1 // Ceres Solver - A fast non-linear least squares minimizer
2 // Copyright 2010, 2011, 2012 Google Inc. All rights reserved.
3 // http://code.google.com/p/ceres-solver/
4 //
5 // Redistribution and use in source and binary forms, with or without
6 // modification, are permitted provided that the following conditions are met:
7 //
8 // * Redistributions of source code must retain the above copyright notice,
9 // this list of conditions and the following disclaimer.
10 // * Redistributions in binary form must reproduce the above copyright notice,
11 // this list of conditions and the following disclaimer in the documentation
12 // and/or other materials provided with the distribution.
13 // * Neither the name of Google Inc. nor the names of its contributors may be
14 // used to endorse or promote products derived from this software without
15 // specific prior written permission.
16 //
17 // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
18 // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
19 // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
20 // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
21 // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
22 // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
23 // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
24 // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
25 // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
26 // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
27 // POSSIBILITY OF SUCH DAMAGE.
28 //
29 // Author: sameeragarwal@google.com (Sameer Agarwal)
30
31 #include <algorithm>
32 #include <ctime>
33 #include <set>
34 #include <vector>
35
36 #include "Eigen/Dense"
37 #include "ceres/block_random_access_dense_matrix.h"
38 #include "ceres/block_random_access_matrix.h"
39 #include "ceres/block_random_access_sparse_matrix.h"
40 #include "ceres/block_sparse_matrix.h"
41 #include "ceres/block_structure.h"
42 #include "ceres/cxsparse.h"
43 #include "ceres/detect_structure.h"
44 #include "ceres/internal/eigen.h"
45 #include "ceres/internal/port.h"
46 #include "ceres/internal/scoped_ptr.h"
47 #include "ceres/lapack.h"
48 #include "ceres/linear_solver.h"
49 #include "ceres/schur_complement_solver.h"
50 #include "ceres/suitesparse.h"
51 #include "ceres/triplet_sparse_matrix.h"
52 #include "ceres/types.h"
53 #include "ceres/wall_time.h"
54
55 namespace ceres {
56 namespace internal {
57
SolveImpl(BlockSparseMatrix * A,const double * b,const LinearSolver::PerSolveOptions & per_solve_options,double * x)58 LinearSolver::Summary SchurComplementSolver::SolveImpl(
59 BlockSparseMatrix* A,
60 const double* b,
61 const LinearSolver::PerSolveOptions& per_solve_options,
62 double* x) {
63 EventLogger event_logger("SchurComplementSolver::Solve");
64
65 if (eliminator_.get() == NULL) {
66 InitStorage(A->block_structure());
67 DetectStructure(*A->block_structure(),
68 options_.elimination_groups[0],
69 &options_.row_block_size,
70 &options_.e_block_size,
71 &options_.f_block_size);
72 eliminator_.reset(CHECK_NOTNULL(SchurEliminatorBase::Create(options_)));
73 eliminator_->Init(options_.elimination_groups[0], A->block_structure());
74 };
75 fill(x, x + A->num_cols(), 0.0);
76 event_logger.AddEvent("Setup");
77
78 LinearSolver::Summary summary;
79 summary.num_iterations = 1;
80 summary.termination_type = FAILURE;
81 eliminator_->Eliminate(A, b, per_solve_options.D, lhs_.get(), rhs_.get());
82 event_logger.AddEvent("Eliminate");
83
84 double* reduced_solution = x + A->num_cols() - lhs_->num_cols();
85 const bool status = SolveReducedLinearSystem(reduced_solution);
86 event_logger.AddEvent("ReducedSolve");
87
88 if (!status) {
89 return summary;
90 }
91
92 eliminator_->BackSubstitute(A, b, per_solve_options.D, reduced_solution, x);
93 summary.termination_type = TOLERANCE;
94
95 event_logger.AddEvent("BackSubstitute");
96 return summary;
97 }
98
99 // Initialize a BlockRandomAccessDenseMatrix to store the Schur
100 // complement.
