• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  * Copyright (C) 2011 The Android Open Source Project
3  *
4  * Licensed under the Apache License, Version 2.0 (the "License");
5  * you may not use this file except in compliance with the License.
6  * You may obtain a copy of the License at
7  *
8  *      http://www.apache.org/licenses/LICENSE-2.0
9  *
10  * Unless required by applicable law or agreed to in writing, software
11  * distributed under the License is distributed on an "AS IS" BASIS,
12  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13  * See the License for the specific language governing permissions and
14  * limitations under the License.
15  */
16 
17 #include "dex/compiler_internals.h"
18 #include "dex/dataflow_iterator-inl.h"
19 #include "mir_to_lir-inl.h"
20 #include "object_utils.h"
21 
22 namespace art {
23 
24 /*
25  * Target-independent code generation.  Use only high-level
26  * load/store utilities here, or target-dependent genXX() handlers
27  * when necessary.
28  */
CompileDalvikInstruction(MIR * mir,BasicBlock * bb,LIR * label_list)29 void Mir2Lir::CompileDalvikInstruction(MIR* mir, BasicBlock* bb, LIR* label_list) {
30   RegLocation rl_src[3];
31   RegLocation rl_dest = mir_graph_->GetBadLoc();
32   RegLocation rl_result = mir_graph_->GetBadLoc();
33   Instruction::Code opcode = mir->dalvikInsn.opcode;
34   int opt_flags = mir->optimization_flags;
35   uint32_t vB = mir->dalvikInsn.vB;
36   uint32_t vC = mir->dalvikInsn.vC;
37 
38   // Prep Src and Dest locations.
39   int next_sreg = 0;
40   int next_loc = 0;
41   int attrs = mir_graph_->oat_data_flow_attributes_[opcode];
42   rl_src[0] = rl_src[1] = rl_src[2] = mir_graph_->GetBadLoc();
43   if (attrs & DF_UA) {
44     if (attrs & DF_A_WIDE) {
45       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
46       next_sreg+= 2;
47     } else {
48       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
49       next_sreg++;
50     }
51   }
52   if (attrs & DF_UB) {
53     if (attrs & DF_B_WIDE) {
54       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
55       next_sreg+= 2;
56     } else {
57       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
58       next_sreg++;
59     }
60   }
61   if (attrs & DF_UC) {
62     if (attrs & DF_C_WIDE) {
63       rl_src[next_loc++] = mir_graph_->GetSrcWide(mir, next_sreg);
64     } else {
65       rl_src[next_loc++] = mir_graph_->GetSrc(mir, next_sreg);
66     }
67   }
68   if (attrs & DF_DA) {
69     if (attrs & DF_A_WIDE) {
70       rl_dest = mir_graph_->GetDestWide(mir);
71     } else {
72       rl_dest = mir_graph_->GetDest(mir);
73     }
74   }
75   switch (opcode) {
76     case Instruction::NOP:
77       break;
78 
79     case Instruction::MOVE_EXCEPTION:
80       GenMoveException(rl_dest);
81       break;
82 
83     case Instruction::RETURN_VOID:
84       if (((cu_->access_flags & kAccConstructor) != 0) &&
85           cu_->compiler_driver->RequiresConstructorBarrier(Thread::Current(), cu_->dex_file,
86                                                           cu_->class_def_idx)) {
87         GenMemBarrier(kStoreStore);
88       }
89       if (!mir_graph_->MethodIsLeaf()) {
90         GenSuspendTest(opt_flags);
91       }
92       break;
93 
94     case Instruction::RETURN:
95     case Instruction::RETURN_OBJECT:
96       if (!mir_graph_->MethodIsLeaf()) {
97         GenSuspendTest(opt_flags);
98       }
99       StoreValue(GetReturn(cu_->shorty[0] == 'F'), rl_src[0]);
100       break;
101 
102     case Instruction::RETURN_WIDE:
103       if (!mir_graph_->MethodIsLeaf()) {
104         GenSuspendTest(opt_flags);
105       }
106       StoreValueWide(GetReturnWide(cu_->shorty[0] == 'D'), rl_src[0]);
107       break;
108 
109     case Instruction::MOVE_RESULT_WIDE:
110       if (opt_flags & MIR_INLINED)
111         break;  // Nop - combined w/ previous invoke.
