• Home
  • Line#
  • Scopes#
  • Navigate#
  • Raw
  • Download
1 /*
2  *  MIPS emulation helpers for qemu.
3  *
4  *  Copyright (c) 2004-2005 Jocelyn Mayer
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #include <stdlib.h>
20 #include "exec.h"
21 
22 #include "host-utils.h"
23 
24 #include "helper.h"
25 /*****************************************************************************/
26 /* Exceptions processing helpers */
27 
helper_raise_exception_err(uint32_t exception,int error_code)28 void helper_raise_exception_err (uint32_t exception, int error_code)
29 {
30 #if 1
31     if (exception < 0x100)
32         qemu_log("%s: %d %d\n", __func__, exception, error_code);
33 #endif
34     env->exception_index = exception;
35     env->error_code = error_code;
36     cpu_loop_exit();
37 }
38 
helper_raise_exception(uint32_t exception)39 void helper_raise_exception (uint32_t exception)
40 {
41     helper_raise_exception_err(exception, 0);
42 }
43 
helper_interrupt_restart(void)44 void helper_interrupt_restart (void)
45 {
46     if (!(env->CP0_Status & (1 << CP0St_EXL)) &&
47         !(env->CP0_Status & (1 << CP0St_ERL)) &&
48         !(env->hflags & MIPS_HFLAG_DM) &&
49         (env->CP0_Status & (1 << CP0St_IE)) &&
50         (env->CP0_Status & env->CP0_Cause & CP0Ca_IP_mask)) {
51         env->CP0_Cause &= ~(0x1f << CP0Ca_EC);
52         helper_raise_exception(EXCP_EXT_INTERRUPT);
53     }
54 }
55 
56 #if !defined(CONFIG_USER_ONLY)
do_restore_state(void * pc_ptr)57 static void do_restore_state (void *pc_ptr)
58 {
59     TranslationBlock *tb;
60     unsigned long pc = (unsigned long) pc_ptr;
61 
62     tb = tb_find_pc (pc);
63     if (tb) {
64         cpu_restore_state (tb, env, pc);
65     }
66 }
67 #endif
68 
69 #if defined(CONFIG_USER_ONLY)
70 #define HELPER_LD(name, insn, type)                                     \
71 static inline type do_##name(target_ulong addr, int mem_idx)            \
72 {                                                                       \
73     return (type) insn##_raw(addr);                                     \
74 }
75 #else
76 #define HELPER_LD(name, insn, type)                                     \
77 static inline type do_##name(target_ulong addr, int mem_idx)            \
78 {                                                                       \
79     switch (mem_idx)                                                    \
80     {                                                                   \
81     case 0: return (type) insn##_kernel(addr); break;                   \
82     case 1: return (type) insn##_super(addr); break;                    \
83     default:                                                            \
84     case 2: return (type) insn##_user(addr); break;                     \
85     }                                                                   \
86 }
87 #endif
HELPER_LD(lbu,ldub,uint8_t)88 HELPER_LD(lbu, ldub, uint8_t)
89 HELPER_LD(lw, ldl, int32_t)
90 #ifdef TARGET_MIPS64
91 HELPER_LD(ld, ldq, int64_t)
92 #endif
93 #undef HELPER_LD
94 
95 #if defined(CONFIG_USER_ONLY)
96 #define HELPER_ST(name, insn, type)                                     \
97 static inline void do_##name(target_ulong addr, type val, int mem_idx)  \
98 {                                                                       \
99     insn##_raw(addr, val);                                              \
100 }
101 #else
102 #define HELPER_ST(name, insn, type)                                     \
103 static inline void do_##name(target_ulong addr, type val, int mem_idx)  \
104 {                                                                       \
105     switch (mem_idx)                                                    \
106     {                                                                   \
107     case 0: insn##_kernel(addr, val); break;                            \
108     case 1: insn##_super(addr, val); break;                             \
109     default:                                                            \
110     case 2: insn##_user(addr, val); break;                              \
111     }                                                                   \
112 }
113 #endif
114 HELPER_ST(sb, stb, uint8_t)
115 HELPER_ST(sw, stl, uint32_t)
116 #ifdef TARGET_MIPS64
117 HELPER_ST(sd, stq, uint64_t)
118 #endif
119 #undef HELPER_ST
120 
121 target_ulong helper_clo (target_ulong arg1)
122 {
123     return clo32(arg1);
124 }
125 
helper_clz(target_ulong arg1)126 target_ulong helper_clz (target_ulong arg1)
127 {
128     return clz32(arg1);
129 }
130 
131 #if defined(TARGET_MIPS64)
helper_dclo(target_ulong arg1)132 target_ulong helper_dclo (target_ulong arg1)
133 {
134     return clo64(arg1);
135 }
136 
helper_dclz(target_ulong arg1)137 target_ulong helper_dclz (target_ulong arg1)
138 {
139     return clz64(arg1);
140 }
141 #endif /* TARGET_MIPS64 */
142 
143 /* 64 bits arithmetic for 32 bits hosts */
get_HILO(void)144 static inline uint64_t get_HILO (void)
145 {
146     return ((uint64_t)(env->active_tc.HI[0]) << 32) | (uint32_t)env->active_tc.LO[0];
147 }
148 
set_HILO(uint64_t HILO)149 static inline void set_HILO (uint64_t HILO)
150 {
151     env->active_tc.LO[0] = (int32_t)HILO;
152     env->active_tc.HI[0] = (int32_t)(HILO >> 32);
153 }
154 
set_HIT0_LO(target_ulong arg1,uint64_t HILO)155 static inline void set_HIT0_LO (target_ulong arg1, uint64_t HILO)
156 {
157     env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
158     arg1 = env->active_tc.HI[0] = (int32_t)(HILO >> 32);
159 }
160 
set_HI_LOT0(target_ulong arg1,uint64_t HILO)161 static inline void set_HI_LOT0 (target_ulong arg1, uint64_t HILO)
162 {
163     arg1 = env->active_tc.LO[0] = (int32_t)(HILO & 0xFFFFFFFF);
164     env->active_tc.HI[0] = (int32_t)(HILO >> 32);
165 }
166 
167 /* Multiplication variants of the vr54xx. */
helper_muls(target_ulong arg1,target_ulong arg2)168 target_ulong helper_muls (target_ulong arg1, target_ulong arg2)
169 {
170     set_HI_LOT0(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
171 
172     return arg1;
173 }
174 
helper_mulsu(target_ulong arg1,target_ulong arg2)175 target_ulong helper_mulsu (target_ulong arg1, target_ulong arg2)
176 {
177     set_HI_LOT0(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
178 
179     return arg1;
180 }
181 
helper_macc(target_ulong arg1,target_ulong arg2)182 target_ulong helper_macc (target_ulong arg1, target_ulong arg2)
183 {
184     set_HI_LOT0(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
185 
186     return arg1;
187 }
188 
helper_macchi(target_ulong arg1,target_ulong arg2)189 target_ulong helper_macchi (target_ulong arg1, target_ulong arg2)
190 {
191     set_HIT0_LO(arg1, ((int64_t)get_HILO()) + ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
192 
193     return arg1;
194 }
195 
helper_maccu(target_ulong arg1,target_ulong arg2)196 target_ulong helper_maccu (target_ulong arg1, target_ulong arg2)
197 {
198     set_HI_LOT0(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
199 
200     return arg1;
201 }
202 
helper_macchiu(target_ulong arg1,target_ulong arg2)203 target_ulong helper_macchiu (target_ulong arg1, target_ulong arg2)
204 {
205     set_HIT0_LO(arg1, ((uint64_t)get_HILO()) + ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
206 
207     return arg1;
208 }
209 
helper_msac(target_ulong arg1,target_ulong arg2)210 target_ulong helper_msac (target_ulong arg1, target_ulong arg2)
211 {
212     set_HI_LOT0(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
213 
214     return arg1;
215 }
216 
helper_msachi(target_ulong arg1,target_ulong arg2)217 target_ulong helper_msachi (target_ulong arg1, target_ulong arg2)
218 {
219     set_HIT0_LO(arg1, ((int64_t)get_HILO()) - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
220 
221     return arg1;
222 }
223 
helper_msacu(target_ulong arg1,target_ulong arg2)224 target_ulong helper_msacu (target_ulong arg1, target_ulong arg2)
225 {
226     set_HI_LOT0(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
227 
228     return arg1;
229 }
230 
helper_msachiu(target_ulong arg1,target_ulong arg2)231 target_ulong helper_msachiu (target_ulong arg1, target_ulong arg2)
232 {
233     set_HIT0_LO(arg1, ((uint64_t)get_HILO()) - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
234 
235     return arg1;
236 }
237 
helper_mulhi(target_ulong arg1,target_ulong arg2)238 target_ulong helper_mulhi (target_ulong arg1, target_ulong arg2)
239 {
240     set_HIT0_LO(arg1, (int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2);
241 
242     return arg1;
243 }
244 
helper_mulhiu(target_ulong arg1,target_ulong arg2)245 target_ulong helper_mulhiu (target_ulong arg1, target_ulong arg2)
246 {
247     set_HIT0_LO(arg1, (uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2);
248 
249     return arg1;
250 }
251 
helper_mulshi(target_ulong arg1,target_ulong arg2)252 target_ulong helper_mulshi (target_ulong arg1, target_ulong arg2)
253 {
254     set_HIT0_LO(arg1, 0 - ((int64_t)(int32_t)arg1 * (int64_t)(int32_t)arg2));
255 
256     return arg1;
257 }
258 
helper_mulshiu(target_ulong arg1,target_ulong arg2)259 target_ulong helper_mulshiu (target_ulong arg1, target_ulong arg2)
260 {
261     set_HIT0_LO(arg1, 0 - ((uint64_t)(uint32_t)arg1 * (uint64_t)(uint32_t)arg2));
262 
263     return arg1;
264 }
265 
266 #ifdef TARGET_MIPS64
helper_dmult(target_ulong arg1,target_ulong arg2)267 void helper_dmult (target_ulong arg1, target_ulong arg2)
268 {
269     muls64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
270 }
271 
helper_dmultu(target_ulong arg1,target_ulong arg2)272 void helper_dmultu (target_ulong arg1, target_ulong arg2)
273 {
274     mulu64(&(env->active_tc.LO[0]), &(env->active_tc.HI[0]), arg1, arg2);
275 }
276 #endif
277 
278 #ifndef CONFIG_USER_ONLY
279 
do_translate_address(target_ulong address,int rw)280 static inline target_phys_addr_t do_translate_address(target_ulong address, int rw)
281 {
282     target_phys_addr_t lladdr;
283 
284     lladdr = cpu_mips_translate_address(env, address, rw);
285 
286     if (lladdr == -1LL) {
287         cpu_loop_exit();
288     } else {
289         return lladdr;
290     }
291 }
292 
293 #define HELPER_LD_ATOMIC(name, insn)                                          \
294 target_ulong helper_##name(target_ulong arg, int mem_idx)                     \
295 {                                                                             \
296     env->lladdr = do_translate_address(arg, 0);                               \
297     env->llval = do_##insn(arg, mem_idx);                                     \
298     return env->llval;                                                        \
299 }
HELPER_LD_ATOMIC(ll,lw)300 HELPER_LD_ATOMIC(ll, lw)
301 #ifdef TARGET_MIPS64
302 HELPER_LD_ATOMIC(lld, ld)
303 #endif
304 #undef HELPER_LD_ATOMIC
305 
306 #define HELPER_ST_ATOMIC(name, ld_insn, st_insn, almask)                      \
307 target_ulong helper_##name(target_ulong arg1, target_ulong arg2, int mem_idx) \
308 {                                                                             \
309     target_long tmp;                                                          \
310                                                                               \
311     if (arg2 & almask) {                                                      \
312         env->CP0_BadVAddr = arg2;                                             \
313         helper_raise_exception(EXCP_AdES);                                    \
314     }                                                                         \
315     if (do_translate_address(arg2, 1) == env->lladdr) {                       \
316         tmp = do_##ld_insn(arg2, mem_idx);                                    \
317         if (tmp == env->llval) {                                              \
318             do_##st_insn(arg2, arg1, mem_idx);                                \
319             return 1;                                                         \
320         }                                                                     \
321     }                                                                         \
322     return 0;                                                                 \
323 }
324 HELPER_ST_ATOMIC(sc, lw, sw, 0x3)
325 #ifdef TARGET_MIPS64
326 HELPER_ST_ATOMIC(scd, ld, sd, 0x7)
327 #endif
328 #undef HELPER_ST_ATOMIC
329 #endif
330 
331 #ifdef TARGET_WORDS_BIGENDIAN
332 #define GET_LMASK(v) ((v) & 3)
333 #define GET_OFFSET(addr, offset) (addr + (offset))
334 #else
335 #define GET_LMASK(v) (((v) & 3) ^ 3)
336 #define GET_OFFSET(addr, offset) (addr - (offset))
337 #endif
338 
339 target_ulong helper_lwl(target_ulong arg1, target_ulong arg2, int mem_idx)
340 {
341     target_ulong tmp;
342 
343     tmp = do_lbu(arg2, mem_idx);
344     arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
345 
346     if (GET_LMASK(arg2) <= 2) {
347         tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
348         arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
349     }
350 
351     if (GET_LMASK(arg2) <= 1) {
352         tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
353         arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
354     }
355 
356     if (GET_LMASK(arg2) == 0) {
357         tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
358         arg1 = (arg1 & 0xFFFFFF00) | tmp;
359     }
360     return (int32_t)arg1;
361 }
362 
helper_lwr(target_ulong arg1,target_ulong arg2,int mem_idx)363 target_ulong helper_lwr(target_ulong arg1, target_ulong arg2, int mem_idx)
364 {
365     target_ulong tmp;
366 
367     tmp = do_lbu(arg2, mem_idx);
368     arg1 = (arg1 & 0xFFFFFF00) | tmp;
369 
370     if (GET_LMASK(arg2) >= 1) {
371         tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
372         arg1 = (arg1 & 0xFFFF00FF) | (tmp << 8);
373     }
374 
375     if (GET_LMASK(arg2) >= 2) {
376         tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
377         arg1 = (arg1 & 0xFF00FFFF) | (tmp << 16);
378     }
379 
380     if (GET_LMASK(arg2) == 3) {
381         tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
382         arg1 = (arg1 & 0x00FFFFFF) | (tmp << 24);
383     }
384     return (int32_t)arg1;
385 }
386 
helper_swl(target_ulong arg1,target_ulong arg2,int mem_idx)387 void helper_swl(target_ulong arg1, target_ulong arg2, int mem_idx)
