• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /* Copyright (c) 2008-2011 Octasic Inc.
2    Written by Jean-Marc Valin */
3 /*
4    Redistribution and use in source and binary forms, with or without
5    modification, are permitted provided that the following conditions
6    are met:
7 
8    - Redistributions of source code must retain the above copyright
9    notice, this list of conditions and the following disclaimer.
10 
11    - Redistributions in binary form must reproduce the above copyright
12    notice, this list of conditions and the following disclaimer in the
13    documentation and/or other materials provided with the distribution.
14 
15    THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
16    ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
17    LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
18    A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
19    CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
20    EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
21    PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
22    PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
23    LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
24    NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
25    SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
26 */
27 
28 
29 #include "mlp_train.h"
30 #include <stdlib.h>
31 #include <stdio.h>
32 #include <string.h>
33 #include <semaphore.h>
34 #include <pthread.h>
35 #include <time.h>
36 #include <signal.h>
37 
38 int stopped = 0;
39 
handler(int sig)40 void handler(int sig)
41 {
42 	stopped = 1;
43 	signal(sig, handler);
44 }
45 
mlp_init(int * topo,int nbLayers,float * inputs,float * outputs,int nbSamples)46 MLPTrain * mlp_init(int *topo, int nbLayers, float *inputs, float *outputs, int nbSamples)
47 {
48 	int i, j, k;
49 	MLPTrain *net;
50 	int inDim, outDim;
51 	net = malloc(sizeof(*net));
52 	net->topo = malloc(nbLayers*sizeof(net->topo[0]));
53 	for (i=0;i<nbLayers;i++)
54 		net->topo[i] = topo[i];
55 	inDim = topo[0];
56 	outDim = topo[nbLayers-1];
57 	net->in_rate = malloc((inDim+1)*sizeof(net->in_rate[0]));
58 	net->weights = malloc((nbLayers-1)*sizeof(net->weights));
59 	net->best_weights = malloc((nbLayers-1)*sizeof(net->weights));
60 	for (i=0;i<nbLayers-1;i++)
61 	{
62 		net->weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0]));
63 		net->best_weights[i] = malloc((topo[i]+1)*topo[i+1]*sizeof(net->weights[0][0]));
64 	}
65 	double inMean[inDim];
66 	for (j=0;j<inDim;j++)
67 	{
68 		double std=0;
69 		inMean[j] = 0;
70 		for (i=0;i<nbSamples;i++)
71 		{
72 			inMean[j] += inputs[i*inDim+j];
73 			std += inputs[i*inDim+j]*inputs[i*inDim+j];
74 		}
75 		inMean[j] /= nbSamples;
76 		std /= nbSamples;
77 		net->in_rate[1+j] = .5/(.0001+std);
78 		std = std-inMean[j]*inMean[j];
79 		if (std<.001)
80 			std = .001;
81 		std = 1/sqrt(inDim*std);
82 		for (k=0;k<topo[1];k++)
83 			net->weights[0][k*(topo[0]+1)+j+1] = randn(std);
84 	}
85 	net->in_rate[0] = 1;
86 	for (j=0;j<topo[1];j++)
87 	{
88 		double sum = 0;
89 		for (k=0;k<inDim;k++)
