• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /***********************************************************************
2 Copyright (c) 2006-2011, Skype Limited. All rights reserved.
3 Redistribution and use in source and binary forms, with or without
4 modification, are permitted provided that the following conditions
5 are met:
6 - Redistributions of source code must retain the above copyright notice,
7 this list of conditions and the following disclaimer.
8 - Redistributions in binary form must reproduce the above copyright
9 notice, this list of conditions and the following disclaimer in the
10 documentation and/or other materials provided with the distribution.
11 - Neither the name of Internet Society, IETF or IETF Trust, nor the
12 names of specific contributors, may be used to endorse or promote
13 products derived from this software without specific prior written
14 permission.
15 THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
16 AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
17 IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
18 ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
19 LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
20 CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
21 SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
22 INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
23 CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
24 ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
25 POSSIBILITY OF SUCH DAMAGE.
26 ***********************************************************************/
27 
28 #ifdef HAVE_CONFIG_H
29 #include "config.h"
30 #endif
31 
32 #include "SigProc_FIX.h"
33 #include "define.h"
34 #include "tuning_parameters.h"
35 #include "pitch.h"
36 
37 #define MAX_FRAME_SIZE              384             /* subfr_length * nb_subfr = ( 0.005 * 16000 + 16 ) * 4 = 384 */
38 
39 #define QA                          25
40 #define N_BITS_HEAD_ROOM            2
41 #define MIN_RSHIFTS                 -16
42 #define MAX_RSHIFTS                 (32 - QA)
43 
44 /* Compute reflection coefficients from input signal */
silk_burg_modified(opus_int32 * res_nrg,opus_int * res_nrg_Q,opus_int32 A_Q16[],const opus_int16 x[],const opus_int32 minInvGain_Q30,const opus_int subfr_length,const opus_int nb_subfr,const opus_int D)45 void silk_burg_modified(
46     opus_int32                  *res_nrg,           /* O    Residual energy                                             */
47     opus_int                    *res_nrg_Q,         /* O    Residual energy Q value                                     */
48     opus_int32                  A_Q16[],            /* O    Prediction coefficients (length order)                      */
49     const opus_int16            x[],                /* I    Input signal, length: nb_subfr * ( D + subfr_length )       */
50     const opus_int32            minInvGain_Q30,     /* I    Inverse of max prediction gain                              */
51     const opus_int              subfr_length,       /* I    Input signal subframe length (incl. D preceding samples)    */
52     const opus_int              nb_subfr,           /* I    Number of subframes stacked in x                            */
53     const opus_int              D                   /* I    Order                                                       */
54 )
55 {
56     opus_int         k, n, s, lz, rshifts, rshifts_extra, reached_max_gain;
57     opus_int32       C0, num, nrg, rc_Q31, invGain_Q30, Atmp_QA, Atmp1, tmp1, tmp2, x1, x2;
58     const opus_int16 *x_ptr;
59     opus_int32       C_first_row[ SILK_MAX_ORDER_LPC ];
60     opus_int32       C_last_row[  SILK_MAX_ORDER_LPC ];
61     opus_int32       Af_QA[       SILK_MAX_ORDER_LPC ];
62     opus_int32       CAf[ SILK_MAX_ORDER_LPC + 1 ];
63     opus_int32       CAb[ SILK_MAX_ORDER_LPC + 1 ];
64     opus_int32       xcorr[ SILK_MAX_ORDER_LPC ];
65 
66     silk_assert( subfr_length * nb_subfr <= MAX_FRAME_SIZE );
67 
68     /* Compute autocorrelations, added over subframes */
69     silk_sum_sqr_shift( &C0, &rshifts, x, nb_subfr * subfr_length );
70     if( rshifts > MAX_RSHIFTS ) {
71         C0 = silk_LSHIFT32( C0, rshifts - MAX_RSHIFTS );
72         silk_assert( C0 > 0 );
73         rshifts = MAX_RSHIFTS;
74     } else {
75         lz = silk_CLZ32( C0 ) - 1;