388 {
389     do_sb(arg2, (uint8_t)(arg1 >> 24), mem_idx);
390 
391     if (GET_LMASK(arg2) <= 2)
392         do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 16), mem_idx);
393 
394     if (GET_LMASK(arg2) <= 1)
395         do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 8), mem_idx);
396 
397     if (GET_LMASK(arg2) == 0)
398         do_sb(GET_OFFSET(arg2, 3), (uint8_t)arg1, mem_idx);
399 }
400 
helper_swr(target_ulong arg1,target_ulong arg2,int mem_idx)401 void helper_swr(target_ulong arg1, target_ulong arg2, int mem_idx)
402 {
403     do_sb(arg2, (uint8_t)arg1, mem_idx);
404 
405     if (GET_LMASK(arg2) >= 1)
406         do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
407 
408     if (GET_LMASK(arg2) >= 2)
409         do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
410 
411     if (GET_LMASK(arg2) == 3)
412         do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
413 }
414 
415 #if defined(TARGET_MIPS64)
416 /* "half" load and stores.  We must do the memory access inline,
417    or fault handling won't work.  */
418 
419 #ifdef TARGET_WORDS_BIGENDIAN
420 #define GET_LMASK64(v) ((v) & 7)
421 #else
422 #define GET_LMASK64(v) (((v) & 7) ^ 7)
423 #endif
424 
helper_ldl(target_ulong arg1,target_ulong arg2,int mem_idx)425 target_ulong helper_ldl(target_ulong arg1, target_ulong arg2, int mem_idx)
426 {
427     uint64_t tmp;
428 
429     tmp = do_lbu(arg2, mem_idx);
430     arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
431 
432     if (GET_LMASK64(arg2) <= 6) {
433         tmp = do_lbu(GET_OFFSET(arg2, 1), mem_idx);
434         arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
435     }
436 
437     if (GET_LMASK64(arg2) <= 5) {
438         tmp = do_lbu(GET_OFFSET(arg2, 2), mem_idx);
439         arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
440     }
441 
442     if (GET_LMASK64(arg2) <= 4) {
443         tmp = do_lbu(GET_OFFSET(arg2, 3), mem_idx);
444         arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
445     }
446 
447     if (GET_LMASK64(arg2) <= 3) {
448         tmp = do_lbu(GET_OFFSET(arg2, 4), mem_idx);
449         arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
450     }
451 
452     if (GET_LMASK64(arg2) <= 2) {
453         tmp = do_lbu(GET_OFFSET(arg2, 5), mem_idx);
454         arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
455     }
456 
457     if (GET_LMASK64(arg2) <= 1) {
458         tmp = do_lbu(GET_OFFSET(arg2, 6), mem_idx);
459         arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp << 8);
460     }
461 
462     if (GET_LMASK64(arg2) == 0) {
463         tmp = do_lbu(GET_OFFSET(arg2, 7), mem_idx);
464         arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
465     }
466 
467     return arg1;
468 }
469 
helper_ldr(target_ulong arg1,target_ulong arg2,int mem_idx)470 target_ulong helper_ldr(target_ulong arg1, target_ulong arg2, int mem_idx)
471 {
472     uint64_t tmp;
473 
474     tmp = do_lbu(arg2, mem_idx);
475     arg1 = (arg1 & 0xFFFFFFFFFFFFFF00ULL) | tmp;
476 
477     if (GET_LMASK64(arg2) >= 1) {
478         tmp = do_lbu(GET_OFFSET(arg2, -1), mem_idx);
479         arg1 = (arg1 & 0xFFFFFFFFFFFF00FFULL) | (tmp  << 8);
480     }
481 
482     if (GET_LMASK64(arg2) >= 2) {
483         tmp = do_lbu(GET_OFFSET(arg2, -2), mem_idx);
484         arg1 = (arg1 & 0xFFFFFFFFFF00FFFFULL) | (tmp << 16);
485     }
486 
487     if (GET_LMASK64(arg2) >= 3) {
488         tmp = do_lbu(GET_OFFSET(arg2, -3), mem_idx);
489         arg1 = (arg1 & 0xFFFFFFFF00FFFFFFULL) | (tmp << 24);
490     }
491 
492     if (GET_LMASK64(arg2) >= 4) {
493         tmp = do_lbu(GET_OFFSET(arg2, -4), mem_idx);
494         arg1 = (arg1 & 0xFFFFFF00FFFFFFFFULL) | (tmp << 32);
495     }
496 
497     if (GET_LMASK64(arg2) >= 5) {
498         tmp = do_lbu(GET_OFFSET(arg2, -5), mem_idx);
499         arg1 = (arg1 & 0xFFFF00FFFFFFFFFFULL) | (tmp << 40);
500     }
501 
502     if (GET_LMASK64(arg2) >= 6) {
503         tmp = do_lbu(GET_OFFSET(arg2, -6), mem_idx);
504         arg1 = (arg1 & 0xFF00FFFFFFFFFFFFULL) | (tmp << 48);
505     }
506 
507     if (GET_LMASK64(arg2) == 7) {
508         tmp = do_lbu(GET_OFFSET(arg2, -7), mem_idx);
509         arg1 = (arg1 & 0x00FFFFFFFFFFFFFFULL) | (tmp << 56);
510     }
511 
512     return arg1;
513 }
514 
helper_sdl(target_ulong arg1,target_ulong arg2,int mem_idx)515 void helper_sdl(target_ulong arg1, target_ulong arg2, int mem_idx)
516 {
517     do_sb(arg2, (uint8_t)(arg1 >> 56), mem_idx);
518 
519     if (GET_LMASK64(arg2) <= 6)
520         do_sb(GET_OFFSET(arg2, 1), (uint8_t)(arg1 >> 48), mem_idx);
521 
522     if (GET_LMASK64(arg2) <= 5)
523         do_sb(GET_OFFSET(arg2, 2), (uint8_t)(arg1 >> 40), mem_idx);
524 
525     if (GET_LMASK64(arg2) <= 4)
526         do_sb(GET_OFFSET(arg2, 3), (uint8_t)(arg1 >> 32), mem_idx);
527 
528     if (GET_LMASK64(arg2) <= 3)
529         do_sb(GET_OFFSET(arg2, 4), (uint8_t)(arg1 >> 24), mem_idx);
530 
531     if (GET_LMASK64(arg2) <= 2)
532         do_sb(GET_OFFSET(arg2, 5), (uint8_t)(arg1 >> 16), mem_idx);
533 
534     if (GET_LMASK64(arg2) <= 1)
535         do_sb(GET_OFFSET(arg2, 6), (uint8_t)(arg1 >> 8), mem_idx);
536 
537     if (GET_LMASK64(arg2) <= 0)
538         do_sb(GET_OFFSET(arg2, 7), (uint8_t)arg1, mem_idx);
539 }
540 
helper_sdr(target_ulong arg1,target_ulong arg2,int mem_idx)541 void helper_sdr(target_ulong arg1, target_ulong arg2, int mem_idx)
542 {
543     do_sb(arg2, (uint8_t)arg1, mem_idx);
544 
545     if (GET_LMASK64(arg2) >= 1)
546         do_sb(GET_OFFSET(arg2, -1), (uint8_t)(arg1 >> 8), mem_idx);
547 
548     if (GET_LMASK64(arg2) >= 2)
549         do_sb(GET_OFFSET(arg2, -2), (uint8_t)(arg1 >> 16), mem_idx);
550 
551     if (GET_LMASK64(arg2) >= 3)
552         do_sb(GET_OFFSET(arg2, -3), (uint8_t)(arg1 >> 24), mem_idx);
553 
554     if (GET_LMASK64(arg2) >= 4)
555         do_sb(GET_OFFSET(arg2, -4), (uint8_t)(arg1 >> 32), mem_idx);
556 
557     if (GET_LMASK64(arg2) >= 5)
558         do_sb(GET_OFFSET(arg2, -5), (uint8_t)(arg1 >> 40), mem_idx);
559 
560     if (GET_LMASK64(arg2) >= 6)
561         do_sb(GET_OFFSET(arg2, -6), (uint8_t)(arg1 >> 48), mem_idx);
562 
563     if (GET_LMASK64(arg2) == 7)
564         do_sb(GET_OFFSET(arg2, -7), (uint8_t)(arg1 >> 56), mem_idx);
565 }
566 #endif /* TARGET_MIPS64 */
567 
568 #ifndef CONFIG_USER_ONLY
569 /* CP0 helpers */
helper_mfc0_mvpcontrol(void)570 target_ulong helper_mfc0_mvpcontrol (void)
571 {
572     return env->mvp->CP0_MVPControl;
573 }
574 
helper_mfc0_mvpconf0(void)575 target_ulong helper_mfc0_mvpconf0 (void)
576 {
577     return env->mvp->CP0_MVPConf0;
578 }
579 
helper_mfc0_mvpconf1(void)580 target_ulong helper_mfc0_mvpconf1 (void)
581 {
582     return env->mvp->CP0_MVPConf1;
583 }
584 
helper_mfc0_random(void)585 target_ulong helper_mfc0_random (void)
586 {
587     return (int32_t)cpu_mips_get_random(env);
588 }
589 
helper_mfc0_tcstatus(void)590 target_ulong helper_mfc0_tcstatus (void)
591 {
592     return env->active_tc.CP0_TCStatus;
593 }
594 
helper_mftc0_tcstatus(void)595 target_ulong helper_mftc0_tcstatus(void)
596 {
597     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
598 
599     if (other_tc == env->current_tc)
600         return env->active_tc.CP0_TCStatus;
601     else
602         return env->tcs[other_tc].CP0_TCStatus;
603 }
604 
helper_mfc0_tcbind(void)605 target_ulong helper_mfc0_tcbind (void)
606 {
607     return env->active_tc.CP0_TCBind;
608 }
609 
helper_mftc0_tcbind(void)610 target_ulong helper_mftc0_tcbind(void)
611 {
612     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
613 
614     if (other_tc == env->current_tc)
615         return env->active_tc.CP0_TCBind;
616     else
617         return env->tcs[other_tc].CP0_TCBind;
618 }
619 
helper_mfc0_tcrestart(void)620 target_ulong helper_mfc0_tcrestart (void)
621 {
622     return env->active_tc.PC;
623 }
624 
helper_mftc0_tcrestart(void)625 target_ulong helper_mftc0_tcrestart(void)
626 {
627     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
628 
629     if (other_tc == env->current_tc)
630         return env->active_tc.PC;
631     else
632         return env->tcs[other_tc].PC;
633 }
634 
helper_mfc0_tchalt(void)635 target_ulong helper_mfc0_tchalt (void)
636 {
637     return env->active_tc.CP0_TCHalt;
638 }
639 
helper_mftc0_tchalt(void)640 target_ulong helper_mftc0_tchalt(void)
641 {
642     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
643 
644     if (other_tc == env->current_tc)
645         return env->active_tc.CP0_TCHalt;
646     else
647         return env->tcs[other_tc].CP0_TCHalt;
648 }
649 
helper_mfc0_tccontext(void)650 target_ulong helper_mfc0_tccontext (void)
651 {
652     return env->active_tc.CP0_TCContext;
653 }
654 
helper_mftc0_tccontext(void)655 target_ulong helper_mftc0_tccontext(void)
656 {
657     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
658 
659     if (other_tc == env->current_tc)
660         return env->active_tc.CP0_TCContext;
661     else
662         return env->tcs[other_tc].CP0_TCContext;
663 }
664 
helper_mfc0_tcschedule(void)665 target_ulong helper_mfc0_tcschedule (void)
666 {
667     return env->active_tc.CP0_TCSchedule;
668 }
669 
helper_mftc0_tcschedule(void)670 target_ulong helper_mftc0_tcschedule(void)
671 {
672     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
673 
674     if (other_tc == env->current_tc)
675         return env->active_tc.CP0_TCSchedule;
676     else
677         return env->tcs[other_tc].CP0_TCSchedule;
678 }
679 
helper_mfc0_tcschefback(void)680 target_ulong helper_mfc0_tcschefback (void)
681 {
682     return env->active_tc.CP0_TCScheFBack;
683 }
684 
helper_mftc0_tcschefback(void)685 target_ulong helper_mftc0_tcschefback(void)
686 {
687     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
688 
689     if (other_tc == env->current_tc)
690         return env->active_tc.CP0_TCScheFBack;
691     else
692         return env->tcs[other_tc].CP0_TCScheFBack;
693 }
694 
helper_mfc0_count(void)695 target_ulong helper_mfc0_count (void)
696 {
697     return (int32_t)cpu_mips_get_count(env);
698 }
699 
helper_mftc0_entryhi(void)700 target_ulong helper_mftc0_entryhi(void)
701 {
702     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
703     int32_t tcstatus;
704 
705     if (other_tc == env->current_tc)
706         tcstatus = env->active_tc.CP0_TCStatus;
707     else
708         tcstatus = env->tcs[other_tc].CP0_TCStatus;
709 
710     return (env->CP0_EntryHi & ~0xff) | (tcstatus & 0xff);
711 }
712 
helper_mftc0_status(void)713 target_ulong helper_mftc0_status(void)
714 {
715     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
716     target_ulong t0;
717     int32_t tcstatus;
718 
719     if (other_tc == env->current_tc)
720         tcstatus = env->active_tc.CP0_TCStatus;
721     else
722         tcstatus = env->tcs[other_tc].CP0_TCStatus;
723 
724     t0 = env->CP0_Status & ~0xf1000018;
725     t0 |= tcstatus & (0xf << CP0TCSt_TCU0);
726     t0 |= (tcstatus & (1 << CP0TCSt_TMX)) >> (CP0TCSt_TMX - CP0St_MX);
727     t0 |= (tcstatus & (0x3 << CP0TCSt_TKSU)) >> (CP0TCSt_TKSU - CP0St_KSU);
728 
729     return t0;
730 }
731 
helper_mfc0_lladdr(void)732 target_ulong helper_mfc0_lladdr (void)
733 {
734     return (int32_t)(env->lladdr >> env->CP0_LLAddr_shift);
735 }
736 
helper_mfc0_watchlo(uint32_t sel)737 target_ulong helper_mfc0_watchlo (uint32_t sel)
738 {
739     return (int32_t)env->CP0_WatchLo[sel];
740 }
741 
helper_mfc0_watchhi(uint32_t sel)742 target_ulong helper_mfc0_watchhi (uint32_t sel)
743 {
744     return env->CP0_WatchHi[sel];
745 }
746 
helper_mfc0_debug(void)747 target_ulong helper_mfc0_debug (void)
748 {
749     target_ulong t0 = env->CP0_Debug;
750     if (env->hflags & MIPS_HFLAG_DM)
751         t0 |= 1 << CP0DB_DM;
752 
753     return t0;
754 }
755 
helper_mftc0_debug(void)756 target_ulong helper_mftc0_debug(void)
757 {
758     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
759     int32_t tcstatus;
760 
761     if (other_tc == env->current_tc)
762         tcstatus = env->active_tc.CP0_Debug_tcstatus;
763     else
764         tcstatus = env->tcs[other_tc].CP0_Debug_tcstatus;
765 
766     /* XXX: Might be wrong, check with EJTAG spec. */
767     return (env->CP0_Debug & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
768             (tcstatus & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
769 }
770 
771 #if defined(TARGET_MIPS64)
helper_dmfc0_tcrestart(void)772 target_ulong helper_dmfc0_tcrestart (void)
773 {
774     return env->active_tc.PC;
775 }
776 
helper_dmfc0_tchalt(void)777 target_ulong helper_dmfc0_tchalt (void)
778 {
779     return env->active_tc.CP0_TCHalt;
780 }
781 
helper_dmfc0_tccontext(void)782 target_ulong helper_dmfc0_tccontext (void)
783 {
784     return env->active_tc.CP0_TCContext;
785 }
786 
helper_dmfc0_tcschedule(void)787 target_ulong helper_dmfc0_tcschedule (void)
788 {
789     return env->active_tc.CP0_TCSchedule;
790 }
791 
helper_dmfc0_tcschefback(void)792 target_ulong helper_dmfc0_tcschefback (void)
793 {
794     return env->active_tc.CP0_TCScheFBack;
795 }
796 
helper_dmfc0_lladdr(void)797 target_ulong helper_dmfc0_lladdr (void)
798 {
799     return env->lladdr >> env->CP0_LLAddr_shift;
800 }
801 
helper_dmfc0_watchlo(uint32_t sel)802 target_ulong helper_dmfc0_watchlo (uint32_t sel)
803 {
804     return env->CP0_WatchLo[sel];
805 }
806 #endif /* TARGET_MIPS64 */
807 
helper_mtc0_index(target_ulong arg1)808 void helper_mtc0_index (target_ulong arg1)
809 {
810     int num = 1;
811     unsigned int tmp = env->tlb->nb_tlb;
812 
813     do {
814         tmp >>= 1;
815         num <<= 1;
816     } while (tmp);
817     env->CP0_Index = (env->CP0_Index & 0x80000000) | (arg1 & (num - 1));
818 }
819 
helper_mtc0_mvpcontrol(target_ulong arg1)820 void helper_mtc0_mvpcontrol (target_ulong arg1)
821 {
822     uint32_t mask = 0;
823     uint32_t newval;
824 
825     if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP))
826         mask |= (1 << CP0MVPCo_CPA) | (1 << CP0MVPCo_VPC) |
827                 (1 << CP0MVPCo_EVP);
828     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
829         mask |= (1 << CP0MVPCo_STLB);
830     newval = (env->mvp->CP0_MVPControl & ~mask) | (arg1 & mask);
831 
832     // TODO: Enable/disable shared TLB, enable/disable VPEs.
