• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Copyright (c) 2012 The Chromium Authors. All rights reserved.
2 // Use of this source code is governed by a BSD-style license that can be
3 // found in the LICENSE file.
4 
5 #include "ui/gfx/quad_f.h"
6 
7 #include "base/basictypes.h"
8 #include "testing/gtest/include/gtest/gtest.h"
9 #include "ui/gfx/rect_f.h"
10 
11 namespace gfx {
12 
TEST(QuadTest,Construction)13 TEST(QuadTest, Construction) {
14   // Verify constructors.
15   PointF a(1, 1);
16   PointF b(2, 1);
17   PointF c(2, 2);
18   PointF d(1, 2);
19   PointF e;
20   QuadF q1;
21   QuadF q2(e, e, e, e);
22   QuadF q3(a, b, c, d);
23   QuadF q4(BoundingRect(a, c));
24   EXPECT_EQ(q1.ToString(), q2.ToString());
25   EXPECT_EQ(q3.ToString(), q4.ToString());
26 
27   // Verify getters.
28   EXPECT_EQ(q3.p1().ToString(), a.ToString());
29   EXPECT_EQ(q3.p2().ToString(), b.ToString());
30   EXPECT_EQ(q3.p3().ToString(), c.ToString());
31   EXPECT_EQ(q3.p4().ToString(), d.ToString());
32 
33   // Verify setters.
34   q3.set_p1(b);
35   q3.set_p2(c);
36   q3.set_p3(d);
37   q3.set_p4(a);
38   EXPECT_EQ(q3.p1().ToString(), b.ToString());
39   EXPECT_EQ(q3.p2().ToString(), c.ToString());
40   EXPECT_EQ(q3.p3().ToString(), d.ToString());
41   EXPECT_EQ(q3.p4().ToString(), a.ToString());
42 
43   // Verify operator=(Rect)
44   EXPECT_NE(q1.ToString(), q4.ToString());
45   q1 = BoundingRect(a, c);
46   EXPECT_EQ(q1.ToString(), q4.ToString());
47 
48   // Verify operator=(Quad)
49   EXPECT_NE(q1.ToString(), q3.ToString());
50   q1 = q3;
51   EXPECT_EQ(q1.ToString(), q3.ToString());
52 }
53 
TEST(QuadTest,AddingVectors)54 TEST(QuadTest, AddingVectors) {
55   PointF a(1, 1);
56   PointF b(2, 1);
57   PointF c(2, 2);
58   PointF d(1, 2);
59   Vector2dF v(3.5f, -2.5f);
60 
61   QuadF q1(a, b, c, d);
62   QuadF added = q1 + v;
63   q1 += v;
64   QuadF expected1(PointF(4.5f, -1.5f),
65                   PointF(5.5f, -1.5f),
66                   PointF(5.5f, -0.5f),
67                   PointF(4.5f, -0.5f));
68   EXPECT_EQ(expected1.ToString(), added.ToString());
69   EXPECT_EQ(expected1.ToString(), q1.ToString());
70 
71   QuadF q2(a, b, c, d);
72   QuadF subtracted = q2 - v;
73   q2 -= v;
74   QuadF expected2(PointF(-2.5f, 3.5f),
75                   PointF(-1.5f, 3.5f),
76                   PointF(-1.5f, 4.5f),
77                   PointF(-2.5f, 4.5f));
78   EXPECT_EQ(expected2.ToString(), subtracted.ToString());
79   EXPECT_EQ(expected2.ToString(), q2.ToString());
80 
81   QuadF q3(a, b, c, d);
82   q3 += v;
83   q3 -= v;
84   EXPECT_EQ(QuadF(a, b, c, d).ToString(), q3.ToString());
85   EXPECT_EQ(q3.ToString(), (q3 + v - v).ToString());
