1 // Copyright (c) 2007, Google Inc.
2 // All rights reserved.
3 //
4 // Redistribution and use in source and binary forms, with or without
5 // modification, are permitted provided that the following conditions are
6 // met:
7 //
8 // * Redistributions of source code must retain the above copyright
9 // notice, this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above
11 // copyright notice, this list of conditions and the following disclaimer
12 // in the documentation and/or other materials provided with the
13 // distribution.
14 // * Neither the name of Google Inc. nor the names of its
15 // contributors may be used to endorse or promote products derived from
16 // this software without specific prior written permission.
17 //
18 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
19 // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
20 // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
21 // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
22 // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
23 // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
24 // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
25 // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
26 // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
27 // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
28 // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
29 //
30 // ---
31 // Author: Craig Silverstein.
32 //
33 // A simple mutex wrapper, supporting locks and read-write locks.
34 // You should assume the locks are *not* re-entrant.
35 //
36 // To use: you should define the following macros in your configure.ac:
37 // ACX_PTHREAD
38 // AC_RWLOCK
39 // The latter is defined in ../autoconf.
40 //
41 // This class is meant to be internal-only and should be wrapped by an
42 // internal namespace. Before you use this module, please give the
43 // name of your internal namespace for this module. Or, if you want
44 // to expose it, you'll want to move it to the Google namespace. We
45 // cannot put this class in global namespace because there can be some
46 // problems when we have multiple versions of Mutex in each shared object.
47 //
48 // NOTE: by default, we have #ifdef'ed out the TryLock() method.
49 // This is for two reasons:
50 // 1) TryLock() under Windows is a bit annoying (it requires a
51 // #define to be defined very early).
52 // 2) TryLock() is broken for NO_THREADS mode, at least in NDEBUG
53 // mode.
54 // If you need TryLock(), and either these two caveats are not a
55 // problem for you, or you're willing to work around them, then
56 // feel free to #define GMUTEX_TRYLOCK, or to remove the #ifdefs
57 // in the code below.
58 //
59 // CYGWIN NOTE: Cygwin support for rwlock seems to be buggy:
60 // http://www.cygwin.com/ml/cygwin/2008-12/msg00017.html
61 // Because of that, we might as well use windows locks for
62 // cygwin. They seem to be more reliable than the cygwin pthreads layer.
63 //
64 // TRICKY IMPLEMENTATION NOTE:
65 // This class is designed to be safe to use during
66 // dynamic-initialization -- that is, by global constructors that are
67 // run before main() starts. The issue in this case is that
68 // dynamic-initialization happens in an unpredictable order, and it
69 // could be that someone else's dynamic initializer could call a
70 // function that tries to acquire this mutex -- but that all happens
71 // before this mutex's constructor has run. (This can happen even if
72 // the mutex and the function that uses the mutex are in the same .cc
73 // file.) Basically, because Mutex does non-trivial work in its
74 // constructor, it's not, in the naive implementation, safe to use
75 // before dynamic initialization has run on it.
76 //
77 // The solution used here is to pair the actual mutex primitive with a
78 // bool that is set to true when the mutex is dynamically initialized.
79 // (Before that it's false.) Then we modify all mutex routines to
80 // look at the bool, and not try to lock/unlock until the bool makes
81 // it to true (which happens after the Mutex constructor has run.)
82 //
83 // This works because before main() starts -- particularly, during
84 // dynamic initialization -- there are no threads, so a) it's ok that
85 // the mutex operations are a no-op, since we don't need locking then
86 // anyway; and b) we can be quite confident our bool won't change
87 // state between a call to Lock() and a call to Unlock() (that would
88 // require a global constructor in one translation unit to call Lock()
89 // and another global constructor in another translation unit to call
90 // Unlock() later, which is pretty perverse).
91 //
92 // That said, it's tricky, and can conceivably fail; it's safest to
93 // avoid trying to acquire a mutex in a global constructor, if you
94 // can. One way it can fail is that a really smart compiler might
95 // initialize the bool to true at static-initialization time (too
96 // early) rather than at dynamic-initialization time. To discourage
97 // that, we set is_safe_ to true in code (not the constructor
98 // colon-initializer) and set it to true via a function that always
99 // evaluates to true, but that the compiler can't know always
100 // evaluates to true. This should be good enough.