833 
834     env->mvp->CP0_MVPControl = newval;
835 }
836 
helper_mtc0_vpecontrol(target_ulong arg1)837 void helper_mtc0_vpecontrol (target_ulong arg1)
838 {
839     uint32_t mask;
840     uint32_t newval;
841 
842     mask = (1 << CP0VPECo_YSI) | (1 << CP0VPECo_GSI) |
843            (1 << CP0VPECo_TE) | (0xff << CP0VPECo_TargTC);
844     newval = (env->CP0_VPEControl & ~mask) | (arg1 & mask);
845 
846     /* Yield scheduler intercept not implemented. */
847     /* Gating storage scheduler intercept not implemented. */
848 
849     // TODO: Enable/disable TCs.
850 
851     env->CP0_VPEControl = newval;
852 }
853 
helper_mtc0_vpeconf0(target_ulong arg1)854 void helper_mtc0_vpeconf0 (target_ulong arg1)
855 {
856     uint32_t mask = 0;
857     uint32_t newval;
858 
859     if (env->CP0_VPEConf0 & (1 << CP0VPEC0_MVP)) {
860         if (env->CP0_VPEConf0 & (1 << CP0VPEC0_VPA))
861             mask |= (0xff << CP0VPEC0_XTC);
862         mask |= (1 << CP0VPEC0_MVP) | (1 << CP0VPEC0_VPA);
863     }
864     newval = (env->CP0_VPEConf0 & ~mask) | (arg1 & mask);
865 
866     // TODO: TC exclusive handling due to ERL/EXL.
867 
868     env->CP0_VPEConf0 = newval;
869 }
870 
helper_mtc0_vpeconf1(target_ulong arg1)871 void helper_mtc0_vpeconf1 (target_ulong arg1)
872 {
873     uint32_t mask = 0;
874     uint32_t newval;
875 
876     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
877         mask |= (0xff << CP0VPEC1_NCX) | (0xff << CP0VPEC1_NCP2) |
878                 (0xff << CP0VPEC1_NCP1);
879     newval = (env->CP0_VPEConf1 & ~mask) | (arg1 & mask);
880 
881     /* UDI not implemented. */
882     /* CP2 not implemented. */
883 
884     // TODO: Handle FPU (CP1) binding.
885 
886     env->CP0_VPEConf1 = newval;
887 }
888 
helper_mtc0_yqmask(target_ulong arg1)889 void helper_mtc0_yqmask (target_ulong arg1)
890 {
891     /* Yield qualifier inputs not implemented. */
892     env->CP0_YQMask = 0x00000000;
893 }
894 
helper_mtc0_vpeopt(target_ulong arg1)895 void helper_mtc0_vpeopt (target_ulong arg1)
896 {
897     env->CP0_VPEOpt = arg1 & 0x0000ffff;
898 }
899 
helper_mtc0_entrylo0(target_ulong arg1)900 void helper_mtc0_entrylo0 (target_ulong arg1)
901 {
902     /* Large physaddr (PABITS) not implemented */
903     /* 1k pages not implemented */
904     env->CP0_EntryLo0 = arg1 & 0x3FFFFFFF;
905 }
906 
helper_mtc0_tcstatus(target_ulong arg1)907 void helper_mtc0_tcstatus (target_ulong arg1)
908 {
909     uint32_t mask = env->CP0_TCStatus_rw_bitmask;
910     uint32_t newval;
911 
912     newval = (env->active_tc.CP0_TCStatus & ~mask) | (arg1 & mask);
913 
914     // TODO: Sync with CP0_Status.
915 
916     env->active_tc.CP0_TCStatus = newval;
917 }
918 
helper_mttc0_tcstatus(target_ulong arg1)919 void helper_mttc0_tcstatus (target_ulong arg1)
920 {
921     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
922 
923     // TODO: Sync with CP0_Status.
924 
925     if (other_tc == env->current_tc)
926         env->active_tc.CP0_TCStatus = arg1;
927     else
928         env->tcs[other_tc].CP0_TCStatus = arg1;
929 }
930 
helper_mtc0_tcbind(target_ulong arg1)931 void helper_mtc0_tcbind (target_ulong arg1)
932 {
933     uint32_t mask = (1 << CP0TCBd_TBE);
934     uint32_t newval;
935 
936     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
937         mask |= (1 << CP0TCBd_CurVPE);
938     newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
939     env->active_tc.CP0_TCBind = newval;
940 }
941 
helper_mttc0_tcbind(target_ulong arg1)942 void helper_mttc0_tcbind (target_ulong arg1)
943 {
944     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
945     uint32_t mask = (1 << CP0TCBd_TBE);
946     uint32_t newval;
947 
948     if (env->mvp->CP0_MVPControl & (1 << CP0MVPCo_VPC))
949         mask |= (1 << CP0TCBd_CurVPE);
950     if (other_tc == env->current_tc) {
951         newval = (env->active_tc.CP0_TCBind & ~mask) | (arg1 & mask);
952         env->active_tc.CP0_TCBind = newval;
953     } else {
954         newval = (env->tcs[other_tc].CP0_TCBind & ~mask) | (arg1 & mask);
955         env->tcs[other_tc].CP0_TCBind = newval;
956     }
957 }
958 
helper_mtc0_tcrestart(target_ulong arg1)959 void helper_mtc0_tcrestart (target_ulong arg1)
960 {
961     env->active_tc.PC = arg1;
962     env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
963     env->lladdr = 0ULL;
964     /* MIPS16 not implemented. */
965 }
966 
helper_mttc0_tcrestart(target_ulong arg1)967 void helper_mttc0_tcrestart (target_ulong arg1)
968 {
969     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
970 
971     if (other_tc == env->current_tc) {
972         env->active_tc.PC = arg1;
973         env->active_tc.CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
974         env->lladdr = 0ULL;
975         /* MIPS16 not implemented. */
976     } else {
977         env->tcs[other_tc].PC = arg1;
978         env->tcs[other_tc].CP0_TCStatus &= ~(1 << CP0TCSt_TDS);
979         env->lladdr = 0ULL;
980         /* MIPS16 not implemented. */
981     }
982 }
983 
helper_mtc0_tchalt(target_ulong arg1)984 void helper_mtc0_tchalt (target_ulong arg1)
985 {
986     env->active_tc.CP0_TCHalt = arg1 & 0x1;
987 
988     // TODO: Halt TC / Restart (if allocated+active) TC.
989 }
990 
helper_mttc0_tchalt(target_ulong arg1)991 void helper_mttc0_tchalt (target_ulong arg1)
992 {
993     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
994 
995     // TODO: Halt TC / Restart (if allocated+active) TC.
996 
997     if (other_tc == env->current_tc)
998         env->active_tc.CP0_TCHalt = arg1;
999     else
1000         env->tcs[other_tc].CP0_TCHalt = arg1;
1001 }
1002 
helper_mtc0_tccontext(target_ulong arg1)1003 void helper_mtc0_tccontext (target_ulong arg1)
1004 {
1005     env->active_tc.CP0_TCContext = arg1;
1006 }
1007 
helper_mttc0_tccontext(target_ulong arg1)1008 void helper_mttc0_tccontext (target_ulong arg1)
1009 {
1010     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1011 
1012     if (other_tc == env->current_tc)
1013         env->active_tc.CP0_TCContext = arg1;
1014     else
1015         env->tcs[other_tc].CP0_TCContext = arg1;
1016 }
1017 
helper_mtc0_tcschedule(target_ulong arg1)1018 void helper_mtc0_tcschedule (target_ulong arg1)
1019 {
1020     env->active_tc.CP0_TCSchedule = arg1;
1021 }
1022 
helper_mttc0_tcschedule(target_ulong arg1)1023 void helper_mttc0_tcschedule (target_ulong arg1)
1024 {
1025     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1026 
1027     if (other_tc == env->current_tc)
1028         env->active_tc.CP0_TCSchedule = arg1;
1029     else
1030         env->tcs[other_tc].CP0_TCSchedule = arg1;
1031 }
1032 
helper_mtc0_tcschefback(target_ulong arg1)1033 void helper_mtc0_tcschefback (target_ulong arg1)
1034 {
1035     env->active_tc.CP0_TCScheFBack = arg1;
1036 }
1037 
helper_mttc0_tcschefback(target_ulong arg1)1038 void helper_mttc0_tcschefback (target_ulong arg1)
1039 {
1040     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1041 
1042     if (other_tc == env->current_tc)
1043         env->active_tc.CP0_TCScheFBack = arg1;
1044     else
1045         env->tcs[other_tc].CP0_TCScheFBack = arg1;
1046 }
1047 
helper_mtc0_entrylo1(target_ulong arg1)1048 void helper_mtc0_entrylo1 (target_ulong arg1)
1049 {
1050     /* Large physaddr (PABITS) not implemented */
1051     /* 1k pages not implemented */
1052     env->CP0_EntryLo1 = arg1 & 0x3FFFFFFF;
1053 }
1054 
helper_mtc0_context(target_ulong arg1)1055 void helper_mtc0_context (target_ulong arg1)
1056 {
1057     env->CP0_Context = (env->CP0_Context & 0x007FFFFF) | (arg1 & ~0x007FFFFF);
1058 }
1059 
helper_mtc0_pagemask(target_ulong arg1)1060 void helper_mtc0_pagemask (target_ulong arg1)
1061 {
1062     /* 1k pages not implemented */
1063     env->CP0_PageMask = arg1 & (0x1FFFFFFF & (TARGET_PAGE_MASK << 1));
1064 }
1065 
helper_mtc0_pagegrain(target_ulong arg1)1066 void helper_mtc0_pagegrain (target_ulong arg1)
1067 {
1068     /* SmartMIPS not implemented */
1069     /* Large physaddr (PABITS) not implemented */
1070     /* 1k pages not implemented */
1071     env->CP0_PageGrain = 0;
1072 }
1073 
helper_mtc0_wired(target_ulong arg1)1074 void helper_mtc0_wired (target_ulong arg1)
1075 {
1076     env->CP0_Wired = arg1 % env->tlb->nb_tlb;
1077 }
1078 
helper_mtc0_srsconf0(target_ulong arg1)1079 void helper_mtc0_srsconf0 (target_ulong arg1)
1080 {
1081     env->CP0_SRSConf0 |= arg1 & env->CP0_SRSConf0_rw_bitmask;
1082 }
1083 
helper_mtc0_srsconf1(target_ulong arg1)1084 void helper_mtc0_srsconf1 (target_ulong arg1)
1085 {
1086     env->CP0_SRSConf1 |= arg1 & env->CP0_SRSConf1_rw_bitmask;
1087 }
1088 
helper_mtc0_srsconf2(target_ulong arg1)1089 void helper_mtc0_srsconf2 (target_ulong arg1)
1090 {
1091     env->CP0_SRSConf2 |= arg1 & env->CP0_SRSConf2_rw_bitmask;
1092 }
1093 
helper_mtc0_srsconf3(target_ulong arg1)1094 void helper_mtc0_srsconf3 (target_ulong arg1)
1095 {
1096     env->CP0_SRSConf3 |= arg1 & env->CP0_SRSConf3_rw_bitmask;
1097 }
1098 
helper_mtc0_srsconf4(target_ulong arg1)1099 void helper_mtc0_srsconf4 (target_ulong arg1)
1100 {
1101     env->CP0_SRSConf4 |= arg1 & env->CP0_SRSConf4_rw_bitmask;
1102 }
1103 
helper_mtc0_hwrena(target_ulong arg1)1104 void helper_mtc0_hwrena (target_ulong arg1)
1105 {
1106     env->CP0_HWREna = arg1 & 0x0000000F;
1107 }
1108 
helper_mtc0_count(target_ulong arg1)1109 void helper_mtc0_count (target_ulong arg1)
1110 {
1111     cpu_mips_store_count(env, arg1);
1112 }
1113 
helper_mtc0_entryhi(target_ulong arg1)1114 void helper_mtc0_entryhi (target_ulong arg1)
1115 {
1116     target_ulong old, val;
1117 
1118     /* 1k pages not implemented */
1119     val = arg1 & ((TARGET_PAGE_MASK << 1) | 0xFF);
1120 #if defined(TARGET_MIPS64)
1121     val &= env->SEGMask;
1122 #endif
1123     old = env->CP0_EntryHi;
1124     env->CP0_EntryHi = val;
1125     if (env->CP0_Config3 & (1 << CP0C3_MT)) {
1126         uint32_t tcst = env->active_tc.CP0_TCStatus & ~0xff;
1127         env->active_tc.CP0_TCStatus = tcst | (val & 0xff);
1128     }
1129     /* If the ASID changes, flush qemu's TLB.  */
1130     if ((old & 0xFF) != (val & 0xFF))
1131         cpu_mips_tlb_flush(env, 1);
1132 }
1133 
helper_mttc0_entryhi(target_ulong arg1)1134 void helper_mttc0_entryhi(target_ulong arg1)
1135 {
1136     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1137     int32_t tcstatus;
1138 
1139     env->CP0_EntryHi = (env->CP0_EntryHi & 0xff) | (arg1 & ~0xff);
1140     if (other_tc == env->current_tc) {
1141         tcstatus = (env->active_tc.CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1142         env->active_tc.CP0_TCStatus = tcstatus;
1143     } else {
1144         tcstatus = (env->tcs[other_tc].CP0_TCStatus & ~0xff) | (arg1 & 0xff);
1145         env->tcs[other_tc].CP0_TCStatus = tcstatus;
1146     }
1147 }
1148 
helper_mtc0_compare(target_ulong arg1)1149 void helper_mtc0_compare (target_ulong arg1)
1150 {
1151     cpu_mips_store_compare(env, arg1);
1152 }
1153 
helper_mtc0_status(target_ulong arg1)1154 void helper_mtc0_status (target_ulong arg1)
1155 {
1156     uint32_t val, old;
1157     uint32_t mask = env->CP0_Status_rw_bitmask;
1158 
1159     val = arg1 & mask;
1160     old = env->CP0_Status;
1161     env->CP0_Status = (env->CP0_Status & ~mask) | val;
1162     compute_hflags(env);
1163     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1164         qemu_log("Status %08x (%08x) => %08x (%08x) Cause %08x",
1165                 old, old & env->CP0_Cause & CP0Ca_IP_mask,
1166                 val, val & env->CP0_Cause & CP0Ca_IP_mask,
1167                 env->CP0_Cause);
1168         switch (env->hflags & MIPS_HFLAG_KSU) {
1169         case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1170         case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1171         case MIPS_HFLAG_KM: qemu_log("\n"); break;
1172         default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1173         }
1174     }
1175     cpu_mips_update_irq(env);
1176 }
1177 
helper_mttc0_status(target_ulong arg1)1178 void helper_mttc0_status(target_ulong arg1)
1179 {
1180     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1181     int32_t tcstatus = env->tcs[other_tc].CP0_TCStatus;
1182 
1183     env->CP0_Status = arg1 & ~0xf1000018;
1184     tcstatus = (tcstatus & ~(0xf << CP0TCSt_TCU0)) | (arg1 & (0xf << CP0St_CU0));
1185     tcstatus = (tcstatus & ~(1 << CP0TCSt_TMX)) | ((arg1 & (1 << CP0St_MX)) << (CP0TCSt_TMX - CP0St_MX));
1186     tcstatus = (tcstatus & ~(0x3 << CP0TCSt_TKSU)) | ((arg1 & (0x3 << CP0St_KSU)) << (CP0TCSt_TKSU - CP0St_KSU));
1187     if (other_tc == env->current_tc)
1188         env->active_tc.CP0_TCStatus = tcstatus;
1189     else
1190         env->tcs[other_tc].CP0_TCStatus = tcstatus;
1191 }
1192 
helper_mtc0_intctl(target_ulong arg1)1193 void helper_mtc0_intctl (target_ulong arg1)
1194 {
1195     /* vectored interrupts not implemented, no performance counters. */
1196     env->CP0_IntCtl = (env->CP0_IntCtl & ~0x000002e0) | (arg1 & 0x000002e0);
1197 }
1198 
helper_mtc0_srsctl(target_ulong arg1)1199 void helper_mtc0_srsctl (target_ulong arg1)
1200 {
1201     uint32_t mask = (0xf << CP0SRSCtl_ESS) | (0xf << CP0SRSCtl_PSS);
1202     env->CP0_SRSCtl = (env->CP0_SRSCtl & ~mask) | (arg1 & mask);
1203 }
1204 
helper_mtc0_cause(target_ulong arg1)1205 void helper_mtc0_cause (target_ulong arg1)
1206 {
1207     uint32_t mask = 0x00C00300;
1208     uint32_t old = env->CP0_Cause;
1209 
1210     if (env->insn_flags & ISA_MIPS32R2)
1211         mask |= 1 << CP0Ca_DC;
1212 
1213     env->CP0_Cause = (env->CP0_Cause & ~mask) | (arg1 & mask);
1214 