112       StoreValueWide(rl_dest, GetReturnWide(rl_dest.fp));
113       break;
114 
115     case Instruction::MOVE_RESULT:
116     case Instruction::MOVE_RESULT_OBJECT:
117       if (opt_flags & MIR_INLINED)
118         break;  // Nop - combined w/ previous invoke.
119       StoreValue(rl_dest, GetReturn(rl_dest.fp));
120       break;
121 
122     case Instruction::MOVE:
123     case Instruction::MOVE_OBJECT:
124     case Instruction::MOVE_16:
125     case Instruction::MOVE_OBJECT_16:
126     case Instruction::MOVE_FROM16:
127     case Instruction::MOVE_OBJECT_FROM16:
128       StoreValue(rl_dest, rl_src[0]);
129       break;
130 
131     case Instruction::MOVE_WIDE:
132     case Instruction::MOVE_WIDE_16:
133     case Instruction::MOVE_WIDE_FROM16:
134       StoreValueWide(rl_dest, rl_src[0]);
135       break;
136 
137     case Instruction::CONST:
138     case Instruction::CONST_4:
139     case Instruction::CONST_16:
140       rl_result = EvalLoc(rl_dest, kAnyReg, true);
141       LoadConstantNoClobber(rl_result.low_reg, vB);
142       StoreValue(rl_dest, rl_result);
143       if (vB == 0) {
144         Workaround7250540(rl_dest, rl_result.low_reg);
145       }
146       break;
147 
148     case Instruction::CONST_HIGH16:
149       rl_result = EvalLoc(rl_dest, kAnyReg, true);
150       LoadConstantNoClobber(rl_result.low_reg, vB << 16);
151       StoreValue(rl_dest, rl_result);
152       if (vB == 0) {
153         Workaround7250540(rl_dest, rl_result.low_reg);
154       }
155       break;
156 
157     case Instruction::CONST_WIDE_16:
158     case Instruction::CONST_WIDE_32:
159       rl_result = EvalLoc(rl_dest, kAnyReg, true);
160       LoadConstantWide(rl_result.low_reg, rl_result.high_reg,
161                            static_cast<int64_t>(static_cast<int32_t>(vB)));
162       StoreValueWide(rl_dest, rl_result);
163       break;
164 
165     case Instruction::CONST_WIDE:
166       rl_result = EvalLoc(rl_dest, kAnyReg, true);
167       LoadConstantWide(rl_result.low_reg, rl_result.high_reg, mir->dalvikInsn.vB_wide);
168       StoreValueWide(rl_dest, rl_result);
169       break;
170 
171     case Instruction::CONST_WIDE_HIGH16:
172       rl_result = EvalLoc(rl_dest, kAnyReg, true);
173       LoadConstantWide(rl_result.low_reg, rl_result.high_reg,
174                            static_cast<int64_t>(vB) << 48);
175       StoreValueWide(rl_dest, rl_result);
176       break;
177 
178     case Instruction::MONITOR_ENTER:
179       GenMonitorEnter(opt_flags, rl_src[0]);
180       break;
181 
182     case Instruction::MONITOR_EXIT:
183       GenMonitorExit(opt_flags, rl_src[0]);
184       break;
185 
186     case Instruction::CHECK_CAST: {
187       GenCheckCast(mir->offset, vB, rl_src[0]);
188       break;
189     }
190     case Instruction::INSTANCE_OF:
191       GenInstanceof(vC, rl_dest, rl_src[0]);
192       break;
193 
194     case Instruction::NEW_INSTANCE:
195       GenNewInstance(vB, rl_dest);
196       break;
197 
198     case Instruction::THROW:
199       GenThrow(rl_src[0]);
200       break;
201 
202     case Instruction::ARRAY_LENGTH:
203       int len_offset;
204       len_offset = mirror::Array::LengthOffset().Int32Value();
205       rl_src[0] = LoadValue(rl_src[0], kCoreReg);
206       GenNullCheck(rl_src[0].s_reg_low, rl_src[0].low_reg, opt_flags);
207       rl_result = EvalLoc(rl_dest, kCoreReg, true);