90 			sum += inMean[k]*net->weights[0][j*(topo[0]+1)+k+1];
91 		net->weights[0][j*(topo[0]+1)] = -sum;
92 	}
93 	for (j=0;j<outDim;j++)
94 	{
95 		double mean = 0;
96 		double std;
97 		for (i=0;i<nbSamples;i++)
98 			mean += outputs[i*outDim+j];
99 		mean /= nbSamples;
100 		std = 1/sqrt(topo[nbLayers-2]);
101 		net->weights[nbLayers-2][j*(topo[nbLayers-2]+1)] = mean;
102 		for (k=0;k<topo[nbLayers-2];k++)
103 			net->weights[nbLayers-2][j*(topo[nbLayers-2]+1)+k+1] = randn(std);
104 	}
105 	return net;
106 }
107 
108 #define MAX_NEURONS 100
109 #define MAX_OUT 10
110 
compute_gradient(MLPTrain * net,float * inputs,float * outputs,int nbSamples,double * W0_grad,double * W1_grad,double * error_rate)111 double compute_gradient(MLPTrain *net, float *inputs, float *outputs, int nbSamples, double *W0_grad, double *W1_grad, double *error_rate)
112 {
113 	int i,j;
114 	int s;
115 	int inDim, outDim, hiddenDim;
116 	int *topo;
117 	double *W0, *W1;
118 	double rms=0;
119 	int W0_size, W1_size;
120 	double hidden[MAX_NEURONS];
121 	double netOut[MAX_NEURONS];
122 	double error[MAX_NEURONS];
123 
124 	for (i=0;i<outDim;i++)
125 	   error_rate[i] = 0;
126 	topo = net->topo;
127 	inDim = net->topo[0];
128 	hiddenDim = net->topo[1];
129 	outDim = net->topo[2];
130 	W0_size = (topo[0]+1)*topo[1];
131 	W1_size = (topo[1]+1)*topo[2];
132 	W0 = net->weights[0];
133 	W1 = net->weights[1];
134 	memset(W0_grad, 0, W0_size*sizeof(double));
135 	memset(W1_grad, 0, W1_size*sizeof(double));
136 	for (i=0;i<outDim;i++)
137 		netOut[i] = outputs[i];
138 	for (s=0;s<nbSamples;s++)
139 	{
140 		float *in, *out;
141 		in = inputs+s*inDim;
142 		out = outputs + s*outDim;
143 		for (i=0;i<hiddenDim;i++)
144 		{
145 			double sum = W0[i*(inDim+1)];
146 			for (j=0;j<inDim;j++)
147 				sum += W0[i*(inDim+1)+j+1]*in[j];
148 			hidden[i] = tansig_approx(sum);
149 		}
150 		for (i=0;i<outDim;i++)
151 		{
152 			double sum = W1[i*(hiddenDim+1)];
153 			for (j=0;j<hiddenDim;j++)
154 				sum += W1[i*(hiddenDim+1)+j+1]*hidden[j];
155 			netOut[i] = tansig_approx(sum);
156 			error[i] = out[i] - netOut[i];
157 			rms += error[i]*error[i];
158 			error_rate[i] += fabs(error[i])>1;
159 			/*error[i] = error[i]/(1+fabs(error[i]));*/
160 		}
161 		/* Back-propagate error */
162 		for (i=0;i<outDim;i++)
163 		{
164                         float grad = 1-netOut[i]*netOut[i];
165 			W1_grad[i*(hiddenDim+1)] += error[i]*grad;
166 			for (j=0;j<hiddenDim;j++)
167 				W1_grad[i*(hiddenDim+1)+j+1] += grad*error[i]*hidden[j];
168 		}
169 		for (i=0;i<hiddenDim;i++)
170 		{
171 			double grad;
172 			grad = 0;
173 			for (j=0;j<outDim;j++)
174 				grad += error[j]*W1[j*(hiddenDim+1)+i+1];
175 			grad *= 1-hidden[i]*hidden[i];
176 			W0_grad[i*(inDim+1)] += grad;
177 			for (j=0;j<inDim;j++)
178 				W0_grad[i*(inDim+1)+j+1] += grad*in[j];
179 		}
180 	}
181 	return rms;
182 }
183 
184 #define NB_THREADS 8
185 
186 sem_t sem_begin[NB_THREADS];
187 sem_t sem_end[NB_THREADS];
188 
189 struct GradientArg {
190 	int id;
191 	int done;
192 	MLPTrain *net;
193 	float *inputs;
194 	float *outputs;
195 	int nbSamples;
196 	double *W0_grad;