86 }
87 
TEST(QuadTest,IsRectilinear)88 TEST(QuadTest, IsRectilinear) {
89   PointF a(1, 1);
90   PointF b(2, 1);
91   PointF c(2, 2);
92   PointF d(1, 2);
93   Vector2dF v(3.5f, -2.5f);
94 
95   EXPECT_TRUE(QuadF().IsRectilinear());
96   EXPECT_TRUE(QuadF(a, b, c, d).IsRectilinear());
97   EXPECT_TRUE((QuadF(a, b, c, d) + v).IsRectilinear());
98 
99   float epsilon = std::numeric_limits<float>::epsilon();
100   PointF a2(1 + epsilon / 2, 1 + epsilon / 2);
101   PointF b2(2 + epsilon / 2, 1 + epsilon / 2);
102   PointF c2(2 + epsilon / 2, 2 + epsilon / 2);
103   PointF d2(1 + epsilon / 2, 2 + epsilon / 2);
104   EXPECT_TRUE(QuadF(a2, b, c, d).IsRectilinear());
105   EXPECT_TRUE((QuadF(a2, b, c, d) + v).IsRectilinear());
106   EXPECT_TRUE(QuadF(a, b2, c, d).IsRectilinear());
107   EXPECT_TRUE((QuadF(a, b2, c, d) + v).IsRectilinear());
108   EXPECT_TRUE(QuadF(a, b, c2, d).IsRectilinear());
109   EXPECT_TRUE((QuadF(a, b, c2, d) + v).IsRectilinear());
110   EXPECT_TRUE(QuadF(a, b, c, d2).IsRectilinear());
111   EXPECT_TRUE((QuadF(a, b, c, d2) + v).IsRectilinear());
112 
113   struct {
114     PointF a_off, b_off, c_off, d_off;
115   } tests[] = {
116     {
117       PointF(1, 1.00001f),
118       PointF(2, 1.00001f),
119       PointF(2, 2.00001f),
120       PointF(1, 2.00001f)
121     },
122     {
123       PointF(1.00001f, 1),
124       PointF(2.00001f, 1),
125       PointF(2.00001f, 2),
126       PointF(1.00001f, 2)
127     },
128     {
129       PointF(1.00001f, 1.00001f),
130       PointF(2.00001f, 1.00001f),
131       PointF(2.00001f, 2.00001f),
132       PointF(1.00001f, 2.00001f)
133     },
134     {
135       PointF(1, 0.99999f),
136       PointF(2, 0.99999f),
137       PointF(2, 1.99999f),
138       PointF(1, 1.99999f)
139     },
140     {
141       PointF(0.99999f, 1),
142       PointF(1.99999f, 1),
143       PointF(1.99999f, 2),
144       PointF(0.99999f, 2)
145     },
146     {
147       PointF(0.99999f, 0.99999f),
148       PointF(1.99999f, 0.99999f),
149       PointF(1.99999f, 1.99999f),
150       PointF(0.99999f, 1.99999f)
151     }
152   };
153 
154   for (size_t i = 0; i < ARRAYSIZE_UNSAFE(tests); ++i) {
155     PointF a_off = tests[i].a_off;
156     PointF b_off = tests[i].b_off;
157     PointF c_off = tests[i].c_off;
158     PointF d_off = tests[i].d_off;
159 
160     EXPECT_FALSE(QuadF(a_off, b, c, d).IsRectilinear());
161     EXPECT_FALSE((QuadF(a_off, b, c, d) + v).IsRectilinear());
162     EXPECT_FALSE(QuadF(a, b_off, c, d).IsRectilinear());
163     EXPECT_FALSE((QuadF(a, b_off, c, d) + v).IsRectilinear());
164     EXPECT_FALSE(QuadF(a, b, c_off, d).IsRectilinear());