InitStorage(const CompressedRowBlockStructure * bs)101 void DenseSchurComplementSolver::InitStorage(
102 const CompressedRowBlockStructure* bs) {
103 const int num_eliminate_blocks = options().elimination_groups[0];
104 const int num_col_blocks = bs->cols.size();
105
106 vector<int> blocks(num_col_blocks - num_eliminate_blocks, 0);
107 for (int i = num_eliminate_blocks, j = 0;
108 i < num_col_blocks;
109 ++i, ++j) {
110 blocks[j] = bs->cols[i].size;
111 }
112
113 set_lhs(new BlockRandomAccessDenseMatrix(blocks));
114 set_rhs(new double[lhs()->num_rows()]);
115 }
116
117 // Solve the system Sx = r, assuming that the matrix S is stored in a
118 // BlockRandomAccessDenseMatrix. The linear system is solved using
119 // Eigen's Cholesky factorization.
SolveReducedLinearSystem(double * solution)120 bool DenseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
121 const BlockRandomAccessDenseMatrix* m =
122 down_cast<const BlockRandomAccessDenseMatrix*>(lhs());
123 const int num_rows = m->num_rows();
124
125 // The case where there are no f blocks, and the system is block
126 // diagonal.
127 if (num_rows == 0) {
128 return true;
129 }
130
131 if (options().dense_linear_algebra_library_type == EIGEN) {
132 // TODO(sameeragarwal): Add proper error handling; this completely ignores
133 // the quality of the solution to the solve.
134 VectorRef(solution, num_rows) =
135 ConstMatrixRef(m->values(), num_rows, num_rows)
136 .selfadjointView<Eigen::Upper>()
137 .llt()
138 .solve(ConstVectorRef(rhs(), num_rows));
139 return true;
140 }
141
142 VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
143 const int info = LAPACK::SolveInPlaceUsingCholesky(num_rows,
144 m->values(),
145 solution);
146 return (info == 0);
147 }
148
149 #if !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
150
SparseSchurComplementSolver(const LinearSolver::Options & options)151 SparseSchurComplementSolver::SparseSchurComplementSolver(
152 const LinearSolver::Options& options)
153 : SchurComplementSolver(options),
154 factor_(NULL),
155 cxsparse_factor_(NULL) {
156 }
157
~SparseSchurComplementSolver()158 SparseSchurComplementSolver::~SparseSchurComplementSolver() {
159 #ifndef CERES_NO_SUITESPARSE
160 if (factor_ != NULL) {
161 ss_.Free(factor_);
162 factor_ = NULL;
163 }
164 #endif // CERES_NO_SUITESPARSE
165
166 #ifndef CERES_NO_CXSPARSE
167 if (cxsparse_factor_ != NULL) {
168 cxsparse_.Free(cxsparse_factor_);
169 cxsparse_factor_ = NULL;
170 }
171 #endif // CERES_NO_CXSPARSE
172 }
173
174 // Determine the non-zero blocks in the Schur Complement matrix, and
175 // initialize a BlockRandomAccessSparseMatrix object.
InitStorage(const CompressedRowBlockStructure * bs)176 void SparseSchurComplementSolver::InitStorage(
177 const CompressedRowBlockStructure* bs) {
178 const int num_eliminate_blocks = options().elimination_groups[0];
179 const int num_col_blocks = bs->cols.size();
180 const int num_row_blocks = bs->rows.size();
181
182 blocks_.resize(num_col_blocks - num_eliminate_blocks, 0);
183 for (int i = num_eliminate_blocks; i < num_col_blocks; ++i) {
184 blocks_[i - num_eliminate_blocks] = bs->cols[i].size;
185 }
186
187 set<pair<int, int> > block_pairs;
188 for (int i = 0; i < blocks_.size(); ++i) {
189 block_pairs.insert(make_pair(i, i));
190 }
191
192 int r = 0;
193 while (r < num_row_blocks) {
194 int e_block_id = bs->rows[r].cells.front().block_id;
195 if (e_block_id >= num_eliminate_blocks) {
196 break;
197 }
198 vector<int> f_blocks;
199
200 // Add to the chunk until the first block in the row is
201 // different than the one in the first row for the chunk.