197 	double *W1_grad;
198 	double rms;
199 	double error_rate[MAX_OUT];
200 };
201 
gradient_thread_process(void * _arg)202 void *gradient_thread_process(void *_arg)
203 {
204 	int W0_size, W1_size;
205 	struct GradientArg *arg = _arg;
206 	int *topo = arg->net->topo;
207 	W0_size = (topo[0]+1)*topo[1];
208 	W1_size = (topo[1]+1)*topo[2];
209 	double W0_grad[W0_size];
210 	double W1_grad[W1_size];
211 	arg->W0_grad = W0_grad;
212 	arg->W1_grad = W1_grad;
213 	while (1)
214 	{
215 		sem_wait(&sem_begin[arg->id]);
216 		if (arg->done)
217 			break;
218 		arg->rms = compute_gradient(arg->net, arg->inputs, arg->outputs, arg->nbSamples, arg->W0_grad, arg->W1_grad, arg->error_rate);
219 		sem_post(&sem_end[arg->id]);
220 	}
221 	fprintf(stderr, "done\n");
222 	return NULL;
223 }
224 
mlp_train_backprop(MLPTrain * net,float * inputs,float * outputs,int nbSamples,int nbEpoch,float rate)225 float mlp_train_backprop(MLPTrain *net, float *inputs, float *outputs, int nbSamples, int nbEpoch, float rate)
226 {
227 	int i, j;
228 	int e;
229 	float best_rms = 1e10;
230 	int inDim, outDim, hiddenDim;
231 	int *topo;
232 	double *W0, *W1, *best_W0, *best_W1;
233 	double *W0_old, *W1_old;
234 	double *W0_old2, *W1_old2;
235 	double *W0_grad, *W1_grad;
236 	double *W0_oldgrad, *W1_oldgrad;
237 	double *W0_rate, *W1_rate;
238 	double *best_W0_rate, *best_W1_rate;
239 	int W0_size, W1_size;
240 	topo = net->topo;
241 	W0_size = (topo[0]+1)*topo[1];
242 	W1_size = (topo[1]+1)*topo[2];
243 	struct GradientArg args[NB_THREADS];
244 	pthread_t thread[NB_THREADS];
245 	int samplePerPart = nbSamples/NB_THREADS;
246 	int count_worse=0;
247 	int count_retries=0;
248 
249 	topo = net->topo;
250 	inDim = net->topo[0];
251 	hiddenDim = net->topo[1];
252 	outDim = net->topo[2];
253 	W0 = net->weights[0];
254 	W1 = net->weights[1];
255 	best_W0 = net->best_weights[0];
256 	best_W1 = net->best_weights[1];
257 	W0_old = malloc(W0_size*sizeof(double));
258 	W1_old = malloc(W1_size*sizeof(double));
259 	W0_old2 = malloc(W0_size*sizeof(double));
260 	W1_old2 = malloc(W1_size*sizeof(double));
261 	W0_grad = malloc(W0_size*sizeof(double));
262 	W1_grad = malloc(W1_size*sizeof(double));
263 	W0_oldgrad = malloc(W0_size*sizeof(double));
264 	W1_oldgrad = malloc(W1_size*sizeof(double));
265 	W0_rate = malloc(W0_size*sizeof(double));
266 	W1_rate = malloc(W1_size*sizeof(double));
267 	best_W0_rate = malloc(W0_size*sizeof(double));
268 	best_W1_rate = malloc(W1_size*sizeof(double));
269 	memcpy(W0_old, W0, W0_size*sizeof(double));
270 	memcpy(W0_old2, W0, W0_size*sizeof(double));
271 	memset(W0_grad, 0, W0_size*sizeof(double));
272 	memset(W0_oldgrad, 0, W0_size*sizeof(double));
273 	memcpy(W1_old, W1, W1_size*sizeof(double));
274 	memcpy(W1_old2, W1, W1_size*sizeof(double));
275 	memset(W1_grad, 0, W1_size*sizeof(double));
276 	memset(W1_oldgrad, 0, W1_size*sizeof(double));
277 
278 	rate /= nbSamples;
279 	for (i=0;i<hiddenDim;i++)
280 		for (j=0;j<inDim+1;j++)
281 			W0_rate[i*(inDim+1)+j] = rate*net->in_rate[j];
282 	for (i=0;i<W1_size;i++)
283 		W1_rate[i] = rate;
284 
285 	for (i=0;i<NB_THREADS;i++)
