1 //===-- X86FrameLowering.cpp - X86 Frame Information ----------------------===//
2 //
3 // The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file contains the X86 implementation of TargetFrameLowering class.
11 //
12 //===----------------------------------------------------------------------===//
13
14 #include "X86FrameLowering.h"
15 #include "X86InstrBuilder.h"
16 #include "X86InstrInfo.h"
17 #include "X86MachineFunctionInfo.h"
18 #include "X86Subtarget.h"
19 #include "X86TargetMachine.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/CodeGen/MachineFrameInfo.h"
22 #include "llvm/CodeGen/MachineFunction.h"
23 #include "llvm/CodeGen/MachineInstrBuilder.h"
24 #include "llvm/CodeGen/MachineModuleInfo.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/MCAsmInfo.h"
29 #include "llvm/MC/MCSymbol.h"
30 #include "llvm/Support/CommandLine.h"
31 #include "llvm/Target/TargetOptions.h"
32
33 using namespace llvm;
34
35 // FIXME: completely move here.
36 extern cl::opt<bool> ForceStackAlign;
37
hasReservedCallFrame(const MachineFunction & MF) const38 bool X86FrameLowering::hasReservedCallFrame(const MachineFunction &MF) const {
39 return !MF.getFrameInfo()->hasVarSizedObjects();
40 }
41
42 /// hasFP - Return true if the specified function should have a dedicated frame
43 /// pointer register. This is true if the function has variable sized allocas
44 /// or if frame pointer elimination is disabled.
hasFP(const MachineFunction & MF) const45 bool X86FrameLowering::hasFP(const MachineFunction &MF) const {
46 const MachineFrameInfo *MFI = MF.getFrameInfo();
47 const MachineModuleInfo &MMI = MF.getMMI();
48 const TargetRegisterInfo *RegInfo = TM.getRegisterInfo();
49
50 return (MF.getTarget().Options.DisableFramePointerElim(MF) ||
51 RegInfo->needsStackRealignment(MF) ||
52 MFI->hasVarSizedObjects() ||
53 MFI->isFrameAddressTaken() || MF.hasMSInlineAsm() ||
54 MF.getInfo<X86MachineFunctionInfo>()->getForceFramePointer() ||
55 MMI.callsUnwindInit() || MMI.callsEHReturn());
56 }
57
getSUBriOpcode(unsigned IsLP64,int64_t Imm)58 static unsigned getSUBriOpcode(unsigned IsLP64, int64_t Imm) {
59 if (IsLP64) {
60 if (isInt<8>(Imm))
61 return X86::SUB64ri8;
62 return X86::SUB64ri32;
63 } else {
64 if (isInt<8>(Imm))
65 return X86::SUB32ri8;
66 return X86::SUB32ri;
67 }
68 }
69
getADDriOpcode(unsigned IsLP64,int64_t Imm)70 static unsigned getADDriOpcode(unsigned IsLP64, int64_t Imm) {
71 if (IsLP64) {
72 if (isInt<8>(Imm))
73 return X86::ADD64ri8;
74 return X86::ADD64ri32;
75 } else {
76 if (isInt<8>(Imm))
77 return X86::ADD32ri8;
78 return X86::ADD32ri;
79 }
80 }
81
getLEArOpcode(unsigned IsLP64)82 static unsigned getLEArOpcode(unsigned IsLP64) {
83 return IsLP64 ? X86::LEA64r : X86::LEA32r;
84 }
85
86 /// findDeadCallerSavedReg - Return a caller-saved register that isn't live
87 /// when it reaches the "return" instruction. We can then pop a stack object
88 /// to this register without worry about clobbering it.
findDeadCallerSavedReg(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,const TargetRegisterInfo & TRI,bool Is64Bit)89 static unsigned findDeadCallerSavedReg(MachineBasicBlock &MBB,
90 MachineBasicBlock::iterator &MBBI,
91 const TargetRegisterInfo &TRI,
92 bool Is64Bit) {
93 const MachineFunction *MF = MBB.getParent();
94 const Function *F = MF->getFunction();
95 if (!F || MF->getMMI().callsEHReturn())
96 return 0;
97
98 static const uint16_t CallerSavedRegs32Bit[] = {
99 X86::EAX, X86::EDX, X86::ECX, 0
100 };
101
102 static const uint16_t CallerSavedRegs64Bit[] = {
103 X86::RAX, X86::RDX, X86::RCX, X86::RSI, X86::RDI,
104 X86::R8, X86::R9, X86::R10, X86::R11, 0
105 };
106
107 unsigned Opc = MBBI->getOpcode();
108 switch (Opc) {
109 default: return 0;
110 case X86::RET:
111 case X86::RETI:
112 case X86::TCRETURNdi:
113 case X86::TCRETURNri:
114 case X86::TCRETURNmi:
115 case X86::TCRETURNdi64:
116 case X86::TCRETURNri64:
117 case X86::TCRETURNmi64:
118 case X86::EH_RETURN:
119 case X86::EH_RETURN64: {
120 SmallSet<uint16_t, 8> Uses;
121 for (unsigned i = 0, e = MBBI->getNumOperands(); i != e; ++i) {
122 MachineOperand &MO = MBBI->getOperand(i);
123 if (!MO.isReg() || MO.isDef())
124 continue;
125 unsigned Reg = MO.getReg();
126 if (!Reg)
127 continue;
128 for (MCRegAliasIterator AI(Reg, &TRI, true); AI.isValid(); ++AI)
129 Uses.insert(*AI);
130 }
131
132 const uint16_t *CS = Is64Bit ? CallerSavedRegs64Bit : CallerSavedRegs32Bit;
133 for (; *CS; ++CS)
134 if (!Uses.count(*CS))
135 return *CS;
136 }
137 }
138
139 return 0;
140 }
141
142
143 /// emitSPUpdate - Emit a series of instructions to increment / decrement the
144 /// stack pointer by a constant value.
145 static
emitSPUpdate(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,int64_t NumBytes,bool Is64Bit,bool IsLP64,bool UseLEA,const TargetInstrInfo & TII,const TargetRegisterInfo & TRI)146 void emitSPUpdate(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
147 unsigned StackPtr, int64_t NumBytes,
148 bool Is64Bit, bool IsLP64, bool UseLEA,
149 const TargetInstrInfo &TII, const TargetRegisterInfo &TRI) {
150 bool isSub = NumBytes < 0;
151 uint64_t Offset = isSub ? -NumBytes : NumBytes;
152 unsigned Opc;
153 if (UseLEA)
154 Opc = getLEArOpcode(IsLP64);
155 else
156 Opc = isSub
157 ? getSUBriOpcode(IsLP64, Offset)
158 : getADDriOpcode(IsLP64, Offset);
159
160 uint64_t Chunk = (1LL << 31) - 1;
161 DebugLoc DL = MBB.findDebugLoc(MBBI);
162
163 while (Offset) {
164 uint64_t ThisVal = (Offset > Chunk) ? Chunk : Offset;
165 if (ThisVal == (Is64Bit ? 8 : 4)) {
166 // Use push / pop instead.
167 unsigned Reg = isSub
168 ? (unsigned)(Is64Bit ? X86::RAX : X86::EAX)
169 : findDeadCallerSavedReg(MBB, MBBI, TRI, Is64Bit);
170 if (Reg) {
171 Opc = isSub
172 ? (Is64Bit ? X86::PUSH64r : X86::PUSH32r)
173 : (Is64Bit ? X86::POP64r : X86::POP32r);
174 MachineInstr *MI = BuildMI(MBB, MBBI, DL, TII.get(Opc))
175 .addReg(Reg, getDefRegState(!isSub) | getUndefRegState(isSub));
176 if (isSub)
177 MI->setFlag(MachineInstr::FrameSetup);
178 Offset -= ThisVal;
179 continue;
180 }
181 }
182
183 MachineInstr *MI = NULL;
184
185 if (UseLEA) {
186 MI = addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
187 StackPtr, false, isSub ? -ThisVal : ThisVal);
188 } else {
189 MI = BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
190 .addReg(StackPtr)
191 .addImm(ThisVal);
192 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
193 }
194
195 if (isSub)
196 MI->setFlag(MachineInstr::FrameSetup);
197
198 Offset -= ThisVal;
199 }
200 }
201
202 /// mergeSPUpdatesUp - Merge two stack-manipulating instructions upper iterator.
203 static
mergeSPUpdatesUp(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,uint64_t * NumBytes=NULL)204 void mergeSPUpdatesUp(MachineBasicBlock &MBB, MachineBasicBlock::iterator &MBBI,
205 unsigned StackPtr, uint64_t *NumBytes = NULL) {
206 if (MBBI == MBB.begin()) return;
207
208 MachineBasicBlock::iterator PI = prior(MBBI);
209 unsigned Opc = PI->getOpcode();
210 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
211 Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
212 Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
213 PI->getOperand(0).getReg() == StackPtr) {
214 if (NumBytes)
215 *NumBytes += PI->getOperand(2).getImm();
216 MBB.erase(PI);
217 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
218 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
219 PI->getOperand(0).getReg() == StackPtr) {
220 if (NumBytes)
221 *NumBytes -= PI->getOperand(2).getImm();
222 MBB.erase(PI);
223 }
224 }
225
226 /// mergeSPUpdatesDown - Merge two stack-manipulating instructions lower iterator.
227 static
mergeSPUpdatesDown(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,uint64_t * NumBytes=NULL)228 void mergeSPUpdatesDown(MachineBasicBlock &MBB,
229 MachineBasicBlock::iterator &MBBI,
230 unsigned StackPtr, uint64_t *NumBytes = NULL) {
231 // FIXME: THIS ISN'T RUN!!!