1215     if ((old ^ env->CP0_Cause) & (1 << CP0Ca_DC)) {
1216         if (env->CP0_Cause & (1 << CP0Ca_DC))
1217             cpu_mips_stop_count(env);
1218         else
1219             cpu_mips_start_count(env);
1220     }
1221 
1222     /* Handle the software interrupt as an hardware one, as they
1223        are very similar */
1224     if (arg1 & CP0Ca_IP_mask) {
1225         cpu_mips_update_irq(env);
1226     }
1227 }
1228 
helper_mtc0_ebase(target_ulong arg1)1229 void helper_mtc0_ebase (target_ulong arg1)
1230 {
1231     /* vectored interrupts not implemented */
1232     /* Multi-CPU not implemented */
1233     env->CP0_EBase = 0x80000000 | (arg1 & 0x3FFFF000);
1234 }
1235 
helper_mtc0_config0(target_ulong arg1)1236 void helper_mtc0_config0 (target_ulong arg1)
1237 {
1238     env->CP0_Config0 = (env->CP0_Config0 & 0x81FFFFF8) | (arg1 & 0x00000007);
1239 }
1240 
helper_mtc0_config2(target_ulong arg1)1241 void helper_mtc0_config2 (target_ulong arg1)
1242 {
1243     /* tertiary/secondary caches not implemented */
1244     env->CP0_Config2 = (env->CP0_Config2 & 0x8FFF0FFF);
1245 }
1246 
helper_mtc0_lladdr(target_ulong arg1)1247 void helper_mtc0_lladdr (target_ulong arg1)
1248 {
1249     target_long mask = env->CP0_LLAddr_rw_bitmask;
1250     arg1 = arg1 << env->CP0_LLAddr_shift;
1251     env->lladdr = (env->lladdr & ~mask) | (arg1 & mask);
1252 }
1253 
helper_mtc0_watchlo(target_ulong arg1,uint32_t sel)1254 void helper_mtc0_watchlo (target_ulong arg1, uint32_t sel)
1255 {
1256     /* Watch exceptions for instructions, data loads, data stores
1257        not implemented. */
1258     env->CP0_WatchLo[sel] = (arg1 & ~0x7);
1259 }
1260 
helper_mtc0_watchhi(target_ulong arg1,uint32_t sel)1261 void helper_mtc0_watchhi (target_ulong arg1, uint32_t sel)
1262 {
1263     env->CP0_WatchHi[sel] = (arg1 & 0x40FF0FF8);
1264     env->CP0_WatchHi[sel] &= ~(env->CP0_WatchHi[sel] & arg1 & 0x7);
1265 }
1266 
helper_mtc0_xcontext(target_ulong arg1)1267 void helper_mtc0_xcontext (target_ulong arg1)
1268 {
1269     target_ulong mask = (1ULL << (env->SEGBITS - 7)) - 1;
1270     env->CP0_XContext = (env->CP0_XContext & mask) | (arg1 & ~mask);
1271 }
1272 
helper_mtc0_framemask(target_ulong arg1)1273 void helper_mtc0_framemask (target_ulong arg1)
1274 {
1275     env->CP0_Framemask = arg1; /* XXX */
1276 }
1277 
helper_mtc0_debug(target_ulong arg1)1278 void helper_mtc0_debug (target_ulong arg1)
1279 {
1280     env->CP0_Debug = (env->CP0_Debug & 0x8C03FC1F) | (arg1 & 0x13300120);
1281     if (arg1 & (1 << CP0DB_DM))
1282         env->hflags |= MIPS_HFLAG_DM;
1283     else
1284         env->hflags &= ~MIPS_HFLAG_DM;
1285 }
1286 
helper_mttc0_debug(target_ulong arg1)1287 void helper_mttc0_debug(target_ulong arg1)
1288 {
1289     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1290     uint32_t val = arg1 & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt));
1291 
1292     /* XXX: Might be wrong, check with EJTAG spec. */
1293     if (other_tc == env->current_tc)
1294         env->active_tc.CP0_Debug_tcstatus = val;
1295     else
1296         env->tcs[other_tc].CP0_Debug_tcstatus = val;
1297     env->CP0_Debug = (env->CP0_Debug & ((1 << CP0DB_SSt) | (1 << CP0DB_Halt))) |
1298                      (arg1 & ~((1 << CP0DB_SSt) | (1 << CP0DB_Halt)));
1299 }
1300 
helper_mtc0_performance0(target_ulong arg1)1301 void helper_mtc0_performance0 (target_ulong arg1)
1302 {
1303     env->CP0_Performance0 = arg1 & 0x000007ff;
1304 }
1305 
helper_mtc0_taglo(target_ulong arg1)1306 void helper_mtc0_taglo (target_ulong arg1)
1307 {
1308     env->CP0_TagLo = arg1 & 0xFFFFFCF6;
1309 }
1310 
helper_mtc0_datalo(target_ulong arg1)1311 void helper_mtc0_datalo (target_ulong arg1)
1312 {
1313     env->CP0_DataLo = arg1; /* XXX */
1314 }
1315 
helper_mtc0_taghi(target_ulong arg1)1316 void helper_mtc0_taghi (target_ulong arg1)
1317 {
1318     env->CP0_TagHi = arg1; /* XXX */
1319 }
1320 
helper_mtc0_datahi(target_ulong arg1)1321 void helper_mtc0_datahi (target_ulong arg1)
1322 {
1323     env->CP0_DataHi = arg1; /* XXX */
1324 }
1325 
1326 /* MIPS MT functions */
helper_mftgpr(uint32_t sel)1327 target_ulong helper_mftgpr(uint32_t sel)
1328 {
1329     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1330 
1331     if (other_tc == env->current_tc)
1332         return env->active_tc.gpr[sel];
1333     else
1334         return env->tcs[other_tc].gpr[sel];
1335 }
1336 
helper_mftlo(uint32_t sel)1337 target_ulong helper_mftlo(uint32_t sel)
1338 {
1339     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1340 
1341     if (other_tc == env->current_tc)
1342         return env->active_tc.LO[sel];
1343     else
1344         return env->tcs[other_tc].LO[sel];
1345 }
1346 
helper_mfthi(uint32_t sel)1347 target_ulong helper_mfthi(uint32_t sel)
1348 {
1349     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1350 
1351     if (other_tc == env->current_tc)
1352         return env->active_tc.HI[sel];
1353     else
1354         return env->tcs[other_tc].HI[sel];
1355 }
1356 
helper_mftacx(uint32_t sel)1357 target_ulong helper_mftacx(uint32_t sel)
1358 {
1359     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1360 
1361     if (other_tc == env->current_tc)
1362         return env->active_tc.ACX[sel];
1363     else
1364         return env->tcs[other_tc].ACX[sel];
1365 }
1366 
helper_mftdsp(void)1367 target_ulong helper_mftdsp(void)
1368 {
1369     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1370 
1371     if (other_tc == env->current_tc)
1372         return env->active_tc.DSPControl;
1373     else
1374         return env->tcs[other_tc].DSPControl;
1375 }
1376 
helper_mttgpr(target_ulong arg1,uint32_t sel)1377 void helper_mttgpr(target_ulong arg1, uint32_t sel)
1378 {
1379     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1380 
1381     if (other_tc == env->current_tc)
1382         env->active_tc.gpr[sel] = arg1;
1383     else
1384         env->tcs[other_tc].gpr[sel] = arg1;
1385 }
1386 
helper_mttlo(target_ulong arg1,uint32_t sel)1387 void helper_mttlo(target_ulong arg1, uint32_t sel)
1388 {
1389     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1390 
1391     if (other_tc == env->current_tc)
1392         env->active_tc.LO[sel] = arg1;
1393     else
1394         env->tcs[other_tc].LO[sel] = arg1;
1395 }
1396 
helper_mtthi(target_ulong arg1,uint32_t sel)1397 void helper_mtthi(target_ulong arg1, uint32_t sel)
1398 {
1399     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1400 
1401     if (other_tc == env->current_tc)
1402         env->active_tc.HI[sel] = arg1;
1403     else
1404         env->tcs[other_tc].HI[sel] = arg1;
1405 }
1406 
helper_mttacx(target_ulong arg1,uint32_t sel)1407 void helper_mttacx(target_ulong arg1, uint32_t sel)
1408 {
1409     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1410 
1411     if (other_tc == env->current_tc)
1412         env->active_tc.ACX[sel] = arg1;
1413     else
1414         env->tcs[other_tc].ACX[sel] = arg1;
1415 }
1416 
helper_mttdsp(target_ulong arg1)1417 void helper_mttdsp(target_ulong arg1)
1418 {
1419     int other_tc = env->CP0_VPEControl & (0xff << CP0VPECo_TargTC);
1420 
1421     if (other_tc == env->current_tc)
1422         env->active_tc.DSPControl = arg1;
1423     else
1424         env->tcs[other_tc].DSPControl = arg1;
1425 }
1426 
1427 /* MIPS MT functions */
helper_dmt(target_ulong arg1)1428 target_ulong helper_dmt(target_ulong arg1)
1429 {
1430     // TODO
1431     arg1 = 0;
1432     // rt = arg1
1433 
1434     return arg1;
1435 }
1436 
helper_emt(target_ulong arg1)1437 target_ulong helper_emt(target_ulong arg1)
1438 {
1439     // TODO
1440     arg1 = 0;
1441     // rt = arg1
1442 
1443     return arg1;
1444 }
1445 
helper_dvpe(target_ulong arg1)1446 target_ulong helper_dvpe(target_ulong arg1)
1447 {
1448     // TODO
1449     arg1 = 0;
1450     // rt = arg1
1451 
1452     return arg1;
1453 }
1454 
helper_evpe(target_ulong arg1)1455 target_ulong helper_evpe(target_ulong arg1)
1456 {
1457     // TODO
1458     arg1 = 0;
1459     // rt = arg1
1460 
1461     return arg1;
1462 }
1463 #endif /* !CONFIG_USER_ONLY */
1464 
helper_fork(target_ulong arg1,target_ulong arg2)1465 void helper_fork(target_ulong arg1, target_ulong arg2)
1466 {
1467     // arg1 = rt, arg2 = rs
1468     arg1 = 0;
1469     // TODO: store to TC register
1470 }
1471 
helper_yield(target_ulong arg1)1472 target_ulong helper_yield(target_ulong arg1)
1473 {
1474     if (arg1 < 0) {
1475         /* No scheduling policy implemented. */
1476         if (arg1 != -2) {
1477             if (env->CP0_VPEControl & (1 << CP0VPECo_YSI) &&
1478                 env->active_tc.CP0_TCStatus & (1 << CP0TCSt_DT)) {
1479                 env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1480                 env->CP0_VPEControl |= 4 << CP0VPECo_EXCPT;
1481                 helper_raise_exception(EXCP_THREAD);
1482             }
1483         }
1484     } else if (arg1 == 0) {
1485         if (0 /* TODO: TC underflow */) {
1486             env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1487             helper_raise_exception(EXCP_THREAD);
1488         } else {
1489             // TODO: Deallocate TC
1490         }
1491     } else if (arg1 > 0) {
1492         /* Yield qualifier inputs not implemented. */
1493         env->CP0_VPEControl &= ~(0x7 << CP0VPECo_EXCPT);
1494         env->CP0_VPEControl |= 2 << CP0VPECo_EXCPT;
1495         helper_raise_exception(EXCP_THREAD);
1496     }
1497     return env->CP0_YQMask;
1498 }
1499 
1500 #ifndef CONFIG_USER_ONLY
r4k_invalidate_tlb_shadow(CPUState * env,int idx)1501 static void inline r4k_invalidate_tlb_shadow (CPUState *env, int idx)
1502 {
1503     r4k_tlb_t *tlb;
1504     uint8_t ASID = env->CP0_EntryHi & 0xFF;
1505 
1506     tlb = &env->tlb->mmu.r4k.tlb[idx];
1507     /* The qemu TLB is flushed when the ASID changes, so no need to
1508     flush these entries again.  */
1509     if (tlb->G == 0 && tlb->ASID != ASID) {
1510         return;
1511     }
1512 }
1513 
r4k_invalidate_tlb(CPUState * env,int idx)1514 static void inline r4k_invalidate_tlb (CPUState *env, int idx)
1515 {
1516     r4k_tlb_t *tlb;
1517     target_ulong addr;
1518     target_ulong end;
1519     uint8_t ASID = env->CP0_EntryHi & 0xFF;
1520     target_ulong mask;
1521 
1522     tlb = &env->tlb->mmu.r4k.tlb[idx];
1523     /* The qemu TLB is flushed when the ASID changes, so no need to
1524     flush these entries again.  */
1525     if (tlb->G == 0 && tlb->ASID != ASID) {
1526         return;
1527     }
1528 
1529     /* 1k pages are not supported. */
1530     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1531     if (tlb->V0) {
1532         addr = tlb->VPN & ~mask;
1533 #if defined(TARGET_MIPS64)
1534         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1535             addr |= 0x3FFFFF0000000000ULL;
1536         }
1537 #endif
1538         end = addr | (mask >> 1);
1539         while (addr < end) {
1540             tlb_flush_page (env, addr);
1541             addr += TARGET_PAGE_SIZE;
1542         }
1543     }
1544     if (tlb->V1) {
1545         addr = (tlb->VPN & ~mask) | ((mask >> 1) + 1);
1546 #if defined(TARGET_MIPS64)
1547         if (addr >= (0xFFFFFFFF80000000ULL & env->SEGMask)) {
1548             addr |= 0x3FFFFF0000000000ULL;
1549         }
1550 #endif
1551         end = addr | mask;
1552         while (addr - 1 < end) {
1553             tlb_flush_page (env, addr);
1554             addr += TARGET_PAGE_SIZE;
1555         }
1556     }
1557 }
1558 
1559 /* TLB management */
cpu_mips_tlb_flush(CPUState * env,int flush_global)1560 void cpu_mips_tlb_flush (CPUState *env, int flush_global)
1561 {
1562     /* Flush qemu's TLB and discard all shadowed entries.  */
1563     tlb_flush (env, flush_global);
1564 }
1565 
r4k_fill_tlb(int idx)1566 static void r4k_fill_tlb (int idx)
1567 {
1568     r4k_tlb_t *tlb;
1569 
1570     /* XXX: detect conflicting TLBs and raise a MCHECK exception when needed */
1571     tlb = &env->tlb->mmu.r4k.tlb[idx];
1572     tlb->VPN = env->CP0_EntryHi & (TARGET_PAGE_MASK << 1);
1573 #if defined(TARGET_MIPS64)
1574     tlb->VPN &= env->SEGMask;
1575 #endif
1576     tlb->ASID = env->CP0_EntryHi & 0xFF;
1577     tlb->PageMask = env->CP0_PageMask;
1578     tlb->G = env->CP0_EntryLo0 & env->CP0_EntryLo1 & 1;
1579     tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1580     tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1581     tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1582     tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1583     tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1584     tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1585     tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1586     tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1587 }
1588 
r4k_helper_ptw_tlbrefill(CPUState * target_env)1589 void r4k_helper_ptw_tlbrefill(CPUState *target_env)
1590 {
1591    CPUState *saved_env;
1592 
1593    /* Save current 'env' value */
1594    saved_env = env;
1595    env = target_env;
1596 
1597    /* Do TLB load on behalf of Page Table Walk */
1598     int r = cpu_mips_get_random(env);
1599     r4k_invalidate_tlb_shadow(env, r);
1600     r4k_fill_tlb(r);
1601 
1602    /* Restore 'env' value */
1603    env = saved_env;
1604 }
1605 
r4k_helper_tlbwi(void)1606 void r4k_helper_tlbwi (void)
1607 {
1608     r4k_tlb_t *tlb;
1609     target_ulong tag;
1610     target_ulong VPN;
1611     target_ulong mask;
1612 
1613     /* If tlbwi is trying to upgrading access permissions on current entry,
1614      * we do not need to flush tlb hash table.