76         rshifts_extra = N_BITS_HEAD_ROOM - lz;
77         if( rshifts_extra > 0 ) {
78             rshifts_extra = silk_min( rshifts_extra, MAX_RSHIFTS - rshifts );
79             C0 = silk_RSHIFT32( C0, rshifts_extra );
80         } else {
81             rshifts_extra = silk_max( rshifts_extra, MIN_RSHIFTS - rshifts );
82             C0 = silk_LSHIFT32( C0, -rshifts_extra );
83         }
84         rshifts += rshifts_extra;
85     }
86     CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */
87     silk_memset( C_first_row, 0, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
88     if( rshifts > 0 ) {
89         for( s = 0; s < nb_subfr; s++ ) {
90             x_ptr = x + s * subfr_length;
91             for( n = 1; n < D + 1; n++ ) {
92                 C_first_row[ n - 1 ] += (opus_int32)silk_RSHIFT64(
93                     silk_inner_prod16_aligned_64( x_ptr, x_ptr + n, subfr_length - n ), rshifts );
94             }
95         }
96     } else {
97         for( s = 0; s < nb_subfr; s++ ) {
98             int i;
99             opus_int32 d;
100             x_ptr = x + s * subfr_length;
101             celt_pitch_xcorr(x_ptr, x_ptr + 1, xcorr, subfr_length - D, D );
102             for( n = 1; n < D + 1; n++ ) {
103                for ( i = n + subfr_length - D, d = 0; i < subfr_length; i++ )
104                   d = MAC16_16( d, x_ptr[ i ], x_ptr[ i - n ] );
105                xcorr[ n - 1 ] += d;
106             }
107             for( n = 1; n < D + 1; n++ ) {
108                 C_first_row[ n - 1 ] += silk_LSHIFT32( xcorr[ n - 1 ], -rshifts );
109             }
110         }
111     }
112     silk_memcpy( C_last_row, C_first_row, SILK_MAX_ORDER_LPC * sizeof( opus_int32 ) );
113 
114     /* Initialize */
115     CAb[ 0 ] = CAf[ 0 ] = C0 + silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ) + 1;                                /* Q(-rshifts) */
116 
117     invGain_Q30 = (opus_int32)1 << 30;
118     reached_max_gain = 0;
119     for( n = 0; n < D; n++ ) {
120         /* Update first row of correlation matrix (without first element) */
121         /* Update last row of correlation matrix (without last element, stored in reversed order) */
122         /* Update C * Af */
123         /* Update C * flipud(Af) (stored in reversed order) */
124         if( rshifts > -2 ) {
125             for( s = 0; s < nb_subfr; s++ ) {
126                 x_ptr = x + s * subfr_length;
127                 x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    16 - rshifts );        /* Q(16-rshifts) */
128                 x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 16 - rshifts );        /* Q(16-rshifts) */
129                 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    QA - 16 );             /* Q(QA-16) */
130                 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], QA - 16 );             /* Q(QA-16) */
131                 for( k = 0; k < n; k++ ) {
132                     C_first_row[ k ] = silk_SMLAWB( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
133                     C_last_row[ k ]  = silk_SMLAWB( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
134                     Atmp_QA = Af_QA[ k ];
135                     tmp1 = silk_SMLAWB( tmp1, Atmp_QA, x_ptr[ n - k - 1 ]            );                 /* Q(QA-16) */
136                     tmp2 = silk_SMLAWB( tmp2, Atmp_QA, x_ptr[ subfr_length - n + k ] );                 /* Q(QA-16) */
137                 }
138                 tmp1 = silk_LSHIFT32( -tmp1, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
139                 tmp2 = silk_LSHIFT32( -tmp2, 32 - QA - rshifts );                                       /* Q(16-rshifts) */
140                 for( k = 0; k <= n; k++ ) {
141                     CAf[ k ] = silk_SMLAWB( CAf[ k ], tmp1, x_ptr[ n - k ]                    );        /* Q( -rshift ) */
142                     CAb[ k ] = silk_SMLAWB( CAb[ k ], tmp2, x_ptr[ subfr_length - n + k - 1 ] );        /* Q( -rshift ) */
143                 }
144             }
145         } else {
146             for( s = 0; s < nb_subfr; s++ ) {
147                 x_ptr = x + s * subfr_length;
148                 x1  = -silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    -rshifts );            /* Q( -rshifts ) */
149                 x2  = -silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], -rshifts );            /* Q( -rshifts ) */