232 return;
233
234 if (MBBI == MBB.end()) return;
235
236 MachineBasicBlock::iterator NI = llvm::next(MBBI);
237 if (NI == MBB.end()) return;
238
239 unsigned Opc = NI->getOpcode();
240 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
241 Opc == X86::ADD32ri || Opc == X86::ADD32ri8) &&
242 NI->getOperand(0).getReg() == StackPtr) {
243 if (NumBytes)
244 *NumBytes -= NI->getOperand(2).getImm();
245 MBB.erase(NI);
246 MBBI = NI;
247 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
248 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
249 NI->getOperand(0).getReg() == StackPtr) {
250 if (NumBytes)
251 *NumBytes += NI->getOperand(2).getImm();
252 MBB.erase(NI);
253 MBBI = NI;
254 }
255 }
256
257 /// mergeSPUpdates - Checks the instruction before/after the passed
258 /// instruction. If it is an ADD/SUB/LEA instruction it is deleted argument and the
259 /// stack adjustment is returned as a positive value for ADD/LEA and a negative for
260 /// SUB.
mergeSPUpdates(MachineBasicBlock & MBB,MachineBasicBlock::iterator & MBBI,unsigned StackPtr,bool doMergeWithPrevious)261 static int mergeSPUpdates(MachineBasicBlock &MBB,
262 MachineBasicBlock::iterator &MBBI,
263 unsigned StackPtr,
264 bool doMergeWithPrevious) {
265 if ((doMergeWithPrevious && MBBI == MBB.begin()) ||
266 (!doMergeWithPrevious && MBBI == MBB.end()))
267 return 0;
268
269 MachineBasicBlock::iterator PI = doMergeWithPrevious ? prior(MBBI) : MBBI;
270 MachineBasicBlock::iterator NI = doMergeWithPrevious ? 0 : llvm::next(MBBI);
271 unsigned Opc = PI->getOpcode();
272 int Offset = 0;
273
274 if ((Opc == X86::ADD64ri32 || Opc == X86::ADD64ri8 ||
275 Opc == X86::ADD32ri || Opc == X86::ADD32ri8 ||
276 Opc == X86::LEA32r || Opc == X86::LEA64_32r) &&
277 PI->getOperand(0).getReg() == StackPtr){
278 Offset += PI->getOperand(2).getImm();
279 MBB.erase(PI);
280 if (!doMergeWithPrevious) MBBI = NI;
281 } else if ((Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
282 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) &&
283 PI->getOperand(0).getReg() == StackPtr) {
284 Offset -= PI->getOperand(2).getImm();
285 MBB.erase(PI);
286 if (!doMergeWithPrevious) MBBI = NI;
287 }
288
289 return Offset;
290 }
291
isEAXLiveIn(MachineFunction & MF)292 static bool isEAXLiveIn(MachineFunction &MF) {
293 for (MachineRegisterInfo::livein_iterator II = MF.getRegInfo().livein_begin(),
294 EE = MF.getRegInfo().livein_end(); II != EE; ++II) {
295 unsigned Reg = II->first;
296
297 if (Reg == X86::EAX || Reg == X86::AX ||
298 Reg == X86::AH || Reg == X86::AL)
299 return true;
300 }
301
302 return false;
303 }
304
emitCalleeSavedFrameMoves(MachineFunction & MF,MCSymbol * Label,unsigned FramePtr) const305 void X86FrameLowering::emitCalleeSavedFrameMoves(MachineFunction &MF,
306 MCSymbol *Label,
307 unsigned FramePtr) const {
308 MachineFrameInfo *MFI = MF.getFrameInfo();
309 MachineModuleInfo &MMI = MF.getMMI();
310 const MCRegisterInfo *MRI = MMI.getContext().getRegisterInfo();
311
312 // Add callee saved registers to move list.
313 const std::vector<CalleeSavedInfo> &CSI = MFI->getCalleeSavedInfo();
314 if (CSI.empty()) return;
315
316 const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
317 bool HasFP = hasFP(MF);
318
319 // Calculate amount of bytes used for return address storing.
320 int stackGrowth = -RegInfo->getSlotSize();
321
322 // FIXME: This is dirty hack. The code itself is pretty mess right now.
323 // It should be rewritten from scratch and generalized sometimes.
324
325 // Determine maximum offset (minimum due to stack growth).
326 int64_t MaxOffset = 0;
327 for (std::vector<CalleeSavedInfo>::const_iterator
328 I = CSI.begin(), E = CSI.end(); I != E; ++I)
329 MaxOffset = std::min(MaxOffset,
330 MFI->getObjectOffset(I->getFrameIdx()));
331
332 // Calculate offsets.
333 int64_t saveAreaOffset = (HasFP ? 3 : 2) * stackGrowth;
334 for (std::vector<CalleeSavedInfo>::const_iterator
335 I = CSI.begin(), E = CSI.end(); I != E; ++I) {
336 int64_t Offset = MFI->getObjectOffset(I->getFrameIdx());
337 unsigned Reg = I->getReg();
338 Offset = MaxOffset - Offset + saveAreaOffset;
339
340 // Don't output a new machine move if we're re-saving the frame
341 // pointer. This happens when the PrologEpilogInserter has inserted an extra
342 // "PUSH" of the frame pointer -- the "emitPrologue" method automatically
343 // generates one when frame pointers are used. If we generate a "machine
344 // move" for this extra "PUSH", the linker will lose track of the fact that
345 // the frame pointer should have the value of the first "PUSH" when it's
346 // trying to unwind.
347 //
348 // FIXME: This looks inelegant. It's possibly correct, but it's covering up
349 // another bug. I.e., one where we generate a prolog like this:
350 //
351 // pushl %ebp
352 // movl %esp, %ebp
353 // pushl %ebp
354 // pushl %esi
355 // ...
356 //
357 // The immediate re-push of EBP is unnecessary. At the least, it's an
358 // optimization bug. EBP can be used as a scratch register in certain
359 // cases, but probably not when we have a frame pointer.
360 if (HasFP && FramePtr == Reg)
361 continue;
362
363 unsigned DwarfReg = MRI->getDwarfRegNum(Reg, true);
364 MMI.addFrameInst(MCCFIInstruction::createOffset(Label, DwarfReg, Offset));
365 }
366 }
367
368 /// getCompactUnwindRegNum - Get the compact unwind number for a given
369 /// register. The number corresponds to the enum lists in
370 /// compact_unwind_encoding.h.
getCompactUnwindRegNum(unsigned Reg,bool is64Bit)371 static int getCompactUnwindRegNum(unsigned Reg, bool is64Bit) {
372 static const uint16_t CU32BitRegs[] = {
373 X86::EBX, X86::ECX, X86::EDX, X86::EDI, X86::ESI, X86::EBP, 0
374 };
375 static const uint16_t CU64BitRegs[] = {
376 X86::RBX, X86::R12, X86::R13, X86::R14, X86::R15, X86::RBP, 0
377 };
378 const uint16_t *CURegs = is64Bit ? CU64BitRegs : CU32BitRegs;
379 for (int Idx = 1; *CURegs; ++CURegs, ++Idx)
380 if (*CURegs == Reg)
381 return Idx;
382
383 return -1;
384 }
385
386 // Number of registers that can be saved in a compact unwind encoding.
387 #define CU_NUM_SAVED_REGS 6
388
389 /// encodeCompactUnwindRegistersWithoutFrame - Create the permutation encoding
390 /// used with frameless stacks. It is passed the number of registers to be saved
391 /// and an array of the registers saved.
392 static uint32_t
encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],unsigned RegCount,bool Is64Bit)393 encodeCompactUnwindRegistersWithoutFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
394 unsigned RegCount, bool Is64Bit) {
395 // The saved registers are numbered from 1 to 6. In order to encode the order
396 // in which they were saved, we re-number them according to their place in the
397 // register order. The re-numbering is relative to the last re-numbered
398 // register. E.g., if we have registers {6, 2, 4, 5} saved in that order:
399 //
400 // Orig Re-Num
401 // ---- ------
402 // 6 6
403 // 2 2
404 // 4 3
405 // 5 3
406 //
407 for (unsigned i = 0; i != CU_NUM_SAVED_REGS; ++i) {
408 int CUReg = getCompactUnwindRegNum(SavedRegs[i], Is64Bit);
409 if (CUReg == -1) return ~0U;
410 SavedRegs[i] = CUReg;
411 }
412
413 // Reverse the list.
414 std::swap(SavedRegs[0], SavedRegs[5]);
415 std::swap(SavedRegs[1], SavedRegs[4]);
416 std::swap(SavedRegs[2], SavedRegs[3]);
417
418 uint32_t RenumRegs[CU_NUM_SAVED_REGS];
419 for (unsigned i = CU_NUM_SAVED_REGS - RegCount; i < CU_NUM_SAVED_REGS; ++i) {
420 unsigned Countless = 0;
421 for (unsigned j = CU_NUM_SAVED_REGS - RegCount; j < i; ++j)
422 if (SavedRegs[j] < SavedRegs[i])
423 ++Countless;
424
425 RenumRegs[i] = SavedRegs[i] - Countless - 1;
426 }
427
428 // Take the renumbered values and encode them into a 10-bit number.
429 uint32_t permutationEncoding = 0;
430 switch (RegCount) {
431 case 6:
432 permutationEncoding |= 120 * RenumRegs[0] + 24 * RenumRegs[1]
433 + 6 * RenumRegs[2] + 2 * RenumRegs[3]
434 + RenumRegs[4];
435 break;
436 case 5:
437 permutationEncoding |= 120 * RenumRegs[1] + 24 * RenumRegs[2]
438 + 6 * RenumRegs[3] + 2 * RenumRegs[4]
439 + RenumRegs[5];
440 break;
441 case 4:
442 permutationEncoding |= 60 * RenumRegs[2] + 12 * RenumRegs[3]
443 + 3 * RenumRegs[4] + RenumRegs[5];
444 break;
445 case 3:
446 permutationEncoding |= 20 * RenumRegs[3] + 4 * RenumRegs[4]
447 + RenumRegs[5];
448 break;
449 case 2:
450 permutationEncoding |= 5 * RenumRegs[4] + RenumRegs[5];
451 break;
452 case 1:
453 permutationEncoding |= RenumRegs[5];
454 break;
455 }
456
457 assert((permutationEncoding & 0x3FF) == permutationEncoding &&
458 "Invalid compact register encoding!");
459 return permutationEncoding;
460 }
461
462 /// encodeCompactUnwindRegistersWithFrame - Return the registers encoded for a
463 /// compact encoding with a frame pointer.
464 static uint32_t
encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],bool Is64Bit)465 encodeCompactUnwindRegistersWithFrame(unsigned SavedRegs[CU_NUM_SAVED_REGS],
466 bool Is64Bit) {
467 // Encode the registers in the order they were saved, 3-bits per register. The
468 // registers are numbered from 1 to CU_NUM_SAVED_REGS.
469 uint32_t RegEnc = 0;
470 for (int I = CU_NUM_SAVED_REGS - 1, Idx = 0; I != -1; --I) {
471 unsigned Reg = SavedRegs[I];
472 if (Reg == 0) continue;
473
474 int CURegNum = getCompactUnwindRegNum(Reg, Is64Bit);
475 if (CURegNum == -1) return ~0U;
476
477 // Encode the 3-bit register number in order, skipping over 3-bits for each
478 // register.