1615      */
1616     tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
1617     mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1618     tag = env->CP0_EntryHi & ~mask;
1619     VPN = tlb->VPN & ~mask;
1620     if (VPN == tag)
1621     {
1622         if (tlb->ASID == (env->CP0_EntryHi & 0xFF))
1623         {
1624             tlb->V0 = (env->CP0_EntryLo0 & 2) != 0;
1625             tlb->D0 = (env->CP0_EntryLo0 & 4) != 0;
1626             tlb->C0 = (env->CP0_EntryLo0 >> 3) & 0x7;
1627             tlb->PFN[0] = (env->CP0_EntryLo0 >> 6) << 12;
1628             tlb->V1 = (env->CP0_EntryLo1 & 2) != 0;
1629             tlb->D1 = (env->CP0_EntryLo1 & 4) != 0;
1630             tlb->C1 = (env->CP0_EntryLo1 >> 3) & 0x7;
1631             tlb->PFN[1] = (env->CP0_EntryLo1 >> 6) << 12;
1632             return;
1633         }
1634     }
1635 
1636     /*flush all the tlb cache */
1637     cpu_mips_tlb_flush (env, 1);
1638 
1639     r4k_invalidate_tlb(env, env->CP0_Index % env->tlb->nb_tlb);
1640     r4k_fill_tlb(env->CP0_Index % env->tlb->nb_tlb);
1641 }
1642 
r4k_helper_tlbwr(void)1643 void r4k_helper_tlbwr (void)
1644 {
1645     int r = cpu_mips_get_random(env);
1646 
1647     r4k_invalidate_tlb_shadow(env, r);
1648     r4k_fill_tlb(r);
1649 }
1650 
r4k_helper_tlbp(void)1651 void r4k_helper_tlbp (void)
1652 {
1653     r4k_tlb_t *tlb;
1654     target_ulong mask;
1655     target_ulong tag;
1656     target_ulong VPN;
1657     uint8_t ASID;
1658     int i;
1659     target_ulong addr;
1660     target_ulong end;
1661 
1662     ASID = env->CP0_EntryHi & 0xFF;
1663     for (i = 0; i < env->tlb->nb_tlb; i++) {
1664         tlb = &env->tlb->mmu.r4k.tlb[i];
1665         /* 1k pages are not supported. */
1666         mask = tlb->PageMask | ~(TARGET_PAGE_MASK << 1);
1667         tag = env->CP0_EntryHi & ~mask;
1668         VPN = tlb->VPN & ~mask;
1669         /* Check ASID, virtual page number & size */
1670         if (unlikely((tlb->G == 1 || tlb->ASID == ASID) && VPN == tag)) {
1671             /* TLB match */
1672             env->CP0_Index = i;
1673             break;
1674         }
1675     }
1676     if (i == env->tlb->nb_tlb) {
1677         /* No match.  Discard any shadow entries, if any of them match. */
1678         int index = ((env->CP0_EntryHi>>5)&0x1ff00) | ASID;
1679         index |= (env->CP0_EntryHi>>13)&0x20000;
1680         env->CP0_Index |= 0x80000000;
1681     }
1682 }
1683 
r4k_helper_tlbr(void)1684 void r4k_helper_tlbr (void)
1685 {
1686     r4k_tlb_t *tlb;
1687     uint8_t ASID;
1688 
1689     ASID = env->CP0_EntryHi & 0xFF;
1690     tlb = &env->tlb->mmu.r4k.tlb[env->CP0_Index % env->tlb->nb_tlb];
1691 
1692     /* If this will change the current ASID, flush qemu's TLB.  */
1693     if (ASID != tlb->ASID)
1694         cpu_mips_tlb_flush (env, 1);
1695 
1696     /*flush all the tlb cache */
1697     cpu_mips_tlb_flush (env, 1);
1698 
1699     env->CP0_EntryHi = tlb->VPN | tlb->ASID;
1700     env->CP0_PageMask = tlb->PageMask;
1701     env->CP0_EntryLo0 = tlb->G | (tlb->V0 << 1) | (tlb->D0 << 2) |
1702                         (tlb->C0 << 3) | (tlb->PFN[0] >> 6);
1703     env->CP0_EntryLo1 = tlb->G | (tlb->V1 << 1) | (tlb->D1 << 2) |
1704                         (tlb->C1 << 3) | (tlb->PFN[1] >> 6);
1705 }
1706 
helper_tlbwi(void)1707 void helper_tlbwi(void)
1708 {
1709     env->tlb->helper_tlbwi();
1710 }
1711 
helper_tlbwr(void)1712 void helper_tlbwr(void)
1713 {
1714     env->tlb->helper_tlbwr();
1715 }
1716 
helper_tlbp(void)1717 void helper_tlbp(void)
1718 {
1719     env->tlb->helper_tlbp();
1720 }
1721 
helper_tlbr(void)1722 void helper_tlbr(void)
1723 {
1724     env->tlb->helper_tlbr();
1725 }
1726 
1727 /* Specials */
helper_di(void)1728 target_ulong helper_di (void)
1729 {
1730     target_ulong t0 = env->CP0_Status;
1731 
1732     env->CP0_Status = t0 & ~(1 << CP0St_IE);
1733     cpu_mips_update_irq(env);
1734 
1735     return t0;
1736 }
1737 
helper_ei(void)1738 target_ulong helper_ei (void)
1739 {
1740     target_ulong t0 = env->CP0_Status;
1741 
1742     env->CP0_Status = t0 | (1 << CP0St_IE);
1743     cpu_mips_update_irq(env);
1744 
1745     return t0;
1746 }
1747 
debug_pre_eret(void)1748 static void debug_pre_eret (void)
1749 {
1750     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1751         qemu_log("ERET: PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1752                 env->active_tc.PC, env->CP0_EPC);
1753         if (env->CP0_Status & (1 << CP0St_ERL))
1754             qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1755         if (env->hflags & MIPS_HFLAG_DM)
1756             qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1757         qemu_log("\n");
1758     }
1759 }
1760 
debug_post_eret(void)1761 static void debug_post_eret (void)
1762 {
1763     if (qemu_loglevel_mask(CPU_LOG_EXEC)) {
1764         qemu_log("  =>  PC " TARGET_FMT_lx " EPC " TARGET_FMT_lx,
1765                 env->active_tc.PC, env->CP0_EPC);
1766         if (env->CP0_Status & (1 << CP0St_ERL))
1767             qemu_log(" ErrorEPC " TARGET_FMT_lx, env->CP0_ErrorEPC);
1768         if (env->hflags & MIPS_HFLAG_DM)
1769             qemu_log(" DEPC " TARGET_FMT_lx, env->CP0_DEPC);
1770         switch (env->hflags & MIPS_HFLAG_KSU) {
1771         case MIPS_HFLAG_UM: qemu_log(", UM\n"); break;
1772         case MIPS_HFLAG_SM: qemu_log(", SM\n"); break;
1773         case MIPS_HFLAG_KM: qemu_log("\n"); break;
1774         default: cpu_abort(env, "Invalid MMU mode!\n"); break;
1775         }
1776     }
1777 }
1778 
helper_eret(void)1779 void helper_eret (void)
1780 {
1781     debug_pre_eret();
1782     if (env->CP0_Status & (1 << CP0St_ERL)) {
1783         env->active_tc.PC = env->CP0_ErrorEPC;
1784         env->CP0_Status &= ~(1 << CP0St_ERL);
1785     } else {
1786         env->active_tc.PC = env->CP0_EPC;
1787         env->CP0_Status &= ~(1 << CP0St_EXL);
1788     }
1789     compute_hflags(env);
1790     debug_post_eret();
1791     env->lladdr = 1;
1792 }
1793 
helper_deret(void)1794 void helper_deret (void)
1795 {
1796     debug_pre_eret();
1797     env->active_tc.PC = env->CP0_DEPC;
1798     env->hflags &= MIPS_HFLAG_DM;
1799     compute_hflags(env);
1800     debug_post_eret();
1801     env->lladdr = 1;
1802 }
1803 #endif /* !CONFIG_USER_ONLY */
1804 
helper_rdhwr_cpunum(void)1805 target_ulong helper_rdhwr_cpunum(void)
1806 {
1807     if ((env->hflags & MIPS_HFLAG_CP0) ||
1808         (env->CP0_HWREna & (1 << 0)))
1809         return env->CP0_EBase & 0x3ff;
1810     else
1811         helper_raise_exception(EXCP_RI);
1812 
1813     return 0;
1814 }
1815 
helper_rdhwr_synci_step(void)1816 target_ulong helper_rdhwr_synci_step(void)
1817 {
1818     if ((env->hflags & MIPS_HFLAG_CP0) ||
1819         (env->CP0_HWREna & (1 << 1)))
1820         return env->SYNCI_Step;
1821     else
1822         helper_raise_exception(EXCP_RI);
1823 
1824     return 0;
1825 }
1826 
helper_rdhwr_cc(void)1827 target_ulong helper_rdhwr_cc(void)
1828 {
1829     if ((env->hflags & MIPS_HFLAG_CP0) ||
1830         (env->CP0_HWREna & (1 << 2)))
1831         return env->CP0_Count;
1832     else
1833         helper_raise_exception(EXCP_RI);
1834 
1835     return 0;
1836 }
1837 
helper_rdhwr_ccres(void)1838 target_ulong helper_rdhwr_ccres(void)
1839 {
1840     if ((env->hflags & MIPS_HFLAG_CP0) ||
1841         (env->CP0_HWREna & (1 << 3)))
1842         return env->CCRes;
1843     else
1844         helper_raise_exception(EXCP_RI);
1845 
1846     return 0;
1847 }
1848 
helper_pmon(int function)1849 void helper_pmon (int function)
1850 {
1851     function /= 2;
1852     switch (function) {
1853     case 2: /* TODO: char inbyte(int waitflag); */
1854         if (env->active_tc.gpr[4] == 0)
1855             env->active_tc.gpr[2] = -1;
1856         /* Fall through */
1857     case 11: /* TODO: char inbyte (void); */
1858         env->active_tc.gpr[2] = -1;
1859         break;
1860     case 3:
1861     case 12:
1862         printf("%c", (char)(env->active_tc.gpr[4] & 0xFF));
1863         break;
1864     case 17:
1865         break;
1866     case 158:
1867         {
1868             unsigned char *fmt = (void *)(unsigned long)env->active_tc.gpr[4];
1869             printf("%s", fmt);
1870         }
1871         break;
1872     }
1873 }
1874 
helper_wait(void)1875 void helper_wait (void)
1876 {
1877     env->halted = 1;
1878     helper_raise_exception(EXCP_HLT);
1879 }
1880 
1881 #if !defined(CONFIG_USER_ONLY)
1882 
1883 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr);
1884 
1885 #define MMUSUFFIX _mmu
1886 #define ALIGNED_ONLY
1887 
1888 #define SHIFT 0
1889 #include "softmmu_template.h"
1890 
1891 #define SHIFT 1
1892 #include "softmmu_template.h"
1893 
1894 #define SHIFT 2
1895 #include "softmmu_template.h"
1896 
1897 #define SHIFT 3
1898 #include "softmmu_template.h"
1899 
do_unaligned_access(target_ulong addr,int is_write,int is_user,void * retaddr)1900 static void do_unaligned_access (target_ulong addr, int is_write, int is_user, void *retaddr)
1901 {
1902     env->CP0_BadVAddr = addr;
1903     do_restore_state (retaddr);
1904     helper_raise_exception ((is_write == 1) ? EXCP_AdES : EXCP_AdEL);
1905 }
1906 
tlb_fill(target_ulong addr,int is_write,int mmu_idx,void * retaddr)1907 void tlb_fill (target_ulong addr, int is_write, int mmu_idx, void *retaddr)
1908 {
1909     TranslationBlock *tb;
1910     CPUState *saved_env;
1911     unsigned long pc;
1912     int ret;
1913 
1914     /* XXX: hack to restore env in all cases, even if not called from
1915        generated code */
1916     saved_env = env;
1917     env = cpu_single_env;
1918     ret = cpu_mips_handle_mmu_fault(env, addr, is_write, mmu_idx, 1);
1919     if (ret) {
1920         if (retaddr) {
1921             /* now we have a real cpu fault */
1922             pc = (unsigned long)retaddr;
1923             tb = tb_find_pc(pc);
1924             if (tb) {
1925                 /* the PC is inside the translated code. It means that we have
1926                    a virtual CPU fault */
1927                 cpu_restore_state(tb, env, pc);
1928             }
1929         }
1930         helper_raise_exception_err(env->exception_index, env->error_code);
1931     }
1932     env = saved_env;
1933 }
1934 
do_unassigned_access(target_phys_addr_t addr,int is_write,int is_exec,int unused,int size)1935 void do_unassigned_access(target_phys_addr_t addr, int is_write, int is_exec,
1936                           int unused, int size)
1937 {
1938     if (is_exec)
1939         helper_raise_exception(EXCP_IBE);
1940     else
1941         helper_raise_exception(EXCP_DBE);
1942 }
1943 /*
1944  * The following functions are address translation helper functions
1945  * for fast memory access in QEMU.
1946  */
v2p_mmu(target_ulong addr,int is_user)1947 static unsigned long v2p_mmu(target_ulong addr, int is_user)
1948 {
1949     int index;
1950     target_ulong tlb_addr;
1951     unsigned long physaddr;
1952     void *retaddr;
1953 
1954     index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1955 redo:
1956     tlb_addr = env->tlb_table[is_user][index].addr_read;
1957     if ((addr & TARGET_PAGE_MASK) == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK))) {
1958         physaddr = addr + env->tlb_table[is_user][index].addend;
1959     } else {
1960         /* the page is not in the TLB : fill it */
1961         retaddr = GETPC();
1962         tlb_fill(addr, 0, is_user, retaddr);
1963         goto redo;
1964     }
1965     return physaddr;
1966 }
1967 
1968 /*
1969  * translation from virtual address of simulated OS
1970  * to the address of simulation host (not the physical
1971  * address of simulated OS.