208       LoadWordDisp(rl_src[0].low_reg, len_offset, rl_result.low_reg);
209       StoreValue(rl_dest, rl_result);
210       break;
211 
212     case Instruction::CONST_STRING:
213     case Instruction::CONST_STRING_JUMBO:
214       GenConstString(vB, rl_dest);
215       break;
216 
217     case Instruction::CONST_CLASS:
218       GenConstClass(vB, rl_dest);
219       break;
220 
221     case Instruction::FILL_ARRAY_DATA:
222       GenFillArrayData(vB, rl_src[0]);
223       break;
224 
225     case Instruction::FILLED_NEW_ARRAY:
226       GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
227                         false /* not range */));
228       break;
229 
230     case Instruction::FILLED_NEW_ARRAY_RANGE:
231       GenFilledNewArray(mir_graph_->NewMemCallInfo(bb, mir, kStatic,
232                         true /* range */));
233       break;
234 
235     case Instruction::NEW_ARRAY:
236       GenNewArray(vC, rl_dest, rl_src[0]);
237       break;
238 
239     case Instruction::GOTO:
240     case Instruction::GOTO_16:
241     case Instruction::GOTO_32:
242       if (mir_graph_->IsBackedge(bb, bb->taken)) {
243         GenSuspendTestAndBranch(opt_flags, &label_list[bb->taken->id]);
244       } else {
245         OpUnconditionalBranch(&label_list[bb->taken->id]);
246       }
247       break;
248 
249     case Instruction::PACKED_SWITCH:
250       GenPackedSwitch(mir, vB, rl_src[0]);
251       break;
252 
253     case Instruction::SPARSE_SWITCH:
254       GenSparseSwitch(mir, vB, rl_src[0]);
255       break;
256 
257     case Instruction::CMPL_FLOAT:
258     case Instruction::CMPG_FLOAT:
259     case Instruction::CMPL_DOUBLE:
260     case Instruction::CMPG_DOUBLE:
261       GenCmpFP(opcode, rl_dest, rl_src[0], rl_src[1]);
262       break;
263 
264     case Instruction::CMP_LONG:
265       GenCmpLong(rl_dest, rl_src[0], rl_src[1]);
266       break;
267 
268     case Instruction::IF_EQ:
269     case Instruction::IF_NE:
270     case Instruction::IF_LT:
271     case Instruction::IF_GE:
272     case Instruction::IF_GT:
273     case Instruction::IF_LE: {
274       LIR* taken = &label_list[bb->taken->id];
275       LIR* fall_through = &label_list[bb->fall_through->id];
276       // Result known at compile time?
277       if (rl_src[0].is_const && rl_src[1].is_const) {
278         bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg),
279                                        mir_graph_->ConstantValue(rl_src[1].orig_sreg));
280         BasicBlock* target = is_taken ? bb->taken : bb->fall_through;
281         if (mir_graph_->IsBackedge(bb, target)) {
282           GenSuspendTest(opt_flags);
283         }
284         OpUnconditionalBranch(&label_list[target->id]);
285       } else {
286         if (mir_graph_->IsBackwardsBranch(bb)) {
287           GenSuspendTest(opt_flags);
288         }
289         GenCompareAndBranch(opcode, rl_src[0], rl_src[1], taken,
290                                 fall_through);
291       }
292       break;
293       }
294 
295     case Instruction::IF_EQZ:
296     case Instruction::IF_NEZ:
297     case Instruction::IF_LTZ:
298     case Instruction::IF_GEZ:
299     case Instruction::IF_GTZ:
300     case Instruction::IF_LEZ: {
301       LIR* taken = &label_list[bb->taken->id];
302       LIR* fall_through = &label_list[bb->fall_through->id];
303       // Result known at compile time?