101 //
102 // A related issue is code that could try to access the mutex
103 // after it's been destroyed in the global destructors (because
104 // the Mutex global destructor runs before some other global
105 // destructor, that tries to acquire the mutex). The way we
106 // deal with this is by taking a constructor arg that global
107 // mutexes should pass in, that causes the destructor to do no
108 // work. We still depend on the compiler not doing anything
109 // weird to a Mutex's memory after it is destroyed, but for a
110 // static global variable, that's pretty safe.
111
112 #ifndef GOOGLE_MUTEX_H_
113 #define GOOGLE_MUTEX_H_
114
115 #include "config.h" // to figure out pthreads support
116
117 #if defined(NO_THREADS)
118 typedef int MutexType; // to keep a lock-count
119 #elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__)
120 # define WIN32_LEAN_AND_MEAN // We only need minimal includes
121 # ifdef GMUTEX_TRYLOCK
122 // We need Windows NT or later for TryEnterCriticalSection(). If you
123 // don't need that functionality, you can remove these _WIN32_WINNT
124 // lines, and change TryLock() to assert(0) or something.
125 # ifndef _WIN32_WINNT
126 # define _WIN32_WINNT 0x0400
127 # endif
128 # endif
129 # include <windows.h>
130 typedef CRITICAL_SECTION MutexType;
131 #elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK)
132 // Needed for pthread_rwlock_*. If it causes problems, you could take it
133 // out, but then you'd have to unset HAVE_RWLOCK (at least on linux -- it
134 // *does* cause problems for FreeBSD, or MacOSX, but isn't needed
135 // for locking there.)
136 # ifdef __linux__
137 # define _XOPEN_SOURCE 500 // may be needed to get the rwlock calls
138 # endif
139 # include <pthread.h>
140 typedef pthread_rwlock_t MutexType;
141 #elif defined(HAVE_PTHREAD)
142 # include <pthread.h>
143 typedef pthread_mutex_t MutexType;
144 #else
145 # error Need to implement mutex.h for your architecture, or #define NO_THREADS
146 #endif
147
148 #include <assert.h>
149 #include <stdlib.h> // for abort()
150
151 #define MUTEX_NAMESPACE gflags_mutex_namespace
152
153 namespace MUTEX_NAMESPACE {
154
155 class Mutex {
156 public:
157 // This is used for the single-arg constructor
158 enum LinkerInitialized { LINKER_INITIALIZED };
159
160 // Create a Mutex that is not held by anybody. This constructor is
161 // typically used for Mutexes allocated on the heap or the stack.
162 inline Mutex();
163 // This constructor should be used for global, static Mutex objects.
164 // It inhibits work being done by the destructor, which makes it
165 // safer for code that tries to acqiure this mutex in their global
166 // destructor.
167 inline Mutex(LinkerInitialized);
168
169 // Destructor
170 inline ~Mutex();
171
172 inline void Lock(); // Block if needed until free then acquire exclusively
173 inline void Unlock(); // Release a lock acquired via Lock()
174 #ifdef GMUTEX_TRYLOCK
175 inline bool TryLock(); // If free, Lock() and return true, else return false
176 #endif
177 // Note that on systems that don't support read-write locks, these may
178 // be implemented as synonyms to Lock() and Unlock(). So you can use
179 // these for efficiency, but don't use them anyplace where being able
180 // to do shared reads is necessary to avoid deadlock.
181 inline void ReaderLock(); // Block until free or shared then acquire a share
182 inline void ReaderUnlock(); // Release a read share of this Mutex
WriterLock()183 inline void WriterLock() { Lock(); } // Acquire an exclusive lock
WriterUnlock()184 inline void WriterUnlock() { Unlock(); } // Release a lock from WriterLock()
185
186 private:
187 MutexType mutex_;
188 // We want to make sure that the compiler sets is_safe_ to true only
189 // when we tell it to, and never makes assumptions is_safe_ is
190 // always true. volatile is the most reliable way to do that.
191 volatile bool is_safe_;
192 // This indicates which constructor was called.