1972  */
v2p(target_ulong ptr,int is_user)1973 unsigned long v2p(target_ulong ptr, int is_user)
1974 {
1975     CPUState *saved_env;
1976     int index;
1977     target_ulong addr;
1978     unsigned long physaddr;
1979 
1980     saved_env = env;
1981     env = cpu_single_env;
1982     addr = ptr;
1983     index = (addr >> TARGET_PAGE_BITS) & (CPU_TLB_SIZE - 1);
1984     if (__builtin_expect(env->tlb_table[is_user][index].addr_read !=
1985                 (addr & TARGET_PAGE_MASK), 0)) {
1986         physaddr = v2p_mmu(addr, is_user);
1987     } else {
1988         physaddr = addr + env->tlb_table[is_user][index].addend;
1989     }
1990     env = saved_env;
1991     return physaddr;
1992 }
1993 
1994 /* copy a string from the simulated virtual space to a buffer in QEMU */
vstrcpy(target_ulong ptr,char * buf,int max)1995 void vstrcpy(target_ulong ptr, char *buf, int max)
1996 {
1997     char *phys = 0;
1998     unsigned long page = 0;
1999 
2000     if (buf == NULL) return;
2001 
2002     while (max) {
2003         if ((ptr & TARGET_PAGE_MASK) != page) {
2004             phys = (char *)v2p(ptr, 0);
2005             page = ptr & TARGET_PAGE_MASK;
2006         }
2007         *buf = *phys;
2008         if (*phys == '\0')
2009             return;
2010         ptr ++;
2011         buf ++;
2012         phys ++;
2013         max --;
2014     }
2015 }
2016 
2017 #endif /* !CONFIG_USER_ONLY */
2018 
2019 /* Complex FPU operations which may need stack space. */
2020 
2021 #define FLOAT_ONE32 make_float32(0x3f8 << 20)
2022 #define FLOAT_ONE64 make_float64(0x3ffULL << 52)
2023 #define FLOAT_TWO32 make_float32(1 << 30)
2024 #define FLOAT_TWO64 make_float64(1ULL << 62)
2025 #define FLOAT_QNAN32 0x7fbfffff
2026 #define FLOAT_QNAN64 0x7ff7ffffffffffffULL
2027 #define FLOAT_SNAN32 0x7fffffff
2028 #define FLOAT_SNAN64 0x7fffffffffffffffULL
2029 
2030 /* convert MIPS rounding mode in FCR31 to IEEE library */
2031 static unsigned int ieee_rm[] = {
2032     float_round_nearest_even,
2033     float_round_to_zero,
2034     float_round_up,
2035     float_round_down
2036 };
2037 
2038 #define RESTORE_ROUNDING_MODE \
2039     set_float_rounding_mode(ieee_rm[env->active_fpu.fcr31 & 3], &env->active_fpu.fp_status)
2040 
2041 #define RESTORE_FLUSH_MODE \
2042     set_flush_to_zero((env->active_fpu.fcr31 & (1 << 24)) != 0, &env->active_fpu.fp_status);
2043 
helper_cfc1(uint32_t reg)2044 target_ulong helper_cfc1 (uint32_t reg)
2045 {
2046     target_ulong arg1;
2047 
2048     switch (reg) {
2049     case 0:
2050         arg1 = (int32_t)env->active_fpu.fcr0;
2051         break;
2052     case 25:
2053         arg1 = ((env->active_fpu.fcr31 >> 24) & 0xfe) | ((env->active_fpu.fcr31 >> 23) & 0x1);
2054         break;
2055     case 26:
2056         arg1 = env->active_fpu.fcr31 & 0x0003f07c;
2057         break;
2058     case 28:
2059         arg1 = (env->active_fpu.fcr31 & 0x00000f83) | ((env->active_fpu.fcr31 >> 22) & 0x4);
2060         break;
2061     default:
2062         arg1 = (int32_t)env->active_fpu.fcr31;
2063         break;
2064     }
2065 
2066     return arg1;
2067 }
2068 
helper_ctc1(target_ulong arg1,uint32_t reg)2069 void helper_ctc1 (target_ulong arg1, uint32_t reg)
2070 {
2071     switch(reg) {
2072     case 25:
2073         if (arg1 & 0xffffff00)
2074             return;
2075         env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0x017fffff) | ((arg1 & 0xfe) << 24) |
2076                      ((arg1 & 0x1) << 23);
2077         break;
2078     case 26:
2079         if (arg1 & 0x007c0000)
2080             return;
2081         env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfffc0f83) | (arg1 & 0x0003f07c);
2082         break;
2083     case 28:
2084         if (arg1 & 0x007c0000)
2085             return;
2086         env->active_fpu.fcr31 = (env->active_fpu.fcr31 & 0xfefff07c) | (arg1 & 0x00000f83) |
2087                      ((arg1 & 0x4) << 22);
2088         break;
2089     case 31:
2090         if (arg1 & 0x007c0000)
2091             return;
2092         env->active_fpu.fcr31 = arg1;
2093         break;
2094     default:
2095         return;
2096     }
2097     /* set rounding mode */
2098     RESTORE_ROUNDING_MODE;
2099     /* set flush-to-zero mode */
2100     RESTORE_FLUSH_MODE;
2101     set_float_exception_flags(0, &env->active_fpu.fp_status);
2102     if ((GET_FP_ENABLE(env->active_fpu.fcr31) | 0x20) & GET_FP_CAUSE(env->active_fpu.fcr31))
2103         helper_raise_exception(EXCP_FPE);
2104 }
2105 
ieee_ex_to_mips(char xcpt)2106 static inline char ieee_ex_to_mips(char xcpt)
2107 {
2108     return (xcpt & float_flag_inexact) >> 5 |
2109            (xcpt & float_flag_underflow) >> 3 |
2110            (xcpt & float_flag_overflow) >> 1 |
2111            (xcpt & float_flag_divbyzero) << 1 |
2112            (xcpt & float_flag_invalid) << 4;
2113 }
2114 
mips_ex_to_ieee(char xcpt)2115 static inline char mips_ex_to_ieee(char xcpt)
2116 {
2117     return (xcpt & FP_INEXACT) << 5 |
2118            (xcpt & FP_UNDERFLOW) << 3 |
2119            (xcpt & FP_OVERFLOW) << 1 |
2120            (xcpt & FP_DIV0) >> 1 |
2121            (xcpt & FP_INVALID) >> 4;
2122 }
2123 
update_fcr31(void)2124 static inline void update_fcr31(void)
2125 {
2126     int tmp = ieee_ex_to_mips(get_float_exception_flags(&env->active_fpu.fp_status));
2127 
2128     SET_FP_CAUSE(env->active_fpu.fcr31, tmp);
2129     if (GET_FP_ENABLE(env->active_fpu.fcr31) & tmp)
2130         helper_raise_exception(EXCP_FPE);
2131     else
2132         UPDATE_FP_FLAGS(env->active_fpu.fcr31, tmp);
2133 }
2134 
2135 /* Float support.
2136    Single precition routines have a "s" suffix, double precision a
2137    "d" suffix, 32bit integer "w", 64bit integer "l", paired single "ps",
2138    paired single lower "pl", paired single upper "pu".  */
2139 
2140 /* unary operations, modifying fp status  */
helper_float_sqrt_d(uint64_t fdt0)2141 uint64_t helper_float_sqrt_d(uint64_t fdt0)
2142 {
2143     return float64_sqrt(fdt0, &env->active_fpu.fp_status);
2144 }
2145 
helper_float_sqrt_s(uint32_t fst0)2146 uint32_t helper_float_sqrt_s(uint32_t fst0)
2147 {
2148     return float32_sqrt(fst0, &env->active_fpu.fp_status);
2149 }
2150 
helper_float_cvtd_s(uint32_t fst0)2151 uint64_t helper_float_cvtd_s(uint32_t fst0)
2152 {
2153     uint64_t fdt2;
2154 
2155     set_float_exception_flags(0, &env->active_fpu.fp_status);
2156     fdt2 = float32_to_float64(fst0, &env->active_fpu.fp_status);
2157     update_fcr31();
2158     return fdt2;
2159 }
2160 
helper_float_cvtd_w(uint32_t wt0)2161 uint64_t helper_float_cvtd_w(uint32_t wt0)
2162 {
2163     uint64_t fdt2;
2164 
2165     set_float_exception_flags(0, &env->active_fpu.fp_status);
2166     fdt2 = int32_to_float64(wt0, &env->active_fpu.fp_status);
2167     update_fcr31();
2168     return fdt2;
2169 }
2170 
helper_float_cvtd_l(uint64_t dt0)2171 uint64_t helper_float_cvtd_l(uint64_t dt0)
2172 {
2173     uint64_t fdt2;
2174 
2175     set_float_exception_flags(0, &env->active_fpu.fp_status);
2176     fdt2 = int64_to_float64(dt0, &env->active_fpu.fp_status);
2177     update_fcr31();
2178     return fdt2;
2179 }
2180 
helper_float_cvtl_d(uint64_t fdt0)2181 uint64_t helper_float_cvtl_d(uint64_t fdt0)
2182 {
2183     uint64_t dt2;
2184 
2185     set_float_exception_flags(0, &env->active_fpu.fp_status);
2186     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2187     update_fcr31();
2188     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2189         dt2 = FLOAT_SNAN64;
2190     return dt2;
2191 }
2192 
helper_float_cvtl_s(uint32_t fst0)2193 uint64_t helper_float_cvtl_s(uint32_t fst0)
2194 {
2195     uint64_t dt2;
2196 
2197     set_float_exception_flags(0, &env->active_fpu.fp_status);
2198     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2199     update_fcr31();
2200     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2201         dt2 = FLOAT_SNAN64;
2202     return dt2;
2203 }
2204 
helper_float_cvtps_pw(uint64_t dt0)2205 uint64_t helper_float_cvtps_pw(uint64_t dt0)
2206 {
2207     uint32_t fst2;
2208     uint32_t fsth2;
2209 
2210     set_float_exception_flags(0, &env->active_fpu.fp_status);
2211     fst2 = int32_to_float32(dt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2212     fsth2 = int32_to_float32(dt0 >> 32, &env->active_fpu.fp_status);
2213     update_fcr31();
2214     return ((uint64_t)fsth2 << 32) | fst2;
2215 }
2216 
helper_float_cvtpw_ps(uint64_t fdt0)2217 uint64_t helper_float_cvtpw_ps(uint64_t fdt0)
2218 {
2219     uint32_t wt2;
2220     uint32_t wth2;
2221 
2222     set_float_exception_flags(0, &env->active_fpu.fp_status);
2223     wt2 = float32_to_int32(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2224     wth2 = float32_to_int32(fdt0 >> 32, &env->active_fpu.fp_status);
2225     update_fcr31();
2226     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID)) {
2227         wt2 = FLOAT_SNAN32;
2228         wth2 = FLOAT_SNAN32;
2229     }
2230     return ((uint64_t)wth2 << 32) | wt2;
2231 }
2232 
helper_float_cvts_d(uint64_t fdt0)2233 uint32_t helper_float_cvts_d(uint64_t fdt0)
2234 {
2235     uint32_t fst2;
2236 
2237     set_float_exception_flags(0, &env->active_fpu.fp_status);
2238     fst2 = float64_to_float32(fdt0, &env->active_fpu.fp_status);
2239     update_fcr31();
2240     return fst2;
2241 }
2242 
helper_float_cvts_w(uint32_t wt0)2243 uint32_t helper_float_cvts_w(uint32_t wt0)
2244 {
2245     uint32_t fst2;
2246 
2247     set_float_exception_flags(0, &env->active_fpu.fp_status);
2248     fst2 = int32_to_float32(wt0, &env->active_fpu.fp_status);
2249     update_fcr31();
2250     return fst2;
2251 }
2252 
helper_float_cvts_l(uint64_t dt0)2253 uint32_t helper_float_cvts_l(uint64_t dt0)
2254 {
2255     uint32_t fst2;
2256 
2257     set_float_exception_flags(0, &env->active_fpu.fp_status);
2258     fst2 = int64_to_float32(dt0, &env->active_fpu.fp_status);
2259     update_fcr31();
2260     return fst2;
2261 }
2262 
helper_float_cvts_pl(uint32_t wt0)2263 uint32_t helper_float_cvts_pl(uint32_t wt0)
2264 {
2265     uint32_t wt2;
2266 
2267     set_float_exception_flags(0, &env->active_fpu.fp_status);
2268     wt2 = wt0;
2269     update_fcr31();
2270     return wt2;
2271 }
2272 
helper_float_cvts_pu(uint32_t wth0)2273 uint32_t helper_float_cvts_pu(uint32_t wth0)
2274 {
2275     uint32_t wt2;
2276 
2277     set_float_exception_flags(0, &env->active_fpu.fp_status);
2278     wt2 = wth0;
2279     update_fcr31();
2280     return wt2;
2281 }
2282 
helper_float_cvtw_s(uint32_t fst0)2283 uint32_t helper_float_cvtw_s(uint32_t fst0)
2284 {
2285     uint32_t wt2;
2286 
2287     set_float_exception_flags(0, &env->active_fpu.fp_status);
2288     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2289     update_fcr31();
2290     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2291         wt2 = FLOAT_SNAN32;
2292     return wt2;
2293 }
2294 
helper_float_cvtw_d(uint64_t fdt0)2295 uint32_t helper_float_cvtw_d(uint64_t fdt0)
2296 {
2297     uint32_t wt2;
2298 
2299     set_float_exception_flags(0, &env->active_fpu.fp_status);
2300     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2301     update_fcr31();
2302     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2303         wt2 = FLOAT_SNAN32;
2304     return wt2;
2305 }
2306 
helper_float_roundl_d(uint64_t fdt0)2307 uint64_t helper_float_roundl_d(uint64_t fdt0)
2308 {
2309     uint64_t dt2;
2310 
2311     set_float_exception_flags(0, &env->active_fpu.fp_status);
2312     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2313     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2314     RESTORE_ROUNDING_MODE;
2315     update_fcr31();
2316     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2317         dt2 = FLOAT_SNAN64;
2318     return dt2;
2319 }
2320 
helper_float_roundl_s(uint32_t fst0)2321 uint64_t helper_float_roundl_s(uint32_t fst0)
2322 {
2323     uint64_t dt2;
2324 
2325     set_float_exception_flags(0, &env->active_fpu.fp_status);
2326     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2327     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2328     RESTORE_ROUNDING_MODE;
2329     update_fcr31();
2330     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2331         dt2 = FLOAT_SNAN64;
2332     return dt2;
2333 }
2334 
helper_float_roundw_d(uint64_t fdt0)2335 uint32_t helper_float_roundw_d(uint64_t fdt0)
2336 {
2337     uint32_t wt2;
2338 
2339     set_float_exception_flags(0, &env->active_fpu.fp_status);
2340     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2341     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2342     RESTORE_ROUNDING_MODE;
2343     update_fcr31();
2344     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2345         wt2 = FLOAT_SNAN32;
2346     return wt2;
2347 }
2348 
helper_float_roundw_s(uint32_t fst0)2349 uint32_t helper_float_roundw_s(uint32_t fst0)
2350 {
2351     uint32_t wt2;
2352 
2353     set_float_exception_flags(0, &env->active_fpu.fp_status);
2354     set_float_rounding_mode(float_round_nearest_even, &env->active_fpu.fp_status);
2355     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2356     RESTORE_ROUNDING_MODE;
2357     update_fcr31();
2358     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2359         wt2 = FLOAT_SNAN32;
2360     return wt2;
2361 }
2362 
helper_float_truncl_d(uint64_t fdt0)2363 uint64_t helper_float_truncl_d(uint64_t fdt0)
2364 {
2365     uint64_t dt2;
2366 
2367     set_float_exception_flags(0, &env->active_fpu.fp_status);
2368     dt2 = float64_to_int64_round_to_zero(fdt0, &env->active_fpu.fp_status);
2369     update_fcr31();
2370     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2371         dt2 = FLOAT_SNAN64;
2372     return dt2;
2373 }
2374 
helper_float_truncl_s(uint32_t fst0)2375 uint64_t helper_float_truncl_s(uint32_t fst0)
2376 {
2377     uint64_t dt2;
2378 
2379     set_float_exception_flags(0, &env->active_fpu.fp_status);
2380     dt2 = float32_to_int64_round_to_zero(fst0, &env->active_fpu.fp_status);
2381     update_fcr31();
2382     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2383         dt2 = FLOAT_SNAN64;
2384     return dt2;
2385 }
2386 
helper_float_truncw_d(uint64_t fdt0)2387 uint32_t helper_float_truncw_d(uint64_t fdt0)
2388 {
2389     uint32_t wt2;
2390 
2391     set_float_exception_flags(0, &env->active_fpu.fp_status);
2392     wt2 = float64_to_int32_round_to_zero(fdt0, &env->active_fpu.fp_status);
2393     update_fcr31();
2394     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2395         wt2 = FLOAT_SNAN32;
2396     return wt2;
2397 }
2398 
helper_float_truncw_s(uint32_t fst0)2399 uint32_t helper_float_truncw_s(uint32_t fst0)
2400 {
2401     uint32_t wt2;
2402 
2403     set_float_exception_flags(0, &env->active_fpu.fp_status);
2404     wt2 = float32_to_int32_round_to_zero(fst0, &env->active_fpu.fp_status);
2405     update_fcr31();
2406     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2407         wt2 = FLOAT_SNAN32;
2408     return wt2;
2409 }
2410 
helper_float_ceill_d(uint64_t fdt0)2411 uint64_t helper_float_ceill_d(uint64_t fdt0)
2412 {
2413     uint64_t dt2;
2414 
2415     set_float_exception_flags(0, &env->active_fpu.fp_status);
2416     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2417     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2418     RESTORE_ROUNDING_MODE;
2419     update_fcr31();
2420     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2421         dt2 = FLOAT_SNAN64;
2422     return dt2;
2423 }
2424 
helper_float_ceill_s(uint32_t fst0)2425 uint64_t helper_float_ceill_s(uint32_t fst0)
2426 {
2427     uint64_t dt2;
2428 
2429     set_float_exception_flags(0, &env->active_fpu.fp_status);
2430     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2431     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2432     RESTORE_ROUNDING_MODE;
2433     update_fcr31();
2434     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2435         dt2 = FLOAT_SNAN64;
2436     return dt2;
2437 }
2438 
helper_float_ceilw_d(uint64_t fdt0)2439 uint32_t helper_float_ceilw_d(uint64_t fdt0)
2440 {
2441     uint32_t wt2;
2442 
2443     set_float_exception_flags(0, &env->active_fpu.fp_status);
2444     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2445     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2446     RESTORE_ROUNDING_MODE;
2447     update_fcr31();
2448     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2449         wt2 = FLOAT_SNAN32;
2450     return wt2;
2451 }
2452 
helper_float_ceilw_s(uint32_t fst0)2453 uint32_t helper_float_ceilw_s(uint32_t fst0)
2454 {
2455     uint32_t wt2;
2456 
2457     set_float_exception_flags(0, &env->active_fpu.fp_status);
2458     set_float_rounding_mode(float_round_up, &env->active_fpu.fp_status);
2459     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2460     RESTORE_ROUNDING_MODE;
2461     update_fcr31();
2462     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2463         wt2 = FLOAT_SNAN32;
2464     return wt2;
2465 }
2466 
helper_float_floorl_d(uint64_t fdt0)2467 uint64_t helper_float_floorl_d(uint64_t fdt0)
2468 {
2469     uint64_t dt2;
2470 
2471     set_float_exception_flags(0, &env->active_fpu.fp_status);