165     EXPECT_FALSE((QuadF(a, b, c_off, d) + v).IsRectilinear());
166     EXPECT_FALSE(QuadF(a, b, c, d_off).IsRectilinear());
167     EXPECT_FALSE((QuadF(a, b, c, d_off) + v).IsRectilinear());
168     EXPECT_FALSE(QuadF(a_off, b, c_off, d).IsRectilinear());
169     EXPECT_FALSE((QuadF(a_off, b, c_off, d) + v).IsRectilinear());
170     EXPECT_FALSE(QuadF(a, b_off, c, d_off).IsRectilinear());
171     EXPECT_FALSE((QuadF(a, b_off, c, d_off) + v).IsRectilinear());
172     EXPECT_FALSE(QuadF(a, b_off, c_off, d_off).IsRectilinear());
173     EXPECT_FALSE((QuadF(a, b_off, c_off, d_off) + v).IsRectilinear());
174     EXPECT_FALSE(QuadF(a_off, b, c_off, d_off).IsRectilinear());
175     EXPECT_FALSE((QuadF(a_off, b, c_off, d_off) + v).IsRectilinear());
176     EXPECT_FALSE(QuadF(a_off, b_off, c, d_off).IsRectilinear());
177     EXPECT_FALSE((QuadF(a_off, b_off, c, d_off) + v).IsRectilinear());
178     EXPECT_FALSE(QuadF(a_off, b_off, c_off, d).IsRectilinear());
179     EXPECT_FALSE((QuadF(a_off, b_off, c_off, d) + v).IsRectilinear());
180     EXPECT_TRUE(QuadF(a_off, b_off, c_off, d_off).IsRectilinear());
181     EXPECT_TRUE((QuadF(a_off, b_off, c_off, d_off) + v).IsRectilinear());
182   }
183 }
184 
TEST(QuadTest,IsCounterClockwise)185 TEST(QuadTest, IsCounterClockwise) {
186   PointF a1(1, 1);
187   PointF b1(2, 1);
188   PointF c1(2, 2);
189   PointF d1(1, 2);
190   EXPECT_FALSE(QuadF(a1, b1, c1, d1).IsCounterClockwise());
191   EXPECT_FALSE(QuadF(b1, c1, d1, a1).IsCounterClockwise());
192   EXPECT_TRUE(QuadF(a1, d1, c1, b1).IsCounterClockwise());
193   EXPECT_TRUE(QuadF(c1, b1, a1, d1).IsCounterClockwise());
194 
195   // Slightly more complicated quads should work just as easily.
196   PointF a2(1.3f, 1.4f);
197   PointF b2(-0.7f, 4.9f);
198   PointF c2(1.8f, 6.2f);
199   PointF d2(2.1f, 1.6f);
200   EXPECT_TRUE(QuadF(a2, b2, c2, d2).IsCounterClockwise());
201   EXPECT_TRUE(QuadF(b2, c2, d2, a2).IsCounterClockwise());
202   EXPECT_FALSE(QuadF(a2, d2, c2, b2).IsCounterClockwise());
203   EXPECT_FALSE(QuadF(c2, b2, a2, d2).IsCounterClockwise());
204 
205   // Quads with 3 collinear points should work correctly, too.
206   PointF a3(0, 0);
207   PointF b3(1, 0);
208   PointF c3(2, 0);
209   PointF d3(1, 1);
210   EXPECT_FALSE(QuadF(a3, b3, c3, d3).IsCounterClockwise());
211   EXPECT_FALSE(QuadF(b3, c3, d3, a3).IsCounterClockwise());
212   EXPECT_TRUE(QuadF(a3, d3, c3, b3).IsCounterClockwise());
213   // The next expectation in particular would fail for an implementation
214   // that incorrectly uses only a cross product of the first 3 vertices.
215   EXPECT_TRUE(QuadF(c3, b3, a3, d3).IsCounterClockwise());
216 
217   // Non-convex quads should work correctly, too.