150                 tmp1 = silk_LSHIFT32( (opus_int32)x_ptr[ n ],                    17 );                  /* Q17 */
151                 tmp2 = silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n - 1 ], 17 );                  /* Q17 */
152                 for( k = 0; k < n; k++ ) {
153                     C_first_row[ k ] = silk_MLA( C_first_row[ k ], x1, x_ptr[ n - k - 1 ]            ); /* Q( -rshifts ) */
154                     C_last_row[ k ]  = silk_MLA( C_last_row[ k ],  x2, x_ptr[ subfr_length - n + k ] ); /* Q( -rshifts ) */
155                     Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 17 );                                   /* Q17 */
156                     tmp1 = silk_MLA( tmp1, x_ptr[ n - k - 1 ],            Atmp1 );                      /* Q17 */
157                     tmp2 = silk_MLA( tmp2, x_ptr[ subfr_length - n + k ], Atmp1 );                      /* Q17 */
158                 }
159                 tmp1 = -tmp1;                                                                           /* Q17 */
160                 tmp2 = -tmp2;                                                                           /* Q17 */
161                 for( k = 0; k <= n; k++ ) {
162                     CAf[ k ] = silk_SMLAWW( CAf[ k ], tmp1,
163                         silk_LSHIFT32( (opus_int32)x_ptr[ n - k ], -rshifts - 1 ) );                    /* Q( -rshift ) */
164                     CAb[ k ] = silk_SMLAWW( CAb[ k ], tmp2,
165                         silk_LSHIFT32( (opus_int32)x_ptr[ subfr_length - n + k - 1 ], -rshifts - 1 ) ); /* Q( -rshift ) */
166                 }
167             }
168         }
169 
170         /* Calculate nominator and denominator for the next order reflection (parcor) coefficient */
171         tmp1 = C_first_row[ n ];                                                                        /* Q( -rshifts ) */
172         tmp2 = C_last_row[ n ];                                                                         /* Q( -rshifts ) */
173         num  = 0;                                                                                       /* Q( -rshifts ) */
174         nrg  = silk_ADD32( CAb[ 0 ], CAf[ 0 ] );                                                        /* Q( 1-rshifts ) */
175         for( k = 0; k < n; k++ ) {
176             Atmp_QA = Af_QA[ k ];
177             lz = silk_CLZ32( silk_abs( Atmp_QA ) ) - 1;
178             lz = silk_min( 32 - QA, lz );
179             Atmp1 = silk_LSHIFT32( Atmp_QA, lz );                                                       /* Q( QA + lz ) */
180 
181             tmp1 = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( C_last_row[  n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
182             tmp2 = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( C_first_row[ n - k - 1 ], Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
183             num  = silk_ADD_LSHIFT32( num,  silk_SMMUL( CAb[ n - k ],             Atmp1 ), 32 - QA - lz );  /* Q( -rshifts ) */
184             nrg  = silk_ADD_LSHIFT32( nrg,  silk_SMMUL( silk_ADD32( CAb[ k + 1 ], CAf[ k + 1 ] ),
185                                                                                 Atmp1 ), 32 - QA - lz );    /* Q( 1-rshifts ) */
186         }
187         CAf[ n + 1 ] = tmp1;                                                                            /* Q( -rshifts ) */
188         CAb[ n + 1 ] = tmp2;                                                                            /* Q( -rshifts ) */
189         num = silk_ADD32( num, tmp2 );                                                                  /* Q( -rshifts ) */
190         num = silk_LSHIFT32( -num, 1 );                                                                 /* Q( 1-rshifts ) */
191 
192         /* Calculate the next order reflection (parcor) coefficient */
193         if( silk_abs( num ) < nrg ) {
194             rc_Q31 = silk_DIV32_varQ( num, nrg, 31 );
195         } else {
196             rc_Q31 = ( num > 0 ) ? silk_int32_MAX : silk_int32_MIN;
197         }
198 
199         /* Update inverse prediction gain */
200         tmp1 = ( (opus_int32)1 << 30 ) - silk_SMMUL( rc_Q31, rc_Q31 );
201         tmp1 = silk_LSHIFT( silk_SMMUL( invGain_Q30, tmp1 ), 2 );
202         if( tmp1 <= minInvGain_Q30 ) {