286 	{
287 		args[i].net = net;
288 		args[i].inputs = inputs+i*samplePerPart*inDim;
289 		args[i].outputs = outputs+i*samplePerPart*outDim;
290 		args[i].nbSamples = samplePerPart;
291 		args[i].id = i;
292 		args[i].done = 0;
293 		sem_init(&sem_begin[i], 0, 0);
294 		sem_init(&sem_end[i], 0, 0);
295 		pthread_create(&thread[i], NULL, gradient_thread_process, &args[i]);
296 	}
297 	for (e=0;e<nbEpoch;e++)
298 	{
299 		double rms=0;
300 		double error_rate[2] = {0,0};
301 		for (i=0;i<NB_THREADS;i++)
302 		{
303 			sem_post(&sem_begin[i]);
304 		}
305 		memset(W0_grad, 0, W0_size*sizeof(double));
306 		memset(W1_grad, 0, W1_size*sizeof(double));
307 		for (i=0;i<NB_THREADS;i++)
308 		{
309 			sem_wait(&sem_end[i]);
310 			rms += args[i].rms;
311 			error_rate[0] += args[i].error_rate[0];
312             error_rate[1] += args[i].error_rate[1];
313 			for (j=0;j<W0_size;j++)
314 				W0_grad[j] += args[i].W0_grad[j];
315 			for (j=0;j<W1_size;j++)
316 				W1_grad[j] += args[i].W1_grad[j];
317 		}
318 
319 		float mean_rate = 0, min_rate = 1e10;
320 		rms = (rms/(outDim*nbSamples));
321 		error_rate[0] = (error_rate[0]/(nbSamples));
322         error_rate[1] = (error_rate[1]/(nbSamples));
323 		fprintf (stderr, "%f %f (%f %f) ", error_rate[0], error_rate[1], rms, best_rms);
324 		if (rms < best_rms)
325 		{
326 			best_rms = rms;
327 			for (i=0;i<W0_size;i++)
328 			{
329 				best_W0[i] = W0[i];
330 				best_W0_rate[i] = W0_rate[i];
331 			}
332 			for (i=0;i<W1_size;i++)
333 			{
334 				best_W1[i] = W1[i];
335 				best_W1_rate[i] = W1_rate[i];
336 			}
337 			count_worse=0;
338 			count_retries=0;
339 		} else {
340 			count_worse++;
341 			if (count_worse>30)
342 			{
343 			    count_retries++;
344 				count_worse=0;
345 				for (i=0;i<W0_size;i++)
346 				{
347 					W0[i] = best_W0[i];
348 					best_W0_rate[i] *= .7;
349 					if (best_W0_rate[i]<1e-15) best_W0_rate[i]=1e-15;
350 					W0_rate[i] = best_W0_rate[i];
351 					W0_grad[i] = 0;
352 				}
353 				for (i=0;i<W1_size;i++)
354 				{
355 					W1[i] = best_W1[i];
356 					best_W1_rate[i] *= .8;
357 					if (best_W1_rate[i]<1e-15) best_W1_rate[i]=1e-15;
358 					W1_rate[i] = best_W1_rate[i];
359 					W1_grad[i] = 0;
360 				}
361 			}
362 		}
363 		if (count_retries>10)
364 		    break;
365 		for (i=0;i<W0_size;i++)
366 		{
367 			if (W0_oldgrad[i]*W0_grad[i] > 0)
368 				W0_rate[i] *= 1.01;
369 			else if (W0_oldgrad[i]*W0_grad[i] < 0)
370 				W0_rate[i] *= .9;
371 			mean_rate += W0_rate[i];
372 			if (W0_rate[i] < min_rate)
373 				min_rate = W0_rate[i];
374 			if (W0_rate[i] < 1e-15)
375 				W0_rate[i] = 1e-15;
376 			/*if (W0_rate[i] > .01)
377 				W0_rate[i] = .01;*/
378 			W0_oldgrad[i] = W0_grad[i];
379 			W0_old2[i] = W0_old[i];
380 			W0_old[i] = W0[i];
381 			W0[i] += W0_grad[i]*W0_rate[i];
382 		}
383 		for (i=0;i<W1_size;i++)
384 		{
385 			if (W1_oldgrad[i]*W1_grad[i] > 0)
386 				W1_rate[i] *= 1.01;
387 			else if (W1_oldgrad[i]*W1_grad[i] < 0)
388 				W1_rate[i] *= .9;
389 			mean_rate += W1_rate[i];
390 			if (W1_rate[i] < min_rate)
391 				min_rate = W1_rate[i];
392 			if (W1_rate[i] < 1e-15)