193 bool destroy_;
194
SetIsSafe()195 inline void SetIsSafe() { is_safe_ = true; }
196
197 // Catch the error of writing Mutex when intending MutexLock.
Mutex(Mutex *)198 Mutex(Mutex* /*ignored*/) {}
199 // Disallow "evil" constructors
200 Mutex(const Mutex&);
201 void operator=(const Mutex&);
202 };
203
204 // Now the implementation of Mutex for various systems
205 #if defined(NO_THREADS)
206
207 // When we don't have threads, we can be either reading or writing,
208 // but not both. We can have lots of readers at once (in no-threads
209 // mode, that's most likely to happen in recursive function calls),
210 // but only one writer. We represent this by having mutex_ be -1 when
211 // writing and a number > 0 when reading (and 0 when no lock is held).
212 //
213 // In debug mode, we assert these invariants, while in non-debug mode
214 // we do nothing, for efficiency. That's why everything is in an
215 // assert.
216
Mutex()217 Mutex::Mutex() : mutex_(0) { }
Mutex(Mutex::LinkerInitialized)218 Mutex::Mutex(Mutex::LinkerInitialized) : mutex_(0) { }
~Mutex()219 Mutex::~Mutex() { assert(mutex_ == 0); }
Lock()220 void Mutex::Lock() { assert(--mutex_ == -1); }
Unlock()221 void Mutex::Unlock() { assert(mutex_++ == -1); }
222 #ifdef GMUTEX_TRYLOCK
TryLock()223 bool Mutex::TryLock() { if (mutex_) return false; Lock(); return true; }
224 #endif
ReaderLock()225 void Mutex::ReaderLock() { assert(++mutex_ > 0); }
ReaderUnlock()226 void Mutex::ReaderUnlock() { assert(mutex_-- > 0); }
227
228 #elif defined(_WIN32) || defined(__CYGWIN32__) || defined(__CYGWIN64__)
229
Mutex()230 Mutex::Mutex() : destroy_(true) {
231 InitializeCriticalSection(&mutex_);
232 SetIsSafe();
233 }
Mutex(LinkerInitialized)234 Mutex::Mutex(LinkerInitialized) : destroy_(false) {
235 InitializeCriticalSection(&mutex_);
236 SetIsSafe();
237 }
~Mutex()238 Mutex::~Mutex() { if (destroy_) DeleteCriticalSection(&mutex_); }
Lock()239 void Mutex::Lock() { if (is_safe_) EnterCriticalSection(&mutex_); }
Unlock()240 void Mutex::Unlock() { if (is_safe_) LeaveCriticalSection(&mutex_); }
241 #ifdef GMUTEX_TRYLOCK
TryLock()242 bool Mutex::TryLock() { return is_safe_ ?
243 TryEnterCriticalSection(&mutex_) != 0 : true; }
244 #endif
ReaderLock()245 void Mutex::ReaderLock() { Lock(); } // we don't have read-write locks
ReaderUnlock()246 void Mutex::ReaderUnlock() { Unlock(); }
247
248 #elif defined(HAVE_PTHREAD) && defined(HAVE_RWLOCK)
249
250 #define SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \
251 if (is_safe_ && fncall(&mutex_) != 0) abort(); \
252 } while (0)
253
Mutex()254 Mutex::Mutex() : destroy_(true) {
255 SetIsSafe();
256 if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort();
257 }
Mutex(Mutex::LinkerInitialized)258 Mutex::Mutex(Mutex::LinkerInitialized) : destroy_(false) {
259 SetIsSafe();
260 if (is_safe_ && pthread_rwlock_init(&mutex_, NULL) != 0) abort();
261 }
~Mutex()262 Mutex::~Mutex() { if (destroy_) SAFE_PTHREAD(pthread_rwlock_destroy); }
Lock()263 void Mutex::Lock() { SAFE_PTHREAD(pthread_rwlock_wrlock); }
Unlock()264 void Mutex::Unlock() { SAFE_PTHREAD(pthread_rwlock_unlock); }
265 #ifdef GMUTEX_TRYLOCK
TryLock()266 bool Mutex::TryLock() { return is_safe_ ?