2472     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2473     dt2 = float64_to_int64(fdt0, &env->active_fpu.fp_status);
2474     RESTORE_ROUNDING_MODE;
2475     update_fcr31();
2476     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2477         dt2 = FLOAT_SNAN64;
2478     return dt2;
2479 }
2480 
helper_float_floorl_s(uint32_t fst0)2481 uint64_t helper_float_floorl_s(uint32_t fst0)
2482 {
2483     uint64_t dt2;
2484 
2485     set_float_exception_flags(0, &env->active_fpu.fp_status);
2486     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2487     dt2 = float32_to_int64(fst0, &env->active_fpu.fp_status);
2488     RESTORE_ROUNDING_MODE;
2489     update_fcr31();
2490     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2491         dt2 = FLOAT_SNAN64;
2492     return dt2;
2493 }
2494 
helper_float_floorw_d(uint64_t fdt0)2495 uint32_t helper_float_floorw_d(uint64_t fdt0)
2496 {
2497     uint32_t wt2;
2498 
2499     set_float_exception_flags(0, &env->active_fpu.fp_status);
2500     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2501     wt2 = float64_to_int32(fdt0, &env->active_fpu.fp_status);
2502     RESTORE_ROUNDING_MODE;
2503     update_fcr31();
2504     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2505         wt2 = FLOAT_SNAN32;
2506     return wt2;
2507 }
2508 
helper_float_floorw_s(uint32_t fst0)2509 uint32_t helper_float_floorw_s(uint32_t fst0)
2510 {
2511     uint32_t wt2;
2512 
2513     set_float_exception_flags(0, &env->active_fpu.fp_status);
2514     set_float_rounding_mode(float_round_down, &env->active_fpu.fp_status);
2515     wt2 = float32_to_int32(fst0, &env->active_fpu.fp_status);
2516     RESTORE_ROUNDING_MODE;
2517     update_fcr31();
2518     if (GET_FP_CAUSE(env->active_fpu.fcr31) & (FP_OVERFLOW | FP_INVALID))
2519         wt2 = FLOAT_SNAN32;
2520     return wt2;
2521 }
2522 
2523 /* unary operations, not modifying fp status  */
2524 #define FLOAT_UNOP(name)                                       \
2525 uint64_t helper_float_ ## name ## _d(uint64_t fdt0)                \
2526 {                                                              \
2527     return float64_ ## name(fdt0);                             \
2528 }                                                              \
2529 uint32_t helper_float_ ## name ## _s(uint32_t fst0)                \
2530 {                                                              \
2531     return float32_ ## name(fst0);                             \
2532 }                                                              \
2533 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0)               \
2534 {                                                              \
2535     uint32_t wt0;                                              \
2536     uint32_t wth0;                                             \
2537                                                                \
2538     wt0 = float32_ ## name(fdt0 & 0XFFFFFFFF);                 \
2539     wth0 = float32_ ## name(fdt0 >> 32);                       \
2540     return ((uint64_t)wth0 << 32) | wt0;                       \
2541 }
2542 FLOAT_UNOP(abs)
FLOAT_UNOP(chs)2543 FLOAT_UNOP(chs)
2544 #undef FLOAT_UNOP
2545 
2546 /* MIPS specific unary operations */
2547 uint64_t helper_float_recip_d(uint64_t fdt0)
2548 {
2549     uint64_t fdt2;
2550 
2551     set_float_exception_flags(0, &env->active_fpu.fp_status);
2552     fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2553     update_fcr31();
2554     return fdt2;
2555 }
2556 
helper_float_recip_s(uint32_t fst0)2557 uint32_t helper_float_recip_s(uint32_t fst0)
2558 {
2559     uint32_t fst2;
2560 
2561     set_float_exception_flags(0, &env->active_fpu.fp_status);
2562     fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2563     update_fcr31();
2564     return fst2;
2565 }
2566 
helper_float_rsqrt_d(uint64_t fdt0)2567 uint64_t helper_float_rsqrt_d(uint64_t fdt0)
2568 {
2569     uint64_t fdt2;
2570 
2571     set_float_exception_flags(0, &env->active_fpu.fp_status);
2572     fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2573     fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2574     update_fcr31();
2575     return fdt2;
2576 }
2577 
helper_float_rsqrt_s(uint32_t fst0)2578 uint32_t helper_float_rsqrt_s(uint32_t fst0)
2579 {
2580     uint32_t fst2;
2581 
2582     set_float_exception_flags(0, &env->active_fpu.fp_status);
2583     fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2584     fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2585     update_fcr31();
2586     return fst2;
2587 }
2588 
helper_float_recip1_d(uint64_t fdt0)2589 uint64_t helper_float_recip1_d(uint64_t fdt0)
2590 {
2591     uint64_t fdt2;
2592 
2593     set_float_exception_flags(0, &env->active_fpu.fp_status);
2594     fdt2 = float64_div(FLOAT_ONE64, fdt0, &env->active_fpu.fp_status);
2595     update_fcr31();
2596     return fdt2;
2597 }
2598 
helper_float_recip1_s(uint32_t fst0)2599 uint32_t helper_float_recip1_s(uint32_t fst0)
2600 {
2601     uint32_t fst2;
2602 
2603     set_float_exception_flags(0, &env->active_fpu.fp_status);
2604     fst2 = float32_div(FLOAT_ONE32, fst0, &env->active_fpu.fp_status);
2605     update_fcr31();
2606     return fst2;
2607 }
2608 
helper_float_recip1_ps(uint64_t fdt0)2609 uint64_t helper_float_recip1_ps(uint64_t fdt0)
2610 {
2611     uint32_t fst2;
2612     uint32_t fsth2;
2613 
2614     set_float_exception_flags(0, &env->active_fpu.fp_status);
2615     fst2 = float32_div(FLOAT_ONE32, fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2616     fsth2 = float32_div(FLOAT_ONE32, fdt0 >> 32, &env->active_fpu.fp_status);
2617     update_fcr31();
2618     return ((uint64_t)fsth2 << 32) | fst2;
2619 }
2620 
helper_float_rsqrt1_d(uint64_t fdt0)2621 uint64_t helper_float_rsqrt1_d(uint64_t fdt0)
2622 {
2623     uint64_t fdt2;
2624 
2625     set_float_exception_flags(0, &env->active_fpu.fp_status);
2626     fdt2 = float64_sqrt(fdt0, &env->active_fpu.fp_status);
2627     fdt2 = float64_div(FLOAT_ONE64, fdt2, &env->active_fpu.fp_status);
2628     update_fcr31();
2629     return fdt2;
2630 }
2631 
helper_float_rsqrt1_s(uint32_t fst0)2632 uint32_t helper_float_rsqrt1_s(uint32_t fst0)
2633 {
2634     uint32_t fst2;
2635 
2636     set_float_exception_flags(0, &env->active_fpu.fp_status);
2637     fst2 = float32_sqrt(fst0, &env->active_fpu.fp_status);
2638     fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2639     update_fcr31();
2640     return fst2;
2641 }
2642 
helper_float_rsqrt1_ps(uint64_t fdt0)2643 uint64_t helper_float_rsqrt1_ps(uint64_t fdt0)
2644 {
2645     uint32_t fst2;
2646     uint32_t fsth2;
2647 
2648     set_float_exception_flags(0, &env->active_fpu.fp_status);
2649     fst2 = float32_sqrt(fdt0 & 0XFFFFFFFF, &env->active_fpu.fp_status);
2650     fsth2 = float32_sqrt(fdt0 >> 32, &env->active_fpu.fp_status);
2651     fst2 = float32_div(FLOAT_ONE32, fst2, &env->active_fpu.fp_status);
2652     fsth2 = float32_div(FLOAT_ONE32, fsth2, &env->active_fpu.fp_status);
2653     update_fcr31();
2654     return ((uint64_t)fsth2 << 32) | fst2;
2655 }
2656 
2657 #define FLOAT_OP(name, p) void helper_float_##name##_##p(void)
2658 
2659 /* binary operations */
2660 #define FLOAT_BINOP(name)                                          \
2661 uint64_t helper_float_ ## name ## _d(uint64_t fdt0, uint64_t fdt1)     \
2662 {                                                                  \
2663     uint64_t dt2;                                                  \
2664                                                                    \
2665     set_float_exception_flags(0, &env->active_fpu.fp_status);            \
2666     dt2 = float64_ ## name (fdt0, fdt1, &env->active_fpu.fp_status);     \
2667     update_fcr31();                                                \
2668     if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID)                \
2669         dt2 = FLOAT_QNAN64;                                        \
2670     return dt2;                                                    \
2671 }                                                                  \
2672                                                                    \
2673 uint32_t helper_float_ ## name ## _s(uint32_t fst0, uint32_t fst1)     \
2674 {                                                                  \
2675     uint32_t wt2;                                                  \
2676                                                                    \
2677     set_float_exception_flags(0, &env->active_fpu.fp_status);            \
2678     wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status);     \
2679     update_fcr31();                                                \
2680     if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID)                \
2681         wt2 = FLOAT_QNAN32;                                        \
2682     return wt2;                                                    \
2683 }                                                                  \
2684                                                                    \
2685 uint64_t helper_float_ ## name ## _ps(uint64_t fdt0, uint64_t fdt1)    \
2686 {                                                                  \
2687     uint32_t fst0 = fdt0 & 0XFFFFFFFF;                             \
2688     uint32_t fsth0 = fdt0 >> 32;                                   \
2689     uint32_t fst1 = fdt1 & 0XFFFFFFFF;                             \
2690     uint32_t fsth1 = fdt1 >> 32;                                   \
2691     uint32_t wt2;                                                  \
2692     uint32_t wth2;                                                 \
2693                                                                    \
2694     set_float_exception_flags(0, &env->active_fpu.fp_status);            \
2695     wt2 = float32_ ## name (fst0, fst1, &env->active_fpu.fp_status);     \
2696     wth2 = float32_ ## name (fsth0, fsth1, &env->active_fpu.fp_status);  \
2697     update_fcr31();                                                \
2698     if (GET_FP_CAUSE(env->active_fpu.fcr31) & FP_INVALID) {              \
2699         wt2 = FLOAT_QNAN32;                                        \
2700         wth2 = FLOAT_QNAN32;                                       \
2701     }                                                              \
2702     return ((uint64_t)wth2 << 32) | wt2;                           \
2703 }
2704 
2705 FLOAT_BINOP(add)
FLOAT_BINOP(sub)2706 FLOAT_BINOP(sub)
2707 FLOAT_BINOP(mul)
2708 FLOAT_BINOP(div)
2709 #undef FLOAT_BINOP
2710 
2711 /* ternary operations */
2712 #define FLOAT_TERNOP(name1, name2)                                        \
2713 uint64_t helper_float_ ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1,  \
2714                                            uint64_t fdt2)                 \
2715 {                                                                         \
2716     fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status);          \
2717     return float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status);          \
2718 }                                                                         \
2719                                                                           \
2720 uint32_t helper_float_ ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1,  \
2721                                            uint32_t fst2)                 \
2722 {                                                                         \
2723     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
2724     return float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
2725 }                                                                         \
2726                                                                           \
2727 uint64_t helper_float_ ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1, \
2728                                             uint64_t fdt2)                \
2729 {                                                                         \
2730     uint32_t fst0 = fdt0 & 0XFFFFFFFF;                                    \
2731     uint32_t fsth0 = fdt0 >> 32;                                          \
2732     uint32_t fst1 = fdt1 & 0XFFFFFFFF;                                    \
2733     uint32_t fsth1 = fdt1 >> 32;                                          \
2734     uint32_t fst2 = fdt2 & 0XFFFFFFFF;                                    \
2735     uint32_t fsth2 = fdt2 >> 32;                                          \
2736                                                                           \
2737     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
2738     fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status);       \
2739     fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
2740     fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status);       \
2741     return ((uint64_t)fsth2 << 32) | fst2;                                \
2742 }
2743 
2744 FLOAT_TERNOP(mul, add)
2745 FLOAT_TERNOP(mul, sub)
2746 #undef FLOAT_TERNOP
2747 
2748 /* negated ternary operations */
2749 #define FLOAT_NTERNOP(name1, name2)                                       \
2750 uint64_t helper_float_n ## name1 ## name2 ## _d(uint64_t fdt0, uint64_t fdt1, \
2751                                            uint64_t fdt2)                 \
2752 {                                                                         \
2753     fdt0 = float64_ ## name1 (fdt0, fdt1, &env->active_fpu.fp_status);          \
2754     fdt2 = float64_ ## name2 (fdt0, fdt2, &env->active_fpu.fp_status);          \
2755     return float64_chs(fdt2);                                             \
2756 }                                                                         \
2757                                                                           \
2758 uint32_t helper_float_n ## name1 ## name2 ## _s(uint32_t fst0, uint32_t fst1, \
2759                                            uint32_t fst2)                 \
2760 {                                                                         \
2761     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
2762     fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
2763     return float32_chs(fst2);                                             \
2764 }                                                                         \
2765                                                                           \
2766 uint64_t helper_float_n ## name1 ## name2 ## _ps(uint64_t fdt0, uint64_t fdt1,\
2767                                            uint64_t fdt2)                 \
2768 {                                                                         \
2769     uint32_t fst0 = fdt0 & 0XFFFFFFFF;                                    \
2770     uint32_t fsth0 = fdt0 >> 32;                                          \
2771     uint32_t fst1 = fdt1 & 0XFFFFFFFF;                                    \
2772     uint32_t fsth1 = fdt1 >> 32;                                          \
2773     uint32_t fst2 = fdt2 & 0XFFFFFFFF;                                    \
2774     uint32_t fsth2 = fdt2 >> 32;                                          \
2775                                                                           \
2776     fst0 = float32_ ## name1 (fst0, fst1, &env->active_fpu.fp_status);          \
2777     fsth0 = float32_ ## name1 (fsth0, fsth1, &env->active_fpu.fp_status);       \
2778     fst2 = float32_ ## name2 (fst0, fst2, &env->active_fpu.fp_status);          \
2779     fsth2 = float32_ ## name2 (fsth0, fsth2, &env->active_fpu.fp_status);       \
2780     fst2 = float32_chs(fst2);                                             \
2781     fsth2 = float32_chs(fsth2);                                           \
2782     return ((uint64_t)fsth2 << 32) | fst2;                                \
2783 }
2784 
2785 FLOAT_NTERNOP(mul, add)
2786 FLOAT_NTERNOP(mul, sub)
2787 #undef FLOAT_NTERNOP
2788 
2789 /* MIPS specific binary operations */
2790 uint64_t helper_float_recip2_d(uint64_t fdt0, uint64_t fdt2)
2791 {
2792     set_float_exception_flags(0, &env->active_fpu.fp_status);
2793     fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2794     fdt2 = float64_chs(float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status));
2795     update_fcr31();
2796     return fdt2;
2797 }
2798 
helper_float_recip2_s(uint32_t fst0,uint32_t fst2)2799 uint32_t helper_float_recip2_s(uint32_t fst0, uint32_t fst2)
2800 {
2801     set_float_exception_flags(0, &env->active_fpu.fp_status);
2802     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2803     fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2804     update_fcr31();
2805     return fst2;
2806 }
2807 
helper_float_recip2_ps(uint64_t fdt0,uint64_t fdt2)2808 uint64_t helper_float_recip2_ps(uint64_t fdt0, uint64_t fdt2)
2809 {
2810     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2811     uint32_t fsth0 = fdt0 >> 32;
2812     uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2813     uint32_t fsth2 = fdt2 >> 32;
2814 
2815     set_float_exception_flags(0, &env->active_fpu.fp_status);
2816     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2817     fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2818     fst2 = float32_chs(float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status));
2819     fsth2 = float32_chs(float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status));
2820     update_fcr31();
2821     return ((uint64_t)fsth2 << 32) | fst2;
2822 }
2823 
helper_float_rsqrt2_d(uint64_t fdt0,uint64_t fdt2)2824 uint64_t helper_float_rsqrt2_d(uint64_t fdt0, uint64_t fdt2)
2825 {
2826     set_float_exception_flags(0, &env->active_fpu.fp_status);
2827     fdt2 = float64_mul(fdt0, fdt2, &env->active_fpu.fp_status);
2828     fdt2 = float64_sub(fdt2, FLOAT_ONE64, &env->active_fpu.fp_status);
2829     fdt2 = float64_chs(float64_div(fdt2, FLOAT_TWO64, &env->active_fpu.fp_status));
2830     update_fcr31();
2831     return fdt2;
2832 }
2833 
helper_float_rsqrt2_s(uint32_t fst0,uint32_t fst2)2834 uint32_t helper_float_rsqrt2_s(uint32_t fst0, uint32_t fst2)
2835 {
2836     set_float_exception_flags(0, &env->active_fpu.fp_status);
2837     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2838     fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2839     fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2840     update_fcr31();
2841     return fst2;
2842 }
2843 
helper_float_rsqrt2_ps(uint64_t fdt0,uint64_t fdt2)2844 uint64_t helper_float_rsqrt2_ps(uint64_t fdt0, uint64_t fdt2)
2845 {
2846     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2847     uint32_t fsth0 = fdt0 >> 32;
2848     uint32_t fst2 = fdt2 & 0XFFFFFFFF;
2849     uint32_t fsth2 = fdt2 >> 32;
2850 
2851     set_float_exception_flags(0, &env->active_fpu.fp_status);
2852     fst2 = float32_mul(fst0, fst2, &env->active_fpu.fp_status);
2853     fsth2 = float32_mul(fsth0, fsth2, &env->active_fpu.fp_status);
2854     fst2 = float32_sub(fst2, FLOAT_ONE32, &env->active_fpu.fp_status);
2855     fsth2 = float32_sub(fsth2, FLOAT_ONE32, &env->active_fpu.fp_status);
2856     fst2 = float32_chs(float32_div(fst2, FLOAT_TWO32, &env->active_fpu.fp_status));
2857     fsth2 = float32_chs(float32_div(fsth2, FLOAT_TWO32, &env->active_fpu.fp_status));
2858     update_fcr31();
2859     return ((uint64_t)fsth2 << 32) | fst2;
2860 }
2861 
helper_float_addr_ps(uint64_t fdt0,uint64_t fdt1)2862 uint64_t helper_float_addr_ps(uint64_t fdt0, uint64_t fdt1)
2863 {
2864     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2865     uint32_t fsth0 = fdt0 >> 32;
2866     uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2867     uint32_t fsth1 = fdt1 >> 32;
2868     uint32_t fst2;
2869     uint32_t fsth2;
2870 
2871     set_float_exception_flags(0, &env->active_fpu.fp_status);
2872     fst2 = float32_add (fst0, fsth0, &env->active_fpu.fp_status);
2873     fsth2 = float32_add (fst1, fsth1, &env->active_fpu.fp_status);
2874     update_fcr31();
2875     return ((uint64_t)fsth2 << 32) | fst2;
2876 }
2877 
helper_float_mulr_ps(uint64_t fdt0,uint64_t fdt1)2878 uint64_t helper_float_mulr_ps(uint64_t fdt0, uint64_t fdt1)
2879 {
2880     uint32_t fst0 = fdt0 & 0XFFFFFFFF;
2881     uint32_t fsth0 = fdt0 >> 32;
2882     uint32_t fst1 = fdt1 & 0XFFFFFFFF;
2883     uint32_t fsth1 = fdt1 >> 32;
2884     uint32_t fst2;
2885     uint32_t fsth2;
2886 
2887     set_float_exception_flags(0, &env->active_fpu.fp_status);
2888     fst2 = float32_mul (fst0, fsth0, &env->active_fpu.fp_status);
2889     fsth2 = float32_mul (fst1, fsth1, &env->active_fpu.fp_status);
2890     update_fcr31();
2891     return ((uint64_t)fsth2 << 32) | fst2;
2892 }
2893 
2894 /* compare operations */
2895 #define FOP_COND_D(op, cond)                                   \
2896 void helper_cmp_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc)    \
2897 {                                                              \
2898     int c = cond;                                              \
2899     update_fcr31();                                            \
2900     if (c)                                                     \
2901         SET_FP_COND(cc, env->active_fpu);                      \
2902     else                                                       \
2903         CLEAR_FP_COND(cc, env->active_fpu);                    \
2904 }                                                              \
2905 void helper_cmpabs_d_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
2906 {                                                              \
2907     int c;                                                     \
2908     fdt0 = float64_abs(fdt0);                                  \
2909     fdt1 = float64_abs(fdt1);                                  \
2910     c = cond;                                                  \
2911     update_fcr31();                                            \
2912     if (c)                                                     \
2913         SET_FP_COND(cc, env->active_fpu);                      \
2914     else                                                       \
2915         CLEAR_FP_COND(cc, env->active_fpu);                    \
2916 }
2917 
float64_is_unordered(int sig,float64 a,float64 b STATUS_PARAM)2918 static int float64_is_unordered(int sig, float64 a, float64 b STATUS_PARAM)
2919 {
2920     if (float64_is_signaling_nan(a) ||
2921         float64_is_signaling_nan(b) ||
2922         (sig && (float64_is_any_nan(a) || float64_is_any_nan(b)))) {
2923         float_raise(float_flag_invalid, status);
2924         return 1;
2925     } else if (float64_is_any_nan(a) || float64_is_any_nan(b)) {
2926         return 1;
2927     } else {
2928         return 0;
2929     }
2930 }
2931 
2932 /* NOTE: the comma operator will make "cond" to eval to false,
2933  * but float*_is_unordered() is still called. */
2934 FOP_COND_D(f,   (float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2935 FOP_COND_D(un,  float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status))
2936 FOP_COND_D(eq,  !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2937 FOP_COND_D(ueq, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2938 FOP_COND_D(olt, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2939 FOP_COND_D(ult, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2940 FOP_COND_D(ole, !float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2941 FOP_COND_D(ule, float64_is_unordered(0, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2942 /* NOTE: the comma operator will make "cond" to eval to false,
2943  * but float*_is_unordered() is still called. */
2944 FOP_COND_D(sf,  (float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status), 0))
2945 FOP_COND_D(ngle,float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status))
2946 FOP_COND_D(seq, !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2947 FOP_COND_D(ngl, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_eq(fdt0, fdt1, &env->active_fpu.fp_status))
2948 FOP_COND_D(lt,  !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2949 FOP_COND_D(nge, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_lt(fdt0, fdt1, &env->active_fpu.fp_status))
2950 FOP_COND_D(le,  !float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status) && float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2951 FOP_COND_D(ngt, float64_is_unordered(1, fdt1, fdt0, &env->active_fpu.fp_status)  || float64_le(fdt0, fdt1, &env->active_fpu.fp_status))
2952 
2953 #define FOP_COND_S(op, cond)                                   \
2954 void helper_cmp_s_ ## op (uint32_t fst0, uint32_t fst1, int cc)    \
2955 {                                                              \
2956     int c = cond;                                              \
2957     update_fcr31();                                            \
2958     if (c)                                                     \
2959         SET_FP_COND(cc, env->active_fpu);                      \
2960     else                                                       \
2961         CLEAR_FP_COND(cc, env->active_fpu);                    \
2962 }                                                              \
2963 void helper_cmpabs_s_ ## op (uint32_t fst0, uint32_t fst1, int cc) \
2964 {                                                              \
2965     int c;                                                     \
2966     fst0 = float32_abs(fst0);                                  \
2967     fst1 = float32_abs(fst1);                                  \
2968     c = cond;                                                  \
2969     update_fcr31();                                            \
2970     if (c)                                                     \
2971         SET_FP_COND(cc, env->active_fpu);                      \
2972     else                                                       \
2973         CLEAR_FP_COND(cc, env->active_fpu);                    \
2974 }
2975 
float32_is_unordered(int sig,float32 a,float32 b STATUS_PARAM)2976 static flag float32_is_unordered(int sig, float32 a, float32 b STATUS_PARAM)
2977 {
2978     if (float32_is_signaling_nan(a) ||
2979         float32_is_signaling_nan(b) ||
2980         (sig && (float32_is_any_nan(a) || float32_is_any_nan(b)))) {
2981         float_raise(float_flag_invalid, status);
2982         return 1;
2983     } else if (float32_is_any_nan(a) || float32_is_any_nan(b)) {
2984         return 1;
2985     } else {
2986         return 0;
2987     }
2988 }
2989 
2990 /* NOTE: the comma operator will make "cond" to eval to false,
2991  * but float*_is_unordered() is still called. */
2992 FOP_COND_S(f,   (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0))
2993 FOP_COND_S(un,  float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status))
2994 FOP_COND_S(eq,  !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2995 FOP_COND_S(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
2996 FOP_COND_S(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2997 FOP_COND_S(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
2998 FOP_COND_S(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
2999 FOP_COND_S(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)  || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3000 /* NOTE: the comma operator will make "cond" to eval to false,
3001  * but float*_is_unordered() is still called. */
3002 FOP_COND_S(sf,  (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0))
3003 FOP_COND_S(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status))
3004 FOP_COND_S(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3005 FOP_COND_S(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_eq(fst0, fst1, &env->active_fpu.fp_status))
3006 FOP_COND_S(lt,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3007 FOP_COND_S(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_lt(fst0, fst1, &env->active_fpu.fp_status))
3008 FOP_COND_S(le,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status) && float32_le(fst0, fst1, &env->active_fpu.fp_status))
3009 FOP_COND_S(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)  || float32_le(fst0, fst1, &env->active_fpu.fp_status))
3010 
3011 #define FOP_COND_PS(op, condl, condh)                           \
3012 void helper_cmp_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc)    \
3013 {                                                               \
3014     uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF);             \
3015     uint32_t fsth0 = float32_abs(fdt0 >> 32);                   \
3016     uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF);             \
3017     uint32_t fsth1 = float32_abs(fdt1 >> 32);                   \
3018     int cl = condl;                                             \
3019     int ch = condh;                                             \
3020                                                                 \
3021     update_fcr31();                                             \
3022     if (cl)                                                     \
3023         SET_FP_COND(cc, env->active_fpu);                       \
3024     else                                                        \
3025         CLEAR_FP_COND(cc, env->active_fpu);                     \
3026     if (ch)                                                     \
3027         SET_FP_COND(cc + 1, env->active_fpu);                   \
3028     else                                                        \
3029         CLEAR_FP_COND(cc + 1, env->active_fpu);                 \
3030 }                                                               \
3031 void helper_cmpabs_ps_ ## op (uint64_t fdt0, uint64_t fdt1, int cc) \
3032 {                                                               \
3033     uint32_t fst0 = float32_abs(fdt0 & 0XFFFFFFFF);             \
3034     uint32_t fsth0 = float32_abs(fdt0 >> 32);                   \
3035     uint32_t fst1 = float32_abs(fdt1 & 0XFFFFFFFF);             \
3036     uint32_t fsth1 = float32_abs(fdt1 >> 32);                   \
3037     int cl = condl;                                             \
3038     int ch = condh;                                             \
3039                                                                 \
3040     update_fcr31();                                             \
3041     if (cl)                                                     \
3042         SET_FP_COND(cc, env->active_fpu);                       \
3043     else                                                        \
3044         CLEAR_FP_COND(cc, env->active_fpu);                     \
3045     if (ch)                                                     \
3046         SET_FP_COND(cc + 1, env->active_fpu);                   \
3047     else                                                        \
3048         CLEAR_FP_COND(cc + 1, env->active_fpu);                 \
3049 }
3050 
3051 /* NOTE: the comma operator will make "cond" to eval to false,
3052  * but float*_is_unordered() is still called. */
3053 FOP_COND_PS(f,   (float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status), 0),
3054                  (float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3055 FOP_COND_PS(un,  float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status),
3056                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status))
3057 FOP_COND_PS(eq,  !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3058                  !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3059 FOP_COND_PS(ueq, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3060                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3061 FOP_COND_PS(olt, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3062                  !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3063 FOP_COND_PS(ult, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3064                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3065 FOP_COND_PS(ole, !float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)   && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3066                  !float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3067 FOP_COND_PS(ule, float32_is_unordered(0, fst1, fst0, &env->active_fpu.fp_status)    || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3068                  float32_is_unordered(0, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3069 /* NOTE: the comma operator will make "cond" to eval to false,
3070  * but float*_is_unordered() is still called. */
3071 FOP_COND_PS(sf,  (float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status), 0),
3072                  (float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status), 0))
3073 FOP_COND_PS(ngle,float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status),
3074                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status))
3075 FOP_COND_PS(seq, !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3076                  !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3077 FOP_COND_PS(ngl, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_eq(fst0, fst1, &env->active_fpu.fp_status),
3078                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_eq(fsth0, fsth1, &env->active_fpu.fp_status))
3079 FOP_COND_PS(lt,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3080                  !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3081 FOP_COND_PS(nge, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_lt(fst0, fst1, &env->active_fpu.fp_status),
3082                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_lt(fsth0, fsth1, &env->active_fpu.fp_status))
3083 FOP_COND_PS(le,  !float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)   && float32_le(fst0, fst1, &env->active_fpu.fp_status),
3084                  !float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status) && float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3085 FOP_COND_PS(ngt, float32_is_unordered(1, fst1, fst0, &env->active_fpu.fp_status)    || float32_le(fst0, fst1, &env->active_fpu.fp_status),
3086                  float32_is_unordered(1, fsth1, fsth0, &env->active_fpu.fp_status)  || float32_le(fsth0, fsth1, &env->active_fpu.fp_status))
3087