479 RegEnc |= (CURegNum & 0x7) << (Idx++ * 3);
480 }
481
482 assert((RegEnc & 0x3FFFF) == RegEnc && "Invalid compact register encoding!");
483 return RegEnc;
484 }
485
getCompactUnwindEncoding(MachineFunction & MF) const486 uint32_t X86FrameLowering::getCompactUnwindEncoding(MachineFunction &MF) const {
487 const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
488 unsigned FramePtr = RegInfo->getFrameRegister(MF);
489 unsigned StackPtr = RegInfo->getStackRegister();
490
491 bool Is64Bit = STI.is64Bit();
492 bool HasFP = hasFP(MF);
493
494 unsigned SavedRegs[CU_NUM_SAVED_REGS] = { 0, 0, 0, 0, 0, 0 };
495 unsigned SavedRegIdx = 0;
496
497 unsigned OffsetSize = (Is64Bit ? 8 : 4);
498
499 unsigned PushInstr = (Is64Bit ? X86::PUSH64r : X86::PUSH32r);
500 unsigned PushInstrSize = 1;
501 unsigned MoveInstr = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
502 unsigned MoveInstrSize = (Is64Bit ? 3 : 2);
503 unsigned SubtractInstrIdx = (Is64Bit ? 3 : 2);
504
505 unsigned StackDivide = (Is64Bit ? 8 : 4);
506
507 unsigned InstrOffset = 0;
508 unsigned StackAdjust = 0;
509 unsigned StackSize = 0;
510
511 MachineBasicBlock &MBB = MF.front(); // Prologue is in entry BB.
512 bool ExpectEnd = false;
513 for (MachineBasicBlock::iterator
514 MBBI = MBB.begin(), MBBE = MBB.end(); MBBI != MBBE; ++MBBI) {
515 MachineInstr &MI = *MBBI;
516 unsigned Opc = MI.getOpcode();
517 if (Opc == X86::PROLOG_LABEL) continue;
518 if (!MI.getFlag(MachineInstr::FrameSetup)) break;
519
520 // We don't exect any more prolog instructions.
521 if (ExpectEnd) return CU::UNWIND_MODE_DWARF;
522
523 if (Opc == PushInstr) {
524 // If there are too many saved registers, we cannot use compact encoding.
525 if (SavedRegIdx >= CU_NUM_SAVED_REGS) return CU::UNWIND_MODE_DWARF;
526
527 unsigned Reg = MI.getOperand(0).getReg();
528 if (Reg == (Is64Bit ? X86::RAX : X86::EAX)) {
529 ExpectEnd = true;
530 continue;
531 }
532
533 SavedRegs[SavedRegIdx++] = MI.getOperand(0).getReg();
534 StackAdjust += OffsetSize;
535 InstrOffset += PushInstrSize;
536 } else if (Opc == MoveInstr) {
537 unsigned SrcReg = MI.getOperand(1).getReg();
538 unsigned DstReg = MI.getOperand(0).getReg();
539
540 if (DstReg != FramePtr || SrcReg != StackPtr)
541 return CU::UNWIND_MODE_DWARF;
542
543 StackAdjust = 0;
544 memset(SavedRegs, 0, sizeof(SavedRegs));
545 SavedRegIdx = 0;
546 InstrOffset += MoveInstrSize;
547 } else if (Opc == X86::SUB64ri32 || Opc == X86::SUB64ri8 ||
548 Opc == X86::SUB32ri || Opc == X86::SUB32ri8) {
549 if (StackSize)
550 // We already have a stack size.
551 return CU::UNWIND_MODE_DWARF;
552
553 if (!MI.getOperand(0).isReg() ||
554 MI.getOperand(0).getReg() != MI.getOperand(1).getReg() ||
555 MI.getOperand(0).getReg() != StackPtr || !MI.getOperand(2).isImm())
556 // We need this to be a stack adjustment pointer. Something like:
557 //
558 // %RSP<def> = SUB64ri8 %RSP, 48
559 return CU::UNWIND_MODE_DWARF;
560
561 StackSize = MI.getOperand(2).getImm() / StackDivide;
562 SubtractInstrIdx += InstrOffset;
563 ExpectEnd = true;
564 }
565 }
566
567 // Encode that we are using EBP/RBP as the frame pointer.
568 uint32_t CompactUnwindEncoding = 0;
569 StackAdjust /= StackDivide;
570 if (HasFP) {
571 if ((StackAdjust & 0xFF) != StackAdjust)
572 // Offset was too big for compact encoding.
573 return CU::UNWIND_MODE_DWARF;
574
575 // Get the encoding of the saved registers when we have a frame pointer.
576 uint32_t RegEnc = encodeCompactUnwindRegistersWithFrame(SavedRegs, Is64Bit);
577 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
578
579 CompactUnwindEncoding |= CU::UNWIND_MODE_BP_FRAME;
580 CompactUnwindEncoding |= (StackAdjust & 0xFF) << 16;
581 CompactUnwindEncoding |= RegEnc & CU::UNWIND_BP_FRAME_REGISTERS;
582 } else {
583 ++StackAdjust;
584 uint32_t TotalStackSize = StackAdjust + StackSize;
585 if ((TotalStackSize & 0xFF) == TotalStackSize) {
586 // Frameless stack with a small stack size.
587 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IMMD;
588
589 // Encode the stack size.
590 CompactUnwindEncoding |= (TotalStackSize & 0xFF) << 16;
591 } else {
592 if ((StackAdjust & 0x7) != StackAdjust)
593 // The extra stack adjustments are too big for us to handle.
594 return CU::UNWIND_MODE_DWARF;
595
596 // Frameless stack with an offset too large for us to encode compactly.
597 CompactUnwindEncoding |= CU::UNWIND_MODE_STACK_IND;
598
599 // Encode the offset to the nnnnnn value in the 'subl $nnnnnn, ESP'
600 // instruction.
601 CompactUnwindEncoding |= (SubtractInstrIdx & 0xFF) << 16;
602
603 // Encode any extra stack stack adjustments (done via push instructions).
604 CompactUnwindEncoding |= (StackAdjust & 0x7) << 13;
605 }
606
607 // Encode the number of registers saved.
608 CompactUnwindEncoding |= (SavedRegIdx & 0x7) << 10;
609
610 // Get the encoding of the saved registers when we don't have a frame
611 // pointer.
612 uint32_t RegEnc =
613 encodeCompactUnwindRegistersWithoutFrame(SavedRegs, SavedRegIdx,
614 Is64Bit);
615 if (RegEnc == ~0U) return CU::UNWIND_MODE_DWARF;
616
617 // Encode the register encoding.
618 CompactUnwindEncoding |=
619 RegEnc & CU::UNWIND_FRAMELESS_STACK_REG_PERMUTATION;
620 }
621
622 return CompactUnwindEncoding;
623 }
624
625 /// usesTheStack - This function checks if any of the users of EFLAGS
626 /// copies the EFLAGS. We know that the code that lowers COPY of EFLAGS has
627 /// to use the stack, and if we don't adjust the stack we clobber the first
628 /// frame index.
629 /// See X86InstrInfo::copyPhysReg.
usesTheStack(MachineFunction & MF)630 static bool usesTheStack(MachineFunction &MF) {
631 MachineRegisterInfo &MRI = MF.getRegInfo();
632
633 for (MachineRegisterInfo::reg_iterator ri = MRI.reg_begin(X86::EFLAGS),
634 re = MRI.reg_end(); ri != re; ++ri)
635 if (ri->isCopy())
636 return true;
637
638 return false;
639 }
640
641 /// emitPrologue - Push callee-saved registers onto the stack, which
642 /// automatically adjust the stack pointer. Adjust the stack pointer to allocate
643 /// space for local variables. Also emit labels used by the exception handler to
644 /// generate the exception handling frames.
emitPrologue(MachineFunction & MF) const645 void X86FrameLowering::emitPrologue(MachineFunction &MF) const {
646 MachineBasicBlock &MBB = MF.front(); // Prologue goes in entry BB.
647 MachineBasicBlock::iterator MBBI = MBB.begin();
648 MachineFrameInfo *MFI = MF.getFrameInfo();
649 const Function *Fn = MF.getFunction();
650 const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
651 const X86InstrInfo &TII = *TM.getInstrInfo();
652 MachineModuleInfo &MMI = MF.getMMI();
653 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
654 bool needsFrameMoves = MMI.hasDebugInfo() ||
655 Fn->needsUnwindTableEntry();
656 uint64_t MaxAlign = MFI->getMaxAlignment(); // Desired stack alignment.
657 uint64_t StackSize = MFI->getStackSize(); // Number of bytes to allocate.
658 bool HasFP = hasFP(MF);
659 bool Is64Bit = STI.is64Bit();
660 bool IsLP64 = STI.isTarget64BitLP64();
661 bool IsWin64 = STI.isTargetWin64();
662 bool UseLEA = STI.useLeaForSP();
663 unsigned StackAlign = getStackAlignment();
664 unsigned SlotSize = RegInfo->getSlotSize();
665 unsigned FramePtr = RegInfo->getFrameRegister(MF);
666 unsigned StackPtr = RegInfo->getStackRegister();
667 unsigned BasePtr = RegInfo->getBaseRegister();
668 DebugLoc DL;
669
670 // If we're forcing a stack realignment we can't rely on just the frame
671 // info, we need to know the ABI stack alignment as well in case we
672 // have a call out. Otherwise just make sure we have some alignment - we'll
673 // go with the minimum SlotSize.
674 if (ForceStackAlign) {
675 if (MFI->hasCalls())
676 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
677 else if (MaxAlign < SlotSize)
678 MaxAlign = SlotSize;
679 }
680
681 // Add RETADDR move area to callee saved frame size.
682 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
683 if (TailCallReturnAddrDelta < 0)
684 X86FI->setCalleeSavedFrameSize(
685 X86FI->getCalleeSavedFrameSize() - TailCallReturnAddrDelta);
686
687 // If this is x86-64 and the Red Zone is not disabled, if we are a leaf
688 // function, and use up to 128 bytes of stack space, don't have a frame
689 // pointer, calls, or dynamic alloca then we do not need to adjust the
690 // stack pointer (we fit in the Red Zone). We also check that we don't
691 // push and pop from the stack.
692 if (Is64Bit && !Fn->getAttributes().hasAttribute(AttributeSet::FunctionIndex,
693 Attribute::NoRedZone) &&
694 !RegInfo->needsStackRealignment(MF) &&
695 !MFI->hasVarSizedObjects() && // No dynamic alloca.
696 !MFI->adjustsStack() && // No calls.
697 !IsWin64 && // Win64 has no Red Zone
698 !usesTheStack(MF) && // Don't push and pop.