304       if (rl_src[0].is_const) {
305         bool is_taken = EvaluateBranch(opcode, mir_graph_->ConstantValue(rl_src[0].orig_sreg), 0);
306         BasicBlock* target = is_taken ? bb->taken : bb->fall_through;
307         if (mir_graph_->IsBackedge(bb, target)) {
308           GenSuspendTest(opt_flags);
309         }
310         OpUnconditionalBranch(&label_list[target->id]);
311       } else {
312         if (mir_graph_->IsBackwardsBranch(bb)) {
313           GenSuspendTest(opt_flags);
314         }
315         GenCompareZeroAndBranch(opcode, rl_src[0], taken, fall_through);
316       }
317       break;
318       }
319 
320     case Instruction::AGET_WIDE:
321       GenArrayGet(opt_flags, kLong, rl_src[0], rl_src[1], rl_dest, 3);
322       break;
323     case Instruction::AGET:
324     case Instruction::AGET_OBJECT:
325       GenArrayGet(opt_flags, kWord, rl_src[0], rl_src[1], rl_dest, 2);
326       break;
327     case Instruction::AGET_BOOLEAN:
328       GenArrayGet(opt_flags, kUnsignedByte, rl_src[0], rl_src[1], rl_dest, 0);
329       break;
330     case Instruction::AGET_BYTE:
331       GenArrayGet(opt_flags, kSignedByte, rl_src[0], rl_src[1], rl_dest, 0);
332       break;
333     case Instruction::AGET_CHAR:
334       GenArrayGet(opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
335       break;
336     case Instruction::AGET_SHORT:
337       GenArrayGet(opt_flags, kSignedHalf, rl_src[0], rl_src[1], rl_dest, 1);
338       break;
339     case Instruction::APUT_WIDE:
340       GenArrayPut(opt_flags, kLong, rl_src[1], rl_src[2], rl_src[0], 3);
341       break;
342     case Instruction::APUT:
343       GenArrayPut(opt_flags, kWord, rl_src[1], rl_src[2], rl_src[0], 2);
344       break;
345     case Instruction::APUT_OBJECT:
346       GenArrayObjPut(opt_flags, rl_src[1], rl_src[2], rl_src[0], 2);
347       break;
348     case Instruction::APUT_SHORT:
349     case Instruction::APUT_CHAR:
350       GenArrayPut(opt_flags, kUnsignedHalf, rl_src[1], rl_src[2], rl_src[0], 1);
351       break;
352     case Instruction::APUT_BYTE:
353     case Instruction::APUT_BOOLEAN:
354       GenArrayPut(opt_flags, kUnsignedByte, rl_src[1], rl_src[2],
355             rl_src[0], 0);
356       break;
357 
358     case Instruction::IGET_OBJECT:
359       GenIGet(vC, opt_flags, kWord, rl_dest, rl_src[0], false, true);
360       break;
361 
362     case Instruction::IGET_WIDE:
363       GenIGet(vC, opt_flags, kLong, rl_dest, rl_src[0], true, false);
364       break;
365 
366     case Instruction::IGET:
367       GenIGet(vC, opt_flags, kWord, rl_dest, rl_src[0], false, false);
368       break;
369 
370     case Instruction::IGET_CHAR:
371       GenIGet(vC, opt_flags, kUnsignedHalf, rl_dest, rl_src[0], false, false);
372       break;
373 
374     case Instruction::IGET_SHORT:
375       GenIGet(vC, opt_flags, kSignedHalf, rl_dest, rl_src[0], false, false);
376       break;
377 
378     case Instruction::IGET_BOOLEAN:
379     case Instruction::IGET_BYTE:
380       GenIGet(vC, opt_flags, kUnsignedByte, rl_dest, rl_src[0], false, false);
381       break;
382 
383     case Instruction::IPUT_WIDE:
384       GenIPut(vC, opt_flags, kLong, rl_src[0], rl_src[1], true, false);
385       break;
386 
387     case Instruction::IPUT_OBJECT:
388       GenIPut(vC, opt_flags, kWord, rl_src[0], rl_src[1], false, true);
389       break;
390 
391     case Instruction::IPUT:
392       GenIPut(vC, opt_flags, kWord, rl_src[0], rl_src[1], false, false);
393       break;
394 
395     case Instruction::IPUT_BOOLEAN:
396     case Instruction::IPUT_BYTE:
397       GenIPut(vC, opt_flags, kUnsignedByte, rl_src[0], rl_src[1], false, false);
398       break;
399 
400     case Instruction::IPUT_CHAR:
401       GenIPut(vC, opt_flags, kUnsignedHalf, rl_src[0], rl_src[1], false, false);
402       break;
403 
404     case Instruction::IPUT_SHORT:
405       GenIPut(vC, opt_flags, kSignedHalf, rl_src[0], rl_src[1], false, false);
