   // Look at the next chunk.
197   AllocationHeader* next_header = header->GetNextAllocationHeader();
198   // Calculate the start of the end free block.
199   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
200   size_t header_prev_free = header->GetPrevFree();
201   size_t new_free_size = allocation_size;
202   if (header_prev_free) {
203     new_free_size += header_prev_free;
204     RemoveFreePrev(header);
205   }
206   if (reinterpret_cast<uintptr_t>(next_header) >= free_end_start) {
207     // Easy case, the next chunk is the end free region.
208     CHECK_EQ(reinterpret_cast<uintptr_t>(next_header), free_end_start);
209     free_end_ += new_free_size;
210   } else {
211     AllocationHeader* new_free_header;
212     DCHECK(IsAligned<kAlignment>(next_header));
213     if (next_header->IsFree()) {
214       // Find the next chunk by reading each page until we hit one with non-zero chunk.
215       AllocationHeader* next_next_header = next_header->GetNextNonFree();
216       DCHECK(IsAligned<kAlignment>(next_next_header));
217       DCHECK(IsAligned<kAlignment>(next_next_header->AllocationSize()));
218       RemoveFreePrev(next_next_header);
219       new_free_header = next_next_header;
220       new_free_size += next_next_header->GetPrevFree();
221     } else {
222       new_free_header = next_header;
223     }
224     new_free_header->prev_free_ = new_free_size;
225     free_blocks_.insert(new_free_header);
226   }
227   --num_objects_allocated_;
228   DCHECK_LE(allocation_size, num_bytes_allocated_);
229   num_bytes_allocated_ -= allocation_size;
230   madvise(header, allocation_size, MADV_DONTNEED);
231   if (kIsDebugBuild) {
232     // Can't disallow reads since we use them to find next chunks during coalescing.
233     mprotect(header, allocation_size, PROT_READ);
234   }
235   return allocation_size;
236 }
237 
Contains(const mirror::Object * obj) const238 bool FreeListSpace::Contains(const mirror::Object* obj) const {
239   return mem_map_->HasAddress(obj);
240 }
241 
AllocationSize(const mirror::Object * obj)242 size_t FreeListSpace::AllocationSize(const mirror::Object* obj) {
243   AllocationHeader* header = GetAllocationHeader(obj);
244   DCHECK(Contains(obj));
245   DCHECK(!header->IsFree());
246   return header->AllocationSize();
247 }
248 
Alloc(Thread * self,size_t num_bytes,size_t * bytes_allocated)249 mirror::Object* FreeListSpace::Alloc(Thread* self, size_t num_bytes, size_t* bytes_allocated) {
250   MutexLock mu(self, lock_);
251   size_t allocation_size = RoundUp(num_bytes + sizeof(AllocationHeader), kAlignment);
252   AllocationHeader temp;
253   temp.SetPrevFree(allocation_size);
254   temp.SetAllocationSize(0);
255   AllocationHeader* new_header;
256   // Find the smallest chunk at least num_bytes in size.
257   FreeBlocks::iterator found = free_blocks_.lower_bound(&temp);
258   if (found != free_blocks_.end()) {
259     AllocationHeader* header = *found;
260     free_blocks_.erase(found);
261 
262     // Fit our object in the previous free header space.
263     new_header = header->GetPrevFreeAllocationHeader();
264 
265     // Remove the newly allocated block from the header and update the prev_free_.
266     header->prev_free_ -= allocation_size;
267     if (header->prev_free_ > 0) {
268       // If there is remaining space, insert back into the free set.
269       free_blocks_.insert(header);
270     }
271   } else {
272     // Try to steal some memory from the free space at the end of the space.
273     if (LIKELY(free_end_ >= allocation_size)) {
274       // Fit our object at the start of the end free block.
275       new_header = reinterpret_cast<AllocationHeader*>(end_ - free_end_);
276       free_end_ -= allocation_size;
277     } else {
278       return NULL;
279     }
280   }
281 
282   DCHECK(bytes_allocated != NULL);
283   *bytes_allocated = allocation_size;
284 
285   // Need to do these inside of the lock.
286   ++num_objects_allocated_;
287   ++total_objects_allocated_;
288   num_bytes_allocated_ += allocation_size;
289   total_bytes_allocated_ += allocation_size;
290 
291   // We always put our object at the start of the free block, there can not be another free block
292   // before it.
293   if (kIsDebugBuild) {
294     mprotect(new_header, allocation_size, PROT_READ | PROT_WRITE);
295   }
296   new_header->SetPrevFree(0);
297   new_header->SetAllocationSize(allocation_size);
298   return new_header->GetObjectAddress();
299 }
300 
Dump(std::ostream & os) const301 void FreeListSpace::Dump(std::ostream& os) const {
302   MutexLock mu(Thread::Current(), const_cast<Mutex&>(lock_));
303   os << GetName() << " -"
304      << " begin: " << reinterpret_cast<void*>(Begin())
305      << " end: " << reinterpret_cast<void*>(End()) << "\n";
306   uintptr_t free_end_start = reinterpret_cast<uintptr_t>(end_) - free_end_;
307   AllocationHeader* cur_header = reinterpret_cast<AllocationHeader*>(Begin());
308   while (reinterpret_cast<uintptr_t>(cur_header) < free_end_start) {
309     byte* free_start = reinterpret_cast<byte*>(cur_header);
310     cur_header = cur_header->GetNextNonFree();
311     byte* free_end = reinterpret_cast<byte*>(cur_header);
312     if (free_start != free_end) {
313       os << "Free block at address: " << reinterpret_cast<const void*>(free_start)
314          << " of length " << free_end - free_start << " bytes\n";
315     }
316     size_t alloc_size = cur_header->AllocationSize();
317     byte* byte_start = reinterpret_cast<byte*>(cur_header->GetObjectAddress());
318     byte* byte_end = byte_start + alloc_size - sizeof(AllocationHeader);
319     os << "Large object at address: " << reinterpret_cast<const void*>(free_start)
320        << " of length " << byte_end - byte_start << " bytes\n";
321     cur_header = reinterpret_cast<AllocationHeader*>(byte_end);
322   }
323   if (free_end_) {
324     os << "Free block at address: " << reinterpret_cast<const void*>(free_end_start)
325        << " of length " << free_end_ << " bytes\n";
326   }
327 }
328 
329 }  // namespace space
330 }  // namespace gc
331 }  // namespace art
332