699 !MF.getTarget().Options.EnableSegmentedStacks) { // Regular stack
700 uint64_t MinSize = X86FI->getCalleeSavedFrameSize();
701 if (HasFP) MinSize += SlotSize;
702 StackSize = std::max(MinSize, StackSize > 128 ? StackSize - 128 : 0);
703 MFI->setStackSize(StackSize);
704 }
705
706 // Insert stack pointer adjustment for later moving of return addr. Only
707 // applies to tail call optimized functions where the callee argument stack
708 // size is bigger than the callers.
709 if (TailCallReturnAddrDelta < 0) {
710 MachineInstr *MI =
711 BuildMI(MBB, MBBI, DL,
712 TII.get(getSUBriOpcode(IsLP64, -TailCallReturnAddrDelta)),
713 StackPtr)
714 .addReg(StackPtr)
715 .addImm(-TailCallReturnAddrDelta)
716 .setMIFlag(MachineInstr::FrameSetup);
717 MI->getOperand(3).setIsDead(); // The EFLAGS implicit def is dead.
718 }
719
720 // Mapping for machine moves:
721 //
722 // DST: VirtualFP AND
723 // SRC: VirtualFP => DW_CFA_def_cfa_offset
724 // ELSE => DW_CFA_def_cfa
725 //
726 // SRC: VirtualFP AND
727 // DST: Register => DW_CFA_def_cfa_register
728 //
729 // ELSE
730 // OFFSET < 0 => DW_CFA_offset_extended_sf
731 // REG < 64 => DW_CFA_offset + Reg
732 // ELSE => DW_CFA_offset_extended
733
734 uint64_t NumBytes = 0;
735 int stackGrowth = -SlotSize;
736
737 if (HasFP) {
738 // Calculate required stack adjustment.
739 uint64_t FrameSize = StackSize - SlotSize;
740 if (RegInfo->needsStackRealignment(MF)) {
741 // Callee-saved registers are pushed on stack before the stack
742 // is realigned.
743 FrameSize -= X86FI->getCalleeSavedFrameSize();
744 NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
745 } else {
746 NumBytes = FrameSize - X86FI->getCalleeSavedFrameSize();
747 }
748
749 // Get the offset of the stack slot for the EBP register, which is
750 // guaranteed to be the last slot by processFunctionBeforeFrameFinalized.
751 // Update the frame offset adjustment.
752 MFI->setOffsetAdjustment(-NumBytes);
753
754 // Save EBP/RBP into the appropriate stack slot.
755 BuildMI(MBB, MBBI, DL, TII.get(Is64Bit ? X86::PUSH64r : X86::PUSH32r))
756 .addReg(FramePtr, RegState::Kill)
757 .setMIFlag(MachineInstr::FrameSetup);
758
759 if (needsFrameMoves) {
760 // Mark the place where EBP/RBP was saved.
761 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
762 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
763 .addSym(FrameLabel);
764
765 // Define the current CFA rule to use the provided offset.
766 assert(StackSize);
767 MMI.addFrameInst(
768 MCCFIInstruction::createDefCfaOffset(FrameLabel, 2 * stackGrowth));
769
770 // Change the rule for the FramePtr to be an "offset" rule.
771 unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
772 MMI.addFrameInst(MCCFIInstruction::createOffset(FrameLabel, DwarfFramePtr,
773 2 * stackGrowth));
774 }
775
776 // Update EBP with the new base value.
777 BuildMI(MBB, MBBI, DL,
778 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr), FramePtr)
779 .addReg(StackPtr)
780 .setMIFlag(MachineInstr::FrameSetup);
781
782 if (needsFrameMoves) {
783 // Mark effective beginning of when frame pointer becomes valid.
784 MCSymbol *FrameLabel = MMI.getContext().CreateTempSymbol();
785 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
786 .addSym(FrameLabel);
787
788 // Define the current CFA to use the EBP/RBP register.
789 unsigned DwarfFramePtr = RegInfo->getDwarfRegNum(FramePtr, true);
790 MMI.addFrameInst(
791 MCCFIInstruction::createDefCfaRegister(FrameLabel, DwarfFramePtr));
792 }
793
794 // Mark the FramePtr as live-in in every block except the entry.
795 for (MachineFunction::iterator I = llvm::next(MF.begin()), E = MF.end();
796 I != E; ++I)
797 I->addLiveIn(FramePtr);
798 } else {
799 NumBytes = StackSize - X86FI->getCalleeSavedFrameSize();
800 }
801
802 // Skip the callee-saved push instructions.
803 bool PushedRegs = false;
804 int StackOffset = 2 * stackGrowth;
805
806 while (MBBI != MBB.end() &&
807 (MBBI->getOpcode() == X86::PUSH32r ||
808 MBBI->getOpcode() == X86::PUSH64r)) {
809 PushedRegs = true;
810 MBBI->setFlag(MachineInstr::FrameSetup);
811 ++MBBI;
812
813 if (!HasFP && needsFrameMoves) {
814 // Mark callee-saved push instruction.
815 MCSymbol *Label = MMI.getContext().CreateTempSymbol();
816 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL)).addSym(Label);
817
818 // Define the current CFA rule to use the provided offset.
819 assert(StackSize);
820 MMI.addFrameInst(
821 MCCFIInstruction::createDefCfaOffset(Label, StackOffset));
822 StackOffset += stackGrowth;
823 }
824 }
825
826 // Realign stack after we pushed callee-saved registers (so that we'll be
827 // able to calculate their offsets from the frame pointer).
828
829 // NOTE: We push the registers before realigning the stack, so
830 // vector callee-saved (xmm) registers may be saved w/o proper
831 // alignment in this way. However, currently these regs are saved in
832 // stack slots (see X86FrameLowering::spillCalleeSavedRegisters()), so
833 // this shouldn't be a problem.
834 if (RegInfo->needsStackRealignment(MF)) {
835 assert(HasFP && "There should be a frame pointer if stack is realigned.");
836 MachineInstr *MI =
837 BuildMI(MBB, MBBI, DL,
838 TII.get(Is64Bit ? X86::AND64ri32 : X86::AND32ri), StackPtr)
839 .addReg(StackPtr)
840 .addImm(-MaxAlign)
841 .setMIFlag(MachineInstr::FrameSetup);
842
843 // The EFLAGS implicit def is dead.
844 MI->getOperand(3).setIsDead();
845 }
846
847 // If there is an SUB32ri of ESP immediately before this instruction, merge
848 // the two. This can be the case when tail call elimination is enabled and
849 // the callee has more arguments then the caller.
850 NumBytes -= mergeSPUpdates(MBB, MBBI, StackPtr, true);
851
852 // If there is an ADD32ri or SUB32ri of ESP immediately after this
853 // instruction, merge the two instructions.
854 mergeSPUpdatesDown(MBB, MBBI, StackPtr, &NumBytes);
855
856 // Adjust stack pointer: ESP -= numbytes.
857
858 // Windows and cygwin/mingw require a prologue helper routine when allocating
859 // more than 4K bytes on the stack. Windows uses __chkstk and cygwin/mingw
860 // uses __alloca. __alloca and the 32-bit version of __chkstk will probe the
861 // stack and adjust the stack pointer in one go. The 64-bit version of
862 // __chkstk is only responsible for probing the stack. The 64-bit prologue is
863 // responsible for adjusting the stack pointer. Touching the stack at 4K
864 // increments is necessary to ensure that the guard pages used by the OS
865 // virtual memory manager are allocated in correct sequence.
866 if (NumBytes >= 4096 && STI.isTargetCOFF() && !STI.isTargetEnvMacho()) {
867 const char *StackProbeSymbol;
868 bool isSPUpdateNeeded = false;
869
870 if (Is64Bit) {
871 if (STI.isTargetCygMing())
872 StackProbeSymbol = "___chkstk";
873 else {
874 StackProbeSymbol = "__chkstk";
875 isSPUpdateNeeded = true;
876 }
877 } else if (STI.isTargetCygMing())
878 StackProbeSymbol = "_alloca";
879 else
880 StackProbeSymbol = "_chkstk";
881
882 // Check whether EAX is livein for this function.
883 bool isEAXAlive = isEAXLiveIn(MF);
884
885 if (isEAXAlive) {
886 // Sanity check that EAX is not livein for this function.
887 // It should not be, so throw an assert.
888 assert(!Is64Bit && "EAX is livein in x64 case!");
889
890 // Save EAX
891 BuildMI(MBB, MBBI, DL, TII.get(X86::PUSH32r))
892 .addReg(X86::EAX, RegState::Kill)
893 .setMIFlag(MachineInstr::FrameSetup);
894 }
895
896 if (Is64Bit) {
897 // Handle the 64-bit Windows ABI case where we need to call __chkstk.
898 // Function prologue is responsible for adjusting the stack pointer.
899 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV64ri), X86::RAX)
900 .addImm(NumBytes)
901 .setMIFlag(MachineInstr::FrameSetup);
902 } else {
903 // Allocate NumBytes-4 bytes on stack in case of isEAXAlive.
904 // We'll also use 4 already allocated bytes for EAX.
905 BuildMI(MBB, MBBI, DL, TII.get(X86::MOV32ri), X86::EAX)
906 .addImm(isEAXAlive ? NumBytes - 4 : NumBytes)
907 .setMIFlag(MachineInstr::FrameSetup);
908 }
909
910 BuildMI(MBB, MBBI, DL,
911 TII.get(Is64Bit ? X86::W64ALLOCA : X86::CALLpcrel32))
912 .addExternalSymbol(StackProbeSymbol)
913 .addReg(StackPtr, RegState::Define | RegState::Implicit)
914 .addReg(X86::EFLAGS, RegState::Define | RegState::Implicit)
915 .setMIFlag(MachineInstr::FrameSetup);
916
917 // MSVC x64's __chkstk does not adjust %rsp itself.
918 // It also does not clobber %rax so we can reuse it when adjusting %rsp.
919 if (isSPUpdateNeeded) {
920 BuildMI(MBB, MBBI, DL, TII.get(X86::SUB64rr), StackPtr)
921 .addReg(StackPtr)
922 .addReg(X86::RAX)
923 .setMIFlag(MachineInstr::FrameSetup);
924 }
925
926 if (isEAXAlive) {
927 // Restore EAX
928 MachineInstr *MI = addRegOffset(BuildMI(MF, DL, TII.get(X86::MOV32rm),
929 X86::EAX),
930 StackPtr, false, NumBytes - 4);
931 MI->setFlag(MachineInstr::FrameSetup);
932 MBB.insert(MBBI, MI);
933 }
934 } else if (NumBytes)
935 emitSPUpdate(MBB, MBBI, StackPtr, -(int64_t)NumBytes, Is64Bit, IsLP64,
936 UseLEA, TII, *RegInfo);
937
938 // If we need a base pointer, set it up here. It's whatever the value
939 // of the stack pointer is at this point. Any variable size objects
940 // will be allocated after this, so we can still use the base pointer
941 // to reference locals.