218   PointF a4(0, 0);
219   PointF b4(1, 1);
220   PointF c4(2, 0);
221   PointF d4(1, 3);
222   EXPECT_FALSE(QuadF(a4, b4, c4, d4).IsCounterClockwise());
223   EXPECT_FALSE(QuadF(b4, c4, d4, a4).IsCounterClockwise());
224   EXPECT_TRUE(QuadF(a4, d4, c4, b4).IsCounterClockwise());
225   EXPECT_TRUE(QuadF(c4, b4, a4, d4).IsCounterClockwise());
226 
227   // A quad with huge coordinates should not fail this check due to
228   // single-precision overflow.
229   PointF a5(1e30f, 1e30f);
230   PointF b5(1e35f, 1e30f);
231   PointF c5(1e35f, 1e35f);
232   PointF d5(1e30f, 1e35f);
233   EXPECT_FALSE(QuadF(a5, b5, c5, d5).IsCounterClockwise());
234   EXPECT_FALSE(QuadF(b5, c5, d5, a5).IsCounterClockwise());
235   EXPECT_TRUE(QuadF(a5, d5, c5, b5).IsCounterClockwise());
236   EXPECT_TRUE(QuadF(c5, b5, a5, d5).IsCounterClockwise());
237 }
238 
TEST(QuadTest,BoundingBox)239 TEST(QuadTest, BoundingBox) {
240   RectF r(3.2f, 5.4f, 7.007f, 12.01f);
241   EXPECT_EQ(r.ToString(), QuadF(r).BoundingBox().ToString());
242 
243   PointF a(1.3f, 1.4f);
244   PointF b(-0.7f, 4.9f);
245   PointF c(1.8f, 6.2f);
246   PointF d(2.1f, 1.6f);
247   float left = -0.7f;
248   float top = 1.4f;
249   float right = 2.1f;
250   float bottom = 6.2f;
251   EXPECT_EQ(RectF(left, top, right - left, bottom - top).ToString(),
252             QuadF(a, b, c, d).BoundingBox().ToString());
253 }
254 
TEST(QuadTest,ContainsPoint)255 TEST(QuadTest, ContainsPoint) {
256   PointF a(1.3f, 1.4f);
257   PointF b(-0.8f, 4.4f);
258   PointF c(1.8f, 6.1f);
259   PointF d(2.1f, 1.6f);
260 
261   Vector2dF epsilon_x(2 * std::numeric_limits<float>::epsilon(), 0);
262   Vector2dF epsilon_y(0, 2 * std::numeric_limits<float>::epsilon());
263 
264   Vector2dF ac_center = c - a;
265   ac_center.Scale(0.5f);
266   Vector2dF bd_center = d - b;
267   bd_center.Scale(0.5f);
268 
269   EXPECT_TRUE(QuadF(a, b, c, d).Contains(a + ac_center));
270   EXPECT_TRUE(QuadF(a, b, c, d).Contains(b + bd_center));
271   EXPECT_TRUE(QuadF(a, b, c, d).Contains(c - ac_center));
272   EXPECT_TRUE(QuadF(a, b, c, d).Contains(d - bd_center));
273   EXPECT_FALSE(QuadF(a, b, c, d).Contains(a - ac_center));
274   EXPECT_FALSE(QuadF(a, b, c, d).Contains(b - bd_center));
275   EXPECT_FALSE(QuadF(a, b, c, d).Contains(c + ac_center));
276   EXPECT_FALSE(QuadF(a, b, c, d).Contains(d + bd_center));
277 
278   EXPECT_TRUE(QuadF(a, b, c, d).Contains(a));
279   EXPECT_FALSE(QuadF(a, b, c, d).Contains(a - epsilon_x));
280   EXPECT_FALSE(QuadF(a, b, c, d).Contains(a - epsilon_y));
281   EXPECT_FALSE(QuadF(a, b, c, d).Contains(a + epsilon_x));
282   EXPECT_TRUE(QuadF(a, b, c, d).Contains(a + epsilon_y));
283 
284   EXPECT_TRUE(QuadF(a, b, c, d).Contains(b));
285   EXPECT_FALSE(QuadF(a, b, c, d).Contains(b - epsilon_x));
286   EXPECT_FALSE(QuadF(a, b, c, d).Contains(b - epsilon_y));
287   EXPECT_TRUE(QuadF(a, b, c, d).Contains(b + epsilon_x));
288   EXPECT_FALSE(QuadF(a, b, c, d).Contains(b + epsilon_y));
289 
290   EXPECT_TRUE(QuadF(a, b, c, d).Contains(c));
291   EXPECT_FALSE(QuadF(a, b, c, d).Contains(c - epsilon_x));
292   EXPECT_TRUE(QuadF(a, b, c, d).Contains(c - epsilon_y));
