• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 //   this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 //   this list of conditions and the following disclaimer in the documentation
12 //   and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 //   used to endorse or promote products derived from this software without
15 //   specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30 
31 #include <algorithm>
32 #include <ctime>
33 #include <set>
34 #include <vector>
35 
36 #include "Eigen/Dense"
37 #include "ceres/block_random_access_dense_matrix.h"
38 #include "ceres/block_random_access_matrix.h"
39 #include "ceres/block_random_access_sparse_matrix.h"
40 #include "ceres/block_sparse_matrix.h"
41 #include "ceres/block_structure.h"
42 #include "ceres/cxsparse.h"
43 #include "ceres/detect_structure.h"
44 #include "ceres/internal/eigen.h"
45 #include "ceres/internal/port.h"
46 #include "ceres/internal/scoped_ptr.h"
47 #include "ceres/lapack.h"
48 #include "ceres/linear_solver.h"
49 #include "ceres/schur_complement_solver.h"
50 #include "ceres/suitesparse.h"
51 #include "ceres/triplet_sparse_matrix.h"
52 #include "ceres/types.h"
53 #include "ceres/wall_time.h"
54 
55 namespace ceres {
56 namespace internal {
57 
SolveImpl(BlockSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)58 LinearSolver::Summary SchurComplementSolver::SolveImpl(
59     BlockSparseMatrix* A,
60     const double* b,
61     const LinearSolver::PerSolveOptions& per_solve_options,
62     double* x) {
63   EventLogger event_logger("SchurComplementSolver::Solve");
64 
65   if (eliminator_.get() == NULL) {
66     InitStorage(A->block_structure());
67     DetectStructure(*A->block_structure(),
68                     options_.elimination_groups[0],
69                     &options_.row_block_size,
70                     &options_.e_block_size,
71                     &options_.f_block_size);
72     eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
73     eliminator_->Init(options_.elimination_groups[0], A->block_structure());
74   };
75   fill(x, x + A->num_cols(), 0.0);
76   event_logger.AddEvent("Setup");
77 
78   LinearSolver::Summary summary;
79   summary.num_iterations = 1;
80   summary.termination_type = FAILURE;
81   eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
82   event_logger.AddEvent("Eliminate");
83 
84   double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
85   const bool status = SolveReducedLinearSystem(reduced_solution);
86   event_logger.AddEvent("ReducedSolve");
87 
88   if (!status) {
89     return summary;
90   }
91 
92   eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
93   summary.termination_type = TOLERANCE;
94 
95   event_logger.AddEvent("BackSubstitute");
96   return summary;
97 }
98 
99 // Initialize a BlockRandomAccessDenseMatrix to store the Schur
100 // complement.
InitStorage(const CompressedRowBlockStructure * bs)101 void DenseSchurComplementSolver::InitStorage(
102     const CompressedRowBlockStructure* bs) {
103   const int num_eliminate_blocks = options().elimination_groups[0];
104   const int num_col_blocks = bs->cols.size();
105 
106   vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
107   for (int i = num_eliminate_blocks, j = 0;
108        i < num_col_blocks;
109        ++i, ++j) {
110     blocks[j] = bs->cols[i].size;
111   }
112 
113   set_lhs(new BlockRandomAccessDenseMatrix(blocks));
114   set_rhs(new double[lhs()->num_rows()]);
115 }
116 
117 // Solve the system Sx = r, assuming that the matrix S is stored in a
118 // BlockRandomAccessDenseMatrix. The linear system is solved using
119 // Eigen's Cholesky factorization.
SolveReducedLinearSystem(double * solution)120 bool DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
121   const BlockRandomAccessDenseMatrix* m =
122       down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
123   const int num_rows = m->num_rows();
124 
125   // The case where there are no f blocks, and the system is block
126   // diagonal.
127   if (num_rows == 0) {
128     return true;
129   }
130 
131   if (options().dense_linear_algebra_library_type == EIGEN) {
132     // TODO(sameeragarwal): Add proper error handling; this completely ignores
133     // the quality of the solution to the solve.