942 if (RegInfo->hasBasePointer(MF)) {
943 // Update the frame pointer with the current stack pointer.
944 unsigned Opc = Is64Bit ? X86::MOV64rr : X86::MOV32rr;
945 BuildMI(MBB, MBBI, DL, TII.get(Opc), BasePtr)
946 .addReg(StackPtr)
947 .setMIFlag(MachineInstr::FrameSetup);
948 }
949
950 if (( (!HasFP && NumBytes) || PushedRegs) && needsFrameMoves) {
951 // Mark end of stack pointer adjustment.
952 MCSymbol *Label = MMI.getContext().CreateTempSymbol();
953 BuildMI(MBB, MBBI, DL, TII.get(X86::PROLOG_LABEL))
954 .addSym(Label);
955
956 if (!HasFP && NumBytes) {
957 // Define the current CFA rule to use the provided offset.
958 assert(StackSize);
959 MMI.addFrameInst(MCCFIInstruction::createDefCfaOffset(
960 Label, -StackSize + stackGrowth));
961 }
962
963 // Emit DWARF info specifying the offsets of the callee-saved registers.
964 if (PushedRegs)
965 emitCalleeSavedFrameMoves(MF, Label, HasFP ? FramePtr : StackPtr);
966 }
967
968 // Darwin 10.7 and greater has support for compact unwind encoding.
969 if (STI.getTargetTriple().isMacOSX() &&
970 !STI.getTargetTriple().isMacOSXVersionLT(10, 7))
971 MMI.setCompactUnwindEncoding(getCompactUnwindEncoding(MF));
972 }
973
emitEpilogue(MachineFunction & MF,MachineBasicBlock & MBB) const974 void X86FrameLowering::emitEpilogue(MachineFunction &MF,
975 MachineBasicBlock &MBB) const {
976 const MachineFrameInfo *MFI = MF.getFrameInfo();
977 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
978 const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
979 const X86InstrInfo &TII = *TM.getInstrInfo();
980 MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
981 assert(MBBI != MBB.end() && "Returning block has no instructions");
982 unsigned RetOpcode = MBBI->getOpcode();
983 DebugLoc DL = MBBI->getDebugLoc();
984 bool Is64Bit = STI.is64Bit();
985 bool IsLP64 = STI.isTarget64BitLP64();
986 bool UseLEA = STI.useLeaForSP();
987 unsigned StackAlign = getStackAlignment();
988 unsigned SlotSize = RegInfo->getSlotSize();
989 unsigned FramePtr = RegInfo->getFrameRegister(MF);
990 unsigned StackPtr = RegInfo->getStackRegister();
991
992 switch (RetOpcode) {
993 default:
994 llvm_unreachable("Can only insert epilog into returning blocks");
995 case X86::RET:
996 case X86::RETI:
997 case X86::TCRETURNdi:
998 case X86::TCRETURNri:
999 case X86::TCRETURNmi:
1000 case X86::TCRETURNdi64:
1001 case X86::TCRETURNri64:
1002 case X86::TCRETURNmi64:
1003 case X86::EH_RETURN:
1004 case X86::EH_RETURN64:
1005 break; // These are ok
1006 }
1007
1008 // Get the number of bytes to allocate from the FrameInfo.
1009 uint64_t StackSize = MFI->getStackSize();
1010 uint64_t MaxAlign = MFI->getMaxAlignment();
1011 unsigned CSSize = X86FI->getCalleeSavedFrameSize();
1012 uint64_t NumBytes = 0;
1013
1014 // If we're forcing a stack realignment we can't rely on just the frame
1015 // info, we need to know the ABI stack alignment as well in case we
1016 // have a call out. Otherwise just make sure we have some alignment - we'll
1017 // go with the minimum.
1018 if (ForceStackAlign) {
1019 if (MFI->hasCalls())
1020 MaxAlign = (StackAlign > MaxAlign) ? StackAlign : MaxAlign;
1021 else
1022 MaxAlign = MaxAlign ? MaxAlign : 4;
1023 }
1024
1025 if (hasFP(MF)) {
1026 // Calculate required stack adjustment.
1027 uint64_t FrameSize = StackSize - SlotSize;
1028 if (RegInfo->needsStackRealignment(MF)) {
1029 // Callee-saved registers were pushed on stack before the stack
1030 // was realigned.
1031 FrameSize -= CSSize;
1032 NumBytes = (FrameSize + MaxAlign - 1) / MaxAlign * MaxAlign;
1033 } else {
1034 NumBytes = FrameSize - CSSize;
1035 }
1036
1037 // Pop EBP.
1038 BuildMI(MBB, MBBI, DL,
1039 TII.get(Is64Bit ? X86::POP64r : X86::POP32r), FramePtr);
1040 } else {
1041 NumBytes = StackSize - CSSize;
1042 }
1043
1044 // Skip the callee-saved pop instructions.
1045 while (MBBI != MBB.begin()) {
1046 MachineBasicBlock::iterator PI = prior(MBBI);
1047 unsigned Opc = PI->getOpcode();
1048
1049 if (Opc != X86::POP32r && Opc != X86::POP64r && Opc != X86::DBG_VALUE &&
1050 !PI->isTerminator())
1051 break;
1052
1053 --MBBI;
1054 }
1055 MachineBasicBlock::iterator FirstCSPop = MBBI;
1056
1057 DL = MBBI->getDebugLoc();
1058
1059 // If there is an ADD32ri or SUB32ri of ESP immediately before this
1060 // instruction, merge the two instructions.
1061 if (NumBytes || MFI->hasVarSizedObjects())
1062 mergeSPUpdatesUp(MBB, MBBI, StackPtr, &NumBytes);
1063
1064 // If dynamic alloca is used, then reset esp to point to the last callee-saved
1065 // slot before popping them off! Same applies for the case, when stack was
1066 // realigned.
1067 if (RegInfo->needsStackRealignment(MF) || MFI->hasVarSizedObjects()) {
1068 if (RegInfo->needsStackRealignment(MF))
1069 MBBI = FirstCSPop;
1070 if (CSSize != 0) {
1071 unsigned Opc = getLEArOpcode(IsLP64);
1072 addRegOffset(BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr),
1073 FramePtr, false, -CSSize);
1074 } else {
1075 unsigned Opc = (Is64Bit ? X86::MOV64rr : X86::MOV32rr);
1076 BuildMI(MBB, MBBI, DL, TII.get(Opc), StackPtr)
1077 .addReg(FramePtr);
1078 }
1079 } else if (NumBytes) {
1080 // Adjust stack pointer back: ESP += numbytes.
1081 emitSPUpdate(MBB, MBBI, StackPtr, NumBytes, Is64Bit, IsLP64, UseLEA,
1082 TII, *RegInfo);
1083 }
1084
1085 // We're returning from function via eh_return.
1086 if (RetOpcode == X86::EH_RETURN || RetOpcode == X86::EH_RETURN64) {
1087 MBBI = MBB.getLastNonDebugInstr();
1088 MachineOperand &DestAddr = MBBI->getOperand(0);
1089 assert(DestAddr.isReg() && "Offset should be in register!");
1090 BuildMI(MBB, MBBI, DL,
1091 TII.get(Is64Bit ? X86::MOV64rr : X86::MOV32rr),
1092 StackPtr).addReg(DestAddr.getReg());
1093 } else if (RetOpcode == X86::TCRETURNri || RetOpcode == X86::TCRETURNdi ||
1094 RetOpcode == X86::TCRETURNmi ||
1095 RetOpcode == X86::TCRETURNri64 || RetOpcode == X86::TCRETURNdi64 ||
1096 RetOpcode == X86::TCRETURNmi64) {
1097 bool isMem = RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64;
1098 // Tail call return: adjust the stack pointer and jump to callee.
1099 MBBI = MBB.getLastNonDebugInstr();
1100 MachineOperand &JumpTarget = MBBI->getOperand(0);
1101 MachineOperand &StackAdjust = MBBI->getOperand(isMem ? 5 : 1);
1102 assert(StackAdjust.isImm() && "Expecting immediate value.");
1103
1104 // Adjust stack pointer.
1105 int StackAdj = StackAdjust.getImm();
1106 int MaxTCDelta = X86FI->getTCReturnAddrDelta();
1107 int Offset = 0;
1108 assert(MaxTCDelta <= 0 && "MaxTCDelta should never be positive");
1109
1110 // Incoporate the retaddr area.
1111 Offset = StackAdj-MaxTCDelta;
1112 assert(Offset >= 0 && "Offset should never be negative");
1113
1114 if (Offset) {
1115 // Check for possible merge with preceding ADD instruction.
1116 Offset += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1117 emitSPUpdate(MBB, MBBI, StackPtr, Offset, Is64Bit, IsLP64,
1118 UseLEA, TII, *RegInfo);
1119 }
1120
1121 // Jump to label or value in register.
1122 if (RetOpcode == X86::TCRETURNdi || RetOpcode == X86::TCRETURNdi64) {
1123 MachineInstrBuilder MIB =
1124 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNdi)
1125 ? X86::TAILJMPd : X86::TAILJMPd64));
1126 if (JumpTarget.isGlobal())
1127 MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
1128 JumpTarget.getTargetFlags());
1129 else {
1130 assert(JumpTarget.isSymbol());
1131 MIB.addExternalSymbol(JumpTarget.getSymbolName(),
1132 JumpTarget.getTargetFlags());
1133 }
1134 } else if (RetOpcode == X86::TCRETURNmi || RetOpcode == X86::TCRETURNmi64) {
1135 MachineInstrBuilder MIB =
1136 BuildMI(MBB, MBBI, DL, TII.get((RetOpcode == X86::TCRETURNmi)
1137 ? X86::TAILJMPm : X86::TAILJMPm64));
1138 for (unsigned i = 0; i != 5; ++i)
1139 MIB.addOperand(MBBI->getOperand(i));
1140 } else if (RetOpcode == X86::TCRETURNri64) {
1141 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr64)).
1142 addReg(JumpTarget.getReg(), RegState::Kill);
1143 } else {
1144 BuildMI(MBB, MBBI, DL, TII.get(X86::TAILJMPr)).
1145 addReg(JumpTarget.getReg(), RegState::Kill);
1146 }
1147
1148 MachineInstr *NewMI = prior(MBBI);
1149 NewMI->copyImplicitOps(MF, MBBI);
1150
1151 // Delete the pseudo instruction TCRETURN.