203             /* Max prediction gain exceeded; set reflection coefficient such that max prediction gain is exactly hit */
204             tmp2 = ( (opus_int32)1 << 30 ) - silk_DIV32_varQ( minInvGain_Q30, invGain_Q30, 30 );            /* Q30 */
205             rc_Q31 = silk_SQRT_APPROX( tmp2 );                                                  /* Q15 */
206             /* Newton-Raphson iteration */
207             rc_Q31 = silk_RSHIFT32( rc_Q31 + silk_DIV32( tmp2, rc_Q31 ), 1 );                   /* Q15 */
208             rc_Q31 = silk_LSHIFT32( rc_Q31, 16 );                                               /* Q31 */
209             if( num < 0 ) {
210                 /* Ensure adjusted reflection coefficients has the original sign */
211                 rc_Q31 = -rc_Q31;
212             }
213             invGain_Q30 = minInvGain_Q30;
214             reached_max_gain = 1;
215         } else {
216             invGain_Q30 = tmp1;
217         }
218 
219         /* Update the AR coefficients */
220         for( k = 0; k < (n + 1) >> 1; k++ ) {
221             tmp1 = Af_QA[ k ];                                                                  /* QA */
222             tmp2 = Af_QA[ n - k - 1 ];                                                          /* QA */
223             Af_QA[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );      /* QA */
224             Af_QA[ n - k - 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );      /* QA */
225         }
226         Af_QA[ n ] = silk_RSHIFT32( rc_Q31, 31 - QA );                                          /* QA */
227 
228         if( reached_max_gain ) {
229             /* Reached max prediction gain; set remaining coefficients to zero and exit loop */
230             for( k = n + 1; k < D; k++ ) {
231                 Af_QA[ k ] = 0;
232             }
233             break;
234         }
235 
236         /* Update C * Af and C * Ab */
237         for( k = 0; k <= n + 1; k++ ) {
238             tmp1 = CAf[ k ];                                                                    /* Q( -rshifts ) */
239             tmp2 = CAb[ n - k + 1 ];                                                            /* Q( -rshifts ) */
240             CAf[ k ]         = silk_ADD_LSHIFT32( tmp1, silk_SMMUL( tmp2, rc_Q31 ), 1 );        /* Q( -rshifts ) */
241             CAb[ n - k + 1 ] = silk_ADD_LSHIFT32( tmp2, silk_SMMUL( tmp1, rc_Q31 ), 1 );        /* Q( -rshifts ) */
242         }
243     }
244 
245     if( reached_max_gain ) {
246         for( k = 0; k < D; k++ ) {
247             /* Scale coefficients */
248             A_Q16[ k ] = -silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );
249         }
250         /* Subtract energy of preceding samples from C0 */
251         if( rshifts > 0 ) {
252             for( s = 0; s < nb_subfr; s++ ) {
253                 x_ptr = x + s * subfr_length;
254                 C0 -= (opus_int32)silk_RSHIFT64( silk_inner_prod16_aligned_64( x_ptr, x_ptr, D ), rshifts );
255             }
256         } else {
257             for( s = 0; s < nb_subfr; s++ ) {
258                 x_ptr = x + s * subfr_length;
259                 C0 -= silk_LSHIFT32( silk_inner_prod_aligned( x_ptr, x_ptr, D ), -rshifts );
260             }
261         }
262         /* Approximate residual energy */
263         *res_nrg = silk_LSHIFT( silk_SMMUL( invGain_Q30, C0 ), 2 );
264         *res_nrg_Q = -rshifts;
265     } else {
266         /* Return residual energy */
267         nrg  = CAf[ 0 ];                                                                            /* Q( -rshifts ) */
268         tmp1 = (opus_int32)1 << 16;                                                                             /* Q16 */
269         for( k = 0; k < D; k++ ) {
270             Atmp1 = silk_RSHIFT_ROUND( Af_QA[ k ], QA - 16 );                                       /* Q16 */
271             nrg  = silk_SMLAWW( nrg, CAf[ k + 1 ], Atmp1 );                                         /* Q( -rshifts ) */
272             tmp1 = silk_SMLAWW( tmp1, Atmp1, Atmp1 );                                               /* Q16 */
273             A_Q16[ k ] = -Atmp1;
274         }
275         *res_nrg = silk_SMLAWW( nrg, silk_SMMUL( SILK_FIX_CONST( FIND_LPC_COND_FAC, 32 ), C0 ), -tmp1 );/* Q( -rshifts ) */
276         *res_nrg_Q = -rshifts;
277     }
278 }
279