134     VectorRef(solution, num_rows) =
135         ConstMatrixRef(m->values(), num_rows, num_rows)
136         .selfadjointView<Eigen::Upper>()
137         .llt()
138         .solve(ConstVectorRef(rhs(), num_rows));
139     return true;
140   }
141 
142   VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
143   const int info = LAPACK::SolveInPlaceUsingCholesky(num_rows,
144                                                      m->values(),
145                                                      solution);
146   return (info == 0);
147 }
148 
149 #if !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
150 
SparseSchurComplementSolver(const LinearSolver::Options & options)151 SparseSchurComplementSolver::SparseSchurComplementSolver(
152     const LinearSolver::Options& options)
153     : SchurComplementSolver(options),
154       factor_(NULL),
155       cxsparse_factor_(NULL) {
156 }
157 
~SparseSchurComplementSolver()158 SparseSchurComplementSolver::~SparseSchurComplementSolver() {
159 #ifndef CERES_NO_SUITESPARSE
160   if (factor_ != NULL) {
161     ss_.Free(factor_);
162     factor_ = NULL;
163   }
164 #endif  // CERES_NO_SUITESPARSE
165 
166 #ifndef CERES_NO_CXSPARSE
167   if (cxsparse_factor_ != NULL) {
168     cxsparse_.Free(cxsparse_factor_);
169     cxsparse_factor_ = NULL;
170   }
171 #endif  // CERES_NO_CXSPARSE
172 }
173 
174 // Determine the non-zero blocks in the Schur Complement matrix, and
175 // initialize a BlockRandomAccessSparseMatrix object.
InitStorage(const CompressedRowBlockStructure * bs)176 void SparseSchurComplementSolver::InitStorage(
177     const CompressedRowBlockStructure* bs) {
178   const int num_eliminate_blocks = options().elimination_groups[0];
179   const int num_col_blocks = bs->cols.size();
180   const int num_row_blocks = bs->rows.size();
181 
182   blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
183   for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
184     blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
185   }
186 
187   set<pair<int, int> > block_pairs;
188   for (int i = 0; i < blocks_.size(); ++i) {
189     block_pairs.insert(make_pair(i, i));
190   }
191 
192   int r = 0;
193   while (r < num_row_blocks) {
194     int e_block_id = bs->rows[r].cells.front().block_id;
195     if (e_block_id >= num_eliminate_blocks) {
196       break;
197     }
198     vector<int> f_blocks;
199 
200     // Add to the chunk until the first block in the row is
201     // different than the one in the first row for the chunk.
202     for (; r < num_row_blocks; ++r) {
203       const CompressedRow& row = bs->rows[r];
204       if (row.cells.front().block_id != e_block_id) {
205         break;
206       }
207 
208       // Iterate over the blocks in the row, ignoring the first
209       // block since it is the one to be eliminated.
210       for (int c = 1; c < row.cells.size(); ++c) {
211         const Cell& cell = row.cells[c];
212         f_blocks.push_back(cell.block_id - num_eliminate_blocks);
213       }
214     }
215 
216     sort(f_blocks.begin(), f_blocks.end());
217     f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
218     for (int i = 0; i < f_blocks.size(); ++i) {
219       for (int j = i + 1; j < f_blocks.size(); ++j) {
220         block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
221       }
222     }
223   }
224 
225   // Remaing rows do not contribute to the chunks and directly go
226   // into the schur complement via an outer product.
227   for (; r < num_row_blocks; ++r) {
228     const CompressedRow& row = bs->rows[r];
229     CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
230     for (int i = 0; i < row.cells.size(); ++i) {
231       int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
232       for (int j = 0; j < row.cells.size(); ++j) {
233         int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
234         if (r_block1_id <= r_block2_id) {
235           block_pairs.insert(make_pair(r_block1_id, r_block2_id));
236         }
237       }
238     }
239   }
240 
241   set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
242   set_rhs(new double[lhs()->num_rows()]);
243 }
244 
SolveReducedLinearSystem(double * solution)245 bool SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
246   switch (options().sparse_linear_algebra_library_type) {
247     case SUITE_SPARSE:
248       return SolveReducedLinearSystemUsingSuiteSparse(solution);
249     case CX_SPARSE:
250       return SolveReducedLinearSystemUsingCXSparse(solution);
251     default:
252       LOG(FATAL) << "Unknown sparse linear algebra library : "
253                  << options().sparse_linear_algebra_library_type;
254   }
255 
256   LOG(FATAL) << "Unknown sparse linear algebra library : "
257              << options().sparse_linear_algebra_library_type;
258   return false;
259 }
260 
261 #ifndef CERES_NO_SUITESPARSE
262 // Solve the system Sx = r, assuming that the matrix S is stored in a
263 // BlockRandomAccessSparseMatrix.  The linear system is solved using
264 // CHOLMOD's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingSuiteSparse(double * solution)265 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
266     double* solution) {
267   TripletSparseMatrix* tsm =
268       const_cast<TripletSparseMatrix*>(
269           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
270 
271   const int num_rows = tsm->num_rows();
272 
273   // The case where there are no f blocks, and the system is block
274   // diagonal.