406       break;
407 
408     case Instruction::SGET_OBJECT:
409       GenSget(vB, rl_dest, false, true);
410       break;
411     case Instruction::SGET:
412     case Instruction::SGET_BOOLEAN:
413     case Instruction::SGET_BYTE:
414     case Instruction::SGET_CHAR:
415     case Instruction::SGET_SHORT:
416       GenSget(vB, rl_dest, false, false);
417       break;
418 
419     case Instruction::SGET_WIDE:
420       GenSget(vB, rl_dest, true, false);
421       break;
422 
423     case Instruction::SPUT_OBJECT:
424       GenSput(vB, rl_src[0], false, true);
425       break;
426 
427     case Instruction::SPUT:
428     case Instruction::SPUT_BOOLEAN:
429     case Instruction::SPUT_BYTE:
430     case Instruction::SPUT_CHAR:
431     case Instruction::SPUT_SHORT:
432       GenSput(vB, rl_src[0], false, false);
433       break;
434 
435     case Instruction::SPUT_WIDE:
436       GenSput(vB, rl_src[0], true, false);
437       break;
438 
439     case Instruction::INVOKE_STATIC_RANGE:
440       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, true));
441       break;
442     case Instruction::INVOKE_STATIC:
443       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kStatic, false));
444       break;
445 
446     case Instruction::INVOKE_DIRECT:
447       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, false));
448       break;
449     case Instruction::INVOKE_DIRECT_RANGE:
450       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kDirect, true));
451       break;
452 
453     case Instruction::INVOKE_VIRTUAL:
454       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, false));
455       break;
456     case Instruction::INVOKE_VIRTUAL_RANGE:
457       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kVirtual, true));
458       break;
459 
460     case Instruction::INVOKE_SUPER:
461       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, false));
462       break;
463     case Instruction::INVOKE_SUPER_RANGE:
464       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kSuper, true));
465       break;
466 
467     case Instruction::INVOKE_INTERFACE:
468       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, false));
469       break;
470     case Instruction::INVOKE_INTERFACE_RANGE:
471       GenInvoke(mir_graph_->NewMemCallInfo(bb, mir, kInterface, true));
472       break;
473 
474     case Instruction::NEG_INT:
475     case Instruction::NOT_INT:
476       GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[0]);
477       break;
478 
479     case Instruction::NEG_LONG:
480     case Instruction::NOT_LONG:
481       GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[0]);
482       break;
483 
484     case Instruction::NEG_FLOAT:
485       GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[0]);
486       break;
487 
488     case Instruction::NEG_DOUBLE:
489       GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[0]);
490       break;
491 
492     case Instruction::INT_TO_LONG:
493       GenIntToLong(rl_dest, rl_src[0]);
494       break;
495 
496     case Instruction::LONG_TO_INT:
497       rl_src[0] = UpdateLocWide(rl_src[0]);
498       rl_src[0] = WideToNarrow(rl_src[0]);
499       StoreValue(rl_dest, rl_src[0]);
500       break;
501 
502     case Instruction::INT_TO_BYTE:
503     case Instruction::INT_TO_SHORT:
504     case Instruction::INT_TO_CHAR:
505       GenIntNarrowing(opcode, rl_dest, rl_src[0]);
506       break;
507 
508     case Instruction::INT_TO_FLOAT:
509     case Instruction::INT_TO_DOUBLE:
510     case Instruction::LONG_TO_FLOAT:
511     case Instruction::LONG_TO_DOUBLE:
512     case Instruction::FLOAT_TO_INT:
513     case Instruction::FLOAT_TO_LONG:
514     case Instruction::FLOAT_TO_DOUBLE:
515     case Instruction::DOUBLE_TO_INT:
516     case Instruction::DOUBLE_TO_LONG:
517     case Instruction::DOUBLE_TO_FLOAT:
518       GenConversion(opcode, rl_dest, rl_src[0]);
519       break;
520 
521 