202 for (; r < num_row_blocks; ++r) {
203 const CompressedRow& row = bs->rows[r];
204 if (row.cells.front().block_id != e_block_id) {
205 break;
206 }
207
208 // Iterate over the blocks in the row, ignoring the first
209 // block since it is the one to be eliminated.
210 for (int c = 1; c < row.cells.size(); ++c) {
211 const Cell& cell = row.cells[c];
212 f_blocks.push_back(cell.block_id - num_eliminate_blocks);
213 }
214 }
215
216 sort(f_blocks.begin(), f_blocks.end());
217 f_blocks.erase(unique(f_blocks.begin(), f_blocks.end()), f_blocks.end());
218 for (int i = 0; i < f_blocks.size(); ++i) {
219 for (int j = i + 1; j < f_blocks.size(); ++j) {
220 block_pairs.insert(make_pair(f_blocks[i], f_blocks[j]));
221 }
222 }
223 }
224
225 // Remaing rows do not contribute to the chunks and directly go
226 // into the schur complement via an outer product.
227 for (; r < num_row_blocks; ++r) {
228 const CompressedRow& row = bs->rows[r];
229 CHECK_GE(row.cells.front().block_id, num_eliminate_blocks);
230 for (int i = 0; i < row.cells.size(); ++i) {
231 int r_block1_id = row.cells[i].block_id - num_eliminate_blocks;
232 for (int j = 0; j < row.cells.size(); ++j) {
233 int r_block2_id = row.cells[j].block_id - num_eliminate_blocks;
234 if (r_block1_id <= r_block2_id) {
235 block_pairs.insert(make_pair(r_block1_id, r_block2_id));
236 }
237 }
238 }
239 }
240
241 set_lhs(new BlockRandomAccessSparseMatrix(blocks_, block_pairs));
242 set_rhs(new double[lhs()->num_rows()]);
243 }
244
SolveReducedLinearSystem(double * solution)245 bool SparseSchurComplementSolver::SolveReducedLinearSystem(double* solution) {
246 switch (options().sparse_linear_algebra_library_type) {
247 case SUITE_SPARSE:
248 return SolveReducedLinearSystemUsingSuiteSparse(solution);
249 case CX_SPARSE:
250 return SolveReducedLinearSystemUsingCXSparse(solution);
251 default:
252 LOG(FATAL) << "Unknown sparse linear algebra library : "
253 << options().sparse_linear_algebra_library_type;
254 }
255
256 LOG(FATAL) << "Unknown sparse linear algebra library : "
257 << options().sparse_linear_algebra_library_type;
258 return false;
259 }
260
261 #ifndef CERES_NO_SUITESPARSE
262 // Solve the system Sx = r, assuming that the matrix S is stored in a
263 // BlockRandomAccessSparseMatrix. The linear system is solved using
264 // CHOLMOD's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingSuiteSparse(double * solution)265 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
266 double* solution) {
267 TripletSparseMatrix* tsm =
268 const_cast<TripletSparseMatrix*>(
269 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
270
271 const int num_rows = tsm->num_rows();
272
273 // The case where there are no f blocks, and the system is block
274 // diagonal.
275 if (num_rows == 0) {
276 return true;
277 }
278
279 cholmod_sparse* cholmod_lhs = NULL;
280 if (options().use_postordering) {
281 // If we are going to do a full symbolic analysis of the schur
282 // complement matrix from scratch and not rely on the
283 // pre-ordering, then the fastest path in cholmod_factorize is the
284 // one corresponding to upper triangular matrices.
285
286 // Create a upper triangular symmetric matrix.