1152 MBB.erase(MBBI);
1153 } else if ((RetOpcode == X86::RET || RetOpcode == X86::RETI) &&
1154 (X86FI->getTCReturnAddrDelta() < 0)) {
1155 // Add the return addr area delta back since we are not tail calling.
1156 int delta = -1*X86FI->getTCReturnAddrDelta();
1157 MBBI = MBB.getLastNonDebugInstr();
1158
1159 // Check for possible merge with preceding ADD instruction.
1160 delta += mergeSPUpdates(MBB, MBBI, StackPtr, true);
1161 emitSPUpdate(MBB, MBBI, StackPtr, delta, Is64Bit, IsLP64, UseLEA, TII,
1162 *RegInfo);
1163 }
1164 }
1165
getFrameIndexOffset(const MachineFunction & MF,int FI) const1166 int X86FrameLowering::getFrameIndexOffset(const MachineFunction &MF, int FI) const {
1167 const X86RegisterInfo *RegInfo =
1168 static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1169 const MachineFrameInfo *MFI = MF.getFrameInfo();
1170 int Offset = MFI->getObjectOffset(FI) - getOffsetOfLocalArea();
1171 uint64_t StackSize = MFI->getStackSize();
1172
1173 if (RegInfo->hasBasePointer(MF)) {
1174 assert (hasFP(MF) && "VLAs and dynamic stack realign, but no FP?!");
1175 if (FI < 0) {
1176 // Skip the saved EBP.
1177 return Offset + RegInfo->getSlotSize();
1178 } else {
1179 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1180 return Offset + StackSize;
1181 }
1182 } else if (RegInfo->needsStackRealignment(MF)) {
1183 if (FI < 0) {
1184 // Skip the saved EBP.
1185 return Offset + RegInfo->getSlotSize();
1186 } else {
1187 assert((-(Offset + StackSize)) % MFI->getObjectAlignment(FI) == 0);
1188 return Offset + StackSize;
1189 }
1190 // FIXME: Support tail calls
1191 } else {
1192 if (!hasFP(MF))
1193 return Offset + StackSize;
1194
1195 // Skip the saved EBP.
1196 Offset += RegInfo->getSlotSize();
1197
1198 // Skip the RETADDR move area
1199 const X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1200 int TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1201 if (TailCallReturnAddrDelta < 0)
1202 Offset -= TailCallReturnAddrDelta;
1203 }
1204
1205 return Offset;
1206 }
1207
getFrameIndexReference(const MachineFunction & MF,int FI,unsigned & FrameReg) const1208 int X86FrameLowering::getFrameIndexReference(const MachineFunction &MF, int FI,
1209 unsigned &FrameReg) const {
1210 const X86RegisterInfo *RegInfo =
1211 static_cast<const X86RegisterInfo*>(MF.getTarget().getRegisterInfo());
1212 // We can't calculate offset from frame pointer if the stack is realigned,
1213 // so enforce usage of stack/base pointer. The base pointer is used when we
1214 // have dynamic allocas in addition to dynamic realignment.
1215 if (RegInfo->hasBasePointer(MF))
1216 FrameReg = RegInfo->getBaseRegister();
1217 else if (RegInfo->needsStackRealignment(MF))
1218 FrameReg = RegInfo->getStackRegister();
1219 else
1220 FrameReg = RegInfo->getFrameRegister(MF);
1221 return getFrameIndexOffset(MF, FI);
1222 }
1223
spillCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1224 bool X86FrameLowering::spillCalleeSavedRegisters(MachineBasicBlock &MBB,
1225 MachineBasicBlock::iterator MI,
1226 const std::vector<CalleeSavedInfo> &CSI,
1227 const TargetRegisterInfo *TRI) const {
1228 if (CSI.empty())
1229 return false;
1230
1231 DebugLoc DL = MBB.findDebugLoc(MI);
1232
1233 MachineFunction &MF = *MBB.getParent();
1234
1235 unsigned SlotSize = STI.is64Bit() ? 8 : 4;
1236 unsigned FPReg = TRI->getFrameRegister(MF);
1237 unsigned CalleeFrameSize = 0;
1238
1239 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1240 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1241
1242 // Push GPRs. It increases frame size.
1243 unsigned Opc = STI.is64Bit() ? X86::PUSH64r : X86::PUSH32r;
1244 for (unsigned i = CSI.size(); i != 0; --i) {
1245 unsigned Reg = CSI[i-1].getReg();
1246 if (!X86::GR64RegClass.contains(Reg) &&
1247 !X86::GR32RegClass.contains(Reg))
1248 continue;
1249 // Add the callee-saved register as live-in. It's killed at the spill.
1250 MBB.addLiveIn(Reg);
1251 if (Reg == FPReg)
1252 // X86RegisterInfo::emitPrologue will handle spilling of frame register.
1253 continue;
1254 CalleeFrameSize += SlotSize;
1255 BuildMI(MBB, MI, DL, TII.get(Opc)).addReg(Reg, RegState::Kill)
1256 .setMIFlag(MachineInstr::FrameSetup);
1257 }
1258
1259 X86FI->setCalleeSavedFrameSize(CalleeFrameSize);
1260
1261 // Make XMM regs spilled. X86 does not have ability of push/pop XMM.
1262 // It can be done by spilling XMMs to stack frame.
1263 // Note that only Win64 ABI might spill XMMs.
1264 for (unsigned i = CSI.size(); i != 0; --i) {
1265 unsigned Reg = CSI[i-1].getReg();
1266 if (X86::GR64RegClass.contains(Reg) ||
1267 X86::GR32RegClass.contains(Reg))
1268 continue;
1269 // Add the callee-saved register as live-in. It's killed at the spill.
1270 MBB.addLiveIn(Reg);
1271 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1272 TII.storeRegToStackSlot(MBB, MI, Reg, true, CSI[i-1].getFrameIdx(),
1273 RC, TRI);
1274 }
1275
1276 return true;
1277 }
1278
restoreCalleeSavedRegisters(MachineBasicBlock & MBB,MachineBasicBlock::iterator MI,const std::vector<CalleeSavedInfo> & CSI,const TargetRegisterInfo * TRI) const1279 bool X86FrameLowering::restoreCalleeSavedRegisters(MachineBasicBlock &MBB,
1280 MachineBasicBlock::iterator MI,
1281 const std::vector<CalleeSavedInfo> &CSI,
1282 const TargetRegisterInfo *TRI) const {
1283 if (CSI.empty())
1284 return false;
1285
1286 DebugLoc DL = MBB.findDebugLoc(MI);
1287
1288 MachineFunction &MF = *MBB.getParent();
1289 const TargetInstrInfo &TII = *MF.getTarget().getInstrInfo();
1290
1291 // Reload XMMs from stack frame.
1292 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1293 unsigned Reg = CSI[i].getReg();
1294 if (X86::GR64RegClass.contains(Reg) ||
1295 X86::GR32RegClass.contains(Reg))
1296 continue;
1297 const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(Reg);
1298 TII.loadRegFromStackSlot(MBB, MI, Reg, CSI[i].getFrameIdx(),
1299 RC, TRI);
1300 }
1301
1302 // POP GPRs.
1303 unsigned FPReg = TRI->getFrameRegister(MF);
1304 unsigned Opc = STI.is64Bit() ? X86::POP64r : X86::POP32r;
1305 for (unsigned i = 0, e = CSI.size(); i != e; ++i) {
1306 unsigned Reg = CSI[i].getReg();
1307 if (!X86::GR64RegClass.contains(Reg) &&
1308 !X86::GR32RegClass.contains(Reg))
1309 continue;
1310 if (Reg == FPReg)
1311 // X86RegisterInfo::emitEpilogue will handle restoring of frame register.
1312 continue;
1313 BuildMI(MBB, MI, DL, TII.get(Opc), Reg);
1314 }
1315 return true;
1316 }
1317
1318 void
processFunctionBeforeCalleeSavedScan(MachineFunction & MF,RegScavenger * RS) const1319 X86FrameLowering::processFunctionBeforeCalleeSavedScan(MachineFunction &MF,
1320 RegScavenger *RS) const {
1321 MachineFrameInfo *MFI = MF.getFrameInfo();
1322 const X86RegisterInfo *RegInfo = TM.getRegisterInfo();
1323 unsigned SlotSize = RegInfo->getSlotSize();
1324
1325 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1326 int64_t TailCallReturnAddrDelta = X86FI->getTCReturnAddrDelta();
1327
1328 if (TailCallReturnAddrDelta < 0) {
1329 // create RETURNADDR area
1330 // arg
1331 // arg
1332 // RETADDR
1333 // { ...
1334 // RETADDR area
1335 // ...
1336 // }
1337 // [EBP]
1338 MFI->CreateFixedObject(-TailCallReturnAddrDelta,
1339 TailCallReturnAddrDelta - SlotSize, true);
1340 }
1341
1342 if (hasFP(MF)) {
1343 assert((TailCallReturnAddrDelta <= 0) &&
1344 "The Delta should always be zero or negative");
1345 const TargetFrameLowering &TFI = *MF.getTarget().getFrameLowering();
1346
1347 // Create a frame entry for the EBP register that must be saved.
1348 int FrameIdx = MFI->CreateFixedObject(SlotSize,
1349 -(int)SlotSize +
1350 TFI.getOffsetOfLocalArea() +
1351 TailCallReturnAddrDelta,
1352 true);
1353 assert(FrameIdx == MFI->getObjectIndexBegin() &&
1354 "Slot for EBP register must be last in order to be found!");
1355 (void)FrameIdx;
1356 }
1357
1358 // Spill the BasePtr if it's used.
1359 if (RegInfo->hasBasePointer(MF))
1360 MF.getRegInfo().setPhysRegUsed(RegInfo->getBaseRegister());
1361 }
1362
1363 static bool
HasNestArgument(const MachineFunction * MF)1364 HasNestArgument(const MachineFunction *MF) {
1365 const Function *F = MF->getFunction();
1366 for (Function::const_arg_iterator I = F->arg_begin(), E = F->arg_end();
1367 I != E; I++) {
1368 if (I->hasNestAttr())
1369 return true;
1370 }
1371 return false;
1372 }
1373
1374 /// GetScratchRegister - Get a temp register for performing work in the
1375 /// segmented stack and the Erlang/HiPE stack prologue. Depending on platform
1376 /// and the properties of the function either one or two registers will be
1377 /// needed. Set primary to true for the first register, false for the second.