522     case Instruction::ADD_INT:
523     case Instruction::ADD_INT_2ADDR:
524     case Instruction::MUL_INT:
525     case Instruction::MUL_INT_2ADDR:
526     case Instruction::AND_INT:
527     case Instruction::AND_INT_2ADDR:
528     case Instruction::OR_INT:
529     case Instruction::OR_INT_2ADDR:
530     case Instruction::XOR_INT:
531     case Instruction::XOR_INT_2ADDR:
532       if (rl_src[0].is_const &&
533           InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[0]))) {
534         GenArithOpIntLit(opcode, rl_dest, rl_src[1],
535                              mir_graph_->ConstantValue(rl_src[0].orig_sreg));
536       } else if (rl_src[1].is_const &&
537           InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]))) {
538         GenArithOpIntLit(opcode, rl_dest, rl_src[0],
539                              mir_graph_->ConstantValue(rl_src[1].orig_sreg));
540       } else {
541         GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
542       }
543       break;
544 
545     case Instruction::SUB_INT:
546     case Instruction::SUB_INT_2ADDR:
547     case Instruction::DIV_INT:
548     case Instruction::DIV_INT_2ADDR:
549     case Instruction::REM_INT:
550     case Instruction::REM_INT_2ADDR:
551     case Instruction::SHL_INT:
552     case Instruction::SHL_INT_2ADDR:
553     case Instruction::SHR_INT:
554     case Instruction::SHR_INT_2ADDR:
555     case Instruction::USHR_INT:
556     case Instruction::USHR_INT_2ADDR:
557       if (rl_src[1].is_const &&
558           InexpensiveConstantInt(mir_graph_->ConstantValue(rl_src[1]))) {
559         GenArithOpIntLit(opcode, rl_dest, rl_src[0], mir_graph_->ConstantValue(rl_src[1]));
560       } else {
561         GenArithOpInt(opcode, rl_dest, rl_src[0], rl_src[1]);
562       }
563       break;
564 
565     case Instruction::ADD_LONG:
566     case Instruction::SUB_LONG:
567     case Instruction::AND_LONG:
568     case Instruction::OR_LONG:
569     case Instruction::XOR_LONG:
570     case Instruction::ADD_LONG_2ADDR:
571     case Instruction::SUB_LONG_2ADDR:
572     case Instruction::AND_LONG_2ADDR:
573     case Instruction::OR_LONG_2ADDR:
574     case Instruction::XOR_LONG_2ADDR:
575       if (rl_src[0].is_const || rl_src[1].is_const) {
576         GenArithImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
577         break;
578       }
579       // Note: intentional fallthrough.
580 
581     case Instruction::MUL_LONG:
582     case Instruction::DIV_LONG:
583     case Instruction::REM_LONG:
584     case Instruction::MUL_LONG_2ADDR:
585     case Instruction::DIV_LONG_2ADDR:
586     case Instruction::REM_LONG_2ADDR:
587       GenArithOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
588       break;
589 
590     case Instruction::SHL_LONG:
591     case Instruction::SHR_LONG:
592     case Instruction::USHR_LONG:
593     case Instruction::SHL_LONG_2ADDR:
594     case Instruction::SHR_LONG_2ADDR:
595     case Instruction::USHR_LONG_2ADDR:
596       if (rl_src[1].is_const) {
597         GenShiftImmOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
598       } else {
599         GenShiftOpLong(opcode, rl_dest, rl_src[0], rl_src[1]);
600       }
601       break;
602 
603     case Instruction::ADD_FLOAT:
604     case Instruction::SUB_FLOAT:
605     case Instruction::MUL_FLOAT:
606     case Instruction::DIV_FLOAT:
607     case Instruction::REM_FLOAT:
608     case Instruction::ADD_FLOAT_2ADDR:
609     case Instruction::SUB_FLOAT_2ADDR:
610     case Instruction::MUL_FLOAT_2ADDR:
611     case Instruction::DIV_FLOAT_2ADDR:
612     case Instruction::REM_FLOAT_2ADDR:
613       GenArithOpFloat(opcode, rl_dest, rl_src[0], rl_src[1]);
614       break;
615 
616     case Instruction::ADD_DOUBLE:
617     case Instruction::SUB_DOUBLE:
618     case Instruction::MUL_DOUBLE:
619     case Instruction::DIV_DOUBLE:
620     case Instruction::REM_DOUBLE:
621     case Instruction::ADD_DOUBLE_2ADDR:
622     case Instruction::SUB_DOUBLE_2ADDR:
623     case Instruction::MUL_DOUBLE_2ADDR:
624     case Instruction::DIV_DOUBLE_2ADDR:
625     case Instruction::REM_DOUBLE_2ADDR:
626       GenArithOpDouble(opcode, rl_dest, rl_src[0], rl_src[1]);
627       break;
628 
629     case Instruction::RSUB_INT:
630     case Instruction::ADD_INT_LIT16:
631     case Instruction::MUL_INT_LIT16:
632     case Instruction::DIV_INT_LIT16:
633     case Instruction::REM_INT_LIT16:
634     case Instruction::AND_INT_LIT16:
635     case Instruction::OR_INT_LIT16:
636     case Instruction::XOR_INT_LIT16:
637     case Instruction::ADD_INT_LIT8:
638     case Instruction::RSUB_INT_LIT8:
639     case Instruction::MUL_INT_LIT8:
640     case Instruction::DIV_INT_LIT8:
641     case Instruction::REM_INT_LIT8:
642     case Instruction::AND_INT_LIT8:
643     case Instruction::OR_INT_LIT8:
644     case Instruction::XOR_INT_LIT8:
645     case Instruction::SHL_INT_LIT8:
646     case Instruction::SHR_INT_LIT8:
647     case Instruction::USHR_INT_LIT8:
648       GenArithOpIntLit(opcode, rl_dest, rl_src[0], vC);
649       break;
650 
651     default:
652       LOG(FATAL) << "Unexpected opcode: " << opcode;
653   }
654 }  // NOLINT(readability/fn_size)
655 
656 // Process extended MIR instructions
HandleExtendedMethodMIR(BasicBlock * bb,MIR * mir)657 void Mir2Lir::HandleExtendedMethodMIR(BasicBlock* bb, MIR* mir) {
658   switch (static_cast<ExtendedMIROpcode>(mir->dalvikInsn.opcode)) {
659     case kMirOpCopy: {
660       RegLocation rl_src = mir_graph_->GetSrc(mir, 0);
661       RegLocation rl_dest = mir_graph_->GetDest(mir);
662       StoreValue(rl_dest, rl_src);
663       break;
664     }
665     case kMirOpFusedCmplFloat:
666       GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, false /*double*/);
667       break;
668     case kMirOpFusedCmpgFloat:
669       GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, false /*double*/);
670       break;
671     case kMirOpFusedCmplDouble:
672       GenFusedFPCmpBranch(bb, mir, false /*gt bias*/, true /*double*/);
673       break;
674     case kMirOpFusedCmpgDouble:
675       GenFusedFPCmpBranch(bb, mir, true /*gt bias*/, true /*double*/);
676       break;
677     case kMirOpFusedCmpLong:
678       GenFusedLongCmpBranch(bb, mir);
679       break;
680     case kMirOpSelect:
681       GenSelect(bb, mir);
682       break;
683     default:
684       break;
685   }
686 }
687 
688 // Handle the content in each basic block.
MethodBlockCodeGen(BasicBlock * bb)689 bool Mir2Lir::MethodBlockCodeGen(BasicBlock* bb) {
690   if (bb->block_type == kDead) return false;
691   current_dalvik_offset_ = bb->start_offset;
692   MIR* mir;
693   int block_id = bb->id;
694 
695   block_label_list_[block_id].operands[0] = bb->start_offset;
696 
697   // Insert the block label.
698   block_label_list_[block_id].opcode = kPseudoNormalBlockLabel;
699   AppendLIR(&block_label_list_[block_id]);
700 
701   LIR* head_lir = NULL;
702 
703   // If this is a catch block, export the start address.
704   if (bb->catch_entry) {
705     head_lir = NewLIR0(kPseudoExportedPC);
706   }
707 
708   // Free temp registers and reset redundant store tracking.
709   ResetRegPool();
710   ResetDefTracking();
711 
712   ClobberAllRegs();
713 
714   if (bb->block_type == kEntryBlock) {
715     int start_vreg = cu_->num_dalvik_registers - cu_->num_ins;
716     GenEntrySequence(&mir_graph_->reg_location_[start_vreg],
717                          mir_graph_->reg_location_[mir_graph_->GetMethodSReg()]);
718   } else if (bb->block_type == kExitBlock) {
719     GenExitSequence();
720   }
721 
722   for (mir = bb->first_mir_insn; mir != NULL; mir = mir->next) {
723     ResetRegPool();
724     if (cu_->disable_opt & (1 << kTrackLiveTemps)) {
725       ClobberAllRegs();
726     }
727 
728     if (cu_->disable_opt & (1 << kSuppressLoads)) {
729       ResetDefTracking();
730     }
731 
732     // Reset temp tracking sanity check.