287 cholmod_lhs = ss_.CreateSparseMatrix(tsm);
288 cholmod_lhs->stype = 1;
289
290 if (factor_ == NULL) {
291 factor_ = ss_.BlockAnalyzeCholesky(cholmod_lhs, blocks_, blocks_);
292 }
293 } else {
294 // If we are going to use the natural ordering (i.e. rely on the
295 // pre-ordering computed by solver_impl.cc), then the fastest
296 // path in cholmod_factorize is the one corresponding to lower
297 // triangular matrices.
298
299 // Create a upper triangular symmetric matrix.
300 cholmod_lhs = ss_.CreateSparseMatrixTranspose(tsm);
301 cholmod_lhs->stype = -1;
302
303 if (factor_ == NULL) {
304 factor_ = ss_.AnalyzeCholeskyWithNaturalOrdering(cholmod_lhs);
305 }
306 }
307
308 cholmod_dense* cholmod_rhs =
309 ss_.CreateDenseVector(const_cast<double*>(rhs()), num_rows, num_rows);
310 cholmod_dense* cholmod_solution =
311 ss_.SolveCholesky(cholmod_lhs, factor_, cholmod_rhs);
312
313 ss_.Free(cholmod_lhs);
314 ss_.Free(cholmod_rhs);
315
316 if (cholmod_solution == NULL) {
317 LOG(WARNING) << "CHOLMOD solve failed.";
318 return false;
319 }
320
321 VectorRef(solution, num_rows)
322 = VectorRef(static_cast<double*>(cholmod_solution->x), num_rows);
323 ss_.Free(cholmod_solution);
324 return true;
325 }
326 #else
SolveReducedLinearSystemUsingSuiteSparse(double * solution)327 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingSuiteSparse(
328 double* solution) {
329 LOG(FATAL) << "No SuiteSparse support in Ceres.";
330 return false;
331 }
332 #endif // CERES_NO_SUITESPARSE
333
334 #ifndef CERES_NO_CXSPARSE
335 // Solve the system Sx = r, assuming that the matrix S is stored in a
336 // BlockRandomAccessSparseMatrix. The linear system is solved using
337 // CXSparse's sparse cholesky factorization routines.
SolveReducedLinearSystemUsingCXSparse(double * solution)338 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
339 double* solution) {
340 // Extract the TripletSparseMatrix that is used for actually storing S.
341 TripletSparseMatrix* tsm =
342 const_cast<TripletSparseMatrix*>(
343 down_cast<const BlockRandomAccessSparseMatrix*>(lhs())->matrix());
344
345 const int num_rows = tsm->num_rows();
346
347 // The case where there are no f blocks, and the system is block
348 // diagonal.
349 if (num_rows == 0) {
350 return true;
351 }
352
353 cs_di* lhs = CHECK_NOTNULL(cxsparse_.CreateSparseMatrix(tsm));
354 VectorRef(solution, num_rows) = ConstVectorRef(rhs(), num_rows);
355
356 // Compute symbolic factorization if not available.
357 if (cxsparse_factor_ == NULL) {
358 cxsparse_factor_ =
359 CHECK_NOTNULL(cxsparse_.BlockAnalyzeCholesky(lhs, blocks_, blocks_));
360 }
361
362 // Solve the linear system.
363 bool ok = cxsparse_.SolveCholesky(lhs, cxsparse_factor_, solution);
364
365 cxsparse_.Free(lhs);
366 return ok;
367 }
368 #else
SolveReducedLinearSystemUsingCXSparse(double * solution)369 bool SparseSchurComplementSolver::SolveReducedLinearSystemUsingCXSparse(
370 double* solution) {
371 LOG(FATAL) << "No CXSparse support in Ceres.";
372 return false;
373 }
374 #endif // CERES_NO_CXPARSE
375
376 #endif // !defined(CERES_NO_SUITESPARSE) || !defined(CERES_NO_CXSPARE)
377 } // namespace internal
378 } // namespace ceres
379