267 pthread_rwlock_trywrlock(&mutex_) == 0 : true; }
268 #endif
ReaderLock()269 void Mutex::ReaderLock() { SAFE_PTHREAD(pthread_rwlock_rdlock); }
ReaderUnlock()270 void Mutex::ReaderUnlock() { SAFE_PTHREAD(pthread_rwlock_unlock); }
271 #undef SAFE_PTHREAD
272
273 #elif defined(HAVE_PTHREAD)
274
275 #define SAFE_PTHREAD(fncall) do { /* run fncall if is_safe_ is true */ \
276 if (is_safe_ && fncall(&mutex_) != 0) abort(); \
277 } while (0)
278
Mutex()279 Mutex::Mutex() : destroy_(true) {
280 SetIsSafe();
281 if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort();
282 }
Mutex(Mutex::LinkerInitialized)283 Mutex::Mutex(Mutex::LinkerInitialized) : destroy_(false) {
284 SetIsSafe();
285 if (is_safe_ && pthread_mutex_init(&mutex_, NULL) != 0) abort();
286 }
~Mutex()287 Mutex::~Mutex() { if (destroy_) SAFE_PTHREAD(pthread_mutex_destroy); }
Lock()288 void Mutex::Lock() { SAFE_PTHREAD(pthread_mutex_lock); }
Unlock()289 void Mutex::Unlock() { SAFE_PTHREAD(pthread_mutex_unlock); }
290 #ifdef GMUTEX_TRYLOCK
TryLock()291 bool Mutex::TryLock() { return is_safe_ ?
292 pthread_mutex_trylock(&mutex_) == 0 : true; }
293 #endif
ReaderLock()294 void Mutex::ReaderLock() { Lock(); }
ReaderUnlock()295 void Mutex::ReaderUnlock() { Unlock(); }
296 #undef SAFE_PTHREAD
297
298 #endif
299
300 // --------------------------------------------------------------------------
301 // Some helper classes
302
303 // MutexLock(mu) acquires mu when constructed and releases it when destroyed.
304 class MutexLock {
305 public:
MutexLock(Mutex * mu)306 explicit MutexLock(Mutex *mu) : mu_(mu) { mu_->Lock(); }
~MutexLock()307 ~MutexLock() { mu_->Unlock(); }
308 private:
309 Mutex * const mu_;
310 // Disallow "evil" constructors
311 MutexLock(const MutexLock&);
312 void operator=(const MutexLock&);
313 };
314
315 // ReaderMutexLock and WriterMutexLock do the same, for rwlocks
316 class ReaderMutexLock {
317 public:
ReaderMutexLock(Mutex * mu)318 explicit ReaderMutexLock(Mutex *mu) : mu_(mu) { mu_->ReaderLock(); }
~ReaderMutexLock()319 ~ReaderMutexLock() { mu_->ReaderUnlock(); }
320 private:
321 Mutex * const mu_;
322 // Disallow "evil" constructors
323 ReaderMutexLock(const ReaderMutexLock&);
324 void operator=(const ReaderMutexLock&);
325 };
326
327 class WriterMutexLock {
328 public:
WriterMutexLock(Mutex * mu)329 explicit WriterMutexLock(Mutex *mu) : mu_(mu) { mu_->WriterLock(); }
~WriterMutexLock()330 ~WriterMutexLock() { mu_->WriterUnlock(); }
331 private:
332 Mutex * const mu_;
333 // Disallow "evil" constructors
334 WriterMutexLock(const WriterMutexLock&);
335 void operator=(const WriterMutexLock&);
336 };
337
338 // Catch bug where variable name is omitted, e.g. MutexLock (&mu);
339 #define MutexLock(x) COMPILE_ASSERT(0, mutex_lock_decl_missing_var_name)
340 #define ReaderMutexLock(x) COMPILE_ASSERT(0, rmutex_lock_decl_missing_var_name)
341 #define WriterMutexLock(x) COMPILE_ASSERT(0, wmutex_lock_decl_missing_var_name)
342
343 } // namespace MUTEX_NAMESPACE
344
345 using namespace MUTEX_NAMESPACE;
346
347 #undef MUTEX_NAMESPACE
348
349 #endif /* #define GOOGLE_MUTEX_H__ */
350