733     if (kIsDebugBuild) {
734       live_sreg_ = INVALID_SREG;
735     }
736 
737     current_dalvik_offset_ = mir->offset;
738     int opcode = mir->dalvikInsn.opcode;
739     LIR* boundary_lir;
740 
741     // Mark the beginning of a Dalvik instruction for line tracking.
742     char* inst_str = cu_->verbose ?
743        mir_graph_->GetDalvikDisassembly(mir) : NULL;
744     boundary_lir = MarkBoundary(mir->offset, inst_str);
745     // Remember the first LIR for this block.
746     if (head_lir == NULL) {
747       head_lir = boundary_lir;
748       // Set the first boundary_lir as a scheduling barrier.
749       head_lir->def_mask = ENCODE_ALL;
750     }
751 
752     if (opcode == kMirOpCheck) {
753       // Combine check and work halves of throwing instruction.
754       MIR* work_half = mir->meta.throw_insn;
755       mir->dalvikInsn.opcode = work_half->dalvikInsn.opcode;
756       opcode = work_half->dalvikInsn.opcode;
757       SSARepresentation* ssa_rep = work_half->ssa_rep;
758       work_half->ssa_rep = mir->ssa_rep;
759       mir->ssa_rep = ssa_rep;
760       work_half->dalvikInsn.opcode = static_cast<Instruction::Code>(kMirOpCheckPart2);
761     }
762 
763     if (opcode >= kMirOpFirst) {
764       HandleExtendedMethodMIR(bb, mir);
765       continue;
766     }
767 
768     CompileDalvikInstruction(mir, bb, block_label_list_);
769   }
770 
771   if (head_lir) {
772     // Eliminate redundant loads/stores and delay stores into later slots.
773     ApplyLocalOptimizations(head_lir, last_lir_insn_);
774 
775     // Generate an unconditional branch to the fallthrough block.
776     if (bb->fall_through) {
777       OpUnconditionalBranch(&block_label_list_[bb->fall_through->id]);
778     }
779   }
780   return false;
781 }
782 
SpecialMIR2LIR(SpecialCaseHandler special_case)783 void Mir2Lir::SpecialMIR2LIR(SpecialCaseHandler special_case) {
784   // Find the first DalvikByteCode block.
785   int num_reachable_blocks = mir_graph_->GetNumReachableBlocks();
786   BasicBlock*bb = NULL;
787   for (int idx = 0; idx < num_reachable_blocks; idx++) {
788     // TODO: no direct access of growable lists.
789     int dfs_index = mir_graph_->GetDfsOrder()->Get(idx);
790     bb = mir_graph_->GetBasicBlock(dfs_index);
791     if (bb->block_type == kDalvikByteCode) {
792       break;
793     }
794   }
795   if (bb == NULL) {
796     return;
797   }
798   DCHECK_EQ(bb->start_offset, 0);
799   DCHECK(bb->first_mir_insn != NULL);
800 
801   // Get the first instruction.
802   MIR* mir = bb->first_mir_insn;
803 
804   // Free temp registers and reset redundant store tracking.
805   ResetRegPool();
806   ResetDefTracking();
807   ClobberAllRegs();
808 
809   GenSpecialCase(bb, mir, special_case);
810 }
811 
MethodMIR2LIR()812 void Mir2Lir::MethodMIR2LIR() {
813   // Hold the labels of each block.
814   block_label_list_ =
815       static_cast<LIR*>(arena_->Alloc(sizeof(LIR) * mir_graph_->GetNumBlocks(),
816                                       ArenaAllocator::kAllocLIR));
817 
818   PreOrderDfsIterator iter(mir_graph_, false /* not iterative */);
819   for (BasicBlock* bb = iter.Next(); bb != NULL; bb = iter.Next()) {
820     MethodBlockCodeGen(bb);
821   }
822 
823   HandleSuspendLaunchPads();
824 
825   HandleThrowLaunchPads();
826 
827   HandleIntrinsicLaunchPads();
828 
829   if (!(cu_->disable_opt & (1 << kSafeOptimizations))) {
830     RemoveRedundantBranches();
831   }
832 }
833 
834 }  // namespace art
835