293   EXPECT_FALSE(QuadF(a, b, c, d).Contains(c + epsilon_x));
294   EXPECT_FALSE(QuadF(a, b, c, d).Contains(c + epsilon_y));
295 
296   EXPECT_TRUE(QuadF(a, b, c, d).Contains(d));
297   EXPECT_TRUE(QuadF(a, b, c, d).Contains(d - epsilon_x));
298   EXPECT_FALSE(QuadF(a, b, c, d).Contains(d - epsilon_y));
299   EXPECT_FALSE(QuadF(a, b, c, d).Contains(d + epsilon_x));
300   EXPECT_FALSE(QuadF(a, b, c, d).Contains(d + epsilon_y));
301 
302   // Test a simple square.
303   PointF s1(-1, -1);
304   PointF s2(1, -1);
305   PointF s3(1, 1);
306   PointF s4(-1, 1);
307   // Top edge.
308   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.1f, -1.0f)));
309   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.0f, -1.0f)));
310   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(0.0f, -1.0f)));
311   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(1.0f, -1.0f)));
312   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(1.1f, -1.0f)));
313   // Bottom edge.
314   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.1f, 1.0f)));
315   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.0f, 1.0f)));
316   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(0.0f, 1.0f)));
317   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(1.0f, 1.0f)));
318   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(1.1f, 1.0f)));
319   // Left edge.
320   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.0f, -1.1f)));
321   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.0f, -1.0f)));
322   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.0f, 0.0f)));
323   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.0f, 1.0f)));
324   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.0f, 1.1f)));
325   // Right edge.
326   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(1.0f, -1.1f)));
327   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(1.0f, -1.0f)));
328   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(1.0f, 0.0f)));
329   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(1.0f, 1.0f)));
330   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(1.0f, 1.1f)));
331   // Centered inside.
332   EXPECT_TRUE(QuadF(s1, s2, s3, s4).Contains(PointF(0, 0)));
333   // Centered outside.
334   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(-1.1f, 0)));
335   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(1.1f, 0)));
336   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(0, -1.1f)));
337   EXPECT_FALSE(QuadF(s1, s2, s3, s4).Contains(PointF(0, 1.1f)));
338 }
339 
TEST(QuadTest,Scale)340 TEST(QuadTest, Scale) {
341   PointF a(1.3f, 1.4f);
342   PointF b(-0.8f, 4.4f);
343   PointF c(1.8f, 6.1f);
344   PointF d(2.1f, 1.6f);
345   QuadF q1(a, b, c, d);
346   q1.Scale(1.5f);
347 
348   PointF a_scaled = ScalePoint(a, 1.5f);
349   PointF b_scaled = ScalePoint(b, 1.5f);
350   PointF c_scaled = ScalePoint(c, 1.5f);
351   PointF d_scaled = ScalePoint(d, 1.5f);
352   EXPECT_EQ(q1.ToString(),
353             QuadF(a_scaled, b_scaled, c_scaled, d_scaled).ToString());
354 
355   QuadF q2;
356   q2.Scale(1.5f);
357   EXPECT_EQ(q2.ToString(), q2.ToString());
358 }
359 
360 }  // namespace gfx
361