275   if (num_rows == 0) {
276     return true;
277   }
278 
279   cholmod_sparse* cholmod_lhs = NULL;
280   if (options().use_postordering) {
281     // If we are going to do a full symbolic analysis of the schur
282     // complement matrix from scratch and not rely on the
283     // pre-ordering, then the fastest path in cholmod_factorize is the
284     // one corresponding to upper triangular matrices.
285 
286     // Create a upper triangular symmetric matrix.
287     cholmod_lhs = ss_.CreateSparseMatrix(tsm);
288     cholmod_lhs->stype = 1;
289 
290     if (factor_ == NULL) {
291       factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs, blocks_, blocks_);
292     }
293   } else {
294     // If we are going to use the natural ordering (i.e. rely on the
295     // pre-ordering computed by solver_impl.cc), then the fastest
296     // path in cholmod_factorize is the one corresponding to lower
297     // triangular matrices.
298 
299     // Create a upper triangular symmetric matrix.
300     cholmod_lhs = ss_.CreateSparseMatrixTranspose(tsm);
301     cholmod_lhs->stype = -1;
302 
303     if (factor_ == NULL) {
304       factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(cholmod_lhs);
305     }
306   }
307 
308   cholmod_dense*  cholmod_rhs =
309       ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
310   cholmod_dense* cholmod_solution =
311       ss_.SolveCholesky(cholmod_lhs, factor_, cholmod_rhs);
312 
313   ss_.Free(cholmod_lhs);
314   ss_.Free(cholmod_rhs);
315 
316   if (cholmod_solution == NULL) {
317     LOG(WARNING) << "CHOLMOD solve failed.";
318     return false;
319   }
320 
321   VectorRef(solution, num_rows)
322       = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
323   ss_.Free(cholmod_solution);
324   return true;
325 }
326 #else
SolveReducedLinearSystemUsingSuiteSparse(double * solution)327 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
328     double* solution) {
329   LOG(FATAL) << "No SuiteSparse support in Ceres.";
330   return false;
331 }
332 #endif  // CERES_NO_SUITESPARSE
333 
334 #ifndef CERES_NO_CXSPARSE
335 // Solve the system Sx = r, assuming that the matrix S is stored in a
336 // BlockRandomAccessSparseMatrix.  The linear system is solved using
337 // CXSparse's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingCXSparse(double * solution)338 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
339     double* solution) {
340   // Extract the TripletSparseMatrix that is used for actually storing S.
341   TripletSparseMatrix* tsm =
342       const_cast<TripletSparseMatrix*>(
343           down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
344 
345   const int num_rows = tsm->num_rows();
346 
347   // The case where there are no f blocks, and the system is block
348   // diagonal.
349   if (num_rows == 0) {
350     return true;
351   }
352 
353   cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
354   VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
355 
356   // Compute symbolic factorization if not available.
357   if (cxsparse_factor_ == NULL) {
358     cxsparse_factor_ =
359         CHECK_NOTNULL(cxsparse_.BlockAnalyzeCholesky(lhs, blocks_, blocks_));
360   }
361 
362   // Solve the linear system.
363   bool ok = cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution);
364 
365   cxsparse_.Free(lhs);
366   return ok;
367 }
368 #else
SolveReducedLinearSystemUsingCXSparse(double * solution)369 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
370     double* solution) {
371   LOG(FATAL) << "No CXSparse support in Ceres.";
372   return false;
373 }
374 #endif  // CERES_NO_CXPARSE
375 
376 #endif  // !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
377 }  // namespace internal
378 }  // namespace ceres
379