1378 static unsigned
GetScratchRegister(bool Is64Bit,const MachineFunction & MF,bool Primary)1379 GetScratchRegister(bool Is64Bit, const MachineFunction &MF, bool Primary) {
1380 CallingConv::ID CallingConvention = MF.getFunction()->getCallingConv();
1381
1382 // Erlang stuff.
1383 if (CallingConvention == CallingConv::HiPE) {
1384 if (Is64Bit)
1385 return Primary ? X86::R14 : X86::R13;
1386 else
1387 return Primary ? X86::EBX : X86::EDI;
1388 }
1389
1390 if (Is64Bit)
1391 return Primary ? X86::R11 : X86::R12;
1392
1393 bool IsNested = HasNestArgument(&MF);
1394
1395 if (CallingConvention == CallingConv::X86_FastCall ||
1396 CallingConvention == CallingConv::Fast) {
1397 if (IsNested)
1398 report_fatal_error("Segmented stacks does not support fastcall with "
1399 "nested function.");
1400 return Primary ? X86::EAX : X86::ECX;
1401 }
1402 if (IsNested)
1403 return Primary ? X86::EDX : X86::EAX;
1404 return Primary ? X86::ECX : X86::EAX;
1405 }
1406
1407 // The stack limit in the TCB is set to this many bytes above the actual stack
1408 // limit.
1409 static const uint64_t kSplitStackAvailable = 256;
1410
1411 void
adjustForSegmentedStacks(MachineFunction & MF) const1412 X86FrameLowering::adjustForSegmentedStacks(MachineFunction &MF) const {
1413 MachineBasicBlock &prologueMBB = MF.front();
1414 MachineFrameInfo *MFI = MF.getFrameInfo();
1415 const X86InstrInfo &TII = *TM.getInstrInfo();
1416 uint64_t StackSize;
1417 bool Is64Bit = STI.is64Bit();
1418 unsigned TlsReg, TlsOffset;
1419 DebugLoc DL;
1420
1421 unsigned ScratchReg = GetScratchRegister(Is64Bit, MF, true);
1422 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1423 "Scratch register is live-in");
1424
1425 if (MF.getFunction()->isVarArg())
1426 report_fatal_error("Segmented stacks do not support vararg functions.");
1427 if (!STI.isTargetLinux() && !STI.isTargetDarwin() &&
1428 !STI.isTargetWin32() && !STI.isTargetFreeBSD())
1429 report_fatal_error("Segmented stacks not supported on this platform.");
1430
1431 MachineBasicBlock *allocMBB = MF.CreateMachineBasicBlock();
1432 MachineBasicBlock *checkMBB = MF.CreateMachineBasicBlock();
1433 X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
1434 bool IsNested = false;
1435
1436 // We need to know if the function has a nest argument only in 64 bit mode.
1437 if (Is64Bit)
1438 IsNested = HasNestArgument(&MF);
1439
1440 // The MOV R10, RAX needs to be in a different block, since the RET we emit in
1441 // allocMBB needs to be last (terminating) instruction.
1442
1443 for (MachineBasicBlock::livein_iterator i = prologueMBB.livein_begin(),
1444 e = prologueMBB.livein_end(); i != e; i++) {
1445 allocMBB->addLiveIn(*i);
1446 checkMBB->addLiveIn(*i);
1447 }
1448
1449 if (IsNested)
1450 allocMBB->addLiveIn(X86::R10);
1451
1452 MF.push_front(allocMBB);
1453 MF.push_front(checkMBB);
1454
1455 // Eventually StackSize will be calculated by a link-time pass; which will
1456 // also decide whether checking code needs to be injected into this particular
1457 // prologue.
1458 StackSize = MFI->getStackSize();
1459
1460 // When the frame size is less than 256 we just compare the stack
1461 // boundary directly to the value of the stack pointer, per gcc.
1462 bool CompareStackPointer = StackSize < kSplitStackAvailable;
1463
1464 // Read the limit off the current stacklet off the stack_guard location.
1465 if (Is64Bit) {
1466 if (STI.isTargetLinux()) {
1467 TlsReg = X86::FS;
1468 TlsOffset = 0x70;
1469 } else if (STI.isTargetDarwin()) {
1470 TlsReg = X86::GS;
1471 TlsOffset = 0x60 + 90*8; // See pthread_machdep.h. Steal TLS slot 90.
1472 } else if (STI.isTargetFreeBSD()) {
1473 TlsReg = X86::FS;
1474 TlsOffset = 0x18;
1475 } else {
1476 report_fatal_error("Segmented stacks not supported on this platform.");
1477 }
1478
1479 if (CompareStackPointer)
1480 ScratchReg = X86::RSP;
1481 else
1482 BuildMI(checkMBB, DL, TII.get(X86::LEA64r), ScratchReg).addReg(X86::RSP)
1483 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1484
1485 BuildMI(checkMBB, DL, TII.get(X86::CMP64rm)).addReg(ScratchReg)
1486 .addReg(0).addImm(1).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1487 } else {
1488 if (STI.isTargetLinux()) {
1489 TlsReg = X86::GS;
1490 TlsOffset = 0x30;
1491 } else if (STI.isTargetDarwin()) {
1492 TlsReg = X86::GS;
1493 TlsOffset = 0x48 + 90*4;
1494 } else if (STI.isTargetWin32()) {
1495 TlsReg = X86::FS;
1496 TlsOffset = 0x14; // pvArbitrary, reserved for application use
1497 } else if (STI.isTargetFreeBSD()) {
1498 report_fatal_error("Segmented stacks not supported on FreeBSD i386.");
1499 } else {
1500 report_fatal_error("Segmented stacks not supported on this platform.");
1501 }
1502
1503 if (CompareStackPointer)
1504 ScratchReg = X86::ESP;
1505 else
1506 BuildMI(checkMBB, DL, TII.get(X86::LEA32r), ScratchReg).addReg(X86::ESP)
1507 .addImm(1).addReg(0).addImm(-StackSize).addReg(0);
1508
1509 if (STI.isTargetLinux() || STI.isTargetWin32()) {
1510 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm)).addReg(ScratchReg)
1511 .addReg(0).addImm(0).addReg(0).addImm(TlsOffset).addReg(TlsReg);
1512 } else if (STI.isTargetDarwin()) {
1513
1514 // TlsOffset doesn't fit into a mod r/m byte so we need an extra register
1515 unsigned ScratchReg2;
1516 bool SaveScratch2;
1517 if (CompareStackPointer) {
1518 // The primary scratch register is available for holding the TLS offset
1519 ScratchReg2 = GetScratchRegister(Is64Bit, MF, true);
1520 SaveScratch2 = false;
1521 } else {
1522 // Need to use a second register to hold the TLS offset
1523 ScratchReg2 = GetScratchRegister(Is64Bit, MF, false);
1524
1525 // Unfortunately, with fastcc the second scratch register may hold an arg
1526 SaveScratch2 = MF.getRegInfo().isLiveIn(ScratchReg2);
1527 }
1528
1529 // If Scratch2 is live-in then it needs to be saved
1530 assert((!MF.getRegInfo().isLiveIn(ScratchReg2) || SaveScratch2) &&
1531 "Scratch register is live-in and not saved");
1532
1533 if (SaveScratch2)
1534 BuildMI(checkMBB, DL, TII.get(X86::PUSH32r))
1535 .addReg(ScratchReg2, RegState::Kill);
1536
1537 BuildMI(checkMBB, DL, TII.get(X86::MOV32ri), ScratchReg2)
1538 .addImm(TlsOffset);
1539 BuildMI(checkMBB, DL, TII.get(X86::CMP32rm))
1540 .addReg(ScratchReg)
1541 .addReg(ScratchReg2).addImm(1).addReg(0)
1542 .addImm(0)
1543 .addReg(TlsReg);
1544
1545 if (SaveScratch2)
1546 BuildMI(checkMBB, DL, TII.get(X86::POP32r), ScratchReg2);
1547 }
1548 }
1549
1550 // This jump is taken if SP >= (Stacklet Limit + Stack Space required).
1551 // It jumps to normal execution of the function body.
1552 BuildMI(checkMBB, DL, TII.get(X86::JA_4)).addMBB(&prologueMBB);
1553
1554 // On 32 bit we first push the arguments size and then the frame size. On 64
1555 // bit, we pass the stack frame size in r10 and the argument size in r11.
1556 if (Is64Bit) {
1557 // Functions with nested arguments use R10, so it needs to be saved across
1558 // the call to _morestack
1559
1560 if (IsNested)
1561 BuildMI(allocMBB, DL, TII.get(X86::MOV64rr), X86::RAX).addReg(X86::R10);
1562
1563 BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R10)
1564 .addImm(StackSize);
1565 BuildMI(allocMBB, DL, TII.get(X86::MOV64ri), X86::R11)
1566 .addImm(X86FI->getArgumentStackSize());
1567 MF.getRegInfo().setPhysRegUsed(X86::R10);
1568 MF.getRegInfo().setPhysRegUsed(X86::R11);
1569 } else {
1570 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1571 .addImm(X86FI->getArgumentStackSize());
1572 BuildMI(allocMBB, DL, TII.get(X86::PUSHi32))
1573 .addImm(StackSize);
1574 }
1575
1576 // __morestack is in libgcc
1577 if (Is64Bit)
1578 BuildMI(allocMBB, DL, TII.get(X86::CALL64pcrel32))
1579 .addExternalSymbol("__morestack");
1580 else
1581 BuildMI(allocMBB, DL, TII.get(X86::CALLpcrel32))
1582 .addExternalSymbol("__morestack");
1583
1584 if (IsNested)
1585 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET_RESTORE_R10));
1586 else
1587 BuildMI(allocMBB, DL, TII.get(X86::MORESTACK_RET));
1588
1589 allocMBB->addSuccessor(&prologueMBB);
1590
1591 checkMBB->addSuccessor(allocMBB);
1592 checkMBB->addSuccessor(&prologueMBB);
1593
1594 #ifdef XDEBUG
1595 MF.verify();
1596 #endif
1597 }
1598
1599 /// Erlang programs may need a special prologue to handle the stack size they
1600 /// might need at runtime. That is because Erlang/OTP does not implement a C
1601 /// stack but uses a custom implementation of hybrid stack/heap architecture.
1602 /// (for more information see Eric Stenman's Ph.D. thesis:
1603 /// http://publications.uu.se/uu/fulltext/nbn_se_uu_diva-2688.pdf)
1604 ///
1605 /// CheckStack:
1606 /// temp0 = sp - MaxStack
1607 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
1608 /// OldStart:
1609 /// ...