393 				W1_rate[i] = 1e-15;
394 			W1_oldgrad[i] = W1_grad[i];
395 			W1_old2[i] = W1_old[i];
396 			W1_old[i] = W1[i];
397 			W1[i] += W1_grad[i]*W1_rate[i];
398 		}
399 		mean_rate /= (topo[0]+1)*topo[1] + (topo[1]+1)*topo[2];
400 		fprintf (stderr, "%g %d", mean_rate, e);
401 		if (count_retries)
402 		    fprintf(stderr, " %d", count_retries);
403 		fprintf(stderr, "\n");
404 		if (stopped)
405 			break;
406 	}
407 	for (i=0;i<NB_THREADS;i++)
408 	{
409 		args[i].done = 1;
410 		sem_post(&sem_begin[i]);
411 		pthread_join(thread[i], NULL);
412 		fprintf (stderr, "joined %d\n", i);
413 	}
414 	free(W0_old);
415 	free(W1_old);
416 	free(W0_grad);
417 	free(W1_grad);
418 	free(W0_rate);
419 	free(W1_rate);
420 	return best_rms;
421 }
422 
main(int argc,char ** argv)423 int main(int argc, char **argv)
424 {
425 	int i, j;
426 	int nbInputs;
427 	int nbOutputs;
428 	int nbHidden;
429 	int nbSamples;
430 	int nbEpoch;
431 	int nbRealInputs;
432 	unsigned int seed;
433 	int ret;
434 	float rms;
435 	float *inputs;
436 	float *outputs;
437 	if (argc!=6)
438 	{
439 		fprintf (stderr, "usage: mlp_train <inputs> <hidden> <outputs> <nb samples> <nb epoch>\n");
440 		return 1;
441 	}
442 	nbInputs = atoi(argv[1]);
443 	nbHidden = atoi(argv[2]);
444 	nbOutputs = atoi(argv[3]);
445 	nbSamples = atoi(argv[4]);
446 	nbEpoch = atoi(argv[5]);
447 	nbRealInputs = nbInputs;
448 	inputs = malloc(nbInputs*nbSamples*sizeof(*inputs));
449 	outputs = malloc(nbOutputs*nbSamples*sizeof(*outputs));
450 
451 	seed = time(NULL);
452     /*seed = 1361480659;*/
453 	fprintf (stderr, "Seed is %u\n", seed);
454 	srand(seed);
455 	build_tansig_table();
456 	signal(SIGTERM, handler);
457 	signal(SIGINT, handler);
458 	signal(SIGHUP, handler);
459 	for (i=0;i<nbSamples;i++)
460 	{
461 		for (j=0;j<nbRealInputs;j++)
462 			ret = scanf(" %f", &inputs[i*nbInputs+j]);
463 		for (j=0;j<nbOutputs;j++)
464 			ret = scanf(" %f", &outputs[i*nbOutputs+j]);
465 		if (feof(stdin))
466 		{
467 			nbSamples = i;
468 			break;
469 		}
470 	}
471 	int topo[3] = {nbInputs, nbHidden, nbOutputs};
472 	MLPTrain *net;
473 
474 	fprintf (stderr, "Got %d samples\n", nbSamples);
475 	net = mlp_init(topo, 3, inputs, outputs, nbSamples);
476 	rms = mlp_train_backprop(net, inputs, outputs, nbSamples, nbEpoch, 1);
477 	printf ("#include \"mlp.h\"\n\n");
478 	printf ("/* RMS error was %f, seed was %u */\n\n", rms, seed);
479 	printf ("static const float weights[%d] = {\n", (topo[0]+1)*topo[1] + (topo[1]+1)*topo[2]);
480 	printf ("\n/* hidden layer */\n");
481 	for (i=0;i<(topo[0]+1)*topo[1];i++)
482 	{
483 		printf ("%gf, ", net->weights[0][i]);
484 		if (i%5==4)
485 			printf("\n");
486 	}
487 	printf ("\n/* output layer */\n");
488 	for (i=0;i<(topo[1]+1)*topo[2];i++)
489 	{
490 		printf ("%g, ", net->weights[1][i]);
491 		if (i%5==4)
492 			printf("\n");
493 	}
494 	printf ("};\n\n");
495 	printf ("static const int topo[3] = {%d, %d, %d};\n\n", topo[0], topo[1], topo[2]);
496 	printf ("const MLP net = {\n");
497 	printf ("\t3,\n");
498 	printf ("\ttopo,\n");
499 	printf ("\tweights\n};\n");
500 	return 0;
501 }
502