• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 //===-- lib/muldf3.c - Double-precision multiplication ------------*- C -*-===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is dual licensed under the MIT and the University of Illinois Open
6 // Source Licenses. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This file implements double-precision soft-float multiplication
11 // with the IEEE-754 default rounding (to nearest, ties to even).
12 //
13 //===----------------------------------------------------------------------===//
14 
15 #define DOUBLE_PRECISION
16 #include "fp_lib.h"
17 
ARM_EABI_FNALIAS(dmul,muldf3)18 ARM_EABI_FNALIAS(dmul, muldf3)
19 
20 COMPILER_RT_ABI fp_t
21 __muldf3(fp_t a, fp_t b) {
22 
23     const unsigned int aExponent = toRep(a) >> significandBits & maxExponent;
24     const unsigned int bExponent = toRep(b) >> significandBits & maxExponent;
25     const rep_t productSign = (toRep(a) ^ toRep(b)) & signBit;
26 
27     rep_t aSignificand = toRep(a) & significandMask;
28     rep_t bSignificand = toRep(b) & significandMask;
29     int scale = 0;
30 
31     // Detect if a or b is zero, denormal, infinity, or NaN.
32     if (aExponent-1U >= maxExponent-1U || bExponent-1U >= maxExponent-1U) {
33 
34         const rep_t aAbs = toRep(a) & absMask;
35         const rep_t bAbs = toRep(b) & absMask;
36 
37         // NaN * anything = qNaN
38         if (aAbs > infRep) return fromRep(toRep(a) | quietBit);
39         // anything * NaN = qNaN
40         if (bAbs > infRep) return fromRep(toRep(b) | quietBit);
41 
42         if (aAbs == infRep) {
43             // infinity * non-zero = +/- infinity
44             if (bAbs) return fromRep(aAbs | productSign);
45             // infinity * zero = NaN
46             else return fromRep(qnanRep);
47         }
48 
49         if (bAbs == infRep) {
50             // non-zero * infinity = +/- infinity
51             if (aAbs) return fromRep(bAbs | productSign);
52             // zero * infinity = NaN
53             else return fromRep(qnanRep);
54         }
55 
56         // zero * anything = +/- zero
57         if (!aAbs) return fromRep(productSign);
58         // anything * zero = +/- zero
59         if (!bAbs) return fromRep(productSign);
60 
61         // one or both of a or b is denormal, the other (if applicable) is a
62         // normal number.  Renormalize one or both of a and b, and set scale to
63         // include the necessary exponent adjustment.
64         if (aAbs < implicitBit) scale += normalize(&aSignificand);
65         if (bAbs < implicitBit) scale += normalize(&bSignificand);
66     }
67 
68     // Or in the implicit significand bit.  (If we fell through from the
69     // denormal path it was already set by normalize( ), but setting it twice
70     // won't hurt anything.)
71     aSignificand |= implicitBit;
72     bSignificand |= implicitBit;
73 
74     // Get the significand of a*b.  Before multiplying the significands, shift
75     // one of them left to left-align it in the field.  Thus, the product will
76     // have (exponentBits + 2) integral digits, all but two of which must be
77     // zero.  Normalizing this result is just a conditional left-shift by one
78     // and bumping the exponent accordingly.
79     rep_t productHi, productLo;
80     wideMultiply(aSignificand, bSignificand << exponentBits,
81                  &productHi, &productLo);
82 
83     int productExponent = aExponent + bExponent - exponentBias + scale;
84 
85     // Normalize the significand, adjust exponent if needed.
86     if (productHi & implicitBit) productExponent++;
87     else wideLeftShift(&productHi, &productLo, 1);
88 
89     // If we have overflowed the type, return +/- infinity.
90     if (productExponent >= maxExponent) return fromRep(infRep | productSign);
91 
92     if (productExponent <= 0) {
93         // Result is denormal before rounding
94         //
95         // If the result is so small that it just underflows to zero, return
96         // a zero of the appropriate sign.  Mathematically there is no need to
97         // handle this case separately, but we make it a special case to
98         // simplify the shift logic.
99         const unsigned int shift = 1U - (unsigned int)productExponent;
100         if (shift >= typeWidth) return fromRep(productSign);
101 
102         // Otherwise, shift the significand of the result so that the round
103         // bit is the high bit of productLo.
104         wideRightShiftWithSticky(&productHi, &productLo, shift);
105     }
106 
107     else {
108         // Result is normal before rounding; insert the exponent.
109         productHi &= significandMask;
110         productHi |= (rep_t)productExponent << significandBits;
111     }
112 
113     // Insert the sign of the result:
114     productHi |= productSign;
115 
116     // Final rounding.  The final result may overflow to infinity, or underflow
117     // to zero, but those are the correct results in those cases.  We use the
118     // default IEEE-754 round-to-nearest, ties-to-even rounding mode.
119     if (productLo > signBit) productHi++;
120     if (productLo == signBit) productHi += productHi & 1;
121     return fromRep(productHi);
122 }
123