1610 /// IncStack:
1611 /// call inc_stack # doubles the stack space
1612 /// temp0 = sp - MaxStack
1613 /// if( temp0 < SP_LIMIT(P) ) goto IncStack else goto OldStart
adjustForHiPEPrologue(MachineFunction & MF) const1614 void X86FrameLowering::adjustForHiPEPrologue(MachineFunction &MF) const {
1615 const X86InstrInfo &TII = *TM.getInstrInfo();
1616 MachineFrameInfo *MFI = MF.getFrameInfo();
1617 const unsigned SlotSize = TM.getRegisterInfo()->getSlotSize();
1618 const bool Is64Bit = STI.is64Bit();
1619 DebugLoc DL;
1620 // HiPE-specific values
1621 const unsigned HipeLeafWords = 24;
1622 const unsigned CCRegisteredArgs = Is64Bit ? 6 : 5;
1623 const unsigned Guaranteed = HipeLeafWords * SlotSize;
1624 unsigned CallerStkArity = MF.getFunction()->arg_size() > CCRegisteredArgs ?
1625 MF.getFunction()->arg_size() - CCRegisteredArgs : 0;
1626 unsigned MaxStack = MFI->getStackSize() + CallerStkArity*SlotSize + SlotSize;
1627
1628 assert(STI.isTargetLinux() &&
1629 "HiPE prologue is only supported on Linux operating systems.");
1630
1631 // Compute the largest caller's frame that is needed to fit the callees'
1632 // frames. This 'MaxStack' is computed from:
1633 //
1634 // a) the fixed frame size, which is the space needed for all spilled temps,
1635 // b) outgoing on-stack parameter areas, and
1636 // c) the minimum stack space this function needs to make available for the
1637 // functions it calls (a tunable ABI property).
1638 if (MFI->hasCalls()) {
1639 unsigned MoreStackForCalls = 0;
1640
1641 for (MachineFunction::iterator MBBI = MF.begin(), MBBE = MF.end();
1642 MBBI != MBBE; ++MBBI)
1643 for (MachineBasicBlock::iterator MI = MBBI->begin(), ME = MBBI->end();
1644 MI != ME; ++MI) {
1645 if (!MI->isCall())
1646 continue;
1647
1648 // Get callee operand.
1649 const MachineOperand &MO = MI->getOperand(0);
1650
1651 // Only take account of global function calls (no closures etc.).
1652 if (!MO.isGlobal())
1653 continue;
1654
1655 const Function *F = dyn_cast<Function>(MO.getGlobal());
1656 if (!F)
1657 continue;
1658
1659 // Do not update 'MaxStack' for primitive and built-in functions
1660 // (encoded with names either starting with "erlang."/"bif_" or not
1661 // having a ".", such as a simple <Module>.<Function>.<Arity>, or an
1662 // "_", such as the BIF "suspend_0") as they are executed on another
1663 // stack.
1664 if (F->getName().find("erlang.") != StringRef::npos ||
1665 F->getName().find("bif_") != StringRef::npos ||
1666 F->getName().find_first_of("._") == StringRef::npos)
1667 continue;
1668
1669 unsigned CalleeStkArity =
1670 F->arg_size() > CCRegisteredArgs ? F->arg_size()-CCRegisteredArgs : 0;
1671 if (HipeLeafWords - 1 > CalleeStkArity)
1672 MoreStackForCalls = std::max(MoreStackForCalls,
1673 (HipeLeafWords - 1 - CalleeStkArity) * SlotSize);
1674 }
1675 MaxStack += MoreStackForCalls;
1676 }
1677
1678 // If the stack frame needed is larger than the guaranteed then runtime checks
1679 // and calls to "inc_stack_0" BIF should be inserted in the assembly prologue.
1680 if (MaxStack > Guaranteed) {
1681 MachineBasicBlock &prologueMBB = MF.front();
1682 MachineBasicBlock *stackCheckMBB = MF.CreateMachineBasicBlock();
1683 MachineBasicBlock *incStackMBB = MF.CreateMachineBasicBlock();
1684
1685 for (MachineBasicBlock::livein_iterator I = prologueMBB.livein_begin(),
1686 E = prologueMBB.livein_end(); I != E; I++) {
1687 stackCheckMBB->addLiveIn(*I);
1688 incStackMBB->addLiveIn(*I);
1689 }
1690
1691 MF.push_front(incStackMBB);
1692 MF.push_front(stackCheckMBB);
1693
1694 unsigned ScratchReg, SPReg, PReg, SPLimitOffset;
1695 unsigned LEAop, CMPop, CALLop;
1696 if (Is64Bit) {
1697 SPReg = X86::RSP;
1698 PReg = X86::RBP;
1699 LEAop = X86::LEA64r;
1700 CMPop = X86::CMP64rm;
1701 CALLop = X86::CALL64pcrel32;
1702 SPLimitOffset = 0x90;
1703 } else {
1704 SPReg = X86::ESP;
1705 PReg = X86::EBP;
1706 LEAop = X86::LEA32r;
1707 CMPop = X86::CMP32rm;
1708 CALLop = X86::CALLpcrel32;
1709 SPLimitOffset = 0x4c;
1710 }
1711
1712 ScratchReg = GetScratchRegister(Is64Bit, MF, true);
1713 assert(!MF.getRegInfo().isLiveIn(ScratchReg) &&
1714 "HiPE prologue scratch register is live-in");
1715
1716 // Create new MBB for StackCheck:
1717 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(LEAop), ScratchReg),
1718 SPReg, false, -MaxStack);
1719 // SPLimitOffset is in a fixed heap location (pointed by BP).
1720 addRegOffset(BuildMI(stackCheckMBB, DL, TII.get(CMPop))
1721 .addReg(ScratchReg), PReg, false, SPLimitOffset);
1722 BuildMI(stackCheckMBB, DL, TII.get(X86::JAE_4)).addMBB(&prologueMBB);
1723
1724 // Create new MBB for IncStack:
1725 BuildMI(incStackMBB, DL, TII.get(CALLop)).
1726 addExternalSymbol("inc_stack_0");
1727 addRegOffset(BuildMI(incStackMBB, DL, TII.get(LEAop), ScratchReg),
1728 SPReg, false, -MaxStack);
1729 addRegOffset(BuildMI(incStackMBB, DL, TII.get(CMPop))
1730 .addReg(ScratchReg), PReg, false, SPLimitOffset);
1731 BuildMI(incStackMBB, DL, TII.get(X86::JLE_4)).addMBB(incStackMBB);
1732
1733 stackCheckMBB->addSuccessor(&prologueMBB, 99);
1734 stackCheckMBB->addSuccessor(incStackMBB, 1);
1735 incStackMBB->addSuccessor(&prologueMBB, 99);
1736 incStackMBB->addSuccessor(incStackMBB, 1);
1737 }
1738 #ifdef XDEBUG
1739 MF.verify();
1740 #endif
1741 }
1742
1743 void X86FrameLowering::
eliminateCallFramePseudoInstr(MachineFunction & MF,MachineBasicBlock & MBB,MachineBasicBlock::iterator I) const1744 eliminateCallFramePseudoInstr(MachineFunction &MF, MachineBasicBlock &MBB,
1745 MachineBasicBlock::iterator I) const {
1746 const X86InstrInfo &TII = *TM.getInstrInfo();
1747 const X86RegisterInfo &RegInfo = *TM.getRegisterInfo();
1748 unsigned StackPtr = RegInfo.getStackRegister();
1749 bool reseveCallFrame = hasReservedCallFrame(MF);
1750 int Opcode = I->getOpcode();
1751 bool isDestroy = Opcode == TII.getCallFrameDestroyOpcode();
1752 bool IsLP64 = STI.isTarget64BitLP64();
1753 DebugLoc DL = I->getDebugLoc();
1754 uint64_t Amount = !reseveCallFrame ? I->getOperand(0).getImm() : 0;
1755 uint64_t CalleeAmt = isDestroy ? I->getOperand(1).getImm() : 0;
1756 I = MBB.erase(I);
1757
1758 if (!reseveCallFrame) {
1759 // If the stack pointer can be changed after prologue, turn the
1760 // adjcallstackup instruction into a 'sub ESP, <amt>' and the
1761 // adjcallstackdown instruction into 'add ESP, <amt>'
1762 // TODO: consider using push / pop instead of sub + store / add
1763 if (Amount == 0)
1764 return;
1765
1766 // We need to keep the stack aligned properly. To do this, we round the
1767 // amount of space needed for the outgoing arguments up to the next
1768 // alignment boundary.
1769 unsigned StackAlign = TM.getFrameLowering()->getStackAlignment();
1770 Amount = (Amount + StackAlign - 1) / StackAlign * StackAlign;
1771
1772 MachineInstr *New = 0;
1773 if (Opcode == TII.getCallFrameSetupOpcode()) {
1774 New = BuildMI(MF, DL, TII.get(getSUBriOpcode(IsLP64, Amount)),
1775 StackPtr)
1776 .addReg(StackPtr)
1777 .addImm(Amount);
1778 } else {
1779 assert(Opcode == TII.getCallFrameDestroyOpcode());
1780
1781 // Factor out the amount the callee already popped.
1782 Amount -= CalleeAmt;
1783
1784 if (Amount) {
1785 unsigned Opc = getADDriOpcode(IsLP64, Amount);
1786 New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
1787 .addReg(StackPtr).addImm(Amount);
1788 }
1789 }
1790
1791 if (New) {
1792 // The EFLAGS implicit def is dead.
1793 New->getOperand(3).setIsDead();
1794
1795 // Replace the pseudo instruction with a new instruction.
1796 MBB.insert(I, New);
1797 }
1798
1799 return;
1800 }
1801
1802 if (Opcode == TII.getCallFrameDestroyOpcode() && CalleeAmt) {
1803 // If we are performing frame pointer elimination and if the callee pops
1804 // something off the stack pointer, add it back. We do this until we have
1805 // more advanced stack pointer tracking ability.
1806 unsigned Opc = getSUBriOpcode(IsLP64, CalleeAmt);
1807 MachineInstr *New = BuildMI(MF, DL, TII.get(Opc), StackPtr)
1808 .addReg(StackPtr).addImm(CalleeAmt);
1809
1810 // The EFLAGS implicit def is dead.
1811 New->getOperand(3).setIsDead();
1812
1813 // We are not tracking the stack pointer adjustment by the callee, so make
1814 // sure we restore the stack pointer immediately after the call, there may
1815 // be spill code inserted between the CALL and ADJCALLSTACKUP instructions.
1816 MachineBasicBlock::iterator B = MBB.begin();
1817 while (I != B && !llvm::prior(I)->isCall())
1818 --I;
1819 MBB.insert(I, New);
1820 }
1